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ABSTRACT 

Robust estimation of wind turbine design loads for 
service lifetimes of 30 to 50 years that are based on 
field measurements of a few days is a challenging 
problem.  Estimating the long-term load distribution 
involves the integration of conditional distributions of 
extreme loads over the mean wind speed and 
turbulence intensity distributions.  However, the 
accuracy of the statistical extrapolation is fairly 
sensitive to both model and sampling errors.  Using 
measured inflow and structural data from the LIST 
program, this paper presents a comparative assessment 
of extreme loads using three distributions: namely, the 
Gumbel, Weibull and Generalized Extreme Value 
distributions.  The paper uses L-moments, in place of 
traditional product moments, to reduce the sampling 
error.  The paper discusses the application of extreme 
value theory and highlights its practical limitations.  
The proposed technique has the potential of improving 
estimates of the design loads for wind turbines. 
 

INTRODUCTION 

The design of wind turbines depends on the robust 
estimation of long-term extreme loads from limited 
records of load measurements [1, 2].  The accuracy of 
the statistical extrapolation techniques used to estimate 
extreme values is fairly sensitive to both model and 
sampling errors.  Modeling errors originate from fitting 
data that form an inconsistent distribution, whereas 
sampling (or statistical) errors are due to insufficient 
data used in the estimation analysis.  Minimizing 
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modeling and statistical errors has become an active 
area of research in extreme value estimation.   
 
The determination of long-term extreme load 
distributions involves the integration of conditional 
distributions of extreme loads over the mean wind 
speed and turbulence distribution [2].  In this 
technique, a conditional extreme distribution is 
modeled as a Gumbel distribution that is fitted to a 
sample of 10-min maximum values corresponding to a 
fixed range (bin) of the mean wind speed.  The Gumbel 
distribution is fit to the data using the method-of-
moments.  This fitting technique utilizes the mean and 
standard deviation of the data.  Since this approach 
ignores higher-order moments, the fit of the Gumbel 
model to realistic data can be inadequate, especially in 
the tail of the distribution. 
 
To improve modeling of the tail of the distribution, 
higher-order (greater than 2) statistical moments, such 
as skewness and kurtosis, have been advocated in the 
literature [3].  In particular, cubic and quadratic 
polynomials of Weibull-distributed random variables 
have been proposed to preserve the first three and four 
moments of the data set, respectively.  These moment-
based probabilistic models are particularly susceptible 
to the large sampling uncertainty that is associated with 
higher-order moments estimated from limited data.  It 
is well known that skewness and kurtosis estimated 
from small samples tend to be highly biased and 
uncertain [4, 5].  Obviously, poor estimates of the 
higher-order moments lead to erroneous predictions of 
extreme design values.   
 
The Long Term Inflow and Structural Test (LIST) 
program [6] has collected a long-term inflow and 
structural response data set for a wind turbine.  This 
program has provided 1017 records of loads, each of 
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which are 10-minutes in duration.  The records were 
classified in seven wind speed classes according to the 
mean wind speed and then the extreme value of the 
root bending moment in the flapwise and edgewise 
directions were determined.  These data are used here 
to illustrate three techniques for estimating long-term, 
extreme loads.   
 
The first technique uses a Gumbel distribution that is 
based on the mean and standard deviation of the data, 
to predict extreme values.  The analysis of the LIST 
data confirms that in many instances, the Gumbel 
distribution leads to a poor fit of the tail of the 
distribution [6], which reduces the accuracy of the 
estimated extreme loads. 
 
The second technique is a new approach to the 
modeling of extreme value distribution.  This technique 
uses a generalized (3-parameter) Gumbel model.  For 
the technique presented here, L-moments are used to 
determine the distribution parameters rather than 
conventional statistical moments.  L-moments are 

based on the linear combination of data, which is in 
sharp contrast to the determination technique for 
ordinary statistical moments.  The linearity of L-
moment estimates increases their accuracy over 
conventional estimates, because conventional estimates 
of higher-ordered moments suffer from the effects of 
sampling uncertainty and the bias that is created by the 
squaring, cubing, etc. the data [8].  Experience suggests 
that highly accurate estimates of higher-order L-
moments (order ≈ 3-6) can be obtained from fairly 
small samples (size ≈ 20) [4, 5].  This paper presents 
the Generalized Extreme Value (GEV) technique that 
preserves skewness of data distribution by using three 
L-moments in the fitting method.   
 
The third technique uses a 3-parameter Weibull 
distribution that also accounts for the skewness of data 
[9].  This modeling technique uses conventional 
statistical moments to account for skewness in the data. 
 
Numerical results presented in the paper provide a 
basis to examine the usefulness of extreme value 
theory for design load estimation for wind turbines.   
 

THE LIST DATA SET 

The LIST turbine is a three-bladed Micon 65/13M 
wind turbine that is being tested at a USDA site located 
near Bushland, Texas.  The site is representative of 
most Great Plains commercial sites.  For a complete 
description of the turbine, its instrumentation and the 
site, see Sutherland, et al.  [6, 7].  Sutherland [10, 11] 
has reported on other analyses of these data.  A short 
description of the turbine and the measurement 
campaign is included here. 
 
The LIST Turbine 

The LIST turbine, see Fig. 1, is a Micon 65/13M, a 
fixed-pitch turbine with a 3-phase 480V asynchronous 
generator rated at 115kW.  The generator operates at 
1200 rpm while the blades turn at a fixed 55 rpm (the 
standard Micon 65/13 turbine rotates at a fixed 45 
rpm).  It has a rated wind speed of approximately 15 
m/s. 
 
The turbine is fitted with Phoenix 8m blades that are 
based on Solar Energy Research Institute (SERI)** 
airfoils.  These “SERI” blades are 7.9 m (312 in) long 
and are equipped with tip brakes. 
 
Data 

From the LIST program, data are recorded and stored 
as 10-min segments.  The experiment was being 
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Fig. 1.  The Micon 65/13M turbine at the 
Bushland Test Site. 
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monitored using a total of 60 sensors: 19 sensors 
measure structural response and 34 sensors  to measure 
atmospheric conditions.  A total of 1998 10-min 
records are available in this data set.  For this analysis, 
a subset of the data, the records with mean wind speeds 
greater than 5 m/s (1017 10-min records), is 
considered.  Figure 2 shows a distribution of the 
records, classified according to the mean, hub-height 
horizontal wind speed of each 10-min record.   
 
Extreme Bending Loads  

For this analysis, the extreme bending load, both in flap 
and edge bending, were extracted from each 10-min 
data record.  These extremes were collected in various 
bins according to mean wind speed range.  Statistical 
analysis of each sample of extreme loads was carried 
out, and results are presented in this paper. 
 

PROBABILISTIC MODELS OF EXTREME 
LOAD  

Basic Approach 

The distribution of extreme loads that is conditional on 
the mean wind speed, denoted by F(L|V), should be 
integrated over the probability density of mean wind 
speed, f(V), to obtain an overall distribution F(L): 

∫=
V

dVVfVLFLF )()|()(      . (1) 

The dependence of extreme load on turbulence and 
other parameters can be handled in a similar way. 
 
In the LIST data, mean wind speed is discretized into a 
total of 7 wind speed bins: six 2 m/s wide bins that 
range from 5 to 17 m/s and a seventh bin for wind 
speeds that exceeding 17 m/s.  Therefore, 7 conditional 
distributions are required to be fitted to the load data.  
The selection of a representative conditional 
distribution of extreme loads, F(L|V), is crucial from 
the point of view of minimizing the model error.   The 
next section describes some possible candidates for this 
purpose.   
 
Probabilistic Models 

The Gumbel distribution is a classical model for 
extreme values that is characterized by an exponential 
tail.  This distribution is the normal choice for 
modeling the distribution F(L|V).  The generic form of 
this distribution is given by:  

]exp[)( yexF −−=      , (2) 

where y is the standardized variate given as 
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Here, u and h denote the location and scale parameters, 
respectively.  These parameters can be easily estimated 
from the method-of-moments using the mean and 
standard deviation of data.  This form has been found 
suitable for modeling simulated values of extreme load 
[12]. 
 
The three-parameter Weibull distribution is more 
versatile then the Gumbel distribution, since it can 
incorporate the skewness of data.  It is expressed as 

]exp[)( kyxF −=      , (4) 

where k  is the shape parameter and y is defined in 
Eq.(3).  The distribution parameters can be calculated 
by matching 3 moments of data: the mean, standard 
deviation and skewness.  The shape parameter is 
calculated from a nonlinear function of skewness.  
Moriarty et al [9] applied this model to simulated load 
extremes and found that it predicted smaller design 
loads than those obtained from the Gumbel model. 
 
This paper proposes a Generalized Extreme Value 
(GEV) distribution, which is a generalization of the 
Gumbel model.  Similar to the Weibull model, it is 
capable of including the skewness of data.  The 
distribution is given as: 
 

]exp[)( zexF −−=  where [ ]ky
k

z −
−

= 1log
1

     . (5) 

When the shape parameter k  = 0, it reduces to the 
Gumbel distribution, Eq. (2).  For positive values of the 
shape parameter (k > 0), the distribution has an upper 
bound value (u + h/k ).  There is no upper bound when k 
< 0; however, the distribution does have a lower bound 
of (u + h/k ).   
 
The GEV is an asymptotically correct distribution of 
extremes that are generated from a general non-
exponential parent distribution.  Therefore, this 
distribution is a conceptually correct model in the 
analysis of extreme load data.  The distribution 
parameters are calculated from L-moments of data as 
discussed in the following section.   
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Fig 2.  Distribution of the 10-min data records  
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METHOD OF L-MOMENTS 

Probability-Weighted Moments (PWMs ) 

Consider the definition of an ith order statistical 
moment in terms of the density function, f(x), and the 
quantile function, x(p) = F -1(p), as  

E[Xi] = ∫
R

i dxxfx )(   =  ∫
1

0
)]([ dppx i      ,    (6) 

where dp=dF(x) = f(x) dx.  Note that p=F(x) is a 
monotonic, strictly increasing, absolutely continuous 
and non-negative probability measure.  The PWM of a 
random variable is defined as [8]: 

∫=
1

0
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mβ    ,   (m = 0, 1, .  .  .n)     . (7) 

Alternatively, it can be defined in terms of the 
exceedance probability q = (1 − p) as 

∫=
1
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Note that β0 (= α0) is the mean of the random variable.   
 
A comparison of Eqs. (6) and (7) reveals that PWMs 
are essentially moments of the quantile function.  The 
definition of PWMs involves only the linear 
combination of data, which contrasts with the 
definition of ordinary moments.  Because of this 
linearity, the accuracy of PWM estimates suffers less 
from the effects of sampling uncertainty and bias.  
Highly accurate estimates of higher-order PWMs 
(order ≈ 4-6) can be obtained from fairly small samples 
(size ≈ 20) [4, 5].   
 
An interesting property of βk (or αk) is that they are 
directly related to the average of the maximum (or 
minimum) values in a sample of size k .  Using this 
property along with simple combinatorial arguments, 
Landwehr et  al.  [13] derived their unbiased estimates, 
bk (maxima) and ak (minima), respectively, as  
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an ith order statistics in a sample of size n. 
 

L-Moments 

Hosking [8] showed that certain linear combinations of 
PWMs, referred to as L-moments, can provide valid 
measures of dispersion, skewness and kurtosis 
analogous to ordinary moments.  For example, 
measures of mean (λ1), dispersion (λ2) and third 
moment (λ3 ) can be written as 

01 αλ = ,        102 2ααλ −=   

2103 66 αααλ −−=  (10) 

The L-skewness is defined as 23 / λλ , and 12 / λλ  is 
analogous to the coefficient of variation.  The “L” in L-
moments emphasizes that it is constructed from a 
Linear combination of ordered data.  The dispersion, 
λ2, is denoted by L2 in this paper.  An interesting 
property of L-skewness is that it is bounded between 
±1. 
 
In recent years, the use of L-moments (or PWMs) for 
parameter estimation has become very popular in 
hydrology and water resources engineering.  L-
moments and PWMs are synonymous in a practical 
sense, since they are uniquely related to each other.   
 
Parameters of GEV Distribution 

The first three L-moments of a GEV distribution in 
terms of its location (u ), scale (h) and shape (k) 
parameters are given as [14]  
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Note that Γ(x) denotes the Gamma function.  By 
inverting these equations, the distribution parameters 
can be calculated directly.  Hosking has proposed the 
following simple approximation for calculating the 
shape parameter: 

29554.2859.7 cck +=  and 
3log
2log

3
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The results of this approximation are in error less than 
9×10-4 for L-skewness values within ±0.5.  The other 
parameters can then be calculated as 

)21)(1(
2

kk

k
h

−−+Γ
=

λ
 (15) 

( ))1(11 k
k
h

u +Γ−−= λ  (16) 



 5

The statistical accuracy of the method of L-moments is 
superior to other conventional methods of moments, 
maximum likelihood and the least squares, as 
demonstrated by Hosking et al.  [14] through extensive 
simulations.  For this reason, the use of this method to 
analyze LIST data is particularly important because 
sample size in high-speed bins (> 13 m/s) is fairly 
small which can amplify the sampling error.   
 

RESULTS AND DISCUSSION 

Probabilistic Characteristics of Data 

Loads acting on turbine components are sensitive to 
wide ranging aerodynamic parameters among which 
the effects of mean wind speed and turbulence are 
predominant.  To understand the influence of wind 
speed and turbulence on probabilistic characteristics of 
extreme loads, variations of their statistical moments 
and L-moments are studied here. 
 

Flap Bending Moment 

As shown in Fig. 3, both the mean of the flap bending 
moment (BM) and the turbulence increase almost 
linearly with mean wind speed.  However, the variation 
of standard deviation (SD) and skewness of BM with 
mean wind speed is irregular, as shown in Fig. 4.  Both 
the SD and skewness peak in the 13-15 m/s wind speed 
bin.   
 
The L-dispersion (L2) and L-skewness also exhibit 
qualitatively similar trends in Fig. 5.     
 
The probabilistic characteristics of the distribution of 
turbulence can have a strong influence over the 
extreme bending moment.  To explore this point, the 
dispersion (L2) of BM and turbulence are plotted 
against mean speed in Fig. 6.  Both curves are 
remarkably similar in shape.  For example, both curves 
dip in the 11-13m/s bin at and sharply rise in the 13-15 
m/s bin. 
 
Figure 7 illustrates the relationship of the L-skewness 
of the flap BM to the L-skewness of the turbulence.  
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wind speed and turbulence intensity. 
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Figure 5.  L2 and L-skewness of flap BM versus 

mean wind speed. 
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The skewness of BM peaks in the 13-15 m/s bin, which 
also coincides with the peak in turbulence curve.  A 
sharp decline in skewness of bending moment in the 
15-17 m/s bin is consistent with the turbulence curve. 
It is evident that the dispersion and skewness of the 
extreme flap bending moment distribution are 
dependent on the respective properties of the 
turbulence distribution.  This observation also confirms 
the results of an earlier simulation-based study [9]. 
 
Edge Bending Moment 

Figures 8 through 11 present the variation of statistical 
properties of edge BM with mean speed and 
turbulence.  The mean of both edge BM and turbulence 
increases with speed (Fig. 8).  However, L2 and L-
skewness of BM fluctuate considerably with speed 
(Fig. 9).  Sharp peaks in dispersion and skewness plots 
for 13-15 m/s bin are noteworthy (Fig. 9). 
 
Dispersion and skewness of edge BM are plotted along 
with that of turbulence in Figs. 10 and 11, respectively.  
Both parameters are strongly influenced by variation in 
turbulence properties.  The dependence of edge BM on 

turbulence is qualitatively similar to that of flap BM as 
shown previously. 
 
Distributions of Extreme Flap Bending Moment 

 
The Gumbel, Weibull and GEV models are fitted to 
maximum flap bending moment data, and results for 
the 7 wind speed bins are presented in Figs. 12 through 
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Figure 7.  L-skewness of flap BM and 
turbulence versus mean wind speed. 
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Figure 8.  Mean edge BM ve rsus wind speed 

and turbulence. 
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18.  In all the figures, the Gumbel variate, 
−Log[−LogF(x)], is plotted on the vertical Y-axis 
against the bending moment on the X-axis.  In this 
coordinate system, the Gumbel distribution plots as a 
straight line. 
 
In general, GEV and Weibull models provide better fit 
than the Gumbel model, since they can incorporate the 
curvature of empirical (observed data) distribution.  In 
most cases, the Gumbel model has a tendency to 
predict a larger design value, because it has a longer 
distribution tail than the Weibull or GEV distributions. 
 
The shape parameter of the proposed GEV model is 
generally positive indicating that the extreme BM 
distribution has an upper bound (see Eq.5).   
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General Observations 

In all the samples analyzed here, most of the data 
points are crowded near the sample mean, and only a 
few extremes are observed far beyond the mean value.  
This is reflected by fairly small values of skewness as 
shown in Fig. 5.  As a result, the GEV fits lower 
sample values quite well, but its tail exhibits a sharp 
curvature that in some cases poorly fits the upper 
sample extremes, such as the cases shown in Figs. 12 
and 13. This sharp curvature is also an indication of the 
fact that samples are not sufficiently large to ensure an 
asymptotic convergence of extreme values to GEV 
distribution.  The Weibull tail is somewhat less 
sensitive to the irregularly spaced sample values.  The 
goodness of fit can be improved by fitting GEV and the 
Weibull models to data chosen using threshold criteria. 
 
The Weibull distribution, unlike GEV, has unbounded 
upper tail in all the cases.  The tail length is mostly 
shorter than the Gumbel distribution, and it is inversely 

related with the shape parameter.  The Weibull shape 
parameter is the smallest (k=1, exponential tail) for 13-
15 m/s bin, which implies the longest tail among the set 
of 7 bin distributions.  The shortest tail (k  = 5.7) is seen 
for the last bin (speed > 17 m/s).  The Weibull model 
predicts larger 50-year design values than the GEV 
model with the exception of 13-15 m/s bin (Fig. 16). 
 

13-15 m/s Wind Speed Bin 
An exception to the bounded GEV tail is seen in Fig. 
16.  In this case, skewness of data is very large, see 
Figs. 4 and 5, which results in a negative shape 
parameter and long distribution tail without an upper 
bound.  The reason for an exceptionally large value of 
skewness can be understood by examining the data.  
This bin (13-15 m/s) consists of 24 observations of flap 
BM ranging from 13.7 to 34.4 kN-m with an average 
of 19.5 kN-m and a standard deviation of 4.6 kNm.  
The highest observation exceeds the mean value over 3 
times the standard deviation.  The other two prominent 
extremes are 27.33 and 27.37 kNm, and remaining 21 
values range from 14 to 22 kN-m.  The highest value, 
34.4 kN-m, in a small sample results in a drastic 
increase of skewness that in turn increases the GEV 
shape parameter.   
 
The large tail of GEV is a manifestation of sampling 
uncertainty resulting from large skewness observed in a 
small sample.  Because of this GEV assigns higher 
probabilities of occurrence to larger extremes, whereas 
Weibull model provides extrapolation in line with 
lower sample values. 
 
Distribution of Extreme Edge Bending Moment 

The selected numerical results presented in Figs. 19 
through 23 for edge BM distribution are largely similar 
in nature to those for flap BM.  Namely, the crowding 
of the data near the sample mean implies that GEV fits 
lower sample value quite well, but its tail exhibits a 
sharp curvature that in some cases poorly fits the upper 
sample extremes.  This is readily obvious in Fig. 21 
when the predicted 50-year extreme is less than the 
observed maximum extreme. 
 
The Weibull model is close to GEV in many instances.  
The use of the Gumbel model is likely to predict larger 
design loads.  Once again in the case of 13-15 m/s, the 
GEV has an unbounded tail resulting from the 
relatively large skewness in the data. 
 
The 13-15 m/s Bin  

For both the flap and edge BM in the 13-15 m/s wind 
speed bin, the predicted 50 year extreme is physically 
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Figure 17.  Distributions of flap BM for wind 

speed range of 15 – 17 m/s. 
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Figure 18.  Distributions of flap BM for wind 

speed exceeding 17 m/s. 
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unrealistic.  Namely, for the flap BM, the 50-year 
extreme predicted for the 13-15 bin is approximately 
an order-of-magnitude larger than any of the other 50-
year extreme predictions.  For edge BM, the prediction 
is approximately 3 times larger. 
 
As discussed above, these extremely large predictions 
are based on 2 data points that deviated significantly 
from the other data.  The first question that arises is 
whether or not these points are real.  A close 
examination of the original time series data indicates 
that these data points are not the result of anomalies in 
the data collection system.  Moreover, these data points 
are consistent with data contained in the 15-17 m/s bin.  
Thus, the fitting process must consider these two data 
points. 
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Figure 21.  Distributions of edge BM for wind 
speed range of 11 – 13 m/s. 
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Figure 22.  Distributions of edge BM for wind 
speed range of 13 – 15 m/s. 

-2

2

6

10

14

15 20 25 30 35 40

Edge BM

-L
o

g
[-

L
o

g
F

(x
)]

50 Year Level

1 Year Level

GEV

W

G

Figure 23.  Distributions of edge BM for wind 
speed range of 15 – 17 m/s. 
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Figure 19.  Distributions of edge BM for wind 
speed range of 7 – 9 m/s. 
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Figure 20.  Distributions of edge BM for wind 
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The high skewness in these data may be a result of the 
changing turbine aerodynamics as the inflow 
approaches the rated wind speed of the turbine.  The 
rated wind speed for this turbine is approximately 15 
m/s.  Thus, with this stall-regulated turbine, the turbine 
blades will be going into and out of stall in this wind 
speed bin.  The choice of 2 m/s wind speed bins (at 
even intervals) has probably resulting in a "modeling" 
error that yields an inconsistent distribution of the data.  
Maybe the bins should have been chosen based on the 
rated wind speed.  Indeed, when the data are divided 
into only two bins, see Figs. 24 and 25, the anomaly is 
no longer present.  For these two figures, the data was 
divided at 13 m/s to insure that all of the stalled-blade 
data was contained in a single fit. 
 
Finally, the anomaly may be a result of the technique 
used for choosing the extreme from the time series 
data.  For this analysis, only one extreme is taken from 
each 10-min record.  This is in contrast to the technique 
used by Moriarty, et al [9] where multiple extremes 
(peak-over-threshold method) are taken from each 10-
min record.  Their technique provides significantly 
more extremes from a given data set, and, thereby, 
provides "better" measure of the statistical variables.  
Thus, our choice has probably resulted in a "sampling" 
(or statistical) error that is due to insufficient data. 
 
Thus the application of the GEV technique to wind 
turbine loads is still a work in progress.  The 
techniques for the choosing extremes from time series 
data and for dividing the data into wind speed bins 
have yet to refined to the point where the GEV will 
yield consistent, robust predictions.   
 

CONCLUSIONS 

The paper examines the application of extreme value 
distribution theory to the modeling of extreme flap and 
edge bending moment.  The classical Gumbel and its 
generalized form, Generalized Extreme Value (GEV), 
are fitted to the data.  A new method of L-moment is 
used for GEV distribution fitting purposes.  The 
performance of extreme value distributions is 
compared with 3-parameter Weibull.  In contrast with 
several simulation-based studies reported previously, 
the present results are more realistic due to use of 
actual field data contained in the LIST database.   
 
General conclusions are as follows: 
• The probabilistic characteristics of the bending 

moment (BM) extremes vary across seven bins of 
mean wind speed.  The mean of bending moment 
increases with the mean of wind speed. 

• The dispersion and skewness that affect the 
distribution tail are dependent on the dispersion 

and skewness of turbulence within a bin.  It is 
interesting to observe that the skewness of bending 
moment varies in tandem with that of the 
turbulence.   

• A major limitation of the Gumbel distribution is 
that it ignores the skewness of BM data, which can 
result in a significant overestimation of design 
loads.  This emphasizes the need for including 
higher-order moments in the extreme value 
estimation.   

• The GEV is an asymptotically consistent and more 
versatile form of extreme value distribution.  GEV 
accounts for skewness of data, and provides better 
fit than the Gumbel model. 

• Although GEV is an asymptotically consistent and 
versatile extreme value distribution, its practical 
application needs careful consideration.  In some 
cases it has short bounded tail that can 

-4

0

4

8

12

16

-10 0 10 20 30 40

Flap BM

-L
og

[-
Lo

gF
(x

)]

1 Year Level

50 Year Level

G

W
GEV

Figure 24.  Distribution of flap BM for mean wind 
speeds below 13 m/sec. 
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underestimate extreme values, and also opposite of 
this can happen in highly skewed data.  It is 
attributed to the lack of convergence of extreme 
values to their asymptotic form. 

• The Weibull model is less sensitive to skewness of 
data than GEV.  It provides reasonable fit in 
several cases with potential for further 
improvement. 

• The use of peaks over threshold method to 
improve the modeling accuracy is currently under 
investigation.   

 
In summary, this paper presents preliminary results of 
an investigation into the probabilistic modeling of 
extreme loads acting on wind turbine components.  
This paper discusses application of extreme value 
theory and highlights its practical limitations as well as 
potential for improvement. 
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