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Abstract 

 

 This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine 

blades.  The TX-100 blade design is unique in that it features a passive braking, force-shedding 

mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics.  A 

specific aim of this test is to characterize the coupling between bending and torsional dynamics.  The 

results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and 

mode shapes of the individual blades.  The results of this report are expected to be used for model 

validation -- the frequencies and mode shapes from the experimental analysis can be compared with 

those of a finite-element analysis.  Damping values are included in the results of these tests to potentially 

improve the fidelity of numerical simulations, although numerical finite element models typically have 

no means of predicting structural damping characteristics.  Thereafter, an additional objective of the test 

is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.   
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Introduction and Motivation 
 

 The size of utility-grade wind turbine rotors continues to increase, especially for offshore 

applications.  Designs of wind turbines with ratings of 3-5 MW are now being considered [1].  This 

growth in size puts pressure on blade designers to constrain the associated weight increases while 

maintaining acceptable tip deflections. 

 

 To address this challenge, the Sandia National Laboratories (SNL) Wind Energy Technology 

Department has initiated a Carbon-Hybrid Blade Developments:  Standard and Twist-Coupled 

Prototypes project and a Blade System Design Studies project that seeks to design, model and fabricate 

100-KW-sized, carbon-hybrid, 9-meter blades to study potential weight reductions and investigate ways 

to incorporate both epoxy-glass and carbon fiber in the blades in an efficient structural manner. 

 

 The projects have the goal of designing, modeling, manufacturing and testing a standard blade 

design, referred to as the carbon experimental or CX-100 blade; a twist-coupled experimental or TX-100 

blade design; and an integration of advanced blade concepts into the BSDS blade design. Laboratory and 

field test results will be used to improve the blade design tools, the manufacturing process, and help 

validate the blade structural models. 

 

 This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine 

blades.  The TX-100 blade design is unique in that it features a passive braking, force-shedding 

mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics.  A 

specific aim of this test is to characterize the coupling between bending and torsional dynamics.  The 

results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and 

mode shapes of the individual blades.  The results of this report are expected to be used for model 

validation -- the frequencies and mode shapes from the experimental analysis can be compared with 

those of a finite-element analysis.  Damping values are included in the results of these tests to potentially 

improve the fidelity of numerical simulations, although numerical finite element models typically have 

no means of predicting structural damping characteristics.  Thereafter, an additional objective of the test 

is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.   

 

Test Setup and Instrumentation 
 

 A number of key factors were considered in the test setup.  These include the method of 

suspending the blade for testing, protection of the blade surface, safety, environmental factors, 

instrumentation and mass loading effects.  Each of these is described in this section.  A photo of a 

fully instrumented blade sitting in the storage cradles is shown in Figure 1. 
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Figure 1. Fully Instrumented Wind Turbine Blade Sitting in Storage Cradles 

 

 The blade was tested in a free-free condition.  The free boundary condition is preferred from a 

model validation point of view because it is the easiest to realize in practice and is thus a preferable 

configuration to perform a modal test for the purpose of model validation.  Any other idealized 

constraint condition is, in practice, affected by the compliance of the system applying the constraint.  

For example, if the blade was tested while being mounted at the hub, the compliance of the mount 

would affect the results.  This compliance, of course, would need to be characterized for the purpose 

of any model validation.  Therefore, special care must be taken so that the suspension system will not 

have a noticeable influence on the test results.  For these tests, the blade was suspended by bungee 

cords to approximate the free-free boundary condition.   

 

 The blades were tested in two configurations.  In one configuration, the free-free boundary 

condition was approximated by suspending the blade at two locations using two independent tripods 

positioned fore and aft the blade’s center of gravity (CG).  At each location, the blade was supported 

by a single nylon strap which was linked to the tripod with a coil of bungee rope.  A photo of the 

double strap suspension configuration is shown in Figure 2.  In order to evaluate the suspension 

setup, tests were repeated for a different suspension configuration using only a single nylon strap and 

tripod positioned at the CG as shown in Figure 3.  The differences between the single and double 

strap tests were minimal. Additionally, there was adequate frequency separation between modes 

related to the suspension and the first flexible mode.  Suspension related modes include the bounce 

mode of the blade/bungee system and a roll/pendulum mode associated with rigid body motion of the 

blade in the straps.  All rigid body modes occur under 2.7 Hz with the rigid body bounce mode 

occurring at 2.0 Hz for the single strap test with the first flexible mode inline with the bungees at 
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about 25 Hz.  This provided greater than the normally accepted factor of 10 in frequency separation 

from the suspension dynamics [2].  If inadequate frequency separation between the suspension and 

blade modes were to occur, it would be possible to reduce the stiffness of the coiled bungee rope by 

reducing the number of turns of the rope used to support the blade.  This was not necessary for these 

tests. 

 

 
Figure 2.  Double Strap Suspension Configuration 

 

 
Figure 3.  Single Strap Suspension Configuration 

Z 

Y 

X 
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 There are several constraints we consider regarding the suspension procedure.  Firstly, no load 

could be applied to the trailing edge of the blade.  The trailing edge is fragile and is aerodynamically 

critical for optimum performance.  By suspending the blade leading edge down, the trailing edge 

would see no concentrated load.  Secondly, the bungee cords are a weak point in the suspension 

system.  Precautions were taken to limit the time for which the blade was suspended since elongation 

of the bungee cords over time could limit control of the blade.  Therefore, as a precaution the storage 

cradles remained positioned underneath the blade during testing and the blade was only lifted enough 

to completely free it from the cradles.  The blade was promptly returned to the storage cradles when 

testing was completed. 

 

 The instrumentation of an individual blade consisted of 68 accelerometers rated to 50 g’s.  The 

accelerometers were carefully placed on the blade so as not to damage the blade’s finish.  All of the 

mounting locations utilized a biaxial setup as seen in Figure 4.  Accelerations were measured in both 

the x- and z-direction while acceleration in the y-direction (axial direction) was neglected.  See 

Figure 3 for a triad defining these reference directions.  The final instrumentation consisted of two 

perpendicular accelerometers positioned at all 34 mounting locations.  The total mass of the 

accelerometers, mounting blocks, and cables was close to 3 pounds.  The nominal blade mass is 361 

pounds.  We refer to this set of 34 locations (68 accelerometers) as the fully instrumented set.  In 

order to evaluate mass loading effects, we also re-tested with a lightly instrumented set of only 4 

accelerometers.  All the accelerometers were oriented with no more than 3 degree error for all three 

axes as determined by a digital inclinometer.  Any orientation error can be attributed to uneven 

settling of the dental cement used to secure the blocks as well as measurement error.  A description 

of the procedure for mounting the accelerometers is thoroughly documented in Appendix C.  A list 

of the coordinates for the accelerometer locations is given in Appendix D. 

 

 
Figure 4. Biaxial Accelerometer Mounting 

 

 Nine data sets were acquired for each blade corresponding to nine different force excitation 

location/direction pairs.  The structure was excited using a 3 lb impact hammer.  Six excitation 

locations were in the x-direction while the remaining three were in the z-direction.  In this way, we 

expect that both flapwise and edgewise bending modes are excited.  Flapwise bending refers to 

bending about the z-axis while edgewise bending refers to bending about the x-axis (See Figure 3 for 
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definition of directions).  Excitation in the x-direction was performed at points low and high on the 

blade (i.e. near the leading edge and near the trailing edge) and near and distant from the root end 

and suspension in an attempt to better excite all the modes of the structure, particularly the coupled 

bending and torsional modes.   

 

 These tests were conducted at the FAA Airworthiness Assurance NDI Validation Center in 

Albuquerque, NM.  The tests were conducted in a large aircraft hangar in an uncontrolled 

temperature environment.  The temperature increase can be as much as 15 degrees over the course of 

a typical work day from morning to afternoon.  For each test, temperature was recorded.  The 

temperature variation for a particular test was 8 degrees Fahrenheit or less. 

 

 For these tests, data was acquired using a 16 second window.  Although difficult to achieve, this 

provided a better data sample than shorter samples.  However, there are some issues that make a long 

acquisition window difficult for these tests.  The test location is adjacent to the Albuquerque 

Sunport, which experiences frequent commercial and military traffic.  In addition, many smaller 

aircraft stage for flight within 500 yards of the hangar.  Data cannot be recorded while these events 

are taking place, and many times data sets had to be rejected when these unexpected events occur.  

Often it is difficult to find an acceptable 16 second window for acquisition.  In the interest of 

protecting the blades, the blades were lifted minimally from the cradles.  It is possible for the blades 

to rigidly rotate during a test potentially causing contact with the storage cradles and disturbing the 

results.  The possibility of this occurring is accentuated with a longer acquisition window. 

 

Data Analysis 
 

 The modes for each test were extracted from each data set using the Synthesis Modes and Correlate 

(SMAC) algorithm developed at SNL [3,4]. The SMAC algorithm is based upon modal filtering, and 

was designed to extract modal parameters from frequency response functions (FRFs).  The SMAC 

algorithm is highly automated – over 90% of the modes of interest are identified automatically.  Any 

remaining modes (frequency and damping) which are not identified automatically must be fit manually.  

Basically, a frequency and damping range is chosen, and an improved guess for frequency and damping 

can be found by maximizing the correlation between the experimental data and the SMAC single degree 

of freedom second order curve fit.  When converged, the new mode is added to the mode set.   The final 

product is a synthesis of the FRFs using the analytically fit modes.  This synthesized FRF is compared to 

the test FRF. 

 

 The analytically fit modes of each impact test were then compared using the MultiSort algorithm 

that was also developed at SNL [5].  This program is used to compare modal parameters from multiple 

modal tests.  For this work, we compared the modal parameters identified from each of the tests 

performed at different locations/directions of force input in an effort to extract the most satisfactory 

modes.  This algorithm provides insight through numerical metrics in choosing the most accurate mode. 

 

 The modal assurance criterion (MAC) algorithm was utilized to evaluate the correlation, in a vector 

sense, between two sets of modes.  Essentially, MAC provides a matrix of correlation values for the 

identified mode shape vectors.  When the MAC is diagonally dominant with small off-diagonal entries, 

the modes are linearly independent.  A standard practice is to compute the MAC for the experimental 
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modes with themselves in order to justify the choice of sensor locations.  Such a correlation shows the 

linear independence of the modes and gives an indication of the completeness of the set of accelerometer 

locations chosen for fully capturing the structural dynamics.  The absence of high correlations in off-

diagonal entries as seen in Figures 5 and 6 indicates that both the amount and location of accelerometers 

are appropriate for this test, for Blade #001 and #003 respectively.  Of course, the diagonal values are 

100% correlated since we have computed the MAC of itself in each case. 

 
Figure 5. MAC Plot for Blade #001 to Blade #001 

 

 
Figure 6. MAC Plot for Blade #003 to Blade #003 
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 The MAC algorithm is also used to identify the modes that are common to both blades.  Here we are 

looking at the correlation between the data sets which result from using the Multisort algorithm.  We are 

also interested in evaluating unit to unit variability between the two blades, and MAC allows us to find 

the common modes for comparison of modal parameters.  The MAC for the mode shapes of Blade #001 

and Blade #003 is shown in Figure 7.  The high correlation coefficient among the diagonal entries 

indicates that the two blades share these modes.  The small off-diagonal entries indicate that those 

modes are not highly correlated whereas larger off-diagonal correlation in Figure 7 (and Figures 5 and 6 

as well) indicates more correlation in those modes.  The actual values for the diagonal entries of Figure 7 

are plotted in Figure 8.  The higher the correlation, the more confidence there is that the same mode is 

present in both data sets.  Of course, the lower order modes are more easily identified; however, all 

modes reported have “confidence” of greater than 84%, and are clearly identified by their mode shape. 

 

 

 
Figure 7.  MAC Plot for Blade #001 to Blade #003 
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Figure 8. Plot of MAC Diagonal Values for Blade #001 to #003 
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Modal Survey Results 
  

 The results for the natural frequencies and damping are given in Table 1.  The description of each 

mode is determined by viewing the experimental mode shapes and by comparing them with the 

theoretical mode shapes for a free-free beam [6].  The fifteen modes listed in Table 1 represent the best 

modes of these data sets for the purpose of validating numerical finite element models, and are tabulated 

from lightly instrumented tests with single strap suspension.  It was found that the natural frequencies 

extracted from the fully instrumented data set were consistently several tenths of a hertz less than those 

from the lightly instrumented data sets.  The analysis of the data revealed that the tests with impacts 

along the 130 nodal line (See Figure D-1 in Appendix D) provide a sufficient sample; therefore only the 

data sets for the lightly instrumented with impacts at 131x (location 131 in the x-direction), 133x, and 

131z were processed.  Included in the modal survey results are eleven modes which can be categorized 

by mode shape including the first five flapwise bending modes, the first three edgewise bending modes, 

and the first three torsional modes.  Flapwise bending refers to bending about the z-axis while edgewise 

bending refers to bending about the x-axis.  Four additional modes are included which have been labeled 

“Coupled mode”.  These are strong modes which are difficult to categorize by mode shape, but may be 

useful for validation purposes.  The modes associated with the suspension include a bounce mode in 

which the blade translates rigidly in the z-direction at 2 Hz (for the one strap test, and 4 Hz for the two 

strap test), and a roll/pendulum mode in which the blade rolls/swings rigidly in the straps at 2.7 Hz. 

 

Table 1.  Frequency and Damping List for Individual Modes 

Blade TX 100-001 Blade TX 100-003 
Mode 

Number 
Mode 

Description Frequency 
(Hz) Damping (%) 

Frequency 
(Hz) Damping (%) 

1 1
st
 flapwise 6.44 0.27 6.49 0.20 

2 2
nd

 flapwise 15.16 0.26 15.14 0.23 

3 
1

st
 edgewise plus 
2

nd
 flapwise 25.00 0.32 25.25 0.34 

4 
3

rd
 flapwise plus 

1
st
 edgewise 28.44 0.31 28.94 0.60 

5 
4

th
 flapwise plus 
some 2

nd
 

edgewise 43.89 0.37 43.92 0.34 

6 
2

nd
 edgewise plus 

some 4
th
 flapwise 54.55 0.41 55.31 0.39 

7 
1

st
 torsion plus 
some 2

nd
 

edgewise 58.00 0.71 58.82 0.48 

8 
5

th
 flapwise plus 
some 2

nd
 

edgewise 63.69 0.49 64.20 0.31 

9 Coupled mode #1 75.13 0.56 76.39 0.58 

10 Coupled mode #2 82.13 0.50 83.92 0.64 

11 Coupled mode #3 85.59 0.52 86.13 0.51 

12 
2

nd
 torsion and 2

nd
 

edgewise 88.53 0.80 87.94 0.56 

13 Coupled mode #4 95.06 0.66 96.81 0.58 

14 3
rd

 edgewise 101.04 0.57 102.75 0.47 

15 3
rd

 torsion 107.13 0.73 107.81 0.90 
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 These results indicate that Blade #003 is slightly stiffer than Blade #001 with generally higher 

natural frequencies.  A numerical comparison of each mode in Table 1 is given in Table 2 showing the 

percent difference in the natural frequency and damping.  In a relative sense, no mode varies by more 

than 2.2 % in frequency.  The larger variations typically occur with the highly coupled modes.  The 

lower order modes are very similar in frequency and damping in an absolute sense.  Damping values, on 

the other hand, do not show such a strong trend when comparing the two blades.   

 

 The mode shapes of Blade #001 and #003 are available in Appendices A and B, respectively.   

 

 

Table 2. Blade Comparison 
Percent Difference  

(#003 minus #001)/#001 
Mode 

Number
Mode 

Description 
Frequency  Damping 

1 1
st
 flapwise 0.7 -23.0 

2 2
nd

 flapwise -0.1 -11.2 

3 
1

st
 edgewise plus 
2

nd
 flapwise 1.0 6.2 

4 
3

rd
 flapwise plus 1

st
 

edgewise 1.8 93.0 

5 
4

th
 flapwise plus 

some 2
nd

 edgewise 0.1 -6.5 

6 
2

nd
 edgewise plus 

some 4
th
 flapwise 1.4 -3.9 

7 
1

st
 torsion plus 

some 2
nd

 edgewise 1.4 -31.8 

8 
5

th
 flapwise plus 

some 2
nd

 edgewise 0.8 -36.3 

9 Coupled mode #1 1.7 3.7 

10 Coupled mode #2 2.2 28.0 

11 Coupled mode #3 0.6 -3.3 

12 
2

nd
 torsion and 2

nd
 

edgewise -0.7 -29.7 

13 Coupled mode #4 1.8 -11.0 

14 3
rd

 edgewise 1.7 -18.5 

15 3
rd

 torsion 0.6 24.1 

 

 

Further Experimental Considerations 
 

 The testing procedure and site presented several uncontrollable variables, including ambient 

temperature, suspension setup, and mass-loading of the blade due to instrumentation.  In an effort to 

investigate these effects, separate tests were conducted to measure the effect, if any, which these 

variables have on the test results.   

 

 The plot in Figure 9 is an overlay of two FRFs (frequency response functions), one represents a fully 

instrumented blade (red) and the other represents a lightly instrumented blade (blue), for the same blade 

and excitation location.  A fully instrumented blade is instrumented with 68 accelerometers and a lightly 
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instrumented blade has only four accelerometers – two each at locations 131 and 133.  Both FRFs in 

Figure 9 are from Blade #001 and represent a driving point FRF for location 131x.  For the fully 

instrumented blade, the FRF is slightly shifted to a lower frequency, which is most likely the result of the 

added mass or mass-loading effect of the instrumentation.  For this reason, the natural frequencies and 

damping reported in Table 1 are computed from the lightly instrumented data sets although the effect is 

small.  Mode shapes, of course, must be identified from the fully instrumented data sets which provide 

the spatial resolution needed to identify the modes. 

 

 
Figure 9. FRF Comparison of Fully and Lightly Instrumented Blade  

 

 We can perform some calculations to estimate the mass loading effect.  Consider Eq. (1) which 

gives the ratio of measured natural frequency ( mω ) for an instrumented blade to the true natural 

frequency ( tω ).  We assume a simple single degree of freedom model with no change in stiffness. 

 

 
/

/

m m t t

t t m t

k m m m

k m m m m

ω

ω
= = =

+ ∆
 (1) 

 

For a 361 pound blade with 3 pounds of sensor mass loading, we estimate a frequency change due to 

mass loading of 0.4%.   
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 The plot shown in Figure 10 is an overlay of two FRFs, one represents a lightly instrumented Blade  

#001 (red) and the other represents a lightly instrumented Blade #003 (blue).  The blades were tested in 

as close to identical environments as possible on consecutive days.  Both FRFs are driving point FRFs at 

location 131x.  Figure 10 indicates that blades are quite similar at low frequency; however, the FRF of 

Blade #001 is shifted to lower frequency above 45 Hz.  

  
Figure 10. FRF Comparison of Lightly Instrumented Blades #001 and #003 
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 The plot in Figure 11 is an overlay of two FRFs, one represents a double strap suspension (red) and 

the other represents a single strap suspension (blue).  Both FRFs are from Blade #003 and represent 

driving point FRFs at location 163x.  The FRFs are very similar throughout the frequency range except 

the slightly increased damping of the double strap response.   

  

 The effect of the choice of the number of supporting straps is less significant than the variability 

from one blade to another as seen in Figure 10.  Increased damping in the double strap suspension was 

found for these tests whereas differences in frequency were quite small.  Additionally, the bungee mode 

of the suspension occurs at about 4 Hz for the double strap setup as opposed to 2 Hz for the single strap 

setup.  Thus with two straps, the frequency separation of the suspension and elastic modes of the 

structure is reduced.   Although a double strap suspension setup offers more control over the blade and 

permits less rotation due to impact, the one strap setup offers sufficient blade control without the need 

for an additional second tripod.  Additionally, less added damping and better frequency separation from 

the suspension modes are found for the one strap suspension approach.  Thus the one strap suspension is 

preferred for several reasons, but should only be used as long as proper safety margins are in place for 

blade control during testing. 

 

 
Figure 11. FRF Comparison of Single and Double Strap Suspension 
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Quantification of Uncertainty in Modal Parameters 
 

 In Reference 7, the test to test variability of the modal parameters was quantified for the first eight 

modes listed in Table 1 for the TX-100 blades.  No additional testing was performed for the sole purpose 

of evaluating the variation of the modal parameters from test to test, that is, the test to test variability.  

One could repeat a test several times with all controllable variables constant to see how the modal 

parameters vary; however, no time was spent on this task for these tests.  Therefore, we took a different 

approach to evaluating test to test variability by assessing the individual effects on test to test variability 

due to force input location as well the effect of environmental factors such as mass loading, support 

conditions, temperature were considered.  A limited number of comparable test data sets were available 

for this analysis which is a limitation to more rigorous uncertainty quantification.  This situation is 

common in practice, yet some analysis can still be performed.  Modal parameter estimation algorithms 

typically are very accurate for frequency estimates yet are not quite as accurate for the damping 

estimates.  Therefore, we attempted no quantification of uncertainty on the damping values because of 

the uncertainty in their estimation.  We focus only on the test to test variability in the frequencies in this 

report. 

 

 In summary, we consider quantifying the total uncertainty in the frequencies due to environmental 

and force input location variability.  Without rigorous uncertainty estimation, we look to worst case 

uncertainty of each source considered to be a random error and consider the following measure of test to 

test uncertainty [8]: 

 

 2 2 2 2

test mass spcond temp forceU U U U U= + + +   (2) 

 

where the first three terms on the right hand side represent the environmental uncertainty, and the final 

term represents the force input location uncertainty.  We apply this metric to the worst case values 

determined from the test data in Table 3, with the test to test or total uncertainty given on the next to the 

last line of the table with a value of 2.1%. 

 

Table 3.  Test to Test Variability for Natural Frequency 

Uncertainty Parameter TX-100 Uncertainty (%) 

U-mass loading 1.9 

U-support conditions 0.6 

U-temperature 
0.4 

(assumed) 

U-input location 0.6 

U-test to test 

 (worst case) 
2.1% 

U-test to test 0.7% 

 

 The largest unit to unit variability is found to be 1.8% and the smallest at 0.1% from Table 2.  This 

shows that the test to test variability, computed as conservatively as possible using the worst case 

scenario in which mass loading and support conditions are considered as random error, is slightly larger 
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than the unit to unit variations.  Thus, we cannot determine if the trends in the unit variations are valid 

by this method.   

 On the other hand, we can consider the mass loading and support conditions as bias error or simply 

a shift in the data and ignore them in Eq. (2).  In this case we find the largest value for the test to test 

variability to be 0.7% for the first and sixth modes, with values ranging from 0.4% to 0.7% for the first 

eight modes.  In this case, the unit variations are still difficult to validate although the unit variations 

trend strongly and the majority of the unit variations are larger than the test to test variations observed on 

a mode by mode basis.  Considering only the test to test variations due to temperature and force input 

location is the more appropriate because mass loading and support conditions are nominally constant for 

a test and were the same for each of the blades tested in this study. 

 

Conclusion 
 

 The results detailed in this report provide enough information to judge the validity of a finite-

element model for the TX-100 series wind turbine blades.  Two nominally identical blades were tested.  

The frequency, damping and mode shapes provided have been analyzed to determine their accuracy, and 

the uncertainty due to environmental factors and force input location was quantified.  It can be seen that 

the construction method results in some variation from blade to blade, although the blades are quite 

similar.  These results establish a small range of values for natural frequency and damping for these 

blades to be used for model validation.  Several factors, which may have affected the accuracy of these 

results have been evaluated and consequently play little or no role in the resulting accuracy of this 

experimental modal survey.  It was determined that the single strap suspension configuration in which 

the blade is supported at only one point, the center of gravity, has some advantages in minimizing the 

effect of support conditions although more blade control is found for the double strap method.  Forcing 

input along a nodal line near the mass center of the blade is a preferred excitation location.  Forcing at 

this location tends to excite the torsional modes and coupled bending and torsional modes, as well as 

other modes of interest. 
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 Appendix A 

Mode Shapes of Blade Serial #TX-100-001 

 

 
Figure A-0. Undeformed Blade Serial #TX-100-001 

 

 
Figure A-1. First Flapwise Mode (f = 6.44 Hz, ζ = 0.27 %) Blade Serial #TX-100-001 
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Figure A-2. Second Flapwise Mode (f = 15.16 Hz, ζ = 0.26 %) Blade Serial #TX-100-001 

 

 
Figure A-3. First Edgewise Mode (f = 25.00 Hz, ζ = 0.32 %) Blade Serial #TX-100-001 
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Figure A-4. Third Flapwise Mode (f =28.44 Hz, ζ = 0.31 %) Blade Serial #TX-100-001 

 

 
Figure A-5. Fourth Flapwise Mode (f = 43.89 Hz, ζ = 0.37 %) Blade Serial #TX-100-001 
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Figure A-6. Second Edgewise Mode (f = 54.55 Hz, ζ = 0.41 %) Blade Serial #TX-100-001 

 

 
Figure A-7. First Torsional Mode (f = 58.00 Hz, ζ = 0.71 %) Blade Serial #TX-100-001 
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Figure A-8. Fifth Flapwise Mode (f =63.69 Hz, ζ = 0.49 %) Blade Serial #TX-100-001 

 

 
Figure A-9. Coupled Mode #1 (f = 75.13 Hz, ζ = 0.56 %) Blade Serial #TX-100-001 
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Figure A-10. Coupled Mode #2 (f =82.13 Hz, ζ = 0.50 %) Blade Serial #TX-100-001 

 

 
Figure A-11. Coupled Mode #3 (f = 85.59 Hz, ζ = 0.52 %) Blade Serial #TX-100-001 
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Figure A-12. Second Torsional Mode (f = 88.53 Hz, ζ = 0.80 %) Blade Serial #TX-100-001 

 

 
Figure A-13. Coupled Mode #4 (f = 95.06 Hz, ζ = 0.66 %) Blade Serial #TX-100-001 
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Figure A-14.Third Edgewise Mode (f = 101.04 Hz, ζ = 0.57 %) Blade Serial #TX-100-001 

 

 
Figure A-15. Third Torsional Mode (f = 107.13 Hz, ζ = 0.73 %) Blade Serial #TX-100-001 
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Appendix B 

Mode Shapes of Blade Serial #TX-100-003 

 

 
Figure B-1. Undeformed Blade Serial #TX-100-003 

 

 
Figure B-1. First Flapwise Mode (f = 6.49 Hz, ζ = 0.20 %) Blade Serial #TX-100-003 
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Figure B-2. Second Flapwise Mode (f = 15.14 Hz, ζ = 0.23 %) Blade Serial #TX-100-003 

 

 
Figure B-3. First Edgewise Mode (f = 25.25 Hz, ζ = 0.34 %) Blade Serial #TX-100-003 
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Figure B-4. Third Flapwise Mode (f = 28.94 Hz, ζ = 0.60 %) Blade Serial #TX-100-003 

 

 
Figure B-5. Fourth Flapwise Mode (f = 43.92 Hz, ζ = 0.34 %) Blade Serial #TX-100-003 
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Figure B-6. Second Edgewise Mode (f = 55.31 Hz, ζ = 0.39 %) Blade Serial #TX-100-003 

 

 
Figure B-7. First Torsional Mode (f = 58.82 Hz, ζ = 0.48 %) Blade Serial #TX-100-003 

 

 

X 
Y 

Z 

Y 

Z 



 

32 

 
Figure B-8. Fifth Flapwise Mode (f = 64.20 Hz, ζ = 0.31%) Blade Serial #TX-100-003 

 

 
Figure B-9. Coupled Mode #1 (f = 76.39 Hz, ζ = 0.58 %) Blade Serial #TX-100-003 
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Figure B-10. Coupled Mode #2 (f = 83.92 Hz, ζ = 0.64 %) Blade Serial #TX-100-003 

 

 
Figure B-11. Coupled Mode #3 (f = 86.13 Hz, ζ = 0.51 %) Blade Serial #TX-100-003 
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Figure B-12. Second Torsional Mode (f = 87.94 Hz, ζ = 0.56 %) Blade Serial #TX-100-003 

 

 
Figure B-13. Coupled Mode #4 (f = 96.81 Hz, ζ = 0.58 %) Blade Serial #TX-100-003 
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Figure B-14. Third Edgewise Mode (f = 102.75 Hz, ζ = 0.47 %) Blade Serial #TX-100-003 

 

 
Figure B-15. Third Torsional Mode (f = 107.81 Hz, ζ = 0.90 %) Blade Serial #TX-100-003 
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Appendix C 

Accelerometer Placement Procedure 
 

This appendix details the procedure developed to instrument the wind turbine blade with an array of 

68 accelerometers.  The result is an instrumented blade with 34 accelerometer placement locations 

that are parallel to both the x- and z-axis to the implied Cartesian coordinate system’s origin located 

at the hub of the wind turbine blade.  The coordinate system at the base of the hub is seen in Figure 

C-1 when the trailing edge is pointed up. 

 
Figure C-1. Coordinate System at Hub 

 

The wind turbine blade must be aligned to the global Cartesian coordinate system defined by the 

ground to accurately mount the accelerometers on their desired axis.  Suspend the blade such that the 

blade’s hub, or z-axis, is perpendicular to the ground, i.e. perpendicular to the global y-axis as seen 

in Figure C-2. 

 
Figure C-2. Alignment of Wind Turbine Blade with Ground 

 

Then rotate the blade along the y-axis such that the z-axis is parallel to the global z-axis with the 

trailing edge up as seen below.  Here the blade’s z-axis is to the left of the global z-axis which is 

denoted as z’.  Therefore, the blade’s trailing edge would be rotated to the right in order to align axis 

as seen in Figure C-3.   
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Figure C-3. Rotating Alignment of Wind Turbine Blade 

 

Chalk a line from the x-axis at the hub to the middle of the blade’s tip when the blade flattens out 

parallel to the z-axis.  This line will later be referred to as line 1 as seen in Figure C-4. 

 
Figure C-4. Creation of Line 1 

 

Chalk a line that is 3 ¾ inches from and parallel to the trailing edge from the highest point of the 

blade to the tip as seen below.  This will be referred to as line 3 as seen in Figure C-5. 

 
Figure C-5. Creation of Line 3 

Line 3 

Parallel, approx. 3.75in.apart 
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Chalk a line that is perpendicular to line 1 to the highest point of the trailing edge, which will be 

referred to as line 20 as seen in Figure C-6. 

 
Figure C-6. Creation of Line 20 

 

Then measure the distance from where lines 1 and 3 interest to where lines 1 and 20 intersect.  This 

distance is to be section into six equally spaced parts, a distance of ‘y’ apart, along line 1.  Mark 

these points with tape or chalk.  Chalk five separate lines that are perpendicular to line 1 at each of 

the marked points.  These lines should be parallel to each other as well as to line 20 as seen below, 

noting the respective labels of these lines as seen in Figure C-7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-7. Creation of Line 30, 40, 50 and 60 

 

Determine the midpoint along line 20 between where lines 1 and 3 intersect it.  Chalk a line from 

that point to where lines 1 and 3 intersect near the tip of the blade.  This line should create equal 

segments between lines 1 and 3 along lines 20, 30, 40, 50 and 60.  This can be seen below whereas 

length z1 and z2 are equal to their respective counterparts as seen in Figure C-8. 

 

 
Figure C-8. Creation of Line 2 
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Measure the distance of each segment along line 1.  This should be some distance ‘y’. Mark one 

point along line 1 between line 20 and the hub of the blade that is the same distance, ‘y’ from line 1.  

Chalk line 10 at this new point that is perpendicular to line 1 as seen in Figure C-9.  

 

 

 
Figure C-9. Creation of Line 10 

 

Thereafter create a similar pattern on the other side of the wind turbine blade in the same fashion.  

All vertical lines, i.e. lines parallel to line 20, should align with the lines created on the other side of 

the blade. 

 

The locations of where the accelerometers are to be placed are represented in Figure C-10 as black 

spots.  These locations are at the point of intersection of their respective lines, noting that 

accelerometers will not be placed at every intersection point. 

 

 
Figure C-10. Accelerometer Locations 

 

For ease of analysis, each location is to be numbered.  To determine the number location, simply add 

the number lines that intersect at that particular intersection.  For instance, the point where line 1 and 

line 10 intersect creates an accelerometer location that is number 11 (i.e. line 1 + line 10 = point 11, 

which is located at the base of the hub).  The convex side of the blade is where the positive x-axis is 

and this will be the side where the double-digit accelerometer locations are as seen in Figure C-11. 

 

 
Figure C-11 Accelerometer Location Numbering Scheme for Convex Side 
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The concave side of the blade is where the negative x-axis is and this will be the side where the 

triple-digit accelerometer locations are.  The difference in numbering of these locations is that these 

numbers have 100 added to them as seen in Figure C-12.  

 
Figure C-12. Accelerometer Location Numbering Scheme for Concave Side 

 

Clean the blade at each accelerometer location, approximately a four by four inch region with the 

center at the intersection point.  A three-inch strip of aluminum tape is to be placed there, again with 

the center at the intersection point.  To ease clean up, fold one corner of the tape inward.  A phenolic 

block is to be used to release any air bubbles that may occur.  It is of extreme importance that the 

tape is completely and smoothly bonded to the blade so additional frequencies are not created in the 

process.  The purpose of the tape is to not damage the finish of the blade. This can be seen in Figure 

C-13. 

 
Figure C-13. Taping Process 

 

Using a marker, redraw the lines only over the tape so the exact accelerometer placement locations 

are clearly defined.  It should look as if there is a “+”.  The tape location can also be numbered for 

easy identification as seen in Figure C-14. 
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Figure C-14. Tape Identification Process 

 

Using dental cement, bond a phenolic block at the “+” such that it is both perpendicular and parallel 

to the ground, i.e. the coordinate system defined earlier at the hub since the blade should be still 

aligned with the ground as seen in Figure C-15.  A leveler was used for this process.  Although the 

ideal mounting alignment is 0º with the respective axis, most were within 3º settling alignment with 

the dental cement.  Remove any excess dental cement on the top and the side away from the blade 

for mounting the accelerometers. 

 
Figure C-15. Phenolic Block Attachment 

 

Glue the two accelerometers on the phenolic block using M-Bond Adhesive, with one accelerometer 

parallel to the x-axis and the other parallel to the z-axis as seen in Figure C-16.  To ensure, mounting 

accuracy, re-measure the angle of each mounted accelerometer.  In the case that an accelerometer 

possesses a settling alignment greater than 3º, remove the accelerometer and/or phenolic block if 

needed and remount items. 
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Figure C-16. Bonding Accelerometers 

 

Since this test is preformed in a free-free condition.  The blade is to be suspended with bungee cords.  

When using two nylon straps, one is positioned at one side of the blade’s CG while the other is 

positioned at the other side.  The CG should already be marked with a circle and a “+” sign on the 

blade.  This setup ensures that the blade is stable during testing.  Being sure to place the nylon straps 

several feet apart and clear of any accelerometers and cables as seen in Figure C-17.  

 
Figure C-17. Two-Nylon Strap Placement 

 

When using a single nylon strap, it is positioned at the blade’s CG.  The blade may need to be lifted, 

lowered and then readjusted several times in order to test that the strap is indeed at the CG so the 

blade does not lean to one side.  Please note that the marked CG may not be the ideal place to hang 

the blade as extraneous objects on the blade may cause a CG shift in either direction as seen in 

Figure C-18. 
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Figure C-18. One-Nylon Strap Placement 

 

A bungee cord is then connected between the nylon strap(s) and the tripod(s) as seen in Figure C-19. 

 

 
Figure C-19.  Detailed view of the single-strap suspension system 

 

During testing, the blade is to be lifted enough to free itself from its stands.  The blade’s stands are not to 

be removed in the instance that any support fails.  A force input to the structure is produced using an 

instrumented three-pound hammer during modal testing.  Several input locations are necessary to insure 

all the modes can be extradited.  A log can help document file names, temperature, impact location, 

number of straps, etc. similar to Appendix E as will as data acquisition parameters, Appendix F. 
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 Appendix D 

Accelerometer Mounting Locations 

 

Note that all measurements were taken with the implied Cartesian coordinate system’s origin 

was located at the center of the respective blade’s hub as described in the procedure, Appendix 

C. 

 
Figure D-1. Accelerometer Mounting Locations 
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Table D-1. Accelerometer Locations of Blade Serial #TX-100-001 

Accelerometers Coordinates 

Location Meas. Axis X (in) Y (in) Z (in) 

11 X, Z  7 20.125 0 

21 X, Z  6.125 68.625 -0.125 

22 X, Z  5.125 68.5 12.5 

23 X, Z  3.25 69 25 

31 X, Z  6.25 115.375 -0.125 

32 X, Z  5.125 115.375 10.125 

33 X, Z  2.75 115.5 19.625 

41 X, Z  6.375 161.125 -0.125 

42 X, Z  5 161.25 7.5 

43 X, Z  2.875 161.625 14.625 

51 X, Z  6.625 209.25 -0.25 

53 X, Z  3.75 209.5 11 

61 X, Z  6.75 257.375 -0.25 

63 X, Z  4.75 257.75 8 

71 X, Z  6.75 305.425 -0.125 

73 X, Z  5.75 305.425 3.75 

81 X, Z  6.875 353.25 0.375 

181 X, Z  5.75 353 0.375 

171 X, Z  4.625 304.925 -0.25 

173 X, Z  4.5 304.8 3.625 

161 X, Z  3.375 256.375 -0.375 

163 X, Z  3.5 256.25 7.375 

151 X, Z  1.75 208.875 -0.375 

153 X, Z  2.5 208.875 11.125 

141 X, Z  0.125 161.25 -0.375 

142 X, Z  1.375 161 7.75 

143 X, Z  1.625 161 15.5 

131 X, Z  -1.375 114.25 -0.25 

132 X, Z  0.5 114.25 10.25 

133 X, Z  1.375 113.75 20 

121 X, Z  -4 66.75 0 

122 X, Z  -0.875 66.5 12.75 

123 X, Z  1.875 66.5 24.5 

111 X, Z  -5 20.375 -0.125 
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Table D-1. Accelerometer Locations of Blade Serial #TX-100-003 

Accelerometers Coordinates 

Location Meas. Axis X (in) Y (in) Z (in) 

11 X, Z  7.375 19.5 0.25 

21 X, Z  6.5 69.75 1 

22 X, Z  5.75 69.625 12.75 

23 X, Z  3.5 69 25 

31 X, Z  6.75 115.25 0.75 

32 X, Z  5.25 115.25 11.125 

33 X, Z  2.875 115.375 20 

41 X, Z  6.75 162 0.75 

42 X, Z  5.5 162.375 8.375 

43 X, Z  3.25 162.75 15.375 

51 X, Z  7 209.625 -0.125 

53 X, Z  3.75 210.125 11 

61 X, Z  7.125 257.25 0.5 

63 X, Z  4.875 257.5 7.25 

71 X, Z  7.125 304.75 0.25 

73 X, Z  5.625 304.875 4 

81 X, Z  7.625 352.25 0.75 

181 X, Z  6.625 352.75 0.375 

171 X, Z  5 304.625 0 

173 X, Z  4.375 304.625 3.625 

161 X, Z  3.625 256.5 0 

163 X, Z  3.625 256.875 7.5 

151 X, Z  1.9375 209.25 -0.25 

153 X, Z  2.5625 209.625 11 

141 X, Z  0.375 161.75 0.375 

142 X, Z  1.8125 162 8.375 

143 X, Z  2 162.25 15.25 

131 X, Z  -1.25 115 0.75 

132 X, Z  0.5625 115 10.5 

133 X, Z  1.875 115 19.375 

121 X, Z  -3.5 67.75 1.5 

122 X, Z  -0.375 67.75 12 

123 X, Z  2.125 67.75 24.25 

111 X, Z  -5.375 19.625 0.125 
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