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ABSTRACT

International standards for wind turbine certification
depend on finding long-term fatigue load distributions
that are conservative with respect to the state of
knowledge for a given system.  Statistical models of
loads for fatigue application are described and
demonstrated using flap and edge blade-bending data
from a commercial turbine in complex terrain.
Distributions of rainflow-counted range data for each
ten-minute segment are characterized by parameters
related to their first three statistical moments (mean,
coefficient of variation, and skewness).  Quadratic
Weibull distribution functions based on these three
moments are shown to match the measured load
distributions if the non-damaging low-amplitude ranges
are first eliminated.  The moments are mapped to the
wind conditions with a two-dimensional regression over
ten-minute average wind speed and turbulence
intensity.  With this mapping, the short-term
distribution of ranges is known for any combination of
average wind speed and turbulence intensity.  The long-
term distribution of ranges is determined by integrating
over the annual distribution of input conditions.  First,
we study long-term loads derived by integration over
wind speed distribution alone, using standard-specified
turbulence levels.  Next, we perform this integration
over both wind speed and turbulence distribution for the
example site.  Results are compared between standard-
driven and site-driven load estimates.  Finally, using
statistics based on the regression of the statistical
moments over the input conditions, the uncertainty (due
to the limited data set) in the long-term load distribution
is represented by 95% confidence bounds on predicted
loads.
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INTRODUCTION

Design constraints for wind turbine structures fall into
either extreme load or fatigue categories.  In the case of
extreme load design drivers, the load estimation
problem is limited to finding a single maximum load
level against which to assess the structural strength.
For design against fatigue, however, loads must be
defined over all input conditions and then summed over
the distribution of input conditions weighted by the
relative frequency of occurrence.  While this might
seem to be a more daunting task, it is in many ways
quite similar to the extreme load problem, as can be
seen by comparing with Fitzwater and Winterstein1.  In
both cases, the loads must be determined as functions of
wind speed (or other climatic conditions).

Parametric models define the response, statistically,
with respect to input conditions.  Such models fit
analytical distribution functions to the measured or
simulated data.  The parameters of these distribution
functions can be useful in defining the response/loads
as a function of the input conditions.  The end result,
then, is a full statistical definition of the loads over all
input conditions.

In the most prevalent alternative to parametric
modeling, an empirical distribution of loads (i.e., a
histogram describing frequency of occurrence of the
modeled response quantity) is used to define the turbine
response at the conditions of the measurement or
simulation.  When using simulations, a ten-minute time
series is generated at specified environmental
conditions using an aeroelastic analysis code.  The time
series is rainflow-counted and the number of ranges in
specified intervals is summarized in histograms.  The
histograms serve as empirical distributions that are
taken to be representative of the response of the turbine
at those particular conditions.  The full lifetime
distribution is then obtained by summing the
distributions after weighting by the frequency of
occurrence of the wind speed associated with each
simulated data segment included in a histogram
interval.  In the case of measured data, a similar
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approach has been described by McCoy et al.2 but with
an innovative weighting scheme to account for the
irregular input conditions of field measurements.

The empirical approach uses only the measured or
simulated data without any fitting of distributions or
extrapolation to higher values that would be seen if
more data were obtained.  One of the disadvantages of
using a purely empirical approach is, therefore, that the
loading distribution may not be representative.  Perhaps
a subtler shortcoming is that the uncertainty in the loads
is almost impossible to characterize.

With regard to uncertainties in loads and how they
might be dealt with in design, one might expect that
these uncertainties could be covered by the use of
standard specifications of characteristic loads (derived
from a specified high turbulence level) and safety
factors.  However, current standard load definitions use
safety factors that do not depend on the relative
uncertainty in the load estimates.  Either the margins
are larger than they need to be when load estimates are
reasonably well established (i.e., exhibit low
uncertainty), or they fail to cover the uncertainty when
load estimates are based on limited data (i.e., large
uncertainty cases).

 Parametric load distribution models offer significant
advantages over empirical models; they provide a
means to (1) extrapolate to higher, less frequent load
levels, (2) map the response to the input conditions, and
(3) calculate load uncertainty.  For example, Ronold et
al.3 have published a complete analysis of the
uncertainty in a wind turbine blade fatigue life
calculation.  They used a parametric definition of the
fatigue loads, matching the first three moments of the
wind turbine cyclic loading distribution to a quadratic
(transformed by a squaring operation) Weibull
distribution.

Veers and Winterstein4 described a parametric
approach, quite similar to that employed by Ronold et
al.3, that can be used with either simulations or
measurements, and have shown how it may be used in
an uncertainty evaluation.  Although Reference 4
describes how to use the statistical model to estimate
the complete load spectrum, it does not indicate how
these models compare with the design standards5.  It is
critical that the load distributions generated by any
statistical methodology be adaptable for use in existing
design standards.  Moreover, it is arguably even more
important that the load model provide insight into how
the design standards might be improved in future
revisions.  The standards should require an accurate
reflection of the load distribution with sufficient
conservatism to cover the uncertainties caused by the

limited duration of the sample, whether based on
simulation or field measurements.  Only then can
design margins be trimmed to the point of least cost
while still maintaining sufficient margins to keep
reliability levels high.

The approach to load modeling is not uniform across
the wind community by any measure.  This lack of
commonality in approach was reflected in the working
group that produced IEC’s Mechanical Load
Measurement Technical Specification6.  No consensus
could be obtained on how to use measured loads to
either create or substantiate a fatigue load spectrum at
the conditions specified in the Safety Standard5.  All
that is offered are several examples of differing
approaches in an annex of the specifications6.

Here, we present a methodology for using measured or
simulated loads to produce a long-term fatigue-load
spectrum at specified environmental conditions and at
desired confidence levels.  To illustrate, example
measurements of the two blade-root moments (flap and
edge) from a commercial turbine in complex terrain are
used.  The ten-minute distributions of rainflow ranges
are modeled by a quadratic Weibull distribution
function based on three statistical moments of the
ranges (mean, coefficient of variation, and skewness).
The moments are mapped to the wind conditions by a
two-dimensional regression over ten-minute average
wind speed and turbulence intensity.  Thus, the “short-
term” distribution of ranges may be predicted for any
combination of average wind speed and turbulence
intensity.  The “long-term” distribution of ranges is,
then, easily obtained by integrating over the annual
distribution of input conditions.  Results are compared
between standard-driven and site-driven load estimates.
Finally, using statistics based on the regression of the
statistical moments over the input conditions, the
uncertainty (due to the limited data set) in the long-term
load distribution is represented by 95% confidence
bounds on predicted loads.

IEC LOAD CASES

The loads specified by IEC 61400-1 Wind Turbine
Generator Safety Requirements for design must be
defined for a specified combination of mean wind speed
and turbulence intensity known as the Normal
Turbulence Model5.  The standard provides an equation
for the standard deviation of the ten-minute wind speed,
σ 1, that depends on the hub-height wind speed and two
parameters, I15 and a.

)1()m/s15( /151 ++= aaVI hubσ (1)
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Equation 1 is based on wind speed standard deviation
data gathered from around the world and aggregated
into a common data set.  The equation was created to be
“broadly representative of sites with reasonable
international marketing interest,”8 and does not
represent any single site.  σ 1 is intended to represent a
characteristic value of wind-speed standard deviation.
Certification guidelines are provided for high (A) and
moderate (B) turbulence sites.  I15 defines the
characteristic value of the turbulence intensity at an
average wind speed of 15 m/s, and a is a slope
parameter when σ 1 is plotted versus hub-height wind
speed.  The values of these parameters for each
category are shown in Table 1.

CATEGORY
A

(HIGH)
B

(MODERATE)
I15 0.18 0.16
a 2 3

Table 1:  Parameters for IEC turbulence categories.

The Category B moderate turbulence specification is
intended to roughly envelope (i.e., be higher than) the
mean plus one sigma level of turbulence for all the
collected data above 15 m/s. Similarly, Category A
envelopes all collected values of turbulence intensity
(with the exception of one southern California site) for
mean wind speeds above 15 m/s and is above the
overall mean plus two sigma level in high winds8.
Clearly, the IEC Normal Turbulence Model is intended
to be conservative for all but the most turbulent sites.

It is a relatively straightforward matter to create a
loading distribution that meets the standard criteria
when using an aeroelastic simulation code.  Input winds
can be generated for any combination of wind speed
and turbulence intensity.  Representative loadings can,
in theory, be generated by simulating repeatedly until
sufficient data are produced to drive the uncertainty to
an arbitrarily small level.  Practically, however, it
would be beneficial to generate a loading distribution
with small, or at least known, uncertainty from a
smaller data set.  This is where the parametric approach
provides significant value.  By means of regression of
load statistics (e.g., moments) over the entire range of
wind speeds and turbulence levels, the uncertainty in
the values of the parameters defining the short-term
distributions at any specified turbulence condition can
be estimated.

In the case of measured loads, it may be simply
impossible to gather data at the specified turbulence

conditions because of the limitations of the test site.  In
that case, the parametric approach provides a method to
interpolate to a specified turbulence level using all of
the data collected (thus adding to the confidence of the
interpolation), or to extrapolate beyond the limits of the
measurements.  In either case, the parametric approach
simplifies the generation of fatigue loads to Standard
specifications.

EXAMPLE DATA SET

An example data set taken from the copious
measurements of the MOUNTURB program7 is used to
illustrate the parametric modeling process.  The data are
comprised of 101 ten-minute samples of rainflow-
counted flap-wise and edge-wise bending-moment
ranges at the blade root.  The test turbine is a WINCON
110XT, a 110kW stall-regulated machine operated by
CRES (the Centre for Renewable Energy Systems,
Pikermi, Greece) at their Lavrio test site.  The terrain is
characterized as complex.

The original time series of the loads and winds were not
available for further analysis; thus, only the rainflow-
counted ranges were employed.  The number of cycle
counts was tallied in 50 bins ranging from zero to the
maximum range in each sample.  A single ten-minute
sample is categorized by the mean wind speed and the
raw turbulence intensity at hub height.  The average
wind speeds are limited to the range between 15 and 19
m/s and thus reflect response in high wind operation.
Turbulence intensities cover a wide range of operating
conditions as can be seen in Figure 1.  The measured
loads are summarized by frequency of occurrence in
Figure 2a for flap moment ranges and in Figure 2c for
edge moment.  Plots showing exceedance counts for
specified flap and edge loads are shown in Figures 2b
and 2d, respectively.
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Figure 1 Wind speed and turbulence intensity values
for the 101 10-minute data samples.
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SHORT-TERM ANALYSIS

The FITS9 software for fitting probability distribution
models to empirical data was used to analyze each ten-
minute sample.  FITS calculates the central moments of
the data and estimates the best fit distribution model to
match a user-specified set of moments (e.g., the user
can request a distribution model fit based on two
moments or one based on three moments).  FITS is,
therefore, a tool for examining the fit of a probability
model to the short-term response, conditional on wind
speed and turbulence level.

For purposes of the present discussion, the first three
moments µi, (i=1,2,3) of the rainflow-range amplitudes,
r, are defined here as:

rrE == ][1µ , (2)

[ ]22
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σ
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where E[ ] is the expectation (or averaging) operator.
The first moment is the mean or average range, a
measure of central tendency.  The second moment is the
Coefficient of Variation (COV), which is the standard
deviation divided by the mean, a measure of the
dispersion or spread in the distribution.  The third
moment is the coefficient of skewness, which provides
information on the tail behavior of the distribution.
Load range data are often well fit by a Weibull
distribution, a slight distortion of the Weibull
distribution is used to exactly match the first three
statistical moments10.

To illustrate the fit of the quadratic Weibull distribution
to a ten-minutes sample, one of the 101 samples shown
in Figure 2 is studied.  This data sample is taken from
the middle of the measured wind conditions; V = 17 m/s
and I = 0.18.  The data are plotted on a Weibull scale
for the flap loads in Figure 3 and for the edge loads in
Figure 4.  The vertical scale is transformed from the
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Figure 2c Histogram of edge-wise bending moment
ranges for 101 10-minute data sets.
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Figure 2d Cumulative counts of flap-wise bending
moment ranges for 101 10-minute data sets.
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Figure 2a Histogram of flap-wise bending moment
ranges for 101 10-minute data sets.
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Figure 2b Cumulative counts of flap-wise bending
moment ranges for 101 10-minute data sets.
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Cumulative Distribution Function (CDF) as (-ln(1-
CDF)) so that a Weibull distribution will be a straight
line on a log-log plot.  (Recall that the CDF is the
complement of the traditional exceedance diagram;
exceedance = 1-CDF.)

Figures 3a and 4a show attempts to fit the entire flap
and edge data with quadratic Weibull models. As seen

in Figure 3a and especially Figure 4a, the data have a
kinked appearance which the smooth probability
distribution, in spite of the quadratic distortion, can not
match.  Closer examination of the data reveals that the
kink is due to a very large number of cycles at
relatively low amplitudes.
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(a) Weibull scale plot.
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(b) Weibull scale plot (truncation at 32.0 kN-m)
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(c) Exceedance plot format (truncation at 32.0 kN-m).

Figure 4 Quadratic Weibull model fits to data on edge-
bending moment ranges (V = 17.0 m/s, I =
0.18).
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(a) Weibull scale plot.
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(b) Weibull scale plot (truncation at 11.5 kN-m).
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Figure 3 Quadratic Weibull model fits to data on flap-
bending moment ranges (V = 17.0 m/s, I =
0.18).
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The proliferation of small amplitude cycles seen in
Figure 2 produces a distribution difficult to duplicate
with a simple analytical form, but these small cycles
produce relatively little damage.  By truncating the
loads at a threshold, the kink in the data can be
eliminated without significantly reducing the damage.
In the edge case, there are obviously a great number of
cycles of smaller amplitude than the dominant gravity
load at about 32 kN-m.  The flap loads have a less
distinctive kink at around 10-13 kN-m (11.5 kN-m was
used as the filtering threshold).  Figures 3b and 4b are
similar to Figures 3a and 4a but include only a subset of
the data and can be thought of as applying a “shift” to
all loads that effectively discards the smallest cycles.
Clearly, the fits of the quadratic Weibull are improved
dramatically.  Thus, the short-term data are well
modeled by a quadratic Weibull distribution that
preserves the first three central moments of the
truncated rainflow ranges.

Figures 3c and 4c show the same data as do Figures 3b
and 4b but with the axes in the more common
exceedance plot format.  These plots are included to

reorient the reader back to the original summaries of the
data shown in Figure 2.  They also serve to illustrate
how the analytical distribution functions may be used to
extrapolate to less frequent, higher amplitude loads.

The low amplitude cycles (that make distribution fits
difficult as described in the preceding) can only be
discarded if they produce an insignificant amount of
damage.  The damage unaccounted for due to the
truncation of rainflow range data at 11.5 kN-m for the
flap loads is represented in Figure 5a, and due to a
truncation at 32 kN-m for the edge loads in Figure 5b.
All 101 ten-minute data segments are represented in
Figures 5a and 5b.  Lost damage is plotted for three
fatigue exponents, b, representing typical values of
wind turbine materials ranging from b=3 in welded
steel up to b=9, more characteristic of fiberglass
composites.  In no case does the truncation remove
more that 12% of the damage, and that only when b=3.
In almost all cases for the higher b values, the lost
damage is less than 3%.  In both flap and edge bending
cases, over 80% of the rainflow-counted ranges are
removed by truncating the data sets.  Our findings that
discarding so much of the data does not lead to grossly
unconservative estimates of damage is not unexpected
since it has long been known that eliminating most of
the small amplitude cycles has a negligible effect on
damage11.

REGRESSION ANALYSIS

Because a good match can be obtained to the short-term
distribution of rainflow ranges given the first three
moments and a fixed data truncation, it is sufficient to
know the moments over all the operating conditions in
order to fully define the turbine fatigue loading.
Regression of the moments over ten-minute average
wind speed and turbulence intensity can achieve the
desired result and assist in understanding the loading
dependence on and sensitivity to both turbulence and
wind speed.  Results from a regression analysis can also
provide information on the uncertainty of the loads.

The moments presented in the following figures, µ2 and
µ3 describe the COV and skewness, respectively, of the
shifted range r’ =r-r t.  More precisely, by eliminating all
ranges below the truncation level rt, we obtain the
shifted values r’ =r-rt of the remaining ranges and
consider models based on statistics of rt.  This is done
to conform with the quadratic Weibull model, which
generally assigns probability to all outcomes r’ > 0.
For example, the second moment is

 2
t

r
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σµ . (5)
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Figure 5 Effect on damage estimation of shift in
blade bending moment range data.
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Because these definitions of µ2 and µ3 are
dimensionless,, they are insensitive to the choice of
truncation level.  For example, if the loads are
exponentially distributed, µ2=1 and µ3=2 regardless of
the truncation level.  The mean value, µ1, presented is
the same as r , the mean with respect to zero of the
ranges retained after eliminating the small-amplitude
cycles.

As in Reference 4, the first three moments (µi, i=1-3)
are fitted to a power law function of wind speed, V, and
turbulence intensity, I.

i

ref

i

ref
ii

c

I

I
b

V

V
a 




















=µ (6)

The reference wind speed, Vref, and reference
turbulence intensity, Iref, are determined from the
geometric mean values of the data4.  For the Lavrio data
set, Vref=17.1m/s and Iref=0.145. The calculated
regression coefficients are shown in Table 2.

The regression results for the flap bending moments are
shown in Figure 6 and for the edge bending moments in
Figure 7.  Mean, COV, and skewness are plotted in the
parts (a), (b), and (c), respectively, of the figures.  In all
cases, the regression line uses the reference value for
turbulence intensity.  The circles correspond to the
measured data from the 101 samples.  The solid
symbols (squares) show the regression prediction using
the measured wind speed and turbulence intensity for
each ten-minute data set.  A large spread in solid
symbols about the regression line indicates a sizeable
dependence on turbulence level (e.g., Figure 6a’s mean
flap range) while a small variation in the solid symbols
indicates that the turbulence has little effect on that
particular moment (e.g., Figure 6c’s flap skewness).
This sensitivity can also be inferred from the magnitude
of the ci coefficients in Table 2.  The smaller the value

of ci, the less the importance of I in the estimate of the
ith moment.

Table 3 summarizes the regression uncertainties in
terms of the widely used R2 and t statistics.  A high R2

value, approaching unity, indicates that a large
percentage of the data variation is explained by the
regression.  In contrast, a low R2 value suggests the
presence of other influences, not included in the
regression model, that induce the scatter in the data.
Note that the goal here is not to predict the moment
statistics in a single 10-minute history, but rather the
long-run average of such 10-minute samples over the
entire turbine lifetime.

The t statistic, which is the estimated coefficient
divided by the standard deviation of the estimate,
indicates whether a particular coefficient is statistically
significant.  A t value less than about two would
indicate that the coefficient is not significantly different
from zero at about the 95% confidence level.  Since the
leading coefficients, ai, are estimates of the moments at
the reference conditions, they are always significantly
different from zero, and t is not reported for them.
However, the t values of bi and ci indicate whether any
functional variation with respect to wind speed or
turbulence intensity, respectively, is supported by the
data.

Examination of Tables 2 and 3 suggests that the mean
load range is strongly related to both wind speed and
turbulence, although the relation to turbulence has small
exponents (0.202 and 0.039).  The only higher moment
relationships that have high t statistics are the edge
COV relation to wind speed and the flap skewness
relation to wind speed.  The overall low exponents and t
statistics for the higher moments indicate that the
distribution shapes are relatively constant over all input

COEFFICIENT FLAP EDGE

a1 21.49 40.02
b1 0.808 0.359

M
ea

n

c1 0.202 0.039
a2 0.722 0.635
b2 0.031 -0.573

C
O

V

c2 0.080 0.063
a3 0.963 0.980
b3 -1.260 -0.468

S
ke

w
-

N
es

s

c3 0.033 0.132
Reference values:  Vref =17.1m/s;  Iref  =0.145

Table 2:  Coefficients from regression analysis.

PARAMETER FLAP EDGE

R2 – Mean, µ1 0.51 0.76
a1 (σ) 0.108 0.050
b1 (σ, t statistic) (0.081, 9.9) (0.020, 17.5)
c1 (σ, t statistic) (0.032, 6.4) (0.008, 4.9)

R2 – COV, µ2 0.05 0.43
a2 (σ) 0.003 0.003
b2 (σ, t statistic) (0.076, 0.3) (0.080, 7.1)
c2 (σ, t statistic) (0.030, 2.7) (0.031, 2.0)

R2 – Skewness, µ3 0.17 0.05
a3 (σ) 0.018 0.016
b3 (σ, t statistic) (0.301, 4.2) (0.266, 1.8)
c3 (σ, t statistic) (0.117, 2.8) (0.104, 1.3)
Avg. Cycle Rate 1.75 Hz 1.38 Hz

Table 3:  Regression parameter summary.
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conditions.  The variation seen in Figures 6 and 7
beyond that indicated by the solid symbols is sample-
to-sample variation not indicative of a systematic
relationship with the independent variables, V and I.
Part of this remaining variation will be irreducible, a
natural outcome of random processes, but some could
possibly be reduced with regression over better
turbulence descriptors than the simple turbulence
intensity.

The Lavrio data set used in this example is limited to a
range of wind speeds from 15 to 19 m/s.  The long-term
analysis in the next section will, for example purposes
only, assume the regression trends found in high winds
apply to all wind speeds.  In an actual application, the
data from a particular turbine will need to be examined
over the entire range of damaging wind speeds.  It
might be amenable to regression fits that run all the way
from cut-in to cut-out.  More likely, the wind speed
range will have to be partitioned into divisions over
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Figure 6 Regression results for flap-wise bending
moment range.
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which the response moments are well behaved enough
to be fit with simple regression.  For example, it is
likely that the response will have different
characteristics above and below rated wind speed.  In
that case, the analysis presented here would have to be
repeated for each wind-speed division before
proceeding with the long-term analysis in the next
section.  It may also be the case that the response in low
winds has an insignificant contribution to the fatigue
damage and the analysis can safely deal with only high
wind response.  The individual application will
determine the constraints.

LONG-TERM ANALYSIS

The long-term distribution of fatigue loads is obtained
by integrating the short-term distributions (for loads
conditional on wind conditions) over the specified
distribution of wind conditions.  Current IEC standards
specify a Rayleigh distribution of wind speed with the
annual average depending on class.  Class I sites have a
10 m/s average and Class II sites have a 8.5 m/s
average.  Wind-speed classes defined as “Special” are
also allowed with conditions that may be defined by the

designer.  The turbulence intensity is a deterministic
function of wind speed given by Eq. 1.  A lifetime load
distribution must sum all the short-term distributions at
each wind speed and associated turbulence intensity
weighting them by the annual wind speed distribution.
This can be written as

∫= dVVfIVrFrF )(),|()( , (7)

where F(r) is the long-term distribution of stress ranges,
r, and F(r|V,I) is the short-term distribution of stress
ranges conditional on the ten-minute average wind
speed, V, and the specified turbulence intensity, I.  f(V)
is the wind speed probability density function (PDF).
The integration is carried out over all damaging wind
speeds.  The distribution functions of r can be either the
CDF or the exceedence (1-CDF).  However, the
integration must be over the probability density
function for wind speed, f(V).

Any environmental conditions can be used with Eq. 7
once the response moments have been defined with
respect to the turbulence levels and wind speeds.  This
has been accomplished by the regression of the
moments over V and I and by determining the short-
term distributions, F(r|V,I), from the moments.  As
examples we will calculate the long-term distributions
for two standard-driven and two site-driven
environments.

Figures 9a and 9b show the long-term distributions of
flap and edge loads respectively for the IEC Class I
wind speed distribution (Rayleigh 10m/s) and for both
turbulence Categories A and B.  Both of these standard
environments define the turbulence level as a function
of wind speed by Eq. 1.

The specification of a fixed turbulence intensity
functionally related to the wind speed is somewhat
artificial; measurements indicate that the turbulence
intensity varies over a range of values for each ten-
minute sample (see Figure 1).  A more realistic
representation than Eq. 7 for the long-term distribution
might be to include turbulence intensity as a random
variable by integrating over both wind speed and
turbulence intensity as follows:

∫∫= dIdVIVfIVrFrF ),(),|()( (8)

Figures 9a and 9b show the long-term flap and edge
distributions derived by integrating over both wind
speed and turbulence assuming wind speed and
turbulence variations are independent.  (Independence
implies that the joint PDF, f(V,I) in Eq. 8 is simply the
product of the individual marginal PDFs, f(V) and f(I).)
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The wind speed is a 10 m/s-average Rayleigh
distribution as prescribed for IEC Class I sites.  The
turbulence is assumed to be normally distributed with
mean, I , defined by VI /5.2≅ , and standard
deviation equal to 0.025, based on a best fit to the data
of turbulence vs. wind speed shown in Figure 10.

Also plotted in Fig. 9 is the result of assuming the
turbulence at the Lavrio site is defined by the average
value at each wind speed (the line with the black circles
in Figure 10).  This simpler assumption allows the use
of Eq. 7.  The comparison indicates that the integration
over all turbulence levels, which is the most realistic
reflection of the measurements, produces a much lower
load spectrum.  The simplified alternative, i.e., fixing
the turbulence at the mean level, leads to a more
conservative result, although the conservatism
diminishes at very high load levels for the flap bending
moment ranges.  However, these results may be
sensitive to the choice of a normal distribution for
turbulence intensity.

Discussion

The Lavrio site’s mean-plus-one-sigma turbulence
intensity at 15 m/s wind speed is quite similar to the
IEC standard specification of 16% (Class B) to 18%
(Class A).  This similarity in turbulence levels is
evident throughout the high wind range as shown in
Figure 10.  The differences between the distributions in
Figures 9a and 9b therefore provide an indication of the
conservatism built into the IEC load cases relative to a
fairly turbulent site.

Within the context of standards development, it may be
reasonable to argue for lower turbulence specifications
if differences as seen above can be shown to be
significant and consistent.  However, because the
standards are based on past experience and industry
consensus rather than objective risk-based analysis, it
may be dangerous to remove conservatism from one
area without also checking elsewhere to insure that this
conservatism isn’t covering for an unknown lack of
conservatism elsewhere in the design process.

In general, the current standards give a load calculation
“recipe” that is meant to meet some specific reliability
criteria.  If these current reliability levels are deemed
adequate on average (over various cases), one cannot
reduce conservatism in turbulence specification without
adjusting the recipe to compensate elsewhere; e.g.,
through use of a higher load factor.  Note that this
alternative procedure – unbiased turbulence with higher
load factor – may result in more uniform reliability
across a range of cases.  In contrast, current standards
may lead to potential over-design of machines that are
particularly sensitive to turbulence, and under-design in
turbulence-insensitive cases.
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ESTIMATING UNCERTAINTY IN LONG-TERM
LOADS

To review, the parametric load modeling proposed here
proceeds by (1) modeling loads by their statistical
moments µi (i=1,2,3) and (2) modeling each moment µi

as a parametric function of V and I (Eq. 6).  The
moment-based model in step (1) is in principle
independent of the turbine characteristics (although the
optimal choice among such models may be somewhat
case-dependent).  Hence, in this parametric approach,
the turbine characteristics are reflected solely through
the moment relations in Eq. 6; specifically, the 9
coefficients ai, bi, ci (i=1,2,3).  For clarity, we organize
these here into a vector,

},,,,,,,,{ 333222111 cbacbacba= .

Simpler 2-moment models would require only 6
coefficients.

The preceding section has shown one benefit of this
parametric model. Because it permits load statistics to
be estimated for arbitrary V and I, the results can be
weighted to form the long-term loads distribution as in
Eqs. 7-8 (and Figs. 9a-b).  Symbolically, we rewrite Eq.
7 here, noting explicitly its dependence on the vector θ.

dVVfIVrFrF )(),,|()|( ∫= (9)

(Eq. 8 can be rewritten analogously.) The foregoing
results (Figs 9a-b) have used our best estimates for the
entries of θ; i.e., the mean values of each entry in θ.
These are the values of ai, bi, and ci cited in Table 2.

A further advantage of the parametric model lies in its
usefulness in estimating the effects of statistical
uncertainty.  To clarify, it is useful to distinguish
between the various terms in Eq. 9.  The quantities V
and I are “random variables;” that is, their future
outcomes will show an intrinsic randomness that cannot
be reduced by additional study of past wind conditions.
In contrast, the 9 coefficients in θ are in principle fixed
(under the model’s assumptions).  We may, however,
be uncertain as to their values due to limited response
data.  This “uncertainty” (as opposed to “randomness”)
can be reduced through additional sampling.  The
consequence of having only limited data can be
reflected through 95% confidence levels, for example,
on the exceedance probability 1-F(r).  These are
conceptually straightforward to establish by simulation.
Assuming the entries of θ are each normally distributed,
for example, one may (1) simulate multiple outcomes
of θ; (2) estimate F(r) for each θ as in Eq. 9; and (3)
sort the resulting F(r) values (at each fixed r value) to
establish confidence bands; e.g., in which 95% of the
values lie.

Figures 11a and 11b show the 95% confidence level on
the exceedance probability, 1-F(r), which result from
the simulation procedure described above.  Each of the
9 coefficients in Eq. 9 were generated as statistically
independent, normally distributed random variables,
with means and standard deviations given by Tables 2
and 3, respectively.  (Correlation among these variables
can also be included; however, this was not done here.)
All of these results adopt the site-specific mean
turbulence model; i.e., the results labeled “Average I at
each wind speed” in Figs. 9a-b.  These results from
Figs. 9a-b are repeated in Figs. 11a-b, and referred to
there as "deterministic" results. Also shown are 95%
confidence results; i.e., probability levels below which
95% of the simulations fall.

The increase in probability, over the deterministic
results in order to achieve 95% confidence, is found to
be relatively modest.  This reflects the benefit of having
as many as 101 10-minute samples.  If the same mean
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trends had resulted from fewer samples, the resulting
95% confidence results would be correspondingly
higher than the mean results.  Note also that, at least for
flap-wise loads, the conservatism induced by the IEC
turbulence models exceeds that required to cover our
statistical loads uncertainty, based on the data at hand.
Of course, as noted earlier, this IEC conservatism may
be desirable to cover other sources of uncertainty.
Finally, we caution again that these long-term load
results are  intended for example purposes only;
accurate numerical values would require data across a
broader range of wind speeds.

SUMMARY

Fatigue load spectra are generated for arbitrary site
conditions (wind speed and turbulence intensity
distributions) by using parametric models to fit the
short term load spectrum to the first three moments of
the truncated rainflow range distributions and
regressing the moments over wind speed and turbulence
intensity.  The spectra are generated to specified IEC
conditions for wind speed Class and turbulence
Category.  The spectra are also generated for as-
measured scatter in the turbulence levels across all wind
speeds.  The comparison of the two approaches reveals
the level of conservatism that results from assumed
high turbulence levels written into the current
standards.  The selected confidence level can be
calculated using the statistics from regression analysis.
Since the confidence interval depends on the
uncertainty in the load characterization, it could provide
a better margin of safety on the loads than can be
accomplished with an inflated turbulence level. The
parametric approach presented here illustrates how
statistically based standards may be able to reflect the
uncertainty in the loading definition caused by finite-
length data records.
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