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ABSTRACT 

The Long-Term Inflow and Structural Test (LIST) 
program is gathering inflow and structural response 
data on a modified version of the Micon 65/13 wind 
turbine at a test site near Bushland, Texas.  Data from 
491 ten-minute time data records are analyzed here to 
determine the dependency of fatigue and extreme loads 
on inflow parameters. 

Flap and edge bending moment ranges at a blade root 
are chosen as the structural response variable, z.  
Various parameters related to the inflow (including, for 
example, primary parameters, the mean and standard 
deviation of the hub-height horizontal wind speed, and 
secondary parameters, Reynolds stresses, vertical shear 
exponent, etc.) are each considered in an inflow 
parameter vector, x.  Time series for the structural 
response, z, are processed in order to obtain a structural 
response parameter, y, where in separate statistical 
studies, y is taken to be either an equivalent fatigue load 
or an extreme load.  This paper first describes a 
procedure by which the important “dependencies” of y 
on the various variables contained in the inflow 
parameter vector, x, may be determined considering all 
the available data.  These dependencies of y on x are 
then recomputed using only the data with above-rated 
mean wind speeds (taken to be approximately 13 m/s). 

The procedure employed is similar to other previous 
studies, but we do not bin the data sets by wind speed 
since dependencies in one wind speed bin may be 
different from those in other bins.  Also, our procedure, 
in sharp contrast to previous studies, examines each 
inflow parameter in the vector, x, in a sequential 
analysis, rather than by using multivariate regression. 

                                                           
*Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin company, for the U.S. Department of Energy 
under contract DE-AC04-94AL85000. 
*This paper is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States. 
 
 

INTRODUCTION 

Fundamental to the study of site-specific design loads 
for wind turbines is an understanding of the influence 
of inflow parameters on such loads.  Inflow parameters 
might include, for example, mean wind speed, 
turbulence intensity, roughness length, transverse 
turbulence, and turbulence length scales for each wind 
component, to name a few. 

The Long-Term Inflow and Structural Test (LIST) 
program managed by Sandia National Laboratories has 
made available continuous time series of atmospheric 
inflow conditions and structural response data from a 
wind turbine in Bushland, Texas (see Sutherland [1] 
and Berg and Zayas [2]).  In previous studies, 
Sutherland [3,4] employed the LIST data to assess the 
influence of atmospheric conditions on damage-
equivalent fatigue loads [5].  This same data set is 
employed in the present study.  This study determines 
the dependencies that exist in blade root flap and edge 
bending moment fatigue and extreme loads on various 
inflow parameters. 

In contrast with past analyses of these data, this study 
seeks to examine the ability of inflow parameters to 
explain the response behavior of a turbine sequentially 
(i.e., considering one inflow parameter at a time), rather 
than with a multivariate approach.  Since there is a 
well-accepted practice of using the mean and standard 
deviation of the horizontal wind speed at the hub height 
to characterize the design environment, the dependence 
of these two parameters is first extracted from the loads 
data.  Then, the next most influential parameter is 
identified and extracted.  The goal is that such a 
procedure can provide a measure of which parameters 
are most likely to add understanding of the site 
influence on turbine loads in addition to the ones 
already in use.  Also, the need, as in a multivariate 
regression, for the inflow parameters (independent 
variables) to be statistically independent is removed. 
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THE LIST DATA SET 

The LIST turbine is a three-bladed Micon 65/13M wind 
turbine that is being tested at a USDA site located near 
Bushland, Texas.  The site is representative of most 
Great Plains commercial sites.  For a complete 
description of the turbine, its instrumentation, and the 
site, see Sutherland [1,2].  A short description of the 
turbine and the measurement campaign is included 
here. 

The LIST Turbine 

The Micon 65/13M LIST turbine, see Fig. 1, is a fixed-
pitch turbine with a 3-phase 480V asynchronous 
generator rated at 115kW.  The generator operates at 
1200 rpm while the blades turn at a fixed 55 rpm.  
(Note that the standard Micon 65/13 turbine rotates at a 
fixed 45 rpm).  The turbine is fitted with Phoenix 8m 
blades that are based on Solar Energy Research Institute 
(SERI)‡ airfoils.  These “SERI” blades are 7.9 m (312 
in) long and are equipped with tip brakes. 

Data 

From the LIST program, data are recorded and stored as 
ten-minute segments.  The experiment is being 
monitored using a total of 60 sensors: 19 sensors 
measure structural response and 34 sensors measure 
                                                           
‡ SERI is now the National Renewable Energy Laboratory (NREL). 

atmospheric conditions.  A total of 1998 ten-minute 
records are available in this data set.  This analysis uses 
a subset of the data, the records with mean wind speeds 
greater than 7 m/s (comprising 491 ten-minute records).  
Figure 2 shows a distribution of the records used, 
classified according to mean horizontal wind speed.  Of 
these records, 63 have mean wind speeds above the 
rated wind speed of the turbine (taken to be 13 m/s 
here). 

NUMERICAL ANALYSIS 

Several authors have examined the influence of inflow 
parameters on fatigue loads.  Fragoulis [6], Glinou and 
Fragoulis [7], and Sutherland [1,3] have examined the 
influence of various inflow parameters on equivalent 
fatigue loads.  Kelley [8] has examined the influence of 
several parameters on the shape of the fatigue spectrum.  
The present study is one more study aimed at 
determining the influence of inflow parameters on both 
equivalent fatigue loads as well as extreme loads.  Data 
from the LIST program are employed in this study. 

Structural Response 

The structural response, z, is taken directly from the 
available ten-minute time series records.  In this study, 
this variable, z, will represent the edge or the flap 
bending moment at the root of a blade.  The time series 
representing z are processed to yield the variable, y, 
which is chosen to be, in separate statistical analyses, 
first, the damage-equivalent fatigue root bending 
moments (Sutherland [3,4]), and next, the maximum or 
extreme bending moment.  The damage-equivalent load 
is the constant-amplitude load at a specified number of 
cycles that produces equivalent damage (in this case, 
1000 cycles for each 10-minute sample, Sutherland 
[5]).  The extreme load is the largest load amplitude in 
each 10-minute sample.  The purpose of the proposed 

Figure 1.  The LIST Turbine near 
Bushland, Texas. 
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Figure 2.  Distribution of 10-Minute Records 
Classified by Mean Wind Speed. 
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analysis is to determine the influence of the inflow 
parameters on damage-equivalent fatigue loads as well 
as extreme loads. 

Inflow Parameters 

The atmospheric time series data are processed to form 
an inflow parameter vector, x, which is used as the 
independent variable.  This vector consists of a primary 
inflow parameter vector, xp, and a secondary inflow 
parameter vector, xs.  The wind turbine community has 
a widely held practice of using the horizontal mean 
wind speed at hub height and a measure of turbulence, 
such as the standard deviation of horizontal wind speed, 
as the primary factors that influence fatigue and 
extreme loads.  Accordingly, xp, the primary inflow 
parameter vector, is defined to consist of the mean (µ) 
and standard deviation (σ) of horizontal wind speed. 

The vector xs is defined to consist of sixteen secondary 
inflow wind parameters.  Included in this vector are:  
the vertical wind shear exponent (α), standard 
deviations of wind speed in the cross-wind and vertical 
directions (σv and σw), turbulence kinetic energy (KE), 
three orthogonal Reynolds stresses (u’w’, u’v’, and 
v’w’), local friction velocity (U*), Obukhov length (L), 
a stability parameter (z/L), the gradient Richardson 
number (Ri), turbulence length scales in three 
orthogonal directions (Lu, Lv, and Lw), and the skewness 
(Su) and kurtosis (Ku) of horizontal wind speed.  
Various authors have proposed one ore more of these 
parameters previously.  Rohatgi and Nelson [9] 
summarize descriptions of many of these parameters.  
Fragoulis [6], Glinou and Fragoulis [7], Kelley [10], 
and Kelley and McKenna [11] also propose these and 
other parameters in studying wind turbine loads.  
Sutherland [3,4] provides a mathematical description 
for each of these xs variables. 

Equation (1) summarizes the various primary and 
secondary inflow parameters used in this study: 
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Regression 

We next describe an initial bivariate linear regression 
that is performed on the primary inflow parameter 
vector, xp. 

100 ˆˆ εyy;By p =−+= xA  (2) 

From Eq. (2), the initial residual, ε1, is defined as the 
difference between the observed value, y, of the 
dependent variable, and the predicted value, ŷ , 
resulting from a least squares regression on xp.  
Variations of the linear model of Eq. (2) were also 
considered (such as logarithmic models) but they did 
not improve on the simple linear regression. 

After this initial regression is performed, the residual, ε1 
is regressed on a single parameter from the secondary 
inflow parameter vector, xs, as shown in Eq. (3).  The 
selection of one particular element of xs is made based 
on the correlation coefficient between ε1 and each 
element of xs.  The element in xs that has the highest 
correlation with ε1 is chosen as xs,1. 
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where (ε2
i)j represents the squared residual from data 

set j of the N sets (note, N is equal to 491 when all the 
LIST data sets are used) after the ith regression.  Only 
linear models were considered for regression of the 
residuals on the secondary inflow parameters. 

Equation (3) shows how the residual, εi, from any step i 
during this procedure of regression on one element of xs 
(indicated here by xs,i) leads to a new residual, εi+1 and 
the regression procedure continues.  The degree of 
influence that any variable, xs,i, has on the amplitude of 
y is indicated by the parameter, θi, in Eq. (4) since θi 
quantifies the reduction in the sum of the squared 
residuals in step i (relative to step i-1).  Thus, a small 
value of θi is an indication that there is no significant 
benefit of the regression on xs,i in influencing or helping 
explain the response variable, y.  Alternatively, a large 
value of θi, indicates that xs,i does help in predicting or 
explaining y better.  After the initial regression on xs,1, 
the order of selection of each subsequent element of xs 
corresponds to the parameter with the highest 
correlation coefficient between εi and each of the 
unaccounted for elements of xs.  Thus, after each 
regression step dealing with the parameter, xs,i in the 
secondary inflow vector, xs, a newly computed 
correlation matrix of εi+1 with the remaining parameters 
of xs guides the next choice, xs,i+1 and the procedure 
continues; it is stopped when the value of θi approaches 
zero. 

This analysis is in sharp contrast to the analyses 
performed by Fragoulis [6], Glinou and Fragoulis [7], 
and Sutherland [1,3].  In particular, a sequential 
analysis is presented here, while the other studies use a 
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single multivariate regression to determine the 
influence of all the inflow parameters simultaneously.  
The current procedure takes into consideration 
correlation among the secondary inflow parameters 
while the referenced studies do not. 

DATA ANALYSIS 

Dependent Variables 

Fatigue Loads 
The blade root fatigue loads for the flap- and edge-wise 
bending moment are each considered separately as the 
dependent variable, y.  These are characterized using 
the damage-equivalent fatigue load (see Sutherland 
[1,3]) and are determined for two fatigue exponents, m, 
equal to 3 and 10.  The former yields an equivalent 
fatigue load appropriate for welded steel and the latter 
for fiberglass composites. 

In summary, regression analyses were carried out where 
y given by Eq. (2) represented four different variables 
corresponding to damage-equivalent root edge or flap 
bending moments for m equal to 3 or 10. 

Extreme Loads 
The extreme blade root flap- and edge-wise bending 
moments are next considered as the dependent variable, 
y.  The maximum or extreme load is another measure of 
the severity of a load spectrum.  For this analysis, the 
single largest maximum flap- and edge-wise bending 
moment value determined from each ten-minute time 
series was employed. 

In summary, regression analyses were carried out where 
y given by Eq. (2) represented two different variables 
corresponding to extreme root edge or flap bending 
moments. 

Numerical Studies 

The regression procedure outlined above and described 
by Eqs. (1-4) was employed for the analysis of several 
different response time series. 

First, the entire available data set of 491 ten-minute 
data segments was used to study the dependencies of 
flap and edge bending moment fatigue (damage-
equivalent) loads for m equal to 3 and 10 on the various 
inflow parameters in xp and xs.  The dependency of flap 
and edge extreme loads on the inflow parameters was 
also examined for this data set. 

Next, similar analyses were performed on a reduced 
data set consisting of only those ten-minute data 
segments with a mean horizontal wind speed greater 
than the rated wind speed (taken to be 13 m/s).  Only 
sixty-three (63) of the 491 ten-minute records were 
retained in this set of studies which was carried out to 
compare and contrast the dependency of each response 
variable, y, on the vector of inflow parameters, x, for 
the entire data set with that for the reduced (above-
rated) data sets. 

The selection of mean wind speed and standard 
deviation of wind speed as “primary” inflow parameters 
was confirmed as being the most appropriate since we 
found that the correlation coefficient for each of these 
two parameters with any choice for variable, y, was 
larger than that for any of the secondary inflow 
parameters in the vector, xs. 

RESULTS 

The Entire Data Set 

The subset of the LIST data used for this analysis 
contained 491 ten-minute data records.  Each of these 
records had a mean wind speed that was greater than 7 
m/s. 

Fatigue Loads 
Figures 3a-3d show results from the bivariate 
regression of the equivalent fatigue load portion of y 
performed on the primary inflow parameter vector, xp.  
Figures 3a and 3b are for the fatigue damage-equivalent 
edge bending moments for m equal to 3 and 10, 
respectively.  Similarly, Figs. 3c and 3d are for the 
damage-equivalent flap bending moments for m equal 
to 3 and 10, respectively.  The regression plane is not 
shown; instead, the data are shown along with a plot of 
y versus the mean horizontal wind speed.  To represent 
a range of typical values for the other primary inflow 
parameter, namely the standard deviation of the 
horizontal wind speed, σ (denoted as sigma in the 
figures), three lines based on the regression results and 
representing sigma values of 1.0, 1.5, and 2.0 m/s are 
also shown.  These three lines are almost coincident 
indicating that dependence of the fatigue loads on the 
standard deviation of the wind speed (sigma) is 
relatively small for all of these cases. 

Table 1 shows correlation coefficients for the residual, 
ε1 (see Eq. (3)) with elements of the secondary inflow 
vector, xs, after regression of y (in this case, damage-
equivalent fatigue loads in the edge and flap bending 
modes for m equal to 3 and 10) on xp.  The low 
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correlation coefficients indicate that performing further 
regressions on xs will not significantly reduce the 
residuals compared to what was already achieved after 
regression of y on xp.  To illustrate this, Table 2 shows 
the results of five additional regressions of residuals, εi, 
performed on one parameter of xs at a time.  Results are 
shown for all four cases described above (namely, 
fatigue damage-equivalent edge and flap bending 
moments with fatigue exponent, m equal to 3 and 10). 

As defined earlier, the θi term in general describes how 
much of the variance in residuals is explained by the 
regression.  Note that θ0 is equivalent to the coefficient 
of determination, R2, after the first regression.  As an 
illustration, xp explains anywhere from 17 to 41 percent 
of the variance of the residuals, or, equivalently, the 
regression of y on xp never leads to R2 values greater 
than 0.41.  The implication is that y cannot be 
adequately predicted by the primary inflow parameters, 
xp, alone – a fact that can be confirmed by the data 
shown in Figs. 3a-3d. 

Table 2 also shows the sums of squared residuals and 
the regression coefficients through each step of the 
procedure.  The parameters from xs shown for i equal to 
1-5 in the table are selected based on the highest 
correlation coefficient of that parameter with the 
residual from the preceding regression.  Thus, for 
example, for the damage-equivalent edge bending 
moment with m equal to 3, the parameters of xs selected 
are in sequence, α, KE, Ri, Ku, and Su (the vertical wind 
shear exponent, turbulent kinetic energy, gradient 
Richardson number, and the kurtosis and skewness of 
the horizontal wind speed).  It is clear that when the 
entire data set is used, none of the parameters in xs has 
significant influence on reducing the residuals in y in 
the case of fatigue damage-equivalent bending 
moments in edge or flap modes.  This can be seen by 
the low values of θi for all i>0.  This also suggests that 
no secondary inflow parameter usefully contributes to 
explanation of edge and flap bending fatigue loads once 
the primary variables of mean wind speed and standard 
deviation of wind speed are accounted for. 

Extreme Loads 
Figures 4a and 4b show results from the bivariate 
regression on the extreme load portion of y performed 
on the primary inflow parameter vector, xp.  Figure 4a 
is for the extreme edge bending moment while Fig. 4b 
is for the extreme flap bending moment.  Again, the 
regression plane is not shown; instead, the data are 
shown along with a plot of y versus the mean horizontal 
wind speed for three values of the standard deviation of 

the horizontal wind speed (1.0, 1.5, and 2.0 m/s).  For 
extreme loads, the dependence on standard deviation of 
the wind speed is significantly higher than was the case 
with the fatigue loads.  Hence, the three lines shown in 
Figs. 4a and 4b are well separated. 

Table 3 shows correlation coefficients for the residual, 
ε1 with elements of the secondary inflow vector, xs, 
after regression of y on xp.  The correlation coefficients 
are still fairly low but higher than for the fatigue loads 
described earlier.  Further regressions on xs do not 
significantly reduce the residuals compared to their 
values after regression of y on xp as can be seen in 
Table 4. 

In the case of the extreme loads, xp explains almost 70 
percent of the variance of the residuals (or, 
equivalently, the regression of y on xp leads to R2 values 
of nearly 0.7 and much better regression fits of y to xp 
as may be seen in Figs. 4a and 4b than was the case of 
the fatigue loads).  Table 4 also shows the sums of 
squared residuals and the regression coefficients 
through each step of the procedure.  Again, as an 
example, for the extreme flap loads, the parameters of 
xs selected are in sequence, Lw, Su, Ku, α, and σv, but it 
is clear that when the entire data set is used, none of the 
parameters in xs has significant influence on reducing 
the residuals in y in the case of extreme bending 
moments in edge or flap mode.  This can be seen by the 
low values of θi for all i>0.  This also suggests that no 
secondary inflow parameter usefully contributes to 
prediction of edge and flap bending extreme loads. 

Reduced Data Set 

The subset of the LIST data used for this analysis 
contained 63 ten-minute data records.  Only records 
with mean wind speed greater than 13 m/s are 
considered. 

The purpose for considering this reduced data set is to 
determine if the dependencies of fatigue and extreme 
loads on inflow parameters (primary or secondary) 
might be different in this above-rated wind speed 
regime compared to the findings based on the use of the 
entire data set.  Some improvement is expected if the 
above-rated loads represent a more homogeneous data 
set. 

Fatigue Loads 
Figures 5a-5d show results from the bivariate 
regression of the equivalent fatigue load portion of y 
performed on the primary inflow parameter vector, xp.  
Figures 5a and 5b are for the fatigue damage-equivalent 
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Figure 3a: Equivalent Fatigue Edge BM, m=3 

versus Wind Speed for the Entire Data Set 
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Figure 3c: Equivalent Fatigue Flap BM, m=3 

versus Wind Speed for the Entire Data Set 
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Figure 4a: Extreme Edge BM versus Wind Speed 

for the Entire Data Set 
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Figure 3b: Equivalent Fatigue Edge BM, m=10 

versus Wind Speed for the Entire Data Set 
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Figure 3d: Equivalent Fatigue Flap BM, m=10 

versus Wind Speed for the Entire Data Set 
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Figure 4b: Extreme Flap BM versus Wind Speed 

for the Entire Data Set 
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Table 2:  Regression Results for Damage-Equivalent Fatigue Loads using the Entire Data Set. 

  Edge Flap 
i xs,i m=3 m=10 m=3 m=10 
1 α 0.10 0.11 0.10 0.05 
2 σv 0.05 0.04 -0.03 -0.05 
3 σw -0.01 -0.01 -0.04 -0.04 
4 KE 0.06 0.05 0.02 0.00 
5 u'w' 0.01 0.00 -0.02 0.00 
6 u'v' 0.00 0.00 0.03 0.07 
7 v'w' 0.06 0.04 -0.03 -0.03 
8 U* -0.03 -0.03 -0.01 -0.03 
9 L -0.02 -0.01 0.02 0.02 

10 z/L 0.07 0.05 -0.04 -0.06 
11 Ri -0.10 -0.11 -0.04 -0.03 
12 Lu 0.02 0.03 0.00 0.02 
13 Lv 0.05 0.04 -0.05 -0.06 
14 Lw 0.04 0.03 -0.08 -0.07 
15 Su 0.08 0.10 0.13 0.02 
16 Ku 0.05 0.03 -0.05 0.00 

 

Table 1:  Correlation Coefficient Matrix for 
Damage-Equivalent Fatigue Loads using the 

Entire Data Set. 

i x Ai Bi θi 
0 xp [0.07, 0.12] 6.60 0.166 
1 α 0.566 -0.100 0.010 
2 KE 0.036 -0.094 0.016 
3 Ri -0.179 0.029 0.008 
4 Ku 0.064 0.004 0.004 
5 Su 0.135 0.015 0.008 

(a) Edge Bending Moment, m=3. 
 

i x Ai Bi θi 

0 xp [0.21, 0.22] 13.35 0.232 
1 α 1.327 -0.235 0.012 
2 KE 0.076 -0.196 0.015 
3 Ri -0.395 0.064 0.009 
4 Su 0.270 0.031 0.006 
5 Ku 0.153 0.010 0.005 

(b) Edge Bending Moment, m=10. 

i  x Ai Bi θi 

0 xp [0.27, -0.10] 0.40 0.409 
1 Su 0.317 0.036 0.017 
2 Lw -0.007 0.111 0.008 
3 KE 0.033 -0.085 0.006 
4 α 0.652 -0.115 0.006 
5 Lu 0.001 -0.068 0.003 

(c) Flap Bending Moment, m=3. 
 

i  x Ai Bi θi 

0 xp [0.64, 0.23] 1.75 0.356 
1 Lw -0.015 0.244 0.005 
2 u'v' 0.234 0.003 0.004 
3 z/L -0.009 0.006 0.003 
4 Lu 0.003 -0.194 0.003 
5 Lv -0.002 0.115 0.002 

(d) Flap Bending Moment, m=10. 
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flap bending moments for m equal to 3 and 10, 
respectively.  The data are shown along with a plot of y 
versus the mean horizontal wind speed.  To represent a 
range of typical values for the other primary inflow 
parameter, namely the standard deviation of the 
horizontal wind speed (sigma), three lines based on the 
bivariate regression results and representing sigma 
values of 1.0, 1.5, and 2.0 m/s are also shown.  The 
gradient of bending moment with respect to standard 
deviation of the wind speed is greater than when the 
entire data set was used. 

Table 5 shows correlation coefficients for the residual, 
ε1 with elements of the secondary inflow vector, xs, 
after regression of y (in this case, damage-equivalent 
fatigue loads in the edge and flap bending modes for m 
equal to 3 and 10) on xp.  The correlation coefficients 
are higher now when the reduced data set is used as 
compared to those with the entire data set (see Table 1).  
This indicates that performing further regressions on xs 
might help to reduce the residuals further after the 
regression of y on xp.  To illustrate this, Table 6 shows 
the results of five additional regressions of residuals, εi, 
performed on one parameter of xs at a time.  Results are 
shown for all four cases described above (namely, 
fatigue damage-equivalent edge and flap bending 
moments with fatigue exponent, m equal to 3 and 10). 

With this reduced data set, xp explains anywhere from 
66 to 79 percent of the variance of the residuals, or, 
equivalently, the regression of y on xp leads to R2 values 
greater than 0.65.  In all cases, y is predicted, to a 
moderate degree, by the primary inflow parameters, xp, 
alone – this can be confirmed by the reasonable fits to 
the data as seen in Figs. 5a-5d.  

For purposes of comparison with the analysis 
considering the entire data set, for the damage-
equivalent edge bending moment with m equal to 3, the 
parameters of xs selected are in sequence, α, σv, U*, z/L, 
and L.  It is clear that when the reduced data set is used, 
at least one or two parameters in xs have some influence 
on reducing the residuals in y in the case of fatigue 
damage-equivalent bending moments in edge or flap 
mode.  This can be seen by values of θi greater than 
0.10 in a few cases (e.g., with the wind shear exponent, 
α, in the case of edge-wise fatigue loads).  Thus, in a 
few cases, one or more secondary inflow parameters, in 
addition to the primary inflow parameters, might 
contribute to prediction of edge and flap bending 
fatigue loads, at least relative to the case where the 
entire data set was used. 

In summary, both primary and secondary inflow 
parameters help to a greater extent in describing fatigue 
loads when the reduced data set that includes only the 
above-rated wind speed data is used. 

i xs,i Edge Flap 
1 α -0.14 -0.01 
2 σv 0.11 0.15 
3 σw 0.10 0.04 
4 KE 0.00 0.09 
5 u'w' -0.02 -0.04 
6 u'v' 0.03 -0.01 
7 v'w' -0.24 -0.01 
8 U* 0.06 0.05 
9 L 0.02 0.01 

10 z/L -0.06 0.05 
11 Ri 0.14 0.01 
12 Lu 0.09 0.03 
13 Lv 0.07 0.14 
14 Lw 0.09 0.17 
15 Su 0.16 0.14 
16 Ku 0.03 0.02 

 

Table 3:  Correlation Coefficient Matrix 
for Extreme Loads using the Entire Data Set. 

i  x Ai Bi θi 

0 xp [0.64, 2.72] 6.60 0.695 
1 v'w' -4.28 0.00 0.060 
2 Su 0.82 0.09 0.021 
3 α -3.27 0.58 0.028 
4 KE -0.10 0.26 0.010 
5 Ri 0.58 -0.09 0.007 

(a) Extreme Edge Bending Moment. 
 

i  x Ai Bi θi 

0 xp [1.49, 7.47] -12.94 0.683 
1 Lw 0.08 -1.30 0.029 
2 Su 1.96 0.22 0.017 
3 Ku 0.98 0.07 0.011 
4 α 3.38 -0.60 0.004 
5 σv 0.85 -1.02 0.009 

(b) Extreme Flap Bending Moment. 
 

Table 4:  Regression Results for Extreme Loads 
using the Entire Data Set. 
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Extreme Loads 
Figures 6a and 6b show results from the bivariate 
regression of the extreme load portion of y performed 
on the primary inflow parameter vector, xp.  Figure 6a 
is for the extreme edge bending moment while Fig. 6b 
is for the extreme flap bending moment.  The data are 
shown along with a plot of y versus the mean horizontal 
wind speed for three values of the standard deviation of 
the horizontal wind speed (1.0, 1.5, and 2.0 m/s).  
Extreme edge loads show little dependence on mean 
wind speed for this reduced data set but gradients with 
respect to standard deviation of wind speed for both 
edge and flap extreme loads are higher for this reduced 
data set as may be confirmed from Figs. 6a and 6b 
compared to results shown in Figs. 4a and 4b for the 
entire data set. 

Table 7 shows correlation coefficients for the residual, 
ε1 with elements of the secondary inflow vector, xs, 
after regression of y (in this case, extreme loads in the 
edge and flap bending modes) on xp.  The correlation 
coefficients are somewhat higher now when the 
reduced data set is used as compared to those with the 
entire data set (see Table 3).  They are, however, lower 
correlation coefficients than were obtained for fatigue 
loads with this reduced data set (see Table 5).  Thus, 
further regressions on xs do not significantly reduce the 

residuals compared to their values after regression of y 
on xp as can be seen in Table 8. 

In the case of the extreme loads, xp explains as much as 
80 percent of the variance of the residuals for the flap 
bending moment extreme but only 31 percent for the 
edge bending moment extreme.  This is in contrast to 
the results when the entire data set was used when for 
both, flap and edge extremes; R2 values of about 70 
percent were computed.  Table 8 also shows the sums 
of squared residuals and the regression coefficients 
through each step of the procedure.  Again, it is clear 
that when the reduced data set is used, none of the 
parameters in xs has significant influence on reducing 
the residuals in y in the case of extreme bending 
moments in edge or flap mode.  This can be seen by the 
low values of θi for all i>0.  This also suggests that no 
secondary inflow parameter usefully contributes to 
prediction of edge and flap bending extreme loads after 
the primary variables of mean wind speed and standard 
deviation of wind speed are accounted for. 

DISCUSSION OF CORRELATION 

The degree of correlation among the various primary 
and secondary inflow parameters makes it difficult to 
unambiguously identify the most important parameters 
that influence turbine loads.  When one parameter is 
strongly correlated with another, even though each 
might be influential to some extent, the first might serve 
as a surrogate for the second and the importance of the 
second might be minimized and vice-versa.  In this 
study, after accounting for the first parameter, the 
influence of the second will have diminished in part due 
to the strong correlation with the first.  Here, we have 
taken a first step into dealing with issues of correlation 
by assuming that the mean wind speed and the standard 
deviation of wind speed will be treated as the “primary” 
variables of interest.  This assumption is based both on 
design practice and on the physical insight that steady 
winds in combination with the gross amount of 
roughness are reasonable first considerations in the 
design of wind turbines. 

The data set under study suggests that there exists 
strong correlation between, on the one hand, any one of 
the two primary inflow parameters, and, on the other 
hand, one or more of the sixteen secondary inflow 
parameters.  As seen in Table 9, only about five of the 
sixteen secondary parameters are relatively 
uncorrelated with the primary parameters of mean wind 
speed and standard deviation of wind speed.  Therefore, 
each of the other eleven parameters has their 
relationship with or influence on the response variables 

  Edge Flap 
i  xs,i  m=3 m=10 m=3 m=10 
1 α 0.32 0.27 0.20 0.16 
2 σv 0.28 0.29 0.30 0.31 
3 σw 0.23 0.25 0.11 0.12 
4 KE 0.19 0.20 0.18 0.20 
5 u'w' 0.08 0.06 0.13 0.13 
6 u'v' 0.04 0.10 0.28 0.30 
7 v'w' 0.14 0.10 0.03 -0.07 
8 U* -0.08 -0.05 -0.12 -0.13 
9 L 0.12 0.11 0.21 0.24 

10 z/L 0.13 0.12 -0.04 -0.14 
11 Ri -0.14 -0.11 -0.04 0.03 
12 Lu -0.05 -0.03 -0.05 -0.01 
13 Lv 0.05 0.06 0.07 0.17 
14 Lw -0.18 -0.14 -0.14 -0.06 
15 Su 0.21 0.21 0.09 0.10 
16 Ku -0.04 -0.02 -0.07 0.06 

Table 5:  Correlation Coefficient Matrix for 
Damage-Equivalent Fatigue Loads using the 

Reduced Data Set. 
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Figure 5a: Equivalent Fatigue Edge BM, m=3 
versus  Wind Speed for the Reduced Data Set 
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Figure 5c: Equivalent Fatigue Flap BM, m=3 
versus Wind Speed for the Reduced Data Set 
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Figure 6a: Extreme Edge BM versus Wind Speed 
for the Reduced Data Set 
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Figure 5b: Equivalent Fatigue Edge BM, m=10 
versus Wind Speed for the Reduced Data Set 
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Figure 5d: Equivalent Fatigue Flap BM, m=10 
versus Wind Speed for the Reduced Data Set 
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Figure 6b: Extreme Flap BM versus Wind Speed 
for the Reduced Data Set 
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Table 6:  Regression Results for Damage-Equivalent Fatigue Loads using the Reduced Data Set. 
 

 

 

 

 

 

 

 

 

 

 

 

 

i  x Ai Bi θi 

0 xp [0.24, 0.46] 3.14 0.784 
1 α 5.11 -0.68 0.100 
2 σv 0.20 -0.38 0.123 
3 U* -0.50 0.44 0.080 
4 z/L 0.49 0.05 0.031 
5 L 0.00 0.02 0.043 

(a) Edge Bending Moment, m=3. 
 

i  x Ai Bi θi 

0 xp [0.48, 1.36] 6.48 0.790 
1 σv 0.39 -0.76 0.087 
2 α 11.67 -1.56 0.114 
3 U* -0.97 0.85 0.059 
4 L 0.00 0.03 0.025 
5 z/L 1.10 0.11 0.030 

(b) Edge Bending Moment, m=10. 

i  x Ai Bi θi 

0 xp [0.36, 0.79] -2.64 0.707 
1 σv 0.34 -0.66 0.091 
2 u'v' 0.21 0.00 0.083 
3 u'w' 0.51 0.40 0.064 
4 α 8.13 -1.09 0.088 
5 L 0.00 0.05 0.078 

(c) Flap Bending Moment, m=3. 
 

i  x Ai Bi θi 

0 xp [0.64, 2.46] -2.47 0.669 
1 σv 0.87 -1.67 0.098 
2 u'v' 0.55 0.00 0.099 
3 U* -2.20 1.92 0.070 
4 α 16.85 -2.26 0.067 
5 L 0.00 0.12 0.083 

(d) Flap Bending Moment, m=10. 

i xs,i Edge Flap 
1 α -0.17 -0.01 
2 σv 0.18 0.26 
3 σw 0.03 0.11 
4 KE 0.09 0.17 
5 u'w' 0.06 0.16 
6 u'v' 0.03 0.20 
7 v'w' -0.02 0.09 
8 U* -0.05 -0.15 
9 L 0.07 0.08 

10 z/L -0.03 -0.16 
11 Ri 0.07 0.21 
12 Lu 0.11 -0.08 
13 Lv 0.00 0.01 
14 Lw -0.04 0.16 
15 Su 0.07 0.16 
16 Ku 0.11 -0.01 

Table 7:  Correlation Coefficient Matrix for 
Extreme Loads using the Reduced Data Set. 

i  x Ai Bi θi 

0 xp [0.11, 2.77] -21.95 0.313 
1 σv 0.72 -1.39 0.032 
2 α -15.48 2.07 0.021 
3 Lv 0.00 0.48 0.019 
4 Ku 0.79 0.21 0.019 
5 u'v' 0.15 0.00 0.003 

(a) Extreme Edge Bending Moment. 
 

i  x Ai Bi θi 

0 xp [2.23, 5.41] 14.94 0.797 
1 σv 1.49 -2.87 0.066 
2 u'w' 2.64 2.08 0.060 
3 u'v' 0.76 -0.01 0.044 
4 Lw 0.06 -1.44 0.039 
5 Lu -0.01 1.51 0.039 

(b) Extreme Flap Bending Moment. 
 

Table 8:  Regression Results for Extreme Loads using 
the Reduced Data Set. 

 α σv σw KE u'w' u'v' v'w' U* L z/L Ri Lu Lv Lw Su Ku 
µ 0.33 0.67 0.73 0.64 0.68 0.02 0.03 0.68 0.10 0.02 0.09 0.48 0.52 0.40 0.05 0.14
σ 0.71 0.79 0.87 0.94 0.75 0.03 0.03 0.74 0.09 0.07 0.45 0.64 0.56 0.57 0.05 0.20

Table 9:  Correlation Coefficients between the Sixteen Secondary Parameters and the Primary 
Parameters of Wind Speed Mean (µ) and Standard Deviation (σ). 
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largely accounted for by the relationship between the 
response and the mean and/or standard deviation of the 
wind speed.  That they contribute so little additional 
explanation (at most 12% in one particular case and 
usually much less) implies that there is very little 
evidence to suggest that they should replace the mean 
and standard deviation as descriptive parameters.  
Nevertheless, the fact that one parameter can act as a 
surrogate for another leaves open the possibility that 
some secondary parameter may in fact be important in 
driving the magnitude of turbine response. 

CONCLUSIONS 

Data available on inflow and structural response from 
the LIST program have provided an opportunity to 
study the influence of various inflow parameters on 
fatigue and extreme wind turbine loads.  A procedure is 
presented that employed several steps involving 
regression of loads on primary and secondary inflow 
parameters.  Residuals obtained in each regression step 
helped in identifying which inflow parameter might be 
a candidate for regression after more important 
parameters had already been considered.  A systematic 
approach was followed for damage-equivalent fatigue 
loads with fatigue exponents of 3 and 10, and for 
extreme loads representing root flap and edge bending 
moments. 

A reduced data set, including only those ten-minute 
records with a mean wind speed above the rated wind 
speed (13 m/s), was employed in an analysis to 
compare operation above rated (i.e., stalled blades) with 
the entire data set. 

In general, it was found that when the entire data set 
was used, the fatigue and extreme loads showed few 
dependencies on either the primary or the secondary 
inflow parameters.  For extreme loads, the 
dependencies were more evident than for fatigue, 
especially with the primary inflow parameters. 

When the reduced data set was employed, the 
dependencies of loads on primary inflow parameters 
were found to be greater than with the entire data set 
including wind speeds lower than rated as well.  
Regression fits on the primary inflow parameters were 
markedly improved.  A few secondary inflow 
parameters related to wind shear (α) and crosswind 
variability (σv) were identified as somewhat important, 
especially for fatigue loads. 

Results from this study suggest that the large 
correlation coefficients between several of the 
secondary parameters individually and each of the 
primary parameters make it difficult for the secondary 
parameters to provide any additional explanation of 
turbine response once the primary parameters have 
been accounted for. 
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