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ABSTRACT

An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may
be obtained by separating the problem into two uncoupled parts, (1) a turbine specific
portion, independent of the site and (2) a site-specific description of environmental
variables. We consider contextually appropriate probability models to describe the
turbine specific response for extreme loads or fatigue. The site-specific portion is
described by a joint probability distribution of a vector of environmental variables, which
characterize the wind process at the hub-height of the wind turbine. Several approaches
are considered for combining the two portions to obtain an estimate of the extreme load,
e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain
accurate estimates, including various levels of epistemic uncertainty, of the turbine
response.
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Chapter 1

Introduction

1.1 Motivation

Over 15,000 wind turbines, providing a clean and economical source of renewable energy, were
installed in California during the 1980’s, with a total combined power capacity of more than 1,500
Mega-Watts (MW) []. Today over 4,000 MW of wind power have been installed in the WEB. [

On average, one percent of electrical energy consumed throughout California is produced by these
wind turbines. “Wind farms” provide an environmentally friendly alternative to fossil fuels. Since
the 1970’s energy crisis, research has been conducted to improve the efficiency and reliability of
wind turbines in order to mitigate society’s dependence on fossil fuels.

Electricity consumption is growing in most areas of the United States. Due to the continued
low fuel costs and de-regulation, many U.S. utility companies are risk-averse, unwilling to make the
investments that could reduce long-term energy costs and mitigate environmental risks. Worldwide
installed capacity for wind-generated energy has grown from 5,000 Mega-Watts in 1995 to upwards
of 24,000 MW today ], 3]. Most of these new installations of wind power are in Europe and
developing countries.

Many improvements in turbine design by manufacturers have made wind energy more attractive
to electric utilities. Early installations of wind turbines were fairly unreliable. This has improved
to where new installations have exceeded 95% availability. The levélaest of wind energy in
the 1980's ranged from $.25 - $.30 per kilowatt-hour (kWh)5]. The American Wind Energy
Association AWEA) estimates that the current levelized cost of wind energy at state-of-the-art wind
power plants with excellent site conditions is less than $0.05/k8YhTypical levelized costs of
other energy sources range between $0.039-$0.145/kWh (e.g., coal: $0.048-$0.055, natural gas:

A levelized cost is the average cost over the lifetime of a facility with future costs discounted by the time value of
money HA].
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$0.039-$0.044, and nuclear: $0.111-$0.145¥%]. Even with these improvements, the continued

low cost of fossil fuels since the 1970’s energy crisis has made the wind energy market more com-
petitive among wind turbine manufacturers. This has led some manufacturers to operate with very
narrow profit margins, and has pushed others into financial collapse.

The national and international structural design standards by which wind turbines are certified
greatly impact the competitive edge of the companies participating in the wind energy industry.
By developing methods to better predict both the extreme structural forces and the distribution of
fatigue loads, we can reduce the cost of energy while improving safety and reliability. The need to
reduce the cost of energy is self-evident; the means to achieve this through better understanding of
structural forces acting on the wind turbines may not be as clear. Where current design practices
and safety factors are too conservative, increased understanding in modeling the load process and
associated uncertainties can permit reduced manufacturing and other start-up costs. Where they
are non-conservative, improvement can extend component life and reduce maintenance and other
service costs.

Engineering design performed in a purely deterministic way, i.e., where we assume that we
know the forces applied to the structure and the strength of the material, can have surprising results
when the component is put into service. Nature tells us that we cannot be certain about the demand
(i.e., the forces applied) and the capacity (i.e., the strength of the material). The old adage of a
chain being as strong as its weakest link is a very precious reality that is at times overlooked in
design. Although failure can have a broad range of definitions, here we define it as the event where
the forces on the structure exceed the ability of the material to withstand those forces. The reality
is that it is not only a physical, but also an economic impossibility to eliminate the probability of
failure. There is virtually always the possibility of a force being large enough to break the structure
no matter how low the probability of that force occurring.

In order to negotiate this uncertainty we assign a safety factor when designing structural com-
ponents. This factor is in general defined as the ratio of capacity to demand. If the capacity exactly
matches the demand, by definition the safety factor is one. When the value falls below one, the part
is inadequately designed. The question then arises how much added capacity is required to cover
our seemingly unquantifiable uncertainty. Large safety factors are generally correlated with high
levels of uncertainty, or extraordinary consequences of failure. As discussed previously these fac-
tors can impact both initial manufacturing and recurrent maintenance costs. The resulting economic
impacts can be profound.

Let us look at the issue from the other direction, assigning an acceptable probability of failure.
As stated earlier, it is impossible to remove the possibility of failure. Therefore resigning ourselves
to this actuality, what level of probability of failure are we willing to accept? Engineering design
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methods are generally calibrated to produce an acceptably low probability of failure (e.g., Madsen,
et al. [7] or Melchers B]), which in many cases may be established to be consistent with past accept-
able experience. For instances when there is little experience, an acceptable probability of failure
may be chosen based on economic cost/benefit analysis, or by analogy with risk levels inherent in
other societal threats.

In the context of rotating machinery such as wind turbines, a technical challenge here is the de-
velopment of a mathematical expression that covers the underlying uncertainty of both the material
behavior and the fatigue loads. The complexities become intriguing when one realizes that in this
type of analysis the analyst is presented with a suite of fatigue loads on the structure and not just
one constant force. There is not just one material capacity; the capacities are now a function of the
demand and the number of times that particular demand is seen by the structure. In addition, failure
in this case is based on the accumulation of damage. With each cycle, microscopic cracks occur. It
is the rate at which these cracks accumulate and propagate that cause damage to the structure and
determines its useful life.

Current research efforts have focused on better prediction of the forces acting on the wind tur-
bines. A number of statistical models have been proposed to predict both the once in a lifetime
extreme structural forces and the day-to-day repeated operating forces. Systematic comparisons are
underway between these various models and observed behavior, as estimated from either field data
or computer model simulation. These statistical models hold the promise of providing robust force
estimates for more reliable wind turbine design, while minimizing the cost of extensive simulation
and/or field measurement projects.

Better estimation of extreme forces and the distribution of fatigue loads will enable us to find
more realistic, and thereby more economic safety factors that meet an acceptable probability of
failure. With well-founded safety factors, manufacturing processes and maintenance procedures can
be optimized. All of this results in producing an economical, reliable, and clean energy resource.

In the remainder of this chapter we will discuss how we may proceed from prescribing a target
probability of failure for a structural system to focusing on the long-term probability distribution
of structural loads. This will be demonstrated through a formulation of the probability of failure
as a relationship between the demand on the structure and the capacity of the structural system to
withstand those demands. Based on this formulation we can develop a methodology for estimating
the long-term distribution of loads on a structure by conditioning the loads by a set of environmental
variables. Also, since this work is concerned with estimating these loads on horizontal axis wind
turbines it seems appropriate to spend a little time describing the general configuration of these
turbines, to facilitate the discussions that follow. In particular, some of the unique behavioral char-
acteristics of wind turbines which we will have to deal with to make accurate estimates of the load



CHAPTER 1. INTRODUCTION 4

distributions will be discussed. We will briefly discuss the strict assumptions used to describe the
behavior of the wind environment. Finally, we present a few moment-based probability models that
will be used in the next several chapters to estimate the distributions of fatigue and extreme loads.

1.2 Background

The objective of reliability-based design methods is to provide a balance between sufficiently safe
structures and reasonable costs while taking into account the randomness of design critical variables
and the uncertainties associated with having only limited data. This is a formidable task. As a re-
sult, many methods ranging in complexity have been developed to address these issues. Structural
reliability methods have been divided into four general levels characterized by the amount of data
about the structural problem that is used or provid@dThe most basic structural reliability meth-
ods are non-probabilistic in nature and employ only one “characteristic” value of each uncertain
parameter and are callégvel | methodsThis is essentially the traditional safety factor and load
factor formats. Partial safety factor approaches hkec-LRFD[9] or AIC-318-89[L0] are part of
this category.Level Il methodemploy two values—usually the mean and standard deviation—to
represent each random or uncertain variable. In addition, a measure of the correlation between each
pair of random variables, typically the covariance, may be included. Reliability index methods—
e.g., Cornelll1], Hasofer and Lind[2], and Ditlevsen]3]—are examples of this category. Methods
which attempt to obtain the best estimate of the probability of failure based on probabilistic models
and therefore require the knowledge of the joint distribution of all uncertain parameters are called
Level Il methods Finally, Level IV methodsise additional economic data to evaluate the system
according to the principles of engineering economics under uncertainty. This classification of relia-
bility methods is not exhaustive and it is not the intention here to provide a summary of the broad
range of research, but moreover to provide a background to the development of the problems set
forth in the coming sections and chapters.

In this section, our focus is on Level lll reliability methods, which limit the probability of failure,
py, of a structure—e.g., wind turbine—to a prescribed target valge. . The term “failure” can
have a wide range of interpretations. Consider an office building structure which has sustained some
damage from a recent earthquake. The tenant of the building may consider the system to have failed
if he or his employees are not able to return to work immediately after the event. The work stoppage
may be a result of “superficial” damage that requires the building to be unoccupied during the clean-
up. Here the failure criteria is based on serviceability. The insurer may only consider the structure
to have failed after a claim cost threshold has been exceeded. From this perspective the failure
criterion is based on a repairability criteria. Further, the structural engineer may consider issues of
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occurred or impending collapse of the structure in determining if the building has failed. Here, the
failure criterion is based on issues of life-safety. Appropriate choigg,of ., depends on the type
of failure considered. Higher target values are typically permitted where serviceability or economics
are the dominant issues. On the other hand, much lower target values are generally required where
personal injury or loss of life may occur. These target valugg @ire usually reported on an annual
basis. In this way, it is easy to compare the reliability of different structures. In conditions where the
probability of failure may increase over time, due to strength degradation (such as failures caused
by fatigue or fatigue and over-loady;,,,,., may be specified for the lifetime of the structure.

Each of the failure conditions considered above qualitatively describes a diffenénstate
function ¢(X), which divides the space &—the vector of basic variables which describe the

state of the structure and the loads—between “failed” and “safe” regions.

9(X)>0 safe
9(X) <0 failed (1.2)

Variables typically included inX, are: actions such as forces, temperature changes, and forced
displacementsmaterial propertiessuch as yield strength and modulus of elasticityuctural di-
mensionsaandmodel parameterssuch as blade pitch angle and drag coefficients. These variables
may be stochastically dependent on one another, e.g., structural stiffness and displacement in a non-
linear analysis. In addition the basic variables may also vary over time, i.e., be random processes,
X =X(t). We might describe the different failure mechanisms or types of failufailase modes
each described by a different limit state functigi(X). Then the probability of failing in mode,
i, is the probability that there exists some timeless than the lifetime of the structurg;, such
that the limit state function for that mode of failure is less than or equal to zero. This is expressed
formally below:

ps, = P[30 <t <Tps.tg(X(t) <0 (1.2)

whereP[-] denotes the probability that the bracketed statement ogepirsould also be calculated
over some other time interval, e.g., one year, and in which pases an annual probability of
failure.

Given Equatiori.2, one way to calculate the probability of failure of a structural system would
be to include all failure modes in the limit state function substituggti¥ (¢)) for g;(X(¢)). Where,
g, is a vector in which each element is a limit state function associated with a different failure mode.
Now the structural system is considered safe if and only if all the limit state functig(Xi¢)) are
positive. This approach is the essence of expensive probabilistic risk analysis undertaken for nuclear
reactors, for examplelf]. In general, a structural system may contain several failure modeXand
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may contain hundreds of elements. The problem of solving Equéatim this form quickly be-
comes very complex. Alternatively, the probability of failure may by calculated separately for each
structural element and failure mode. This type of analysis is referred to as component reliability
analysis. The theory of system reliability then provides a set of methods as to how these “compo-
nent” probabilities may be used, together with information about their associated dependencies, to
find the probability of failure of the entire structural system. The reader is referred to Madsen, et
al. [7] and Melchers§] for further discussion on system reliability.

One approach for finding; from Equationl.2is to recognize the fact thg{X) < 0 at some
point over the time interval of interest if and only if the minimum value of the limit state function is
less than zero over the prescribed time interval. In this case Equafiaan be written as:

ps =Pl min g(X(t)) <0] (1.3)
Formulating the problem in this way is sometimes referred to asirtteintegratedapproach §].

In addition, we may consider the case when some of the elemeKisart assumed to be relatively
independent of time when compared to the other constituents. Sugj{Xg@t) can be written as:

9(X(1)) = 9(X1) = 9(X2(1)) (1.4)

whereX; is the vector of time independent variables. Substituting Equdtibimto Equationl.3
the probability of failure can be found from the expression below:

Py = Plg1(X1) < omax 92(X2(1))] (1.5)
The constituents dX; are often basic variables that determine resistance or structural capacity, e.g.,
material properties and structure dimensions. Whereas the eleméXitgfare loads or actions
applied to the structure. Of course there are exceptions: time-dependent material properties such as
fatigue or creep may be includedXy(¢), and time independent loads or actions such as dead load
or pre-tensioning may be included Xy, . With this understanding in mind we may choose toRet
represent the vector of time independent capacities, or in general resistance, &g lepresent
the vector of time dependent demands or “stresses” on the structure. With this new homenclature
Equationl.5may be written in terms of the scalar random varialitesnd S, o, =maxo<t<7, S(t)
as:

Pf = P[R < Smam] (1.6)

In the above equation the probability of failure is defined by the eRest S, and can be found
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from the joint distribution ofk andS;,.q:
Py = / fr,s(r,s) drds @.7)
r<s

wherefr s(r, s) denotes the joint probability density functioro(F) of R and.S,,,q,. If R andSy,q.
are statistically independent whefg s=fr(r) fs(s), then Equatiori.7 can be simplified as:

Py = / » fr(r)fs(s) drds
- / " Fr(s)fs(s)ds
_ /_ T ()G (s)ds (1.8)

where the notatiorf'x (z) denotes the cumulative distribution functioooF) of X defined as
Fx(z) = P[X <z|,andGx(z) = P[X > z] =1 — Fx(x).

Equationl.8 reduces the problem of finding the probability of failure to that of finding the
probability distributions ofR and S,,.., independently. In this work we focus ourselves on finding
the probability distribution of,,,,, either for extremes or fatigue. This portion of the problem can
often be more interesting, as not only are the demands on the structure usually time varying but they
may usually dominate the problem as a result, e.g., of a larger coefficient of variation. This may
imply that the demands on the structure may play a more dominant role in Eqie&iand need
to be understood and modeled more carefully than the capacities. This is complicated by the fact
that we may have only limited data with which to understand the nature of the demands, leading to
greater “uncertainty” in the loads as compared to the capacities. We will come back to this notion of
“uncertainty”, as distinct from randomness, later in this discussion and again in regard to estimation
of extreme loads in Chaptér

We have defined,,... as the maximum, over a specific duration of time, of the limit state func-
tion of X(¢). Finding the distribution oF,,,,,. is not a trivial matter even if the marginal probability
distributions ofX, are known. In general, the methods developed to resolve this problem require
the marginal distribution of each load/demand and the dependencies between the loads and/or their
rate of change with time. It may be a straight forward task to find the probability distribution of
each load by measurements or simulations. These measurements or simulations must be carried out
over the entire range of environmental conditions that may exist during the structure’s intended op-
erational lifetime, however. Therefore, very large sample sizes are required such that the long-term
distribution of environmental events is represented and not biased toward a particular environmental
condition.
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Loads or demands on the structure may occur over very different time scales. The occurrence
of load events may be sporadic in nature, e.g, the occurrence of earthquakes or storms, and the
nature of the loading during an event may be slowly varying or fluctuate rapidly. Conversely, the
loading may be constant, such as sustained live loads, or loads due to wind and wave action on
the structure. Different load modeling techniques are used for these various loading conditions. In
general, these loading conditions may be characterized by their relative time scales. One might
consider loading events which have an inter-event time much longer than the duration of the event
itself. If the load is constant during each event, such as extraordinary live loads, or varies slowly,
such as snow loading, it is considered to havecro-scaldime variability only. If, however, the
loading fluctuates rapidly during the loading event, then it is considered to have both macro-scale
and micro-scale time variability. In these latter cases, such as earthquakes, two separate models
are used. The first models the probability of the occurrence of the event; the second models the
probability distribution of the loads given the occurrence of an event. Similarly, loads due to wind
and waves which fluctuate continuously while the gross characteristics change slowly over time
are also considered to exhibit macro and micro time variability. When modeling the loads in these
cases, it is convenient to consider these procestsg®mnary over short periods of time. These
time periods are typically called environmental states. The duration for these environmental states
is defined such that the assumption of stationarity is at least reasonably valid. Typical values are ten
minutes for wind states and three - six hours for sea (wave) states.

In all the characterizations given above, each event or state is typically described by a set of
environmental variables=or example, in the case of loads due to wave or wind action, the vector of
environmental variables may be the wave period and significant wave height for wave loading or 10-
minute mean wind speed and turbulence intensity for wind loading. With earthquakes, magnitude of
the event, and source-to-site distance may be considered. In some cases the environmental variable
may be a scalar quantity. In others, as cited above, it may be a vector of variables. In all cases, the
probability distribution of the loads within the event is defined by these parameters.

The complication in finding the joint probability distribution &f, directly is the requirement
of having representative samples across all environmental conditions. This complication is often
ameliorated by conditioning the joint probability distributionX§ on the vector of environmental

2A stochastic procesX¥ (t),t > 0, is considered to bstrictly stationary if for alln, s, t1, ..., t, the random vectors
X(t1)y...,X(tn) @and X (t1 + s),..., X (t. + s) have the same joint distribution. In other words, choosing any fixed
point as the origin, the ensuing process has the same probability law. All the statistical moments are invariant with time.
A stochastic process is considered toAmaklystationary if and only if the first two statistical moments are invariant with
time, E[X (¢)] = E[X (¢t + s)] and the covarianc&ov[X (¢1), X (t + s)] does not depend an As the finite-dimensional
distributions of a Gaussian process are uniquely determined by their means and covariances, it followgetidy a
stationary Gaussian process is asiactly stationary L5, 16].
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parametersk:

Fx, = / / Fxumbole)file) de (1.9)

where the notatiotf x|y (x|y) denotes the conditional probability density function defined as:

e (aly) = P2 (110

Equationl.9is an application of the Law of Total Probability, where the probability distribution of

the loads given a set of realizations of the environmental parameters are weighted by the probability
of those realizations of the environmental parameters occurring. These results are then summed
over the entire range of the environmental parameters. A caveat exists, however. That if the load
distributions are affected by an environmental parameterf&athat is not explicitly included in

the vector of environmental variabl®s then the conditional probability distribution of the loads
given the vector of environmental variables must be found from data which is sampled across a
representative range of valuesiof If we know or can reasonably assume a distributiof’gfthen

we could re-apply the Law of Total Probability and obtain:

Ix,E(x2]e) = /a“ o fx, B, (x2]e, ¢') ferg(€le) de’ (1.11)

In other words while Equatioh.9holds for any vectoE, if E does not include all the important, i.e.,
relevant environmental variables affectiig,, then this formulation may not hold much benefit.
This is a condition okufficiency(17] that is not easily verifiable. In practice, we may convince
ourselves that a condition of sufficiency has been met by shoysing = = fx g, or (more easily
but not completely—i.e., necessary but not sufficient) by assuB{iRgE, £'] = a + bE + ¢E’ and
then show that the coefficient, is not statistically different from zero. If the data has been sampled
over a broad range of environmental states and the variables chosen to be incliEaceiable
to reasonably describe the load distribution, then there may be little increased benefit of including
additional environmental variables.

One major benefit of the formulation given in Equatib® is it separates the calculation of
fx, into the need to provide two separate terms, a structure-dependenfigfgixz|e) and a
decoupled site-dependent terifi;(e). Therefore, if a robust probability distribution of the loads
on the structure can be obtained for a broad range of realizations of the environmental variables,
then one only needs the probability distribution of the environmental variables at a specific site in
order to obtain the loads on the structure at that particular site. The “generic” structure-dependent
model, fx, g(xz|e), can be used over and over at different sites where gali), the probability
distribution of the environmental variables changes from site to site. This only holds, however, if
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eitherE contains all the important environmental variables, ¢izifg (¢'|e) is identical at each site.

The joint probability distribution oE is often provided to the structural engineer by specialists
in other fields such as meteorology for loading due to wind and waves, or seismology for earth-
quakes. Therefore, the structural engineer or analyst must consider both the importance of the
environmental parameters as well as the availability of relevant data for determining their long-term
distributions.

In this section a discussion has been presented where we proceed from prescribing a target
probability of failure for a structural system to focusing on the long-term probability distribution
of structural loads. This was demonstrated through a formulation of the probability of failure as
a relationship between the demand on the structure and the capacity of the structural system to
withstand those demands. Based on this formulation, the discussion focused on the development
of a methodology for estimating the long-term distribution of loads on a structure by conditioning
the loads on the structure by a set of environmental variables. The discussion presented here is
based on the analysis of stochastic load models by Haghighi This sets the strategy that will
be investigated throughout the rest of this work for the estimation of extreme loads and fatigue
distributions on wind turbine structures.

1.3 Wind Turbines

This work is concerned with estimating fatigue and extreme load distributions on horizontal axis
wind turbines. Therefore, it seems appropriate in this section to spend a little time describing the
general configuration of these turbines to facilitate the discussions that follow. In particular, some
of the unique behavior characteristics of wind turbines which we will have to deal with to make
accurate estimates of the load distributions will be discussed. Also, since wind turbines do not
operate in a vacuum, we will briefly discuss the strict assumptions used to describe the behavior
of the wind environment. The general configuration of the turbine, and our assumptions of the
behavior of the environment presented here, will be the basis from which we start our discussions
on how we may estimate the fatigue and extreme loads encountered by these structural systems.

1.3.1 Configuration and Operation

A horizontal axis wind turbine generally consists of several standard components. The nacelle
located at the top of the wind turbine tower, contains the key components of the wind turbine
including the gearbox, which attaches the rotor hub to the electrical generator. The wind turbine
blades convert kinetic energy of the wind into rotational mechanical energy of the low speed shaft.
The blades of a wind turbine work much the same way as the wings of a fixed-wing aircraft or
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the rotor-blades of a helicopter. The wind passes over both sides of the airfoil. As it passes over
the longer upper surface of the airfoil, it creates an area of relative low pressure. The pressure
differential between the upper and lower surfaces causes a lifting force to act on the blade. In
an airplane or helicopter this lifting force supports the weight of the aircraft. For wind turbines,
however, this lifting force causes the blades to turn, since they are constrained to move in a plane
attached at the hub. A drag force, perpendicular to the lift, is also created as the wind passes over the
airfoil. This drag force impedes the rotation of the rotor. Wind turbine blades are designed in such
a way as to maximize the lift to drag ratio. The rotation, or pitch, of the blade about its long-axis
may change along the longitudinal axis to control and optimize the turbines energy output, while
limiting the structural loads on the turbine at varying wind speeds.

The low speed shaft connects the rotor hub to a gearbox, which determines the relative rotational
speed of the low and high-speed shafts. The high-speed shaft connects the gearbox to the electrical
generator. Generally, the rotor hub rotates too slowly for most generators to work efficiently. Low
speed generators do exist and are efficient, but expensive. The gearbox makes the high-speed shaft
turn faster and with lower torque. This then drives the electrical generator. The maximum power
output of installed wind turbines ranges between 500 and 1,500kW. Wind turbines on the market
today are 1,500kW machines, with up to 5MW machines in development. An electronic controller
located in the turbine continuously monitors the condition of the wind turbine. It takes information
from the anemometer and wind vane, which measure wind speed and direction, to turn the turbine on
atcut-inwind speeds and turn the turbine offatt-outwind speeds. The controller also regulates
the yaw mechanism to turn the turbine into the direction of the wind. Usually the wind turbine
only yaws a few degrees per minute, with changes in wind direction. Significant power loss results
when the turbine is misaligned with the wind. Increasing the activity of the yaw controller can been
associated with higher fatigue damage, however.

There are two general methods for regulating the power output of wind turbines. The power
output is not allowed to greatly exceed the rated power, in order to avoid risk in damaging the
gearbox or generator. Pitch control provides a mechanism for reducing the angle of attack along the
entire length of the blade. The lower the angle of attack the less lift is generated. Stall-controlled
turbines rely on the inherent aerodynamic tailoring of the airfoil to stall progressive sections of the
blade during high wind speeds. As increasing sections of the blade stall, less of the blade is available
to create lift. The controlling of the power output to protect the generator and gearbox also serves
to mitigate the structural loads on the turbine. Other characteristics of wind turbines include: active
versus free yaw machines, up-wind versus down-wind operation, teetered versus fixed machines,
constant speed or variable speed operation, and of course the number of blades.

Figure 1.1 shows a generic two-bladed wind turbine. Of specific interest are the two loading
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directions, on the wind turbine blade, that will be considered throughout the remaining chapters. In-
plane bending)M;, —,iane results in deflections parallel to the swept surface of the rotating turbine
blades. Out-of-plane bendint,.:—os—piane results in deflections perpendicular to the plane of
rotation. Related to out-of-plane and in-plane bending are flap and edge bending. The flap direction
is defined as the direction that is perpendicular to the swept surface of the undeformed rotor blade
axis. Whereas the edge, or lead-lag, direction is defined as the direction which is parallel to the
plane of the swept surface and perpendicular to the longitudinal axis of the undeformed rotor blade.
Therefore the flap bending results in deformation of the blade perpendicular to the chord line. Edge
bending results in deformation of the blade parallel to the chord line. For fixed pitch blades (stall-
regulated turbines), where the angle between the angle of rotation and the leading edge of the airfoil
does not change with changes in wind speed, only a simple constant coordinate transformation is
required to relate flap and out-of plane bending moments (or edge and in-plane bending moments);
see Figurd..2 A more complicated time-dependent transformation is required to relate flap and out-
of-plane bending moments (or edge and in-plane bending moments) for pitch-regulated turbines.

The loading on wind turbines can be considered to fall into one of two general conditions, parked
and operating. When the turbine is parked it is much like other fixed structures and we might expect
the statistics of the response of the turbine to the input wind process to be analogous to extreme
winds on a building or other stationary structure. The other loading condition is when the turbine
is operating. The out-of-plane loads in either condition are generally very similar. The details of
this will be discussed in greater detail in subsequent chapters. The in-plane or edge loading on the
other hand is very different in the operating condition than in the parked condition. With horizontal
axis wind turbines, during the operating conditions as the blades turn in the wind field, they are also
subjected to the effects of gravity which induces sinusoidal load cycles on the leading and trailing
edges of the turbine blade. If we imagine a turbine blade starting at the top of the rotor, pointing
straight up, the bending load on the leading edge and the trailing edge of the blade is zero, the
gravity forces acts along the longitudinal axis of the blade. As the blade goes through one-quarter
cycle, the leading edge of the blade is in compression and the trailing edge is in tension due to
the gravity loading. When the blade is pointing straight down, the gravity force is acting along the
longitudinal axis of the blade and there is no bending load. The blade continues through 3/4 of a
revolution. Now, the leading edge is in tension and the trailing edge is in compression opposite to
the loading it saw half a cycle ago. This periodic loading in the edge bending direction is a unique
loading characteristic that will have to be carefully considered when we fit probabilistic models to
these loads.
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Figure 1.1:Generic diagram of a two bladed horizontal axis turbine, showing the directions of out-
of-plane,Moyt-of-plane@nd in-plane Min_piane beNding moments.
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out-of-plane

Figure 1.2:Cross-section through cord plane of generic wind turbine airfoil showing relation be-
tween out-of-plane and flap bending moments (also, in-plane and edge bending mo-
ments) through pitch angte.

1.3.2 Stationarity of the Wind Process

In the discussion in Sectioh.2 it was stated in Equatiot.9 that the probability distribution of

the loads,fx, could be found by conditioning on a vector of variabl&s, which described the
environmental process. For wind turbine design, typically the mean wind speedd turbulence
intensity, I, are the variables which are used to describe the wind process. Also wind loading is
a process, like the loading due to waves, which has macro and micro time variability. The loads
fluctuate continuously while the gross characteristics change slowly over time. In these cases it is
convenient to consider these load processes stationary over a short reference period. For wind ap-
plications, seasonal, synoptic, and diurnal variations in the wind parameters make monthly, weekly,
daily, or hourly values different from annual values. These conditions result in a selection of a
reference time period during which the underlying environmental parameters can be considered to
remain in a statistically steady-state condition. This reference time period is less than one hour
and may commonly be taken @510 minutes. Thereford/, is the 10-minute mean wind speed
andl, is the 10-minute turbulence intensity. The turbulence intensity can be defined in two ways.
Either the standard deviation of the 10-minute wind procegs,or the coefficient of variation of

the 10-minute wind process:

oy
J =21 1.12
7 (1.12)

Both definitions of turbulence intensity are used at different times in subsequent chapters. It will be
clear when each definition is being applied.
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1.4 Data Sets

Throughout this work several different sets of data are analyzed to illustrate the application of the
theories developed. In this section we briefly describe each of these data sets. The data sets represent
recorded or simulated data from three different horizontal-axis wind turbines.

1.4.1 DOE/NREL/NWTC Unsteady Aerodynamics Experiment Phase Il Turbine

The Department of Energy/National Renewable Energy Laboratory/National Wind Technology Cen-
ter Unsteady Aerodynamics Phase Ill horizontal axis test turbine is a modified Grumman Wind
Stream 33. Itis a three-bladed, fixed pitch, stall regulated turbine with a rotor diameter of 10 meters
and a hub height of 25m. It operates in free yaw down wind of the tower with a cut-in wind speed
of 6m/s and a nominal rotor speed of 22M. The nominal rated power is 20kVE9]. The turbine
is shown in Figurel.3, and a close-up of the turbine hub is shown in Figure

The data set described here was provided by the National Renewable Energy Laboratory and
consisted of multiple 10-minute simulations performed for three target 10-minute mean wind speeds,
V=14, 20, and 45m/s. The simulations were obtained using a general-purpose, commercially avail-
able structural analysis codepams, linked with the special purpose routines to estimate aero-
dynamic effectsZ0]. The details and assumptions in constructing the math-material model of the
turbine are documented in the work by Madsen, et?dl. [The three cases considered are described
below:

1. V=14m/s, typical of nominal or “rated” wind conditions;
2. V=20m/s, the maximum or “cut-out” wind speed at which the turbine operates; and
3. V=45m/s, an extreme wind speed (e.g., 50-year level) during which the turbine is parked.

For each of the three cases, 100 simulation runs were performed. The duration of each simulation
was 605 seconds with data recorded at 25Ri.[ The first 5 seconds of each simulation were
discarded to eliminate transients that may occur when the analysis is started. Seven data channels
were “recorded” during each simulation. The three data channels that are important to this work are:
wind speed, blade root out-of-plane (flap) bending moment, and blade root in-plane (edge) bending
moment. Note, the terms flap and edge bending are used consistently throughout this work to refer
to out-of-plane and in-plane bending, respectively. The remaining data channels correspond to loads
on the yaw bearing of the turbine and are not used in the analysis presented in future chapters.
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Figure 1.3:Department of Energy/National Renewable Energy Laboratory’s Unsteady Aerodynam-
ics Experiment Phase 1l turbine installed at the National Wind Technology Center. Pho-
tograph courtesy of the National Renewable Energy Laboratory, www.nrel.gov.
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Figure 1.4:.Close-up of DOE/NREL Unsteady Aerodynamics Experiment Phase Il turbine in-
stalled atnwTc. Photograph courtesy of the National Renewable Energy Laboratory,
www.nrel.gov.
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1.4.2 Atlantic Orient Corporation, AOC 15/50

Atlantic Orient Corporation’aoc 15/50 horizontal axis turbine is a modified Enertech 44/60. It is

a three-bladed, fixed pitch, stall-regulated turbine with a 15-meter rotor diameter and a hub height
of 25 meters. It operates down wind of the tower with passive yaw control and a cut-in wind speed
of 6m/s. The nominal rated power is 50kW in an 12m/s wind speed. The turbine has a fixed rotor
speed of about 6APM [22] and is shown in Figuré.5

The data set described here was provided by the National Renewable Energy Laboratory and
consisted of multiple 10-minute simulations of Gaussian wind fields and corresponding in- and out-
of-plane blade root bending moments. The wind input processes were recorded at the turbine hub
height.

One hundred 10-minute simulations have been performed for various choices of wind speed
and turbulence class with different random seed values. The simulations were carried out using
YAWDYN, an aerodynamics and dynamics analysis code for wind turbines. Target 10-minute mean
wind speeds, in the operating regime of the turbine were chosen from 10m/s to 24m/s in 2m/s
increments. Simulations were run at each wind speed considering bothAckass classB IEC
turbulence classe®}]. Also, pseudo-parked conditions (turbine slowly idling) were run for both
turbulence classes, with a target 10-min mean wind speeds of 24, 30, 40, and 50m/s. The original
data set contained time histories corresponding to only the 50m/s environmental condition. The
remaining pseudo-parked conditions were added later to the data set by the author.

1.5 Moment-Based Models

The purpose of this section is to present a brief review of probability concepts that will facilitate
the discussion of future chapters. In particular, we are interested in how we might construct a small
set of measures—statistical moments—which may adequately describe a random variable. Also, a
topic of interest here, is given that we may have only limited observations of the random variable
under consideration, how may we construct unbiased estimates of the statistical moments and what
is the associated uncertainty in these estimates. A short discussion is presented here, and will be
expanded in a later chapter. Finally, we present a few moment-based probability models that will be
used in the next several chapters to estimate the distributions of fatigue and extreme loads.

1.5.1 Expectation and Statistical Moments

This section presents a summary of probability concepts used throughout this work. The reader
may proceed to Sectioh5.2if they are familiar with this material. Additional information on the
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Figure 1.5:Atlantic Orient Corporation’eoc 15/50 turbine installed in Burlington, Vermont. Pho-
tograph courtesy of the Atlantic Orient Corporation, www.aocwind.net.
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topics presented here can be found in Benjamin and CotB/IGrimmett and Stirzakerl[e], and
Rice [24].

A continuous random variable is completely defined by its probability density function. It is
sometimes useful, however, to characterize a random variable by a set of measures which describe
the overall features of its distribution. Commonly included in the set are measures of central ten-
dency, breadth, and skewness of the distribution. Our interest here is in defining this set of measures
as well as other useful measures. We will see later, (e.g., Chigpteat our problem will be that we
only have estimates of these measures for a random variable and from these estimates infer an ap-
propriate distribution of the random variable. In order to define this set of measures we first review
the Expectation operator.

Expectation of Random Variables

The concept of the expectation of a random variakllgis similar to the idea of a weighted average.

The possible realizations of{, are weighted by their associated probability of occurrence. It is
sufficient for the discussion here to focus our attention on continuous random variables. Therefore,
if X is a continuous random variable with probability density functibnix), then the expectation,
denoted byE[ -], is given by

E[X] = /00 z fx(z)dz (1.13)

—00
More generally, the expectation operator may be applied to functions of random variableSX[ et
denote a function of the random variablé, The expectation of (X ) is then defined as:

Elg(X)] = / " g(@) fx (o) do (1.14)

Expectation is a linear operation and its order can be interchanged with other linear operators as
shown below, giverg; (X) andga(X).

E[91(X) + g2(X)] = E[g1(X)] + E[ga(X)] (1.15)

The expectation of functions of joint random variables is given by

[e.e]

E[Q(Xl,Xz)]Z/ 9(w1,72) fx;,x,(21, 72) dr1dzs (1.16)

—00
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Moments of Random Variables

The statistical moments of a random variable, are useful measures of the the probability dis-
tribution of X. Consider a functio(X) = X™, wherem is a deterministic constant. The'"
statistical moment oX is defined as:

E[X™] = /OO 2™ fx(x)dx (1.17)

—0o0

The first momentn = 1, is called theamean valugdenoted by x, and is a common measure of
central tendency of the probability mass.

Central Moments of Random Variables

Central moments of random variables are moments calculated about the meam" Tdentral
moment of the random variabl€ is defined as:

(X )™ = [ o )" (o) o (L18)

— 00

By applying Equatiori.15we see that the value of the first central moment- 1, is always zero.

E[(X — px)] = E[X] — E[ux] = px —px =0 (1.19)

The variance ofX is the second central moment.(= 2) and is denoted byar[X] or %,
defined as

EIX — ) = [ (o= px)? fxlo) do = 0% (1.20)

o
and is a measure of the dispersion of the probability mass akost 11 x, the mean value, and
is always> 0. Alternatively, the variance may be found from the first two moments by applying
Equationl.15

E[(X — px)?] = E[X? — 2Xpix + %] (1.21)
= E[X?] — 2uxE[X] + E[u}] (1.22)
=E[X? — % (1.23)
Which can be written as
E[(X — px)?] = E[X?] - E2[X] (1.24)

Two other measures of the dispersion of the probability mass are commonly used. These are the
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standard deviations x, and the coefficient of variatiod,y. The standard deviation of, is defined
as the positive square root of the variance,

ox = +/Var[X] (1.25)

The coefficient of variation is defined as the ratio of the standard deviation to the mean, provided the
mean is not equal to zero in which case the coefficient of variation is undefined. Note the coefficient
of variation is a dimensionless quantity.

5 = 2% (1.26)
x|
The third central momenty = 3, is a measure of skewness or asymmetry about the mean. The
coefficient of skewness,y, is defined as:
E[(X — 3
vx = [( 3,UJX) ] (1.27)
9x
If the distribution of X is symmetric then xy = 0. Whenvyx > 0, the distribution ofX is said to
be “right-skewed and has a longer right-hand tail. Converselyyif < 0, then the distribution of
X has a longer left-hand tail, and ikeft-skewetl Examples of symmetric, right- and left-skewed
distributions are shown in Figude6
The fourth central momentp = 4, is a measure of flathess. That is the weight of the tails
compared with the weight of the body about the mean. The coefficient of kurtggjss defined
as: A
E[(X —
Kx = [(—4”” (1.28)
Ox
The normal or Gaussian distribution has a coefficient of kurtosis equal to 3.0. A value of the coeffi-
cient of kurtosis different than 3.0 is one measure of how much the distribution of a random variable

deviates from the Gaussian distribution, as shown in Figufe

Joint Central Moments

Two statistical moments that are commonly used to describe joint random variablex((eamd
X>) are the covariance and the correlation coefficient. The first joint central moment is the covari-
ance,Cov, and is defined as:

[e.o]

E[(X1 — px,) (X2 — px,)] = / (X1 — px,) (X2 — px5) fxy x5 (21, 22) dndze - (1.29)

—00
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Figure 1.6:Distributions with positive and negative skewness compared with the Gaussian distribu-
tion with zero skewness. Note, all distributions shown have the same mean and variance.
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Figure 1.7:Distributions with higher and lower coefficients of kurtosisy = 2 andkx = 6
compared with the Gaussian distribution witk=3. Note, all distributions shown have
the same mean and variance.
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and is a measure of the correlation between random varidblesd X5. If X; and X, are inde-
pendent then th€ov[ X, X»] = 0. However,Cov| X7, X3] = 0, does not imply thak; and X, are
independentdq].

The correlation coefficienty, is a dimensionless measure of linear dependence between two
random variables and is defined as:

Cov[X1, X
o= LX) (1.30)
0X,0X,
Avalue ofp; » = 1, implies perfect positive linear dependence, i.e., a linear deterministic functional

relationship exists betweeX; and X», e.g.,
Xo=a+bXy (b > O) (131)

Whereas a value gf; » = —1, implies perfect negative linear dependence, é.g<, 0 in Equa-
tion 1.31

In this section we have reviewed a few probability concepts, in particular the expectation and
statistical moments of random variables. The next section discusses how we may obtain estimates
of these statistical moments from observed sample data and how good these sample statistics may
be as estimators of the unknown moments of the random variables.

1.5.2 Estimating Statistical Moments

In this section we review how we may obtain estimates of statistical moments from sample data.
Let us assume we have a setwofobservations or realization§yy, xo, z3, . . ., x, }, of the random
variable X, from which we can calculate the sample mean

1
T = E i 1.32
’ i ’ ( )
and the sample variance is
1 < _
5% = | E (z; — 7)? (1.33)

=1
We can interpret the observations &f, however, as realizations af independent random vari-
ables, i.e.z is a realization ofX1, x- is a realization ofX5, etc. We may further interpreX as the
populationfrom which the observations were randomly sampled. The distribution isfa mathe-
matical construction and therefore the moments, e.g., the population meaand the population
variance,ag(, are constants. Each random variablg, shares the same distribution &s and in
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particular each variable has the same mean and variance as the population mean, and population
variance. Of course, in a strict sense, if the distributions are identical then all the moments are the
same, but here we restrict our discussion to the first and second moments. In this context we may
then express the sample mean as:

.1 &
X =- X; 1.34
- ; (1.34)
and the sample variance as:
R ,
Sk=—72.( ) (1.35)

=1
Thereforez ands%; defined in Equation$.32and1.33 and computed from the observed data are
realizations of the random variable¥, and 5%, in Equationsl.34and1.35 This illustrates that
the sample statistics are random variables, whereas the moments of the population are constants.
Consequently we are interested in the expected value and variar€eanti 5% as we will use
observations o andsg( as estimators of unknowny ando x.

The Expected Value and Variance ofX

Taking the expectation of both sides of EquatioB4yields:
E[X] = ~ f: E[X)] = - - npux = (1.36)
—ni_l d=7 npx = pkx :

BecauseE[X] = uy, in Equation1.36 X, as defined in Equatioh.34 is said to be an unbiased
estimator of the population mean.
Taking the variance of both sides of EquatibB4yields:

2 n
Var[X] = () ZVar[Xi] S no% = ﬁ (1.37)

(1.38)
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The Expected Value ofS%

Taking the expectation of both sides of EquatioB5yields:

(53] = - D EI(X: - X))
=1
1 n _
=— [2 E[X?] — nE[X2]] (1.39)
applying Equatiori.24we find,
E[X7] = Var[X;] - E°[X;] = 0% — uk (1.40)
E[X?] = Var[X] — E}[X] = Ujf — % (1.41)

substituting Equation$.40and1.41linto Equationl.39

E[53] = = [n(o% — 180) — n(ZX )]
()6
—o% (1.42)

From Equationl.42 we see thatS%, as defined in Equatioh.35is an unbiased estimate of the
population variance. Similar to the first statistical moment, as the samplé loécomes large,
n — oo, the sample variance will converge to the population varia@dg [

Unbiased Estimates of Skewness and Kurtosis

We may observe from the analysis presented above that the leading coefficient in Equ2dion
was%, whereas in Equatiofi.35 the coefficient wasnl—l. Furthermore, we may consider this
coefficient related to the free degrees of freedom, dendtgd)n estimating the sample mean, the

first moment, all the degrees of freedom are fred,= n. Whereas when estimating the variance,

the second central moment, we reduce the degrees of freedom by one because we have already
estimated one statistical moment from the ddtd, = n — 1. In general for then® moment we

can determine the remaining free degrees of freedom as

n—(m-—1) (1.43)
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An unbiased estimate of the coefficient of skewness, the third central momeat3), denoted by
as,, may be found by the equation below with — (3 — 1)) = (n — 2) free degrees of freedom.

S (X - %)
(25

ag, = (1.44)
Similarly, an unbiased estimate of the coefficient of kurtosis, the fourth central momest4),
denoted by, , may be found by the equation below with— (4 — 1)) = (n — 3) free degrees of

freedom. . o
> (X = X)
(n—3)S%

(1.45)

Q4 =

1.5.3 Probability Models for Extreme Loads

Let us first suppose that we have a time varying random load praokéss,which is assumed to be
stationary over time]". To estimate the probability distribution éf;, the maximum load event in

time T, one may construct probability models over a number of different time scales. We introduce
three such models briefly in this section and describe each in more detail subsequently. In order of
decreasing time scales (and hence increasing use of data), these models are the following:

Global Extreme Models: These seek to directly modef, the “global” (largest) extreme ovér,
The advantage here is that we work most directly with the extreme of interest;4.eThe
drawback is that we discard all time history values below these global maxima.

Local Extreme/Random Peak Models: These models instead represent all local maxima of the
load historyX (t), possibly excluding those that fall beneath some user-defined lower-bound
threshold. (This is an example of what is sometimes referred to as a “peak-over-threshold”
model.) In this work, local maxima are defined as the maximum event between up-crossings
of the mean level. Compared with the global extreme models, local extreme models have
the advantage of including more data in the fitting process. A potential disadvantage is that
some of these data—in particular the lower-amplitude maxima—may come from a different
statistical population, which should not be included in extrapolating to large loads. Shown
in Chapter2, the complication introduced from multiple populations may be avoided by an
appropriate choice of a lower-bound threshold. In this wdrklenotes the vector of random
variable associated with the sequence of local maxims @f.

Random Process Models:Finally, these models seek to statistically describe the entire time-varying
load history,X (¢). These contain the largest possible information, e.g., all data points in a
digitized history. They may yield little advantage, however, over random peak models if there
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Load

Figure 1.8:Time scales versus amount of available data: Global maxindjiocal random peaks,
Y'; random processX (t).

is little additional statistically independent (i.e., relevant) information contained in the details
of the time history between its peak values.

Figurel.8 shows realizations; (t), z2(t), . . ., z,(t) of the random procesk (¢), with realiza-
tions {y11,v1.2,v1,3,-- -}, {¥2.1,¥2.2,¥2.3, - - -}, {¥n,1, YUn,2, Yn,3, . . .} Of Y, the vector of random
local peaks, and realizations, 22, , ..., 2z, Of the global extremes?. This figure graphically
demonstrates the difference in time scales and the amount of available data associated with the
models presented above.

1.5.4 Global Extreme Model
If we model the global extremes, we immediately have the desired probability; < (], that the
maximum valueLr is less than anyas:

PlLy <1 = P|Z < 2] = F4() (1.46)

It has been shown that for both the operating and parked conditions of a wind turbine, the 10-minute
extreme event follows an Extreme Value Type | model fairly well][ Additional analysis may be
required if field collected data is use#lf] 27]. The expression for the Extreme Value Type |, or
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Gumbel model 28, 29, is given as:
Fz(z) = exp (—exp (—a(z — u))) (1.47)

and the parametersandu (« is a measure of dispersion ands the mode of the distribution) are
given in terms of the first two statistical momentshs:

iz =u—+ 'YET“"” (1.48)
2
™

1.5.5 Random Peak Model

If one instead models all random peaks, as previously defined and deénot®g, ..., the corre-
sponding probability?[ Ly < [] can be estimated as:

PlLr<l=P(i<)nYoe<)NnYs<l)n---N(Yn, <1)]
Nt
=2y <0 ={Py: <} = [F ()" (1.50)

=1
where Nt is the number of peakg;; values, in time duratiofi. Equation1.50 holds assuming
that the number of peak&/r, is deterministic and that their levels are mutually independent. The
assumption of stationarity of (¢) implies that all the peaks,= 1,2,..., N, have the same prob-
ability distribution, Fy (y). None of these assumptions are strictly correct, but the approximation
generally becomes more accurate as one considers extremes in the upper tail of the load probability
distribution30]. Rewriting Equatiorl.50in terms of thecDF of Z, and the complementagDF of
Y, one can apply an approximation for the exponential function as shown below:

Fr.()=[1-GyD)"" (1.51)
Nt

_ {1 _ NTﬁ;U)] (1.52)

~ exp (—Nr Gy (1)) (1.53)

The approximation in Equatioh.53holds for Ny Gy (1) < 1, i.e., for large values df
We are looking for an estimate of the expected maximum over a durdtioiye saw above
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that the distribution of 10-minute extremes was well described by the Gumbel distribution. Here we
also assume thdft;,,. (1) follows a Gumbel distribution

Frp (1) = exp (— exp (—a(l — u))) (1.54)
where the mean abr, denoted by:;, ., in terms of the parametetsandw is given by:

fop=u+ 'YET”"” (1.55)

If we evaluate Equatiofi.54 at its mean value, and set it equal to Equatiab3 also evaluated at
pr,, and solve foiGy (yr,,.), we find:

Fr,(pny) = exp (—exp (—a(puLy —u))) = exp (— exp (Veuer)) = exp (—Nr Gy (pLr))
(1.56)

— NT

B €xp (”)’Euler)
Where Equatiorl.57 gives the probability level of the distribution &f associated with expected
value of Ly. Formally,

Gy (pLr) (1.57)

_ Nr
=Gyt <> 1.58
Hl Y €xp (’YEuIer) ( )

whereGy' is the inverse of7y. Here we have obtained an estimate of the expected value of the
maximum load in timeT", based on the probability distribution and the number of the random peaks.
We shall use this result in Chapter

1.5.6 Process Model

Process models seek to describe the entire time-varying load histdty, Most research has
focused on Gaussian models &f(¢). The Hermite transformation has been found to be use-
ful in a range of applications in estimating the extreme statistics of non-Gaussian response pro-
cesses3l, 32 33. As described by Wintersteir3fl], the Hermite polynomial given in Equa-
tion 1.59functionally relates the fractiles of a Gaussian process to the fractiles of a non-Gaussian
process. This polynomial transformation is derived in such a way that its individual terms are sta-
tistically uncorrelated. The cubic polynomial given below, which has four terms and therefore is
capable of matching only the first four statistical moments, is often sufficient to capture the non-
Gaussian nature of the response process.

Here, the non-Gaussian load histak(t), is presumed to be functionally related to a standard
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Gaussian procegs$(t). The Hermite polynomial for the condition when the coefficient of kurtosis,
kx, IS greater than 3, is given by:

z=g(u) = px + rkox[u+ cs(u? — 1) + ca(u® — 3u)] (1.59)

where
ko= [1+2c +6c371/2 (1.60)

A similar polynomial results from the derivationsfy < 3. The simplest estimates of andc, are
given as:

VX Kx —3
~ = ~ 1.61
s~ P o (1.61)

These estimates assume there exists in the response process only small deviations from a Gaussian
process and are found from the third and fourth central moments of the marginal distribution of

X (t). Winterstein, et al.35] found more accurate approximations fgrandc,, which are useful

when X (¢) exhibits stronger deviations from a Gaussian process. The following equations for

ande, are valid for3 < kx < 15and0 < 3% < w

vx [1—0.15]yx| +0.37%
= = 1.62
S~ [ 1+ 0.2(rx —3) (1.62)
1.43~2 1-0.1k5%8
C4 = C40 |:1 — 37X:| (163)
Kx — 3
where .
1+1.2 -3)3 -1
i = LT 125(x = 3] (1.64)

10
The Hermite polynomial transforms any fractile of a standard Gaussian distribution to the equivalent
fractile of a non-Gaussian response distribution. Therefore, for this transformation to be useful
in estimating fractiles of.r we need to predict the extreme fractiles of a Gaussian process, i.e.,
extremes consistent with prescribed probability level. For example, we may consider the task of
obtaining an estimate of the expected valuedof E[L7] = p1,.. Again we will assume that the
distribution of L is well described by the Gumbel distribution. The probability lepegssociated
with the mean of the Gumbel distribution and hence, the expected valug isf

Fr,(pry) = p = exp (—exp (—7euer)) = 0.57 (1.65)

See Equatiord.56as modified. Having found a probability level of interest, it then becomes of task
of finding the fractile ofUnax the extreme of a Gaussian process associated with our prescribed
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probability level,p. From Rice B6, 37], assuming the up-crossings of high levels are assumed to
follow a Poisson process, it can be shown that

PlUmax < u] = exp (—voT exp (—u2/2)) (1.66)

wherevy, is the average up-crossing rate, &nds the duration. The expected number of cycles in
time, T is denoted byN; and given as:

NT =1y X T (167)

SettingP|-] in equationl.66equal top = 0.57, the resulting fractile of/max is given by:

Nr
In (1%)

umaxp, IS an estimate of the expected maximum of a Gaussian process with up-crossimginate
time, T. The result of Equatiorl.68is used directly in the Hermite polynomial given in Equa-
tion 1.59to find an estimate oK ha=L7. Of course the other fractiles, other than the mead,of
may be found by substituting other values fan to Equationl.68

An alternate approach to approximate the expected maximum of a standard Gaussian process in
N7 cycles, which has recently been used in the analysis of extreme loads on wind tuddinés [
estimated as:

(1.68)

Umaxp = 21n

E X)] -
E[Umax] = Umaxp = [maX(o_X)] PX ~ V2In N + % (1.69)

Again applying Type | Extreme Value Theory for the distributiongfand recalling Equatioth.65
the probability level associated with the expected valugefs given as:

Frp(pry) = exp(=exp(—a(pr, —u))) = exp(—exp(rever)) (= 0.57) (1.70)

Setting Equatiori.70equal to Equatiori.66 and solving fory, yields:

Umaxp=0.57 = \/2 In N7 + 29guler (1.71)
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Comparing the squares of Equatidngland1.69

(Umax,p:0.57)2 = 2In N7 + 27Euler (1.72)
versus
72
(Umaxp:0.57)2 = 2In N7 + 29eyler + ﬁ (1-73)

For Ny = 1,000 these equations become:

(umaxp=057)° = 13 + 1.1 (1.74)
versus
(Umaxp—=0.57)" = 13 + 1.1 + 0.024 (1.75)

Therefore, considering/; = 1,000 the approximation in Equatioh.69introduces a difference in
umaxp—=0.57 Of only about 0.1% as compared to a model based strictly on the Gumbel and Poisson
distributions.

1.6 Organization

This work is divided into three major sections. The first part deals with the short-term problem,
specifically, choosing probabilistic models to fit to data given the environmental conditions. The
second part, building on the analysis and results of the first part, addresses the long-term problem.
First, integrating the short-term models over the long-run distributions of the environmental vari-
ables. Then, two approximate approaches are investigated. The final part of this work deals with
the uncertainty associated with the parameters and statistics used to describe the short-term loads
models, and the long-run distributions of the environmental variables. Of particular interest is how
these uncertainties impact the estimates of extreme loads on wind turbines.

Part One is made up of Chaptefor extreme loads and a portion of Chaparhich addresses
fatigue. Each of these chapters address the choice of probabilistic model to fit to data. In €hapter
the efficacy of random peak and process models to hold sufficient information about the load process
to accurately estimate the expected extreme event over a brief period of time of ten minutes to over a
period of several hours is investigated. Chaptietroduces a new approach to fitting a probabilistic
model to fatigue load ranges. The process involves using established probabilistic models, but
tuning the fit of the model to the data based on expected damage. This introduces a link between
the material capacity and the demand on the wind turbine. It also allows the model to be fit to the
data in the region in which the data is most important, where the data has the potential to contribute
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most to accumulated fatigue damage.

Part Two comprises the next three chapters. Cha&ppeesents a methodology for proceeding
from conditional short-term extreme load distributions to estimates of the one-year and 50-year ex-
treme load on amoc 15/50 turbine, assumed to operate in an environment similar to that found
in Lavrio, Greece. The methodology involves relating the moments of the data, which are used
to fit the probabilistic model, to values of the environmental variables through regression analysis.
Then, the short-term conditional distribution models are summed, weighted by long-run probabil-
ities of the environmental conditions occurring. A qualitative analysis is undertaken to reduce the
complexity of the integration. Prescribed deterministic fractiles of some of the variables involved
in the integration are carefully chosen to account for the variability introduced if the entire distri-
bution where included. Applying this methodology reduces one level of integration for each of the
variables replaced by a prescribed fractile.

In Chapterd we introduce another approach for estimating long-term extremes which employs
the approximate methods underlying first-order reliability analysis. In this method, contours of
the critical combination of wind speed and turbulence intensity are found for prescribed reliability
levels. It then becomes a straightforward task of (1) identifying an appropriate percentile of the
short-term load, and (2) identifying the maximum response along the prescribed contour. Under the
assumptions of first-order reliability analysis, the maximum response along the “environmental con-
tour” is associated with the prescribed reliability level. Later, in Chapgsimilar methodology,
from ChapteS, is laid out for fatigue and applied to the sam®c turbine also assumed to operate
in an environment similar to that in Lavrio, Greece. Note that appendi@exdF consider similar
analysis for both extremes and fatigue, respectively but an alternate description of the environmental
conditions is used, largely based on that of Cléssonditions given by theec, international wind
turbine code23].

Finally, Chaptel discusses the sources of uncertainty in the analyzes previously presented and
demonstrates how including these uncertainties affects the estimates of the one-year and 50-year
extreme events on wind turbines. Some of the sources of uncertainty addressed include: uncertainty
in the long-term descriptions of the environmental variables, as well as uncertainty in the model
parameters of short-term load models. Also, modeling uncertainty associated with simulated loads
compared with recorded field data is discussed. The impact of considering all of these sources of
uncertainty on estimates of the one-year and 50-year load on wind turbine in Lavrio, Greece, is
assessed.



Chapter 2

Prediction of Short-Term Extreme Load
Distributions 1

This chapter considers two distinct topics that arise in reliability-based wind turbine design. First,

it illustrates how general probability models can be used to estimate long-term design loads from a
set of limited-duration, short-term load histories. Second, it considers in detail the precise choice of
probability model to be adopted, for both flap and edge bending loads in both parked and operating
turbine conditions. In particular, a 3-moment random peak model and a 3- or 4-moment random
process model are applied and compared. For a parked turbine, all models are found to be virtually
unbiased and to notably reduce uncertainty in estimating extreme loads (e.qg., by roughly 50 percent).
For an operating turbine, however, only the random peak model is found to retain these beneficial
features. This suggests the advantage of the random peak model, which appears to capture the
rotating blade behavior sufficiently well to accurately predict extremes.

2.1 Introduction

Probabilistic models have gained widespread acceptance and use within a range of engineering
disciplines. These models have formed the basis, either explicitly or implicitly, for a number of
design codes—especially those of tlrrFD (load and resistance factor design) format. Recently
developed wind turbine standard®3[ have begun to adopt these code formats, in analogy with
long-standing practice in the building and offshore structure communities.

In applying probabilistic models to design wind turbines, a number of practical challenges re-
main. A first question concerri®w a particular probability model may be used to satisfy design

LA portion of this chapter was previously published in the American Society of Mechanical Engineering’s Journal of
Solar Energy Engineerin@§]
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requirements as specified, for example, in wind turbine standagidfi particular, due to the wind
turbine’s complex dynamic behavior, an analyst may need to rely on a set of limited-duration load
histories over a range of wind conditions. These histories may result either from measurements on
prototype machines or from numerical simulation. In either case, there is a fundamental question
as to how one can proceed from thed®rt-termload observations to specification of appropriate
long-termloads, as required in design codes. Future chapters address this question, presenting a
general methodology to relate the short-term statistics to the desired long-run design load. Chap-
ter 3, covers estimating long-term extreme events while Chdptatdresses estimating long-term
distributions of fatigue loads.

A second question that arises concerns the precise details of the probabilistic modeling to be ap-
plied; namelywhichprobabilistic model or models are best suited to describe the dynamic behavior
of wind turbines. As will be noted below, a number of these have been proposed and applied in the
literature. These differ first in which quantity they seek to model; for example, some seek to model
the entire load history:(¢) as a random process, others seek to model only the local peaks (max-
ima) of z(¢), while still others consider only more global peaks (e.g., 10-minute maxima). Once
this choice has been made, various functional forms are available to model the relevant probability
distribution at hand. In this chapter various random process and random peak models are compared,
for cases of both edge and flap bending loads in both operating and parked wind turbine conditions.

2.2 Probability Models for Extreme Loads and Responses

We saw in Chaptel that we may construct probability models over a number of different time
scales, to estimate the conditional probability distributio.pf the maximum load even in tiriE.
In order of decreasing time scales (and hence increasing use of data), these include the following:

Global Extreme Models: These seek to directly modef, the “global” (largest) extreme over
T. The advantage here is that we work most directly with the extreme of interest;.e.,
The drawback is that we discard all time history values below these global maxima, see
Sectionl.5.4

Local Extreme/Random Peak Models: These models instead represent all local maxima of the
load historyX (¢), possibly excluding those that fall beneath some user-defined lower-bound
threshold. (This is sometimes referred to as a “peak-over-threshold” model. Also recall that
we have defined local maxima as the maximum event between up-crossings of the mean
level.) Compared with the global extreme models, local extreme models have the advantage
of including more data in the fitting process, see Seclidna A potential disadvantage
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is that some of these data—in particular the lower-amplitude maxima—may come from a
different statistical population, which should not be included in extrapolating to large loads.
Shown later, this can be avoided by an appropriate choice of a lower-bound threshold.

Random Process Models:Finally, these seek to statistically describe the entire time-varying load
history, X (¢). These contain the largest possible information; e.g., all data points in the
digitized history. They may yield little advantage, however, over random peak models if there
is little additional statistically independent (i.e., relevant) information contained in the details
of the time history between its peak values, see Sedtidré.

Note that if one models global extremes directly, one immediately has the desired probability,
P[Ly < ], that the maximum valuér is less than any (Sectionl.5.4. If one instead models alll
random peaks, here denot¥qd Y5, ..., the corresponding probabilif[L, < [] can be estimated
as

PlLy <l]=P(Mi <)NYa<)N(Yzs<)n---N (Y, <D)]={PlY; <u]}'* (2.2

in which Nt is the number of peaks;; values, in time duratiod. We saw in Chaptel that
Equation2.1holds assuming that the number of peaks, is deterministic and that their levels are
mutually independent and identically distributed. Although none of these assumptions are strictly
correct, the approximation generally becomes more accurate as one considers extremes in the upper
tails of the load’s probability distribution3[] (Section1.5.5. Finally, if we instead model the

entire processy(t), consistent statistics df; require somewhat additional effort (Sectibrb.6.

An algorithm namedV AX FITs has been created to automate this process, permitting the user to
select between these three types of models to estimate extreme statGtdH.[

2.3 Data set

We used the database for thee/NREL/NWTC Unsteady Aerodynamics Experiment Phase 111 tur-
bine as described in Sectidm4.1in this analysis. The database contains multiple 10-minute simu-
lations of Gaussian wind fields, and corresponding in- and out-of-plane bending moment responses.
The turbine has a rotor diameter of 10m and a nominal rotor speed of 1.2 Hz. It is a three-bladed
turbine with a hub height of 17m2[].

A total of 100 10-minute simulations have been performed for various choices of the mean wind
speedl/. These use a general-purpose, commercially available structural analysisacedesy,
linked with special-purpose routines to estimate aerodynamic eff2@ts The focus here is on
three cases:
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1. V=14m/s, typical of nominal or “rated” wind conditions;
2. V=20m/s, the maximum or “cut-out” wind speed at which the turbine operates; and
3. V=45m/s, an extreme wind speed (e.g., 50-year level) during which the turbine is parked.

The last case is somewhat analogous to extreme winds on buildings and other stationary structures,
and we may expect similar statistical behavior in this wind turbine analysis. The lower-speed cases,
however, correspond to operating conditions, in which the turbine blades rotationally sample the
stationary wind field. Also notable here are the systematic effects of gravity on blade root in-plane
(edge) bending: a strong sinusoidal trend is induced at the turbine operating speed. The work in this
chapter investigates whether various probabilistic response models can remain accurate in the face
of these special features that wind turbines exhibit.

2.4 Predicting Short-term Extreme Events

This section considers how the previously discussed models can be applied to estimate extreme
bending loads on wind turbines. In particular, the behavior of two different types of probabilistic
models are considered: (Hermite models of the load as a random process, andj(@dratic

Weibull models of random load peaks (over a specified threshold). The Hermite model generally
utilizes four statistical moments of(t) [42], although a simplified three-moment version can be
used in some special cases of limited nonlinea2y, 43, 44]. The quadratic Weibull model is

based on the first three statistical moments of the peak valigdp, 46, 47]. As noted in these
references, there are no closed-form results for this model's parameters in terms of its moments;
the parameters must be found numerically. Note thatMhe FITS routine implements both the
guadratic Weibull and Hermite models, as well as a number of otdérd{].

2.4.1 Sample Time Histories

Figure2.1shows simulated wind and load time histories from one 10-minute simulation for a target
10-minute mean wind speed of 45m/s and the turbine parked. In particular, the histories shown are
brief, 10-second portions of the wind and load histories during which the wind input is maximized. It
should be noted that this maximum wind episode does not generally produce the maximum bending
loads.

To identify peaks from the response histories, we define a peak here as the largest value of the
history between successive up-crossings of its mean level. Many alternative strategies can be used
to identify peaks; e.g., the largest value per blade revolution. Later, however, we will show that
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for the edge load cases presented, a threshold that excludes somewhat more load cycles—retaining
roughly one peak for every two blade revolutions—is more beneficial. Fgdrghows the mean

levels of each history by horizontal lines, and the circled response points indicate the set of peaks
that are obtained. The blade root out-of-plane (flap) bending loads are found here to roughly follow
the wind speed process, although additional high-frequency content is observed. Note also that our
definition of peaks—the largest response per up-crossing of the mean—serves to filter out many of
these high-frequency response oscillations. The edge bending loads are of less interest in this case,
showing small oscillations about the mean load.

Figures2.2 and2.3 show similar simulated wind and load time histories, now for a target 10-
minute mean wind speed;, of 20m/s and 14m/s during which the turbine is operating. Now
the effect of gravity is clearly seen in the edge bending histories, which show a strong sinusoidal
component at the operating speed of about 1.2 Hz. The flap bending histories also show system-
atic variations at this frequency, although it is combined with significantly larger high-frequency
content here than in the edgewise cases. Again, the peak identification method implemented here
removes some of this high-frequency effect. Note in the edgewise cases, however, that a some-
what anomalous effect can arise. While only one “large amplitude” peak is usually found per blade
revolution, other “secondary”, near-zero peaks are sometimes also identified. This arises from the
high-frequency small-amplitude oscillations shown by the edgewise loads about their mean level.
The resulting distribution of all peaks is found in such cases to be multi-modal; i.e., to possess a
probability density function with several distinct regions of relatively high probability (“modes”).
Figure2.4shows histograms of edge bending peaks for the two operating wind speeds investigated.
Each of the histograms clearly show two distinct modes. Because our models are unimodal—i.e.,
designed to be fit to the single most important probability “mode”—we shall find it useful in these
edgewise cases to pass a higher threshold (above the mean) to exclude these secondary peaks. We
shall return to this issue below.

Finally, recall that to estimate the distribution of thegestpeak, it is common to assume that
successive peaks are mutually independent. This is the assumption inherent in the current imple-
mentation oM AX FITS[40, 41] (see, for example, Equatichl). To test this assumption, the corre-
lation coefficient,p, between adjacent peaksandy; 1 has been calculated for the various cases.
Typical p values, shown in Tabl®.1, are effectively negligible; for examplg=0.21 (flap bending,
V=45m/s),p=0.28 (edge bendind/=45m/s), anth=0.15 (flap bendingl’=20m/s). These values,
and corresponding scatterplotspfvs y;41 in Figures2.5, 2.6, and2.7, for wind speeds 45m/s,
20m/s and 14m/s respectively, confirm that the assumption of independence should not induce large
modeling errors in this application. Indeed, even far higher correlations will tend to have minimal
effect when extreme loads and responses are considered. For example, successive 3-hour wave
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Correlation Coefficient, p

Wind Speed| Flap bending peaks Edge bending peaks Shifted edge bending peaks

V =45m/s 0.2092 0.2843 NA
V =20m/s 0.1526 -0.0070 0.1249
V = 14mls 0.1512 0.0770 0.1163

Table 2.1:Correlation coefficientp , between adjacent peaks andy;; for various 10-minute
mean wind speeds

heights in the North Sea have been found to have correlation coeffigi®f@6[30]. Nonetheless,
including the effects of this correlation is found to decrease the 100-year wave height by only about
2-3%. Note also, from the reference, that various methods are available to model this correlation, in
cases when its inclusion is important. Included here are the cases where a threshold is imposed on
the root edge bending peaks when the turbine is operating. In these cases only the peaks above the
threshold are considered. One would expect that the correlation between peaks above a prescribed
threshold would increase compared with the correlation of all the peaks, and this is the finding here.
The value of the correlation coefficient for these cases, however, is still small, similar to the values
found for the blade root flap bending peaks.

2.4.2 Observed vs Predicted Distributions of Peaks

First, the ability of a three-moment, quadratic Weibull distribution to accurately model the simulated
response peaks across various wind conditions is tested. For illustration purposes, the results for the
first (of the 100) 10-minute simulations of each of the three wind conditions are shown.
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Figure 2.8:Empirical and fitted quadratic Weibull probability distributions of response peaks;
V=45m/s.

We will consider the parked turbind/=45m/s, first, whose statistical behavior may be ex-
pected to be most well-behaved. Figr8 shows the cumulative probability distribution function
Fy(y)=P[Y < y] of all peaks, as estimated directly from the data. Specifically, for both flap and
edge cases, the peaksare first ordered so thgt < y» < ... < y,, and associated with the cumu-
lative probabilitiesp;,=Fy (y;)=i/(n + 1). Results are plotted on a distorted “Weibull” scale, which
rather than plottingsy (y) versusy, plots— In[1 — Fy (y)] versusy. The results, when viewed on
log-log scale, should appear as a straight line if the data follow a Weibull probability distribution
model?

The data here show slightly positive curvature on this Weibull scale. This suggests the value of
the quadratic Weibull model, which yields a quadratically varying distribution when plotted on the
Weibull scale of Figur@.8. The right-hand y-axis contains the corresponding valuds i), for
clarity. This quadratic model is shown here to accurately follow both the flap and edge load data in
this case.

Figures2.9 and2.11shows similar Weibull scale plots of flap and edge loads inftk0m/s
and 14m/s cases respectively, during which the turbine is rotating. While the distribution of flap
load peaks remains smooth, the distribution of edge load peaks shows a sharp change in behavior,

This scale, however, does not emphasize the largenall P[Y" > y] values of interest.
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with a “corner” located at roughly=1. This is a consequence of the bimodal character of the edge
load peaks, as discussed earlier (see Figufe No smooth, single-moded distribution model can
capture both the large, one-per-revolution primary peaks and the small-amplitude, secondary peaks.
For both ultimate and fatigue load modeling purposes, however, these secondary peaks are of little
consequence. We therefore seek to modetriinecated and shiftedeaksY — 1.5; i.e., we remove

all peaks below 1.5, and report the shifted valyes); — 1.5 of the remaining peaks. The shifting is

used to conform with quadratic Weibull models, which generally assigns probability to all outcomes
y’ > 0. Figures2.10and2.12show the quadratic Weibull model to accurately follow the shifted
edge loadsy” — 1.5, for both wind conditions. Note that the optimal choice of shift parameter may
require some trial and error; e.g., comparing goodness-of-fit measures. This is a topic of ongoing
study. Also, in using these models to predict extremes, the shift value must eventually be reinstated.

2.4.3 Estimating 10-Minute Mean Maxima

Finally, predicted statistics df19 min, the maximum 10-minute load, are shown. In particular, we
seek here to findiz,, ..., an estimate ofi,, ..., the mean value olL1gmin to be expected in an
arbitrary 10-minute period.

A simple, “raw” estimate of:r,, .., can be found by averaging the 100 observed maxina,
from each of the 10-minute simulations:

HLiomn = 2 = 700 2 % (2.2)

Alternatively, an estimate ofz,,,;, can be found by fitting one of the foregoing models (e.g, a
guadratic Weibull model) to all response peaks (perhaps above a shifted level as shown in the pre-
vious section). Here, models are fit separately to each of the 100 simulations. Demotsg

the estimated value qf,, ... found from the model fit to the data of simulatioii=1,...,100), an
analogous average of these estimates is obtained:

| oo
KL1gmin = la = m Zliul (23)
1=

The subtle issue between the two estimates is that with the “raw” average we have one obser-
vation of z, based on 106;’s from which to estimate.y, ... With the second method described
above we have 100 observations,of(i.e., we obtain an estimate @f.,, .., denoted by from
the model fit to the data for each of the 100 simulations), from which to estimajg,. One ad-
vantage of the simple, “raw” estimateis that it is always “unbiasedt|[z] = 1,y I-€., COrrect
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on average. A potential disadvantage is that because it is based on only the single observed maxi-
mum in each 10-minute history, it may show considerable variability. By instead fitting probability
models to form estimates, one hopes to achieve results that (1) remain nearly unbiased and (2)
show reduced scatter, specifically, reduced standard deviation, compared with the raw estimate
To quantify these effects two factors are defined: a bias factor, defined as

Bias (B) = g (2.4)
and a sigma reduction factor, defined as
Sigma Reduction (SR) = I (2.5)
oz

One hopes to achieve bias factors of nearly unity, and sigma reduction factors far less than unity.
Again, the hope for sigma reduction lies with the fact that each estimateges more of the
simulation history—specifically, each peak-over-threshold value—than the raw estinvaltéch

uses only the single maximum from each 10-minute simulation.

Figure2.13shows bias and SR factors, respectively, for the parked turbirdgm/s). Three
probability models are fit: a 3-moment quadratic Weibull model (“Peak Un-shifted”), and both 3-
and 4-moment Hermite models of the complete random response prda¢gs$he three-moment
simplification has been used in some mildly nonlinear wave applications, and has been derived
independently for wind turbine applicatiorsl]. Note that all models yield roughly unbiased results
bias factor, B, near 1.0. The 3-moment models generally achieve a sigma reduction of 0.5 or less.
Inclusion of the 4th moment, with its attendant uncertainty, leads to higher valugsasfd hence
sigma reduction factor, SR, closer to one. FigRredshows the trend in bias and sigma reduction
factors, as indicated by the 95% confidence intervals, over longer durations for the Weibull model.
Longer duration time histories were obtained by placing the existing 10-minute time histories end
to end. By placing all 100 10-minute time histories together in this way resulted in a 1000 minute
time history, the maximum duration length available from this data set. The Bootstrap method was
used to calculate the 95% confidence intervdB.[ For a prescribed length of time, the required
number of 10-minute time histories were selected at random and with replacement from the data
set and the observed maximum was recorded. This was done 1,000 times for a specific duration
of interest. The 1,000 observations of the duration maximum were sorted agdtrend 975™
ordered values were used to construct the lower and upper bound of the 95% confidence interval,
respectively. Both factors, Bias and Sigma Reduction, stay fairly constant over the longer durations.

Figures2.15and2.16show analogous bias and SR factorsifer20m/s and 14m/s respectively,
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the operating wind speed conditions. Here the random process (Hermite) models, which are in-
tended to model rather general stochastic behavior, fail to accurately capture the rotating nature of
the blade response. Biases of about 10% are found from conventional (4-moment) Hermite models,
with considerably larger biases, 30%-50%, produced by the simpler 3-moment Hermite models.

In contrast, the quadratic Weibull models (“Peak” models in Figui®&(a)and2.16(a) remain
essentially unbiased in all cases. For cases of edge loads, models have been fit both to the original
datay; “Un-shifted” and the shifted datg, — 1.5 “Shifted”. For this particular choice of dura-
tion (T'=10-minute maxima), even the un-shifted models appear reasonably accurate. Over longer
durations, however, estimates become increasingly tail-sensitive, and the use of the shift has been
found more beneficial in avoiding bias. This is reflected in Fig@dd (b)and2.18(b) which
shows the benefit of including a shift when predicting maxima over a rangle dd—1000 minutes.

The shifted predictions are generally unbiased and also retain the roughly 50% sigma reduction, as
shown by the 95% confidence intervals in Figu2ekr(c)and2.18(c) Note that while these predic-

tions with the shift lie below the data, this bias is quite small, e.g., 1.1%-3.2% for the 20m/s wind
condition and 0.2%-0.8% for the 14m/s wind condition. Over the durations shown in Rduie)

the largest bias, 81.03, occurs at the largest return period (T=1000 min.). Of course, this is based
on only a single “true” observation of the 1000 minute max. In all operating and parked conditions,
sigma reductions for these peak models have been found to remain at roughly 0.5 or less.

Note also that when averaging results oiesimulations, the standard deviation of an estimated
parameter decreases likg¢/N. Hence, the 50% sigma reduction shown by the quadratic Weibull
fit permits a four-fold decrease in the number of simulations. For example, fitting a quadratic
Weibull model toN=1 10-minute simulation is roughly equivalent to using the “raw” 10-minute
maxima from/N=4 simulations.
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2.5 Conclusions

This chapter has demonstrated the use of both random process and random peak models to pre-
dict wind turbine loads. In particular, it has applied 3-moment random peak models (quadratic
Weibull), and 3- and 4-moment random process models (Hermite). Both the quadratic Weibull and
(4-moment) Hermite models are available witiiinx FITS[40, 41]. For a parked wind turbine ex-
periencing 50-year winds, all models have been shown to be nearly unbiased,Zif (s and to
achieve a significant reduction in our uncertainty, Fig2uE3(b)in estimating the mean 10-minute
maximum. For rotating blades during operation at lower wind speeds, the random process models
can show notable bias: roughly 10% for the 4-moment models, and appreciably more if only 3
moments are used Figurgsl5and2.16 In contrast, the random peak models remain consistently
accurate, and consistently beneficial (i.e., in reducing uncertainty) in all cases. This suggests that
by modeling not the entire time history but rather its set of peaks, enough information about the
rotating nature of the load process is retained to permit accurate estimates of extreme behavior.

In chapter3, the short-term distributions conditional on environmental variables developed here
are used to obtain long-term distributions of extreme events. This is achieved by weighting each
of the conditional short-term models by the probability of the environmental conditions occurring
and integrating over the range of the environmental variables. In particular, the Weibull model of
local peaks discussed in this chapter and a Gumbel model of global maxima are used to model
the short-term conditional loads. Given a probabilistic description of the long-run statistics of the
environment, predictions of the expected annual and 50-year load are obtained. Glugbédls a
methodology for obtaining these predictions and compares the predictions based on the two different
short-term models.



Chapter 3

Prediction of the Long-term Distribution
of Extreme Loads!

In this chapter we present a methodology for proceeding from the short-term observations of ex-
treme loads to the long-run load distribution of these extreme events, for both flap and edge loading
in both operating and parked wind turbine conditions. First, a general approach utilizing full in-
tegration, where numerical routines are used to directly integrate the conditional short-term load
distribution over the annual occurrence of wind speeds and turbulence intensities, is presented.
Then, starting from this general approach, a qualitative analysis is undertaken to explore the extent
of the contribution of each of the three variables, in the governing equation, to the variability in the
long-term extreme load distribution. From this analysis, lower order models are considered, where
instead of using the entire distribution of the variables, a constant fractile of the short term extreme
load distribution, turbulence intensity distribution, or both are used. Finally, recommendations are
given to guide the analyst to decide when simpler, yet robust, methods which account for sufficient
variability in the extreme load event may be employed with confidence.

3.1 Introduction

This chapter presents methods for calculating the long-term distribution of extreme loads. In Chap-
ter 2, several moment-based models were presented which estimate short-term load distributions of
the extremes from limited data. Continuing from this previous work, this current chapter explores
methods for calculating the long-term load distribution, from the short-term statistics.

LA portion of this chapter was previously published in the American Society of Mechanical Engineering’s Journal of
Solar Energy Engineeringt§]
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In applying probabilistic models to design wind turbines, a number of practical challenges re-
main. One question concerh®w a particular probability model may be used to satisfy design
requirements as specified, for example, in wind turbine stand&@js [n particular, due to the
wind turbine’s complex dynamic behavior, an analyst may need to rely on a set of limited-duration
load histories over a range of wind conditions. These histories may result either from measurements
on prototype machines or from numerical simulation. In either case, there is a fundamental question
as to how one can proceed from thed®rt-termload observations to specification of appropriate
long-termloads, as required in design codes.

In this chapter a methodology is presented for proceeding from the short-term observations of
extremes to the long-run load distribution of these extreme events, for both flap and edge load-
ing in both operating and parked wind turbine conditions. First, a general approach utilizing full
integration, where numerical routines are used to directly integrate the conditional short-term load
distribution over the annual occurrence of wind speeds and turbulence intensities is presented. Then,
starting from the general problem where the entire distribution of the three random variables (ex-
treme load, wind speed, and turbulence intensity) is considered, a qualitative analysis is undertaken
to explore less complex models. The lower-order models consider using, instead of the entire distri-
bution, a constant fractile of the short-term extreme load distribution, turbulence intensity distribu-
tion, or both. This results in reducing the problem from a three-fold integration over extreme event,
turbulence, and wind speed to a single-fold integration, in the most reduced form, over only the
annual distribution of mean wind speed. Here, the efficacy of these lower-order models to account
for a sufficient portion of the variability, while reducing the necessary computations is examined.
Finally, recommendations are given to guide the analyst to decide when simpler, yet robust, methods
which account for sufficient variability in extreme load event may be employed with confidence.

The approach described above is conducted considering two alternatives for modeling the short-
term load. In Sectio.4, an estimate of the long-term distribution of the extreme load is obtained
where the short-term load is based on modeling the 10-minute extreme load, or global peak, by
a Gumbel distribution. Alternatively, in Sectid@5, an estimate of the long-term distribution of
the extreme load is obtained where the short-term load is based on modeling the random peaks
with a quadratic Weibull model. The latter is similar to the short-term load analysis conducted in
Chapter2. We will show that the estimate of the long-term distribution of extreme loads based on
modeling the random peaks is unbiased when compared to the estimate of the long-term distribution
of extreme loads based on modeling the global peaks.
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3.2 Estimating Long-Term Design Loads from Short-Term Histories

In Chapterl a discussion was presented which introduced how the load modeling problem has been
divided into two parts. The first part being turbine specific and the second portion being site specific,
i.e., related to the environment where the turbine will be located. We return to this discussion to
provide more specific details how, once we have a description of the response of the turbine, we may
proceed to generate estimates, as required by the design specifications, of the long-term extreme
events on the turbine.

In general, Load Resistance Factor DesigRAD)[9] code requirements typically compare a
nominal load and resistancé,om andRnom, Weighted respectively by factosg and¢r chosen to
achieve a desired reliability level:

$RRnom = Y2 Lnom (3-1)

The nominal value£,om andRnom are commonly defined somewhat conservatively, relative to the
mean load and resistance, e.gnom=Iny=the N-year load. Herdy is a specific fractile of.p,
which is a random variable describing the maximum load over an interval of |§hgtinch that the
annualprobability of exceedingiy is 1/N. This relationship is formally defined below.

In particular, one proposed wind turbine design check applies the 50-year wind to a parked
turbine R3]. This suggests that other checks be made to ensure that this condition is satisfied with
Lnom=l50, the 50-yeaload, which may not always coincide with the 50-year wind speed. For
example,lso may more likely be caused in some cases by turbines operating at lower (but more
frequently occurring) wind speeds. Shown in this section is how one may consistently egfimate
properly accounting for randomness in the environmental conditions.

As noted above, it is common that the wind turbine analyst may have only limited-duration load
histories—formally, observations @f;, the maximum of the load procesgy), over a duratio”
much less than 50 years:

Ly = 021%}% z(t); T < 50 years (3.2)

Of course, as was seen in Chap?ethere may be an advantage to modeling something other than
the global maximum over duratidh, e.g., the local peaks in durati@h The following development
is based on modeling the global extreme. Sec8ic@will show how an estimate of the 50-year load
is found using local peaks instead.
The 50-year loadsg, is then commonly defined, as mentioned earlier, as a spéifitle of
Ly, i.e., amaximum value with a prescribed probability of exceedance:

T
P[Ly > l50] = 50 T < lyear (3.3)
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Here, P[-] denotes the probability that the bracketed statement occurs. For exampl&~ditrear
Equation3.3 states that the annual maximum lodd,year, €Xceedss, with probability 1/50=0.02.

Significantly, because of the small probabilities involved, the analysis is relatively insensitive to
the precise choice df". Specifically, Equatior8.3 will return virtually the samés, value for all
T < 1 year; e.g., by seeking the monthly maximum with exceedance probability .02/12, the daily
maximum with exceedance probability .02/365, and so forth. Therefore, in practice, one typically
reducesT’ to a duration during which the load process can be considamibnary For wind
applications, seasonal, synoptic, and diurnal variations in the wind statistics make monthly, weekly,
daily, or hourly values different from annual values. These conditions result in a selection of a
reference time period during which the underlying environmental processes (here, the wind speed
and turbulence intensity) can be considered to remain in a statistically steady-state condition. This
reference time period is less than one hour and may commonly be taleri@sninutes.

More formally we can obtain an estimate of the 50-year load from the long-term distribution of
the extreme loads in an arbitrary 10-minuté$, ., assuming independence between 10-minute
observations and considering the annual long-term distribution of the extremerigagd,(/), by

FLlyear(Z) = {FLlo min(l)}N (34)
= {1 - GLlOmin(l)}N (35)

whereN is the number of 10-minute segments in 1-year @d x) is the complimentary cumula-
tive distribution function(Zx (z) = 1— Fx (z). Taking the Taylor series expansion of the right-hand
side of Equatior8.5yields,

FLlyear(Z) ~1- NGLlOmin(Z) + ]\“]\;!_U(Ghomm(l))? o (3.6)
Crayeall) ~ NGrgm(®) ~ = (G0 - 37)

For small values ot ... < 0.1, a first-order approximation may be obtained by ignoring the
higher order terms,

FLlyear(l) ~ ]‘ - NGLlOmin(l) (38)
1- FLlyear(l) ~ NGLlO min(l) (39)
GLl year(l)) ~ NGLlO min(l) (310)

Considering these assumptions above, an estimate of the 50-year load can be obtained from the
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long-term distribution of extreme loads for an arbitrary 10-minutes by,

1

GLiyealls0)) = 5 = 0.02 = NGry (D) (3.11)
1

GLiomnll0) = =05 (3.12)

for which Equations$8.12or 3.3yield the probability level associated witky as

10

=38x1077 3.13
50 x 365 x 24 x 60 o< 10 (3.13)

P[L1o min > ls0] =

Similarly, for the probability level associated with the 1-year maximln,,., Equations3.12and
3.3yield:

10

_ -5
%365 x2ax60 10X 10 (3.14)

P[LlO min > ll year] -

By reducingT” from 50 years (or 1 year) to 10 minutes, we gain the important advantage that the
wind speed process remains in a steady state, characteriZédthg mean speed during that 10
minute duration. We may then perform a set of steady-state simulations at various mean wind
speeds}/, calculate the conditional exceedance probability, and weight their resufis (by, the
long-term probability density o at the site of interest, yielding:

P[L]_O min > l] = / P[L]_O min > l | v ]fV(’l})d’U (315)
all v

Note that Equatio.15separates the calculationgf into the need to provide two separate terms,

which respectively describe the turbine (independent of the site) and the wind conditions at the site:

Turbine-specific term:  P[Liomin > | | v | denotes the probability that a 10-minute maximum
load exceeds a given levklgiven a prescribed mean wind spdéd= v. This is commonly
known as theshort-termproblem.

Site-specific term: The remaining term on the right side of Equat®i5 fy (v)dv, defines the
fraction of time the wind speed at the site lies betweeandv + dv. In the wind turbine
community itis common to choose a Rayleigh probability density fornffdw), with mean
dependent on site conditions. In general, this wind speed distribution may be found from site-
specific data, or specified for design purposes by wind turbine standards (e.g., wind turbine
classes-IV [23]).

In summary, the 50-year load is calculated by first solving the short-term problem—that is,
estimatingP[Liomin > [ | v | across a range dffor various mean speeds These results are
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combined withfy (v) through Equatior8.15 andis, found as the value returning the required
probability level in Equatior8.13

Note also that Equatio.15is readily modified if the wind process is instead characterized
by another parameter such as turbulence intersityeplacingV’ by I—or by a two-dimensional
integration if bothV and I are deemed to significantly help explain the observed variations in
loading. In this case Equatidi15would become

PlLiomin> 1] = / / PlLiomin > 1| 0,1 ] f1yy (ifo) fy (v)didu (3.16)

Where now the turbine specific problem is conditioned on bo#dnd/ and the long-term probabil-

ity density of turbulence intensity is conditional & denoted byf; - (i|v). It should be noted that

bothV andI usually refer to a specific height above the ground; e.g., the hub height. Also note, that
additional parameters—e.g., those which characterize the vertical wind speed profile—may also
be included to better describe the wind climate, and hence better separate the turbine-specific and
site-specific terms.

Two challenges remain. First, to estimate the probability distribution of the maximum load,
e.g., the 10-minute maximuni,;1o min, given the environmental parameters. This was discussed in
Chapter2 and by others in the literatur88, 47, 50]. Second, solving EquatioB.16 the long-term
integration problem. The latter is the focus of this chapter. Also, a discussion is presented on the
significance of the environmental variables to describe the long-run variations in the loading. The
work of Ronold et al. $1] has addressed a similar question assessing the probability of failure of
a wind turbine rotor blade subjected to flap-wise bending during operating wind conditions, over
the turbine’s lifetime of 20-years. In this work, a random process model was used to model the
short-term flap-wise loads, and the long-term integration was solved using an iterative first-order
reliability analysis approach. The results were later used to develop appropriate partial safety fac-
tors to be applied to the characteristic load and material strength values for design of the turbine.
In this chapter we address both edge and flap bending loads in both operating and parked turbine
conditions; here the short-term loads are modeled using random peak models and the long-term
integration is performed using numerical methods. Also, note that the paper by Fitzwater and Win-
terstein B8] explores the efficacy of random process models and random peak models to retain
sufficient information about the load process to permit accurate estimates of extreme behavior.

In what follows in this chapter we step through the process from initial simulation runs to a
final estimate of P[L10 min > (], the marginal distribution of.1¢ min. Later in Section8.4and3.5,
options are discussed for simplifying Equatidri6 considering the variability in the conditional
loads and the environmental variables.
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3.3 Data Set

The data set used in this analysis was for the Atlantic Orient Corporati@an15/50 turbine as
described in Sectio.4.2 The data set consisted of multiple 10-minute simulations of Gaussian
wind fields and corresponding in- and out-of-plane blade root bending moments anc¢His/50
horizontal axis wind turbine. The wind input processes are described by the hub height wind speed.
The turbine has a rotor diameter of 15m, a fixed rotor speed of abost&) and a rated wind
speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25 m&#erin[this
chapter, flap and edge bending terms refer to out-of-plane and in-plane bending, respectively.

One hundred 10-minute simulations have been performed for various choices of wind speed
and turbulence class with different random seed values. The simulations were carried out using
YAWDYN, an aerodynamics and dynamics analysis code for wind turb2tis Target 10-minute
mean wind speeds, in the operating regime of the turbine were chosen from 10m/s to 24m/s in 2m/s
increments. Simulations were run at each wind speed considering bothAckass classB I1EC
turbulence classe2y]. Also, pseudo-parked conditions (turbine slowly idling) were run for both
turbulence classes, with target 10-min mean wind speeds of 24, 30, 40, and 50m/s. The original
data set only contained time histories corresponding to the 50m/s environmental condition. The
remaining pseudo-parked conditions were later added to the data set. A plot of observed turbulence
intensity versus observed mean 10-minute wind speed, calculated from the simulation data, for
all 2,400 10-minute time histories is shown in FiglBd. It may appear from Figur&.1 that
there is significantly more scatter in the observed turbulence intensity than in the observed 10-
minute mean wind speed. The coefficient of variation of the observed 10-minute mean wind speed
is approximately 0.1-0.2%, while the coefficient of variation of the observed turbulence intensity
is also small at approximately 2-3%. Also, as seen in Fidule a bias is present between the
observed turbulence intensity calculated from the time histories, (at the hub height of the turbine)
and target values of turbulence intensity for a given wind speed, as calculated froettbede
equations 23]. Based on this result, the observed values for turbulence intensity were used for all
subsequent analysis.

An additional comment is required concerning the pseudo-parked conditions. As stated earlier
the original data set only contained time histories corresponding to 50m/s wind conditions. This
corresponds to approximately the 50-year wind speed. Running a pseudo-parked condition came out
of a constraint of theeawDYN program, which can not simulate blade load responses for a parked
turbine, so simulations were run with the turbine very slowly idling, one rotation in ten minutes.
This seemed to produce acceptable results for the 50m/s high wind speed case. Later, it became
apparent that just the one parked condition was not sufficient to describe the behavior of the parked
turbine, so additional environmental conditions were also considered, specifically the 24m/s, 30m/s,
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Figure 3.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

and 40m/s conditions (for both turbulence classes). For these lower wind speeds and specifically the
in-plane (i.e., edge) bending (the out-of-plane, flap, bending response was not effected) the variation
in the response due to the input simulated wind field was much smaller compared to the gravity cycle
introduced by the slowly idling turbine. Presumably, the variation of the response due to the wind
field for a parked turbine would be very closely approximated by the simulation where the turbine
was slowly idling. The gravity cycle would not occur if the turbine was parked, however. A filtering
technique was used to remove the gravity cycle in the edge bending response time histories for the
pseudo-parked conditions. The details of how this filtering was performed on the edge bending time
histories is presented in Appendi Figure3.2shows a typical edge bending time history for the
24m/s ClasA wind condition before and after filtering. In FiguBe2(a)one can clearly see the
gravity cycle induced by the slowly idling turbine. These gravity cycles, if included, would have
artifically inflated the magnitude of the observed global maximum for the edge bending response of
the parked turbine.
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(a) Unfiltered 24m/s parked turbine, blade root edge bending response time history
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(b) Filtered 24m/s parked turbine, blade root edge bending response time history

Figure 3.2:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 24m/s turbulence class/ind environment.
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3.4 Long-Term Analysis Based on Modeling Global Extremes

In this section we will step through the process of obtaining an estimate of the marginal probability
distribution of the long-term load. We first relate the statistical moments of the global peak data to
the environmental variables. A Gumbel distribution of the global peaks can then be obtained for
each specific set of values of the environmental variables by the method of moments. Finally, an
estimate of the marginal distribution of the long-term load may be obtained by summing the condi-
tional short-term load distributions over all environmental conditions. Each conditional short-term

load distribution is weighted by the probability of the associated environmental condition occurring.

3.4.1 Short-Term Analysis

In this section we are interested in estimating the conditional probability distributidn-pin

time T, given the environmental parameters. Many models, over a number of different time scales,
have been discussed in previous woBK][ The simplest of these models is the Global Extreme
model or Gumbel model, which seeks to modg|,the “global” (largest) extreme over duration

T. The advantage here is that we work directly with the extreme of intérgstin. Also, since

we are choosing to model the global extreme directly, we immediately have the desired probability,
P[L1omin > 1] (=P[Z > z]), that the maximum valué1p min is greater than any The drawback

is that we discard all time history data below these global maxima. Alternatively, as was discussed
in Chapter2, one could model all the random local peaks. We saw in Chapteat compared with
statistics of the global extreme, modeling the local peaks to estimate the expected extreme event
provided unbiased results with lower variability.

Here we demonstrate how one can use a Gumbel distribution to model the global (10-minute)
extreme eventsy, given values of the environmental variables. Then, based on this short-term
model, proceed through a methodology to obtain estimates of the long-term marginal probability
distribution of L1g min. Later in sectior3.5, we demonstrate how a quadratic Weibull distribution
can be used to model instead the local peakgiven values of the environmental variables. Then,
based on this alternate short-term model, we apply the methodology presented here to obtain esti-
mates of the long-term marginal probability distribution/afy min. It will be shown, similar to the
results found in Chapte?, that compared with the estimate of the long-term distributioh @fmin
based on short-term Gumbel model, the estimate of the long-term marginal distribufiqg
based on a short-term quadratic Weibull model is unbiased.
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Fitting Distributions to Data

The FITS routine B2, 53] for fitting probabilistic models to data was used to fit a Gumbel model

to the observed 10-minute maxima for each pair of environmental conditions: 10-minute mean
wind speed})/, and turbulence intensity, FITS calculates the central moments from the observed
data and then estimates the best model fit of the user-specified distribution type by the method of
moments 24, 29]. The FITS routine contains distribution types that preserve up to the first three
moments of the observed data. For purposes of the present discussion the first two moments of the
observed 10-minute maxima are defined as:

pz = E[Z] (3.17)
2 = El(Z - pz)’] (3.18)

0z

whereE[-] is the expectation operator. The first central moment is the meana measure of
central tendency of the data. The second moment is the varira@pa,measure of the spread in the
data? Shown in Figure$.3and3.4 are the mean and standard deviation of the 10-minute extreme
flap (out-of-plane) and edge (in-plane) response bending moments, based on 100 simulations for
each pair of nominal wind speed and turbulence intensity values. The wind turbine is operating for
V' < 24ml/s, otherwise the turbine is parked. Parking the turbine will reduce the magnitude of the
flap and edge loads.

Comparisons of the fitted Gumbel distributions to the observed response maxima for all simu-
lated wind speeds in turbulence cl#@sare shown in Figure3.5and3.6for blade root flap and edge
bending respectively. In these figures the data and fitted models are plotted on a distorted “Gumbel”
scale, which plots the transformed cumulative distribution functiorj -In(-In(#z(z))) rather than
the standaraDF, Fz(z). The results should appear as a straight line if the data follow a Gumbel
probability distribution model. For clarity the right-hand axis has the corresponding statoard
probability values. All 100 data values for a given wind speed shown in the figure share the same
turbulence class and, therefore, the same nominal turbulence intensity. However, each individual
realization will have a different turbulence intensity due to its finite length. Similar results were
found for the simulated wind speeds in turbulence cBgslap bending response data and Gumbel
model fit are shown in Figure3.5(a)and 3.5(b) whereas Figure8.6(a)and 3.6(b) contain edge
bending response data.

2A more detailed discussion of expectation and moments of random variables may be found in B&ction
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Figure 3.3:Mean and standard deviation of 10-minute maximum blade root flap bending responses
for given 10-minute mean wind speeds. The wind turbine is operating fer24m/s,
otherwise the turbine is parked.
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Figure 3.4:Mean and standard deviation of 10-minute maximum blade root edge bending responses
for given 10-minute mean wind speeds. The wind turbine is operating fer24m/s,
otherwise the turbine is parked.



CHAPTER 3. LONG-TERM EXTREMES 73

5
v 4099
4 [
3 [
&5
o% 409
BX 2T -
gL &
o= N
B 1|
8=
= 405
0 [
1 401
4 0.01
2 4 0.001
50

Bending moment, KN-m

(a) Blade root flap bending moments; operating wind speg&ds:@4m/s), turbulence

classA.
5 K
: im i O e 4 0.99
4 i :
g [ ] o_,f' [
3 i " q,'! o
P T o g s
O% L1 | § 3 H 109
B S
< : n
B 1
e 24m/s - fit
= data o 105
0 30m/s - fit e
data =
& 40m/s - fit -==-mm 101
-1 data © '
$ a d o 50M/s- fit === | oy
H i 3 data e '
2 : ; ] x L 4 0001

0 20 40 60 80 100 120 140 160
Bending moment, KN-m

(b) Blade root flap bending moments; parked wind speéds>24m/s), turbulence
classA.

Figure 3.5:Gumbel fit to observed blade root flap bending data for operating and parked wind
speeds, turbulence claas
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Regression

We have established that we can obtain a short-term Gumbel extreme load distribution for the tur-
bine from the first two central moments. Therefore it is sufficient to know the moments over all
environmental conditions to completely define the long-term distribution of extreme loading events.
Furthermore, regressing the moments over the two environmental variables, 10-minute mean wind
speed and turbulence intensity, would give us this relationship between these moments, and there-
fore the short-term load distribution, and the environmental variables. Also, the regression analysis
can assist in understanding the dependence between the environmental variables and the loading as
well as the sensitivity of the loading to the environmental variables. Here we relate the statistics
which describe the observed wind input process to the statistics of the observed responses of both
blade root edge and flap bending. Turbulence chassd classB are considered together. The
concept is to develop a functional relationship between the turbine response statistics and the entire
environmental space, not a specific class environment. We should note that there is some uncertainty
associated with our regression results as we generally do not have observations for all of the points
in the environmental space (wind speed and turbulence intensity). This uncertainty is not addressed
in this discussion of the long-term analysis but is included in discussion presented in G{&8ler

There are two distinct general loading conditions for the turbine, one when the turbine is oper-
ating and the other while the turbine is parked. Separate regression analyzes were performed under
each of these conditions. During 10-minute mean wind speeds below 24m/s the turbine is assumed
to be operating. This is not strictly true as there is some minimum speed (cut-in) below which the
turbine is parked. For 10-minute mean wind speeds above 24m/s the turbine is assumed to be parked.
So, one regression analysis considers the operating loads on the turbine for the regime of operating
wind speeds and the other analysis considers parked loads on the turbine during parked wind speed
conditions {/ > 24mps). Based on the observed behavior of the turbine the statistical moments of
the response (both blade root flap and edge bending) were assumed to be related to the environmen-
tal parameters following the power law function proposed by Veers and WinterS&jridr both

VY% /T \Y
S . i=1.2 3.19
Iuj aj <[/|'ef> <Iref> J ’ ( )

For instances where a turbine response of interest exhibited a multi-model behavior, i.e. with more
than one peak as a function of wind speed, other model forms would be more appropriate. In
Equation3.19 p represents the mean apd represents the standard deviatidries and Ir¢s are

the reference 10-minute mean wind speed and turbulence intensities respectively. These reference

regimes.

values are calculated from the data as the geometric means of 10-minute mean wind speed and the
turbulence. Although the precise choicelgf: and I ¢ is of little importance, the choice should
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Blade Root Flap Bending
Regression of Statistics of 10-Minute Maximum or/ and [

Mean of 10-Minute Maximum

a (KN-m) b c R?

V < 24mls 25.6643 | 0.7928| 0.7129 0.9682
V > 24mls 37.3040 | 2.6079| 0.6042 0.9985

Standard Deviation of 10-Minute Maximum

a (KN-m) b c R?

V < 24mls 2.7760 | 0.8838| 0.4424 0.9322
V > 24mls 3.9338 | 2.9099| 1.4484 0.8745

Table 3.1:Regression coefficients used in Equat®a9to fit statical moments of blade root flap
bending loads as functions of the mean wind sp&ednd turbulence intensity,

Blade Root Edge Loading
Regression of Statistics of 10-Minute Maximum or/ and [

Mean of 10-Minute Maximum

a (KN-m) b c R?
V < 24mls 8.610 | 0.3231| 0.2084 0.9924
V > 24mls 7.2275 | 4.1052| 0.7718 0.9965

Standard Deviation of 10-Minute Maximum

a (KN-m) b c R?

V < 24mls 0.3048 | 1.9198| 1.1430 0.9265
V > 24mls 1.4120 | 3.5661| 1.2761 0.8948

Table 3.2:Regression coefficients used in EquatBoh9to fit statistical moments of blade root edge
bending loads as functions of the mean wind sp&ednd turbulence intensity,

be used consistently throughout an analysis. The geometric means have been used here so that
the leading regression coefficient) (will be statistically independent from the other regression
coefficients § andc) in Equation3.19 The Vit and I values for the operating conditions are
16.474m/s and 0.1528, respectively. The corresponidingnd/es values for the parked conditions
are 34.861m/s and 0.1318, respectively. The calculated regression coefficieRts statistics are
shown in Tables.1 and3.2for flap and edge bending conditions, respectivély. statistics near
unity indicate that a large percentage of the variability in the data is explained by the regression
model. LowR? statistics indicate that other influences not contained in the regression model may
affecting the loads.

Finally, graphical regression results are shown in Fig@r&sand 3.8 for blade root flap and
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edge bending respectively. Regression results for the mean and standard deviation of the maximum
10-minute flap bending moment versus 10-minute mean wind speed are shown in Big(agemnd

3.7(b) Corresponding results for edge bending are shown in FiguB¢a)and3.8(b) In all plots,

the turbulence intensity has been set equalt@,the reference value.

3.4.2 Long-term Analysis

In the previous sections we have defined the conditional probability distribution model for the 10-
minute maxima and how this model can be represented by the moments of the data. Further, we have
just shown, through regression analysis, how these moments may be related to the environmental
variables. In this section we demonstrate how we can combine the short-term, turbine-specific
portion of EquatiorB.16with the long-run distribution of the environmental variables.

The distribution of 10-minute mean wind speéd, and the conditional distribution of turbu-
lence intensity are taken from the analysis by Manaehl[50] of the MOUNTURB program data
at the Lavrio, Greece test site. The 10-minute mean wind speed distribution is assumed to follow a
Rayleigh probability distribution with medmn:,,=10m/s:

() =2 exp {— (2)2] (3.20)
o
\/7T—

The conditional probability distribution of turbulence intensity given 10-minute mean wind speed
is assumed to follow a Gaussian distribution
Frv(ily) = ———— exp | -~ (Z_’”l‘/>2 (3.21)
v vV 27TUI|V 2 O—]\V .
with mean given by,
prpy = 2.4486v 0997 (3.22)

and a fixed standard deviation of 0.025. In order to implement Equatidithe ranges of values of

the environmental variables are discretized into evenly spaced intervals. A range of 1m/s to 100m/s
was considered for the 10-minute mean wind speed in intervals of 0.5m/s. Similarly, a range of

approximately six standard deviations of the conditional turbulence intensity was considered, and
divided into 100 evenly spaced intervals. For each pair of values of the environmental variables the
corresponding short-term load distribution is generated from Equatith The load distributions

3,11 is also referred to as the annual average 10-minute mean wind speed.
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Figure 3.7:Regression of the moments of 10-minute maximum on the 10-minute mean wind speed
and turbulence intensity for blade root flap bending.
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are summed together; each weighted by the probability of the respective environmental conditions,
i.e., probability of the pair of values of the environmental variables occurring. The summation is
performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case to develop the long-term distribution the appropriate regression
model is used for each wind speed value. For wind speeds below 24m/s the regression relating
operating loads is used and, correspondingly, for wind speeds above 24m/s the regression relating
parked loads is used. This results in a combination of the operating and parked only long-term dis-
tributions as shown in Figui&9. Also shown in the figure are the long-term distributions of the load
if the turbine is either parked or operating in all wind speeds. The probability levels associated with
the one-year and 50-year mean return periogl prob. level) are also shown, note Equati@nk3
and3.14 In all of the preceeding cases it was assumed there was 100% availability of the turbine
during all winds speeds. It would require only minor modification to the procedures developed here
to include the condition when the turbine was available for only a portion of the time for a given
wind environment. Using the full distribution for each of the random variables, estimates for the
one-year flap and edge bending load are 49.1kN-m and 11.8kN-m respectively. Correspondingly,
estimates for the 50-year flap and edge bending load are 59.7kN-m and 13.7kN-m respectively.

3.4.3 Simplifying the Long-term Analysis

In this section, a methodology for simplifying the calculations required for solving Equatidgh
is presented. The full distributions of some of the random variables are replaced with appropri-
ate deterministic fractiles, thereby reducing the number of numerical integrations required to be
performed. It is appropriate to consider this methodology for those random variables which have
only a small contribution to the overall variability in our estimate of the long-term extreme load
distribution. Here a qualitative analysis is employed to determine the degree to which each of the
variables in EquatioB.16 contributes to the long-term extreme load distribution. Further, based on
this analysis we present how an appropriate deterministic fractile of, for example, the short-term
load distribution, the conditional distribution of turbulence intensity or both, may be used, instead
of their full distributions.

For clarity we first consider the case, as expressed in Equatidhwhere the wind input pro-
cess is characterized by only one parameter, the 10-minute mean wind Bpeaed,the short-term
load is presumed to be deterministic compared with the variability in the long-term distribution of
the environmental variable. In this case an important simplification arises if the mean;]0&d
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Figure 3.9:Long-term distributions of 10-minute extreme blade root bending monegitsin, con-
sidering three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine
parked over all wind speeds, 3) turbine operating below cutout wind speed and parked
above cutout wind speed; for both: (a) flap and (b) edge bending.
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grows steadily with/, and the conditional load variability;, (V') is small compared with the vari-
ability in V. Then we may estimate the 50-year lo&d, as simplyur,(Vso), i.e., the mean load in
50-year wind conditions. This is essentially the current design load check for parked turbimes (
load case 6.193]). Formally, this will be exact in theeterministidoad limit, i.e., asr (V) — 0.
More generally it will be somewhat unconservative. In offshore structure design, for example, this
unconservatism is noted and commonly adjusted by: 1) inflating the environmental variable (here,
the wind speed—to a somewhat higher return period); or 2) inflating the fractile (frofnto
p=.80-.90) at which the load is evaluated. These inflation procedures are basically empirical, and
have been calibrated with respect to long-term probability analysis (as in Equati§nacross
many casesdb, 56].

We investigate such simplifications further in the remainder of this section. Figli@shows
the long-term distribution of the 10-minute flap and edge loads for three cases that consider, in
turn, the short-term load variable and each of the environmental variables deterministically. Only
one variable is considered deterministic in each analysis. The other variables are assumed random
and to follow the distributions defined previously. For example, in considering the 10-minute mean
wind speed deterministic, i.ex,; — 0, the mean value of the turbulence intensity as a function of
wind speed is evaluated at the annual average wind speed (i.e., the mean value of the distribution
of the 10-minute mean wind speeg)y (V) — pyv (pv), and the associated standard deviation
of the conditional distribution of turbulence intensity is also evaluated at the mean value of the 10-
minute mean wind speed; (V) — oy (pv). Similarly, the parameters of the short-term load
distribution are evaluated considering the mean value of the 10-minute mean wind speed. From
this we obtain the mean of the short-term load distributiongs;, v (1,V) — prrv (I, py) and
the corresponding standard deviationagy v (I,V) — orr,v (I, pv). The integration over the
wind speed is thus avoided. It follows from this discussion how this procedure may be used when
considering the other variables, short-term load and turbulence intensity, deterministically. These
three analyzes give a qualitative understanding of how the terms in Eq@ati®contribute to the
variability in the long-term load distribution. From this analysis, as shown in Figidi@& one would
have expected the largest drop in our estimate of the 50-year load, to occur when we considered the
variability in the wind speed to approach zero. Whereas, reducing the variability in the short-term
load or turbulence intensity would not reduce our estimate of the 50-year load as drastically. This
is what has been found in other industries such as the fields of offshore engineering and earthquake
engineering. This does not appear to be the case here, however. Qualitatively, one can conclude
that, less of the variability in the long-term load distribution is explained by the randomness in the
wind speed and turbulence intensity, than by the variability in the short-term load, for the structure,
site data, and distribution models used here.
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Figure 3.10:.Long-term distributions of 10-minute extreme blade root bending momgntin, con-
sidering load, turbulence intensity, and wind speed deterministically for both: (a) flap
and (b) edge bending.



CHAPTER 3. LONG-TERM EXTREMES 84

Following the methodology previously presented, we consider using a higher fractile of the
turbulence intensity, or wind speed distributions, where we may be able to recover the associated
contribution to the long-term load variability, and still achieve the reduced computational effort
in calculating an estimate of the marginal distributioniaf min. Note that in implementing this
methodology to reduce the complexity in obtaining an estimate of the marginal distribution of
L1o minWe resign ourselves to being unable to match the shape of the marginal distributignaf
if we had considered all three of the variables random. Our focus here is matching the fractiles of
the distributions only at the probability levels of interest, i.e., the probability levels associated with
the one-year and 50-year return periods. Figufd shows the result of considering the turbulence
intensity deterministic, but using the 84% fractile of the distribution rather than the mean value.
Using the 84% fractile of the turbulence intensity distribution results in an estimate of the one-year
flap load of 50.1kN-m, an error of 2.4% and an estimate for the one-year edge load of 11.9kN-m, an
error of 1.0% with respect to the estimate using the entire distribution for the turbulence intensity.
Similarly, considering the 50-year loads, the estimate for blade root flap bending is 60.2kN-m, an
error of 0.8%, and the estimate for blade root edge bending is 13.8kN-m, an error of 0.7% with
respect to the estimates using the entire distribution for turbulence intensity.

If we continue and consider the 84% fractile, as shown in Figut&(a) rather than the mean
value for the distribution of the 10-minute mean wind speed (i.e., the annual average mean wind
speed) our estimates for the one-year and 50-year blade root flap bending load are 50.6kN-m,and
59.2kN-m respectively and associated errors of 3.05% and 0.8% for the one-year and 50-year load
respectively. Considering the blade root edge bending shown in Fjug€b)the deterministic
fractile level needs to increase to 90% to recover an estimate of the one-year load of 11.9kN-m
with an error of 1.2%. The fractile of the wind speed distribution must increase further to 95%
to recover an estimate of the 50-year blade root edge bending load of 13.8kN-m with an error of
0.7%. If the 95% fractile was used to estimate the annual blade root edge bending load the estimate
would be approximately 6% high compared with the estimate based on using the full distributions
of turbulence intensity and wind speed.

This analysis, using prescribed fractiles of the distributions of the three variables, could be done
based on the assumption that the short-term load contributed the least to the overall variability in
the estimate of the long-term distribution, i.e., as we would have expected based on the experience
of other industries. In this case Figuel3(a)shows the results of considering the short-term load
deterministic, but using the 97.5% fractile of the distribution rather than the mean value. Using
the 97.5% fractile of the load distribution results in estimates of the one-year and 50-year blade
root flap bending load of 48.5kN-m and 60.5kN-m respectively with associated errors of 1.3% for
both. Correspondingly the estimates of the one-year and 50-year blade root edge bending loads are
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Figure 3.11:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the turbulence intensity at prescribed deterministic levels compared with
the full distribution solution; for both: (a) flap and (b) edge bending.
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Figure 3.12:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the turbulence intensity at the 84% fractile and 10-minute mean wind
speed at prescribed deterministic levels compared with the full distribution solution.
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12kN-m and 16.4kN-m respectively with associated errors of 1.5% and 19.9% for the one-year and
50-year loads respectively.

If we continue and consider the 95% fractile, rather than the mean value for the turbulence
intensity distribution, as shown in Figu®14 the estimates for the one-year and 50-year blade
root flap bending loads are 49.8kN-m and 69.3kN-m respectively with associated errors of 0.8%
and 16.3% for the one-year and 50-year loads respectively. Correspondingly, the estimates for the
one-year and 50-year blade root edge bending loads are 12kN-m and 20.3kN-m respectively with
associated errors of 1.7% and 48% for the one-year and 50-year load respectively. It should be
noted that using the same fractile level for both flap and edge loading conditions results in tending
to over-estimate the 50-year blade root edge bending load, in some cases considerably.

Taking both the short-term load and turbulence intensity as deterministic fractiles of the under-
lying distributions would simplify Equatio3.16to a single fold integration problem over only the
distribution of annual wind speed. The results of this integration are shown in RBdl4eln this
case, additionally, we can eliminate the remaining integration by using the complementary cumula-
tive distribution function of the annual wind speed distribution and then evaluate the expression at
the wind speed associated with the return period of interest.

3.4.4 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-
bility distribution of the long-term load. This was accomplished by modeling the global peaks by a
Gumbel distribution for the conditional short-term load. The statistical moments of the global peak
data were related to the environmental variables by a power-law functional form. The parameters
of the functional form were obtained through regression analysis. Using the method of moments, a
Gumbel distribution could be obtained for each specific set of values of the environmental variables.
Finally, an estimate of the marginal distribution of the long-term load was obtained by summing the
conditional short-term load distributions over all environmental conditions. Each conditional short-
term load distribution was weighted by the probability of the associated environmental condition
occurring. We found from this analysis that the estimate of the one-year and 50-year blade root
flap bending loads were 49.1 kN-m and 59.7 kN-m respectively. Correspondingly the one-year and
50-year blade root edge bending loads were 11.8 kN-m and 13.7 kN-m, respectively.

We then under took a qualitative, yet systematic, analysis to determine which of the three
variables—conditional short-term load, conditional turbulence, or mean wind speed—contributed
the most to the variability in the distribution of the long-term load. Contrary to what we may have
expected, we found that at least for thec 15/50 turbine, site data, and distribution models used
here the conditional short-term distribution of the loads contributed the most to the variability in
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Figure 3.13.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the short-term load at prescribed deterministic levels compared with the
full distribution solution.
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Figure 3.14:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the short-term load at the 90% fractile and turbulence intensity at pre-
scribed deterministic levels compared with the full distribution solution.
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the distribution of the long-term load, with mean wind speed and turbulence following in ranked
order. We found that by treating the environmental variables deterministic, and considering fractiles
higher than the mean, much of their contribution to the variability in the distribution of the long-
term load could be recovered. Specifically, considering the 84% fractile of the distribution of the
mean wind speed and turbulence, our estimates of the one-year and 50-year blade root flap bending
loads are 3.05% and 0.8% high respectively over our estimates employing the full distributions. For
blade root edge bending, considering the 95% fractile of the mean wind speed distribution and the
84% fractile of the conditional distribution of turbulence our estimates of the one-year and 50-year
root edge bending loads are 6% and 0.7% high. The next sections presents a similar analysis, only
this time the short-term loads are based on modeling the random peaks with a quadratic Weibull
distribution.

3.5 Long-Term Analysis Based on Modeling Local Peaks

In this section, similar to SectioB.4, we will step through the process of obtaining an estimate

of the marginal probability distribution of the long-term load. In this case, however, we will use a
guadratic Weibull distribution of local random peaks for our definition of the short-term load. The
general procedure is very much the same as that presented in the previous section. An estimate
of the marginal distribution of the long-term load, is finally obtained by summing the conditional
short-term load distributions over all environmental conditions. Each conditional short-term load
distribution is weighted by the probability of the associated environmental condition occurring.

3.5.1 Short-Term Analysis

The previous section demonstrated how one may obtain an estimate of the marginal long-term dis-
tribution of L1g min from a short-term conditional loads model fitZg the global extreme over the
duration of a 10-minute response time history. In this section, an estimate of the marginal long-term
distribution of L1o min is found following a similar procedure. In this case, however, the short-term
conditional loads model is fit td;, the random local peaks of a 10-minute response time history,
see Sectiorl.5.5 As discussed in the previous section, when we choose to base the short-term
conditional loads model on the global extreme events we immediately have the desired probability
of interestP[Liomin < !|V,I](= P[Z < z|V,I]). The drawback is that all time history data be-

low these global maxima is discarded. If one instead models all the random peaks, here denoted
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Y1,Ys, ..., the corresponding probabilit} [ L1 min < |V, I] can be estimated as

P[L1omin < l|V,I] = P[Y1 < I|V,I]N P[Ys < I|V,I]N P[Ys < I|V,1]N ...
...NP[Yn, <UV,I] = {P[Y; < |V, I]}"T (3.23)

in which Nt is the number of peaks;; values, in the 10-minute response time history. Equa-
tion 3.23 holds assuming that the number of peaks;, is deterministic and that their levels are
mutually independent and identically distributed. None of these assumptions are strictly correct,
but the approximation generally becomes more accurate in the upper tail of the load probability
distribution B0]. Based on the results of Chapt&a quadratic Weibull model was fit to the local
peaks. The remainder of this section steps through a procedure of fitting a quadratic Weibull model
to the observed local peak data, and relating the required short-term model parameters to the envi-
ronmental variables. Then, based on this definition of the short-term model, we proceed to solve
Equation3.16and obtain an estimate of the one-year and 50-year blade root flap and edge bending
loads. This is similar to the procedure presented in Se&ién

Fitting Distributions to Data

Peaks of the response time histories were found based on the definition provided in Chtyger

largest value of the time history between successive up-crossings of its mean level. The process
mean level and number of peaks were calculated for all blade root flap and edge bending response
time histories. For each pair of environmental variables (& g10m/s and/=classA), the 100
observations of process mean or number of peaks were pooled together and the mean of these pooled
observations was reported. The analysis conducted in Chafaand that for operating conditions
considering only the peaks in the blade root edge bending data above a prescribed threshold greater
than the mean level could provide a better fit of the model to the data. A 4.75kN-m threshold was
imposed on the edge bending response data only for operating conditions. Statistics, other than
the process mean that describe the blade root edge bending response from operating conditions are
based only on the peaks above this threshold. This threshold is discussed in more detail below.
Figures3.15and 3.16 show the process mean and number of peaks in 10-minute response time
history, respectively for both blade root flap and edge bending. These data are based on pooled
observations and plotted versus 10-minute mean wind speed, for both turbulence classes.

Again, theriTsroutine B2, 53] for fitting probabilistic models to data was used to fit a quadratic
Weibull model to the observed local peaks for each pair of environmental conditions: 10-minute
mean wind speed/, and turbulence intensity, The quadratic Weibull model is a three parameter
model. Thus, we can use the first three statistical moments of the data to fit the model. The first two
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Figure 3.15:Process mean of 10-minute blade root flap and edge bending response, based on 100
pooled observations for each 10-minute mean wind speed and turbulence class. The
wind turbine is operating fov’ < 24m/s, otherwise the turbine is parked.
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Figure 3.16:Expected number of local peaks in 10-minute blade root flap and edge bending re-
sponses time histories, based on 100 pooled observations for each 10-minute mean
wind speed and turbulence class. The wind turbine is operatinig fér24m/s, other-
wise the turbine is parked.
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statistical moments, meapy() and varianced? ), were defined in Sectio8.4, and are repeated

here. We will use the coefficient of skewness, , a measure of asymmetry of the distribution, as a
proxy for the third statistical moment. For purposes of the present discussion these statistics of the
observed local peaks are defined*as:

py = E[Y] (3.24)

oy = E[(Y — ny)?] (3.25)
o 3

s, = ELY 3uy) ] (3.26)
Oy

Shown in Figures8.17, 3.18 and3.19are the observed first three central moments of the local
peaks for both blade root flap and edge bending. These data are based on 100 pooled observations
for each pair of 10-minute mean wind speed and turbulence class.

Comparison of the fitted quadratic Weibull distributions to observed blade root flap bending
local peaks are presented in Figd€0 Representative blade root flap bending time histories are
used, considering an operating turbine conditibi=18m/s, turbulence clags) in Figure3.20(a)
and a parked turbine conditio’ €40m/s, turbulence class A) in FiguBe20(b) In these figures,
the data and fitted models are plotted on a distorted “Weibull” scale, which, rather than plotting
Fy (y) versusy, plots -In[1Fy-(y)] versusy. The results, when viewed on a log-log scale, should
appear as a straight line if the data follow a standard Weibull probability distribution ridetsi.
clarity the right-hand axis has the correspondiygy) values. Similar results were found for local
blade root flap bending peaks in other wind environments (10-minute wind speed and turbulence
class).

For blade root edge bending, comparison of the fitted quadratic Weibull distribution to the ob-
served local peaks are shown in FiguBegland3.22for turbine operatingi(=18m/s, turbulence
classA) and parkedW=40m/sec, turbulence clag3 conditions, respectively. The data and models
are plotted on the distorted Weibull scale as presented above. In H@irga)one can see that
a relatively poor fit results if we consider all the local blade root edge bending peaks from an op-
erating turbine condition. We saw in Chap®rthat the distribution of local edge bending peaks
tends to have more than one mode induced by the gravity loading on the in-plane direction of the
blade. The solution to achieve a better fit of the model to the data was to consider only the peaks
above a threshold higher than the process mean level. For the analysis here, the threshold level was
based on the “deterministic” gravity cycle. The amplitude of the gravity cycle for this turbine is
approximately 9.5kN-m, which remains constant across the operating wind speeds analyzed here

4A more detailed discussion of expectation and moments of random variables may be found in B6ction
®This scale, however, does not emphasize the largmv P[Y > 4] of interest.
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Figure 3.17:Pooled statistics of the mean of the local peaks in 10-minute blade root flap and edge
bending responses time histories for given 10-minute mean wind speeds. The wind
turbine is operating foi’ < 24m/s, otherwise the turbine is parked.
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Figure 3.18:Pooled statistics of the standard deviation of the local peaks in 10-minute blade root
flap and edge bending responses time histories for given 10-minute mean wind speeds.
The wind turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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Figure 3.19:Pooled statistics of the coefficient of skewness of the local peaks in 10-minute blade
root flap and edge bending responses time histories for given 10-minute mean wind
speeds. The wind turbine is operating T6r< 24m/s, otherwise the turbine is parked.
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(10m/s-24m/s). In this analysis we are particularly interested in modeling the loads toward the up-
per tail of the distribution, therefore, we would be interested in the loads that generally occur above
the positive extreme of the gravity cycle. If we assume that the gravity cycle is centered about the
process mean level, the threshold that should be used is half the gravity cycle amplitude, 4.75kN-m.
Figure3.21(b)shows qualitatively an improved fit of the quadratic Weibull model to only the data
above the threshold. No additional threshold or shift in the data was imposed on the local blade root
edge bending peaks for the parked turbine conditions.

Regression

When obtaining a long-term estimate of the 50-year load based on a short-term distribution which
models the local peaks, two parameters and three statistical moments are required. In3S&ction
where the short-term distribution modeled the global peaks, only the relationships between two
statistical moments and the environmental variables were required. We saw from the discussion that
it was sufficient to know the statistical moments over all the environmental conditions to completely
define the extreme loading on the turbine. Here we need the relationship between the environment
and two other parameters in addition to the statistical moments required to fit the probabilistic
model. These two additional parameters in this case are: the number of local peaks and the process
mean. The number of peaks is required as part of Equatkato calculateP[Lio min < {|V, I], and

the process mean which must be added back to the estimate of the extreme load since the magnitude
of the peaks was referenced to the process mean level. Therefore, instead of only having to perform
two regression analyzes for a given response of interest (flap or edge bending), five analyzes are
required: process mean, number of peaks, mean of the peaks, standard deviation of the peaks, and
skewness of the peaks.

As discussed earlier there are two distinct general loading conditions for the turbine, one when
the turbine is operating and the other while the turbine is parked. Separate regression analysis were
performed under each of these conditions. During 10-minute mean wind speeds below 24m/s the
turbine is assumed to be operating. For 10-minute mean wind speeds above 24m/s the turbine is
assumed to be parked. Based on the observed behavior of the turbine, the moments were assumed
to be related to the environmental parameters following the power law function proposed by Veers
and Winterstein%4), for both regimes.

VY% / 1\
=a; () () =15 3.27
’uj aj <Lref> <_[ref> J ’ ( )

The same values dfier and s defined in Sectior8.4 were used for this analysis. Thégs
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Figure 3.22:Quadratic Weibull model fit to observed blade root edge bending data for parked wind
speed equal to 40m/s, turbulence class

and I values for the operating conditions are 16.474m/s and 0.1528, respectively, and the corre-
sponding values for the parked conditions are 34.861m/s and 0.1318, respectively. The calculated
regression coefficients ariR? statistics are shown in Tablé&s3 and 3.4 for both blade root flap

and edge bending conditions respectively. statistics near unity indicate that a large percentage

of the variability in the data is explained by the regression model. Rdvstatistics indicate that

other influences not contained in the regression model may be affecting the loads. In performing the
regression analysis it was determined that the applied functional model, EqB&odid not have
enough flexibility to sufficiently model the observed behavior of the mean and standard deviation
of the local blade root flap bending peaks. The values of the mean and standard deviation of the
peaks flatten out with higher wind speeds above 17m/s as compared with the behavior below 17m/s
as seen in Figure3.17and3.18 Therefore a separate model was fit to each of these regions, one
below 17m/s and the other above 17m/s, for both the mean and standard deviation of local blade
root flap bending peaks.

Finally, graphical regression results are shown in Fig3:.283.27. Each figure contains re-
gression results for both blade root flap and edge bending conditions considering: process mean,
Figure3.23 number of peaks, Figurg.24 mean of local peaks, Figu@25 standard deviation
of local peaks, Figur&.26 and skewness of local peaks, Fig@7. In all plots, the turbulence
intensity has been set equal to the reference value.
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Blade Root Flap Loading
Regression of Statistics of Random Peaks d¥i and 1

102

Mean of 10-Minute Response Process

a (KN-m) b c R?

V < 24m/s 3.0222 1.5196 | -0.34972 | 0.95403
V > 24mls 13.7604 | 1.8789 | -0.07334 | 0.99857
Expected Number of Random Peaks

a (KN-m) b c R?

V < 24m/s 800 0.17633 | -0.15389 | 0.71442
V > 24ml/s 1700 2.1388 -1.1969 | 0.98712
Mean of Random Peaks

a (KN-m) b c R?
V <17m/s 41829 | 0.96324 | 0.89617 | 0.98543
17 <V < 24m/s| 4.5654 | 0.32441 1.1762 | 0.97070
V > 24mls 4.0829 3.8365 0.65347 | 0.99099

Standard Deviation of Random Peaks

a (KN-m) b c R?
V <17m/s 3.7006 | 0.98592 | 0.86905 | 0.98240
17<V <24m/s| 4.1124 | 0.29532 1.1558 | 0.98421
V > 24m/s 5.2258 3.3196 1.0597 | 0.98509

Coefficient of Skewness of Random Peaks

a (KN-m) b c R?
V < 24mls 1.2744 | -0.062344| -0.099467| 0.090513
V > 24m/s 1.7110 | -1.2292 | 0.39315 | 0.96017

Table 3.3:Regression coefficients used in Equat®a7 to fit flap load moments as functions of
the mean wind speed;, and turbulence intensity, The wind turbine is operating for
V < 24mls, otherwise the turbine is parked.
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Blade Root Edge Loading
Regression of Statistics of Random Peaks o¥i and 1

Mean of 10-Minute Response Process

a (KN-m) b c R?

V <24m/s| 2.4063 | 0.33942 | -0.084286| 0.95275
V >24m/s| 0.7327 1.7925 | -0.076185| 0.99598

Expected Number of Random Peaks
a (KN-m) b c R?

V < 24m/s 105 0.44453 | 2.3182 | 0.33768
V >24m/s| 2928 0.67170 | -1.1348 | 0.89983

Mean of Random Peaks
a (KN-m) b c R?
V <24m/s| 0.2701 | 0.85215 | 0.11290 | 0.92184
V > 24m/s| 0.8037 4.3166 0.49033 | 0.99802

Standard Deviation of Random Peaks
a (KN-m) b c R?

V < 24mi/s| 0.2703 1.1572 1.0688 | 0.95583
V > 24m/s| 0.8243 4.4614 0.81591 | 0.99690

Coefficient of Skewness of Random Peaks

a (KN-m) b c R?

V <24m/s| 1.7616 | 0.70937 | 0.092212| 0.85589
V >24m/s| 1.9341 | -0.077955| 0.41886 | 0.048842

Table 3.4:Regression coefficients used in Equat®a7to fit edge load moments as functions of
the mean wind speed, and turbulence intensity, The wind turbine is operating for
V < 24mls, otherwise the turbine is parked.
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(a) Regression of the process mean of 10-minute blade root flap bending response on
the 10-minute mean wind speed and turbulence intensity.
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(b) Regression of the process mean of 10-minute blade root edge bending response on
the 10-minute mean wind speed and turbulence intensity.

Figure 3.23:Regression of the process mean on the 10-minute mean wind speed and turbulence
intensity for blade root flap and edge bending.
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(b) Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root edge bending.

Figure 3.24:Regression of the expected number of local peaks on 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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turbulence intensity, blade root flap bending.
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(b) Regression of the mean of the local peaks on the 10-minute mean wind speed and

turbulence intensity, blade root edge bending.

Figure 3.25:Regression of the mean of the local peaks on the 10-minute mean wind speed and

turbulence intensity for blade root flap and edge bending.
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(a) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.
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(b) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure 3.26:Regression of the standard deviation of the local peaks on the 10-minute mean wind
speed and turbulence intensity for blade root flap and edge bending.



CHAPTER 3. LONG-TERM EXTREMES

Coefficient of skewness of peaks
above 10-minute mean process level

(a) Regression of the coefficient of skewness of the local peaks on the 10-minute mean

2.8

2.6

24

2.2

18

16

14

12

& classA +
-, . . classB o |
%, Operating wind speeds; |=I,
% Parked wind speeds; 1=l g =x=mree--
1
,’, ™ ’Q.
\?‘WP Q o 1
~~.'“~~<5
10 15 20 25 30 35 40 45 50 55

10-minute mean wind speed, m/s

wind speed and turbulence intensity, blade root flap bending.

Coefficient of skewness of peaks
above 10-minute mean process level

(b) Regression of the coefficient of skewness of the local peaks on the 10-minute mean

2.8

2.6

24

2.2

18

1.6

14

12

T T T T T T

classA  +
) ) classB © |
Operating wind speeds; =l
Parked wind speeds; =l ----------
¥
D)
2/9/@ *
| 9)
7‘ e —_
/ +
+
/0 X
/ D
/ +
o
10 15 20 25 30 35 40 45 50 55

10-minute mean wind speed, m/s

wind speed and turbulence intensity, blade root edge bending.
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3.5.2 Long-term Analysis

In the previous sections we have defined the short-term probability distribution model for the lo-

cal peaks and how this model can be represented by the moments of the data. Further, we have
shown, through regression analysis, how these moments and associated parameters may be related
to the environmental variables. In this section we demonstrate how we can combine the short-term,
turbine-specific portion of Equatia 16 with the long-run distribution of the environmental vari-

ables

The same distribution of 10-minute mean wind speed and the conditional distribution of tur-
bulence intensity presented in Secti®@ are used again here, for this analysis. The ranges of
values of the environmental variables are discretized into evenly spaced intervals. For each pair
of values of the environmental variables the corresponding short-term local peak distribution is
generated. Through Equati@23 an estimate of the distribution of short-term extreme events,
P[Liomin < |V, I], is obtained. The process mean, and any required additional threshold, are re-
introduced. Then, as per Equati8rig the short-term extreme load distribution values are summed
together; each weighted by the probability of the respective environmental conditions, i.e., the pair
of values of the environmental variables occurring. The summation is performed over the entire
range of environmental variables.

As stated earlier, there are two loading conditions for the turbine: operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case, to develop the long-term distribution, the appropriate regression
model is used for each wind speed value. This results in a combination of the operating and parked
only long-term distributions as shown in Fig8e&28 Also shown in the figure are the long-term
distributions of the load if the turbine is either parked or operating in all wind speeds. The proba-
bility levels associated with the one-year and 50-year mean return penagprob. level) are also
shown (note Equation3.13and3.14). In all the preceeding cases it was assumed there was 100%
availability of the turbine during all wind speeds. Using the full distribution for each of the ran-
dom variables, estimates for the one-year blade root flap and edge bending loads are 51.3kN-m and
11.7kN-m, respectively. Corresponding estimates for the 50-year blade root flap and edge bending
loads are 60.8kN-m and 13.6kN-m, respectively



CHAPTER 3. LONG-TERM EXTREMES 110

1-year MRP prob. level ---------
50-year MRP prob. level
Operating in all wind speeds —=—
0.01 Parked in all wind speeds —e— |
. \ Normal operation

Probability of exceeding | in any arbitrary 10 minutes

0.0001 \ \

1e-08
~

1e-10

0 20 40 60 80 100 120
Bending moment, KN-m

(a) Long-term distribution of extreme blade root flap bending moment for an arbitrary

10 minutes.
1 T T T T T T

‘g 1-year MRP prob. level ---------
£ 50-year MRP prob. level
£ Operating in all wind speeds ———
S oo1 L\ Parked in all wind speeds —s— |
% ' Normal operation
% I
g 0.0001 \<
>
2 )
£ [ \
2 \\
(8]
: el S
% 1608
2 \
Ko}
[=)
€ 1e10 N

0 5 10 15 20 25 30 35 40
Bending moment, KN-m

(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
trary 10 minutes.

Figure 3.28:Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering three turbine conditions: 1) turbine operating over all wind speeds, 2)
turbine parked over all wind speeds, 3) turbine operating below cutout wind speed and
parked above cutout wind speed; for both (a) flap and (b) edge bending.
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3.5.3 Simplifying the Long-term Analysis

In this section we present a methodology for simplifying the calculations required for solving Equa-
tion 3.16 by replacing the full distributions of some of the random variables with appropriate de-
terministic fractiles. As seen previously in Secti®d.3 it is appropriate to consider this method-
ology for those random variables which have only a small contribution to the overall variability in
our estimate of the long-term extreme load distribution. Here, a qualitative analysis is employed to
determine the degree to which each of the variables in Equatiohcontributes to the long-term
extreme load distribution. Based on this analysis, deterministic fractiles, greater than the mean level,
are used to reduce the complexity in solving equaldr

Figure3.29shows the long-term distribution of the 10-minute flap and edge loads considering
the short-term load variable and each of the environmental variables deterministically. Only one
variable is considered deterministic in each analysis. The other variables are assumed random and
follow the distributions defined previously. This analysis gives a qualitative understanding on how
the terms in Equatio.16contribute to the variability in the long-term load distribution. From this
analysis, one finds that the largest drop in our estimate of the 50-year load, occurs when we set
the short-term load variability to zero. Whereas, reducing the variability in the turbulence intensity
or wind speed does not reduce our estimate of the 50-year load as drastically. This similar result
was found in the analysis presented in Secoh Changing from basing the short-term model
on the local peaks versus the global extreme does not seem to change the relative significance
of the variability contributed by the short-term load variable. Qualitatively, one can conclude that
compared to the short-term load, less of the variability in the long-term load distribution is explained
by the randomness in the wind speed and turbulence intensity, at least for the structure, site data,
and distribution models used here.

Following the methodology previously presented we consider using a higher fractile of the tur-
bulence intensity, or wind speed distributions where we may be able to recover the associated con-
tribution to the long-term load variability, and still reduce the computational effort in calculating
the marginal distribution of.1g min. Figure3.30shows that by considering the 90% fractile of the
turbulence intensity distribution, rather than the mean value, nearly all of the variability contributed
by the turbulence intensity can be recovered. TaBlBsnd 3.6 contain estimates of the one-year
and 50-year loads and their associated error, considering the estimates based on the full random
models as the “true” result.

If we continue and consider an inflated fractile, rather than the mean value, for the wind speed
distribution, the 90% fractile covers the one-year and 50-year load for blade root flap bending and
the one-year blade root edge bending load. The fractile must be increased to 95% to cover the
variability contributed by the wind speed distribution for the 50-year blade root edge bending load.
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Figure 3.29:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering load, turbulence intensity, and wind speed deterministically for both blade
root (a) flap and (b) edge bending.
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This is shown in Figur&@.31and Tables8.5and 3.6.

This analysis, using prescribed fractiles of the distributions of the three variables, could be done
based on the assumption that the short-term load contributed the least to the overall variability in the
estimate of the long-term distribution. This is as we would have expected based on the experience
of other industries. In this case FiguBe32(a)shows the results for flap bending, considering the
short-term load deterministic, but using the fractile associated with the mean increased by seven
standard deviations of the distribution rather than just its mean value. The estimates obtained from
using this fractile of the load distribution is shown in Talll& along with the associated error.
Correspondingly, the estimates of the one-year and 50-year blade root edge bending loads are shown
in Figure3.32(b)and the numerical results are found in TaBlé.

Again, if we continue and consider the 84% fractile for the turbulence intensity distribution this
covers the estimates for the 50-year blade root flap and edge bending loads, as seen Bi\¥agure
The fractile must be increased to approximately 99% in order to cover the variability contributed by
the turbulence for the one-year blade root flap and edge bending loads. Again, numerical results for
the estimates mentioned above are presented in Taldesnd3.6.

Taking both the short-term load and turbulence intensity as deterministic fractiles of the under-
lying distributions would simplify Equatio.16to a single fold integration problem over only the
distribution of annual wind speed. The results of this integration are shown in RBgaReln this
case, additionally, we can eliminate the remaining integration by using the complementary cumula-
tive distribution function of the annual wind speed distribution and then evaluate the expression at
the wind speed associated with the return period of interest.

3.5.4 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate
of the marginal probability distribution of the long-term load. The short-term load was based on a
guadratic Weibull model of local random peaks, however. The general methodology remained the
same. The statistical moments were related to the environmental variables through regression anal-
ysis. Using the method of moments, the distribution of the short-term loads was obtained for each
specific set of values of the environmental variables. Finally, an estimate of the marginal distribution
of the long-term load was obtained by summing the conditional short-term load distributions (each
weighted by the probability of the values of the environmental variables occurring) over all environ-
mental conditions. We found from this analysis that the estimate of the one-year and 50-year blade
root flap bending loads were 51.3 kN-m and 60.8 kN-m respectively. Correspondingly the one-year
and 50-year blade root edge bending loads were 11.7 kKN-m and 13.6 kN-m, respectively.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure 3.30:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the turbulence intensity at prescribed deterministic fractiles compared with
the full distribution solution.
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Figure 3.31:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the turbulence intensity at the 90% fractile and 10-minute mean wind
speed at prescribed deterministic levels compared with the full distribution solution.
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Estimates of 1-Year and 50-Year Blade Root Flap Bending Load

Full Random Model

1-year Load 50-year Load
51.3kN-m 60.8kN-m
Deterministic Turbulence Intensity
Fractile  1-year Load % Error 50-year Load % Error
90% 51.1kN-m -0.4% 60.9kN-m 0.2%
Deterministic Turbulence Intensity(90%) and Wind Velocity
Fractiie  1l-yearLoad % Error 50-year Load % Error
84% 53.3kN-m 4.0% 60.1kN-m 1.2%
Deterministic Short-Term Load
Fractile  1-year Load % Error 50-year Load % Error
pwy + 7oy 54.7kN-m 6.6% 60.9kN-m 0.2%
Deterministic Short-Term Load(uy + 7oy) and Turbulence Intensity
Fractile  1l-yearLoad % Error 50-year Load % Error
84% 43.5kN-m  -15.2% 63.0kN-m 2.0%
99% 53.0kN-m 3.3% 79.0kN-m 29.9%

Table 3.5:Estimates of one-year and 50-year blade root flap bending loads, considering determin-
istic fractiles of conditional short-term load, turbulence intensity, and wind speed.
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Estimates of 1-Year and 50-Year Blade Root Edge Bending Load

Full Random Model
1-year Load 50-year Load
11.7kN-m 13.6kN-m

Deterministic Turbulence Intensity
Fractiie  1l-yearLoad % Error 50-year Load % Error
90% 11.9kN-m 1.7% 14.4kN-m 6.0%

Deterministic Turbulence Intensity(90%) and Wind Velocity

Fractile  1-year Load % Error 50-year Load % Error
90% 11.8kN-m 0.9% 12.6kN-m -7.4%
95% 12.4kN-m 5.9% 13.5kN-m -0.7%

Deterministic Short-Term Load

Fractile  1-year Load % Error 50-year Load % Error
py + 7oy 11.5kN-m -1.7% 12.8kN-m -5.9%
Deterministic Short-Term Load(uy + 7oy) and Turbulence Intensity

Fractiie  1l-yearLoad % Error 50-year Load % Error

84% 11.1kN-m -5.1% 13.9kN-m 2.2%
99% 12.0kN-m 2.6% 17.4kN-m 27.9%

Table 3.6:Estimates of one-year and 50-year blade root edge bending loads, considering determin-
istic fractiles of conditional short-term load, turbulence intensity, and wind speed.



CHAPTER 3. LONG-TERM EXTREMES 118

1
N: 1-year MRP prob. leve| -
0-year MRP prob. level -
Full random model ——
0.01 Det. load model, mean —=—
' Det. load model, py + 0y ——
Det. load model, py + 30y —=—
Det. load model, py + 60y ——
Det. load model, py + 70y ——

a

0.0001 \N \

N\
RN

1e-08 \S\ .

e s\ \%
0 20 40 60 80 100 120
Bending moment, KN-m

Probability of exceeding | in any arbitrary 10 minutes

1e-10

(a) Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.

1
1-year MRP prob. level ---------
L 50-year MRP prob. level
Full. random model ——
0.01 Det. load model, mean —=— |
’ Det. load model, py + 0y ——

T

Det. load model, py + 20y —+—
Det. load model, py + 30y ——
Det. load model, py + 60y ——

0.0001 Det. load model, py + 70y ——

wal N

IS\
I

N
BENGENE

1e-10
0 5 10 15 20 25 30 35 40
Bending moment, KN-m

Probability of exceeding | in any arbitrary 10 minutes

(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure 3.32:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the load term at prescribed deterministic levels compared with the full
distribution solution.
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Figure 3.33.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the short-term loadsat + 70y level and turbulence intensity at prescribed
deterministic fractiles compared with the full distribution solution.



CHAPTER 3. LONG-TERM EXTREMES 120

Again, a qualitative analysis was conducted to determine which of the three variables, con-
ditional short-term load, conditional turbulence, or mean wind speed, contributed the most to the
variability in the distribution of the long-term load. We found, similar to the previous section,
that at least for theoc 15/50 turbine, site data, and distribution models used here the conditional
short-term distribution of the loads contributed the most to the variability in the distribution of the
long-term load, with mean wind speed and turbulence following in ranked order. We treated the
environmental variables deterministic, considered fractiles higher than the mean, and were again
able to recover much of the variability in the distribution of the long-term load, i.e., compared with
using their full distributions. Specifically, considering the 84% fractile of the distribution of the
mean wind speed and 90% fractile of the distribution of turbulence, our estimates of the one-year
and 50-year blade root flap bending loads are 4.0% and 1.2% high respectively over our estimates
employing the full distributions. For blade root edge bending, considering the 95% fractile of the
mean wind speed distribution and the 90% fractile of the conditional distribution of turbulence our
estimates of the one-year and 50-year root edge bending loads are 5.9% high and 0.7% low. The
next section presents a discussion of the comparison of the results between basing the short-term
loads on the distribution of global peaks and, on the other hand, basing the short-term loads on the
distribution of local random peaks.
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Comparison of Long-Term Estimates
Based on Short-Term Gumbel and Quadratic Weibull Models

Blade Root Flap Bending
Gumbel Model| Quadratic Weibull Model Percent Difference
1-year Bending Load 49.1kN-m 51.6kN-m 4.2%
50-year Bending Load  59.7kN-m 60.8kN-m 1.8%

Blade Root Edge Bending
Gumbel Model| Quadratic Weibull Model Percent Difference
1-year Bending Load 11.8kN-m 11.7kN-m 1.1%
50-year Bending Load  13.7kN-m 13.6kN-m 0.9%

Table 3.7:Comparison of long-term estimates of one-year and 50-year bending loads based on using
Gumbel distribution fit to observed global maximum for the short-term load model versus
fitting a quadratic Weibull distribution to the local peaks.

3.6 Comparison of Long-Term Estimates Based on Different Short-
Term Models

In Section3.4 we saw how one could obtain an estimate of the long-term distribution of extreme
events based on modeling the 10-minute maximum event by a Gumbel distribution. Later, in Sec-
tion 3.5we saw how a similar estimate of the long-term distribution may be obtained by basing the
short-term model on the quadratic Weibull distribution of local peaks. The question that arises, and
follows on from the work presented in Chaptgris: if we consider the predictions based on the
Gumbel model to be “true”, are the estimates based on the alternative Weibull model unbiased? It
was shown in Chapte2 that the estimator of the mean value of the 10-minute extreme based on
modeling the local peaks was unbiased and had lower standard error when compared to the esti-
mator of the mean value of the 10-minute extreme based on the raw observations of the 10-minute
extreme. Figur&.34shows the estimates of the long-term distribution of the 10-minute loads based
on a short-term loads modeling the 10-minute extreme (Gumbel) or local peaks (Weibull). The esti-
mates of the one-year and 50-year blade root flap and edge bending loads are presente®in Table
along with the associated percent difference between the two estimates.

The data presented in FiguBe34and Table3.7 show that the estimate based on modeling the
local peaks is generally unbiased for both flap and edge bending compared with the estimate based
on modeling the raw conditional 10-minute extremes. Therefore, we can take advantage of the more
efficient estimate based on modeling random peaks, to either sample less or reduce the width of the
confidence bands on the parameters. This will be discussed further in Céapter
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10-
minutes.

Figure 3.34.Comparison of estimates of the long-term distribution of 10-minute extreme blade
root bending momentl, 19 min based short-term Gumbel model for 10-minute extreme
events or a short-term Weibull model for local peaks.
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3.7 Conclusions

In this chapter we have stepped through the process of calculating the probability distribution of
L1o min by two different methods. Starting from initial simulated time histories, we fit distribution
models to the observed extremes and then to the local peaks. In both cases we related the moments,
which define the distribution model parameters, to the environmental variables through regression
analysis. Finally, the short-term load distributions were weighted by the probability of the associated
environmental conditions occurring and summed over all environmental conditions to estimate the
long-term distribution. We then discussed simplifying the two-fold integration problem down to a
single-fold integration by using deterministic fractiles of the short-term load, turbulence intensity,
and wind speed distributions. It was shown that this methodology captures a significant portion
of the contribution to the long-term load variability of these variables at the probability levels of
interest. Also, the estimates based on modeling the local peaks was unbiased compared with the
estimates based on modeling the observed extremes.

Note, that the fractiles, obtained from this analysis, apply to this data and moreover to the
assumptions made in choosing the associated distribution models. Different fractiles may apply for
other data under different assumptions. This analysis is shown here for illustration and discussion
purposes. Universal fractiles, if deemed appropriate, should be chosen judiciously and with great
care in choosing distribution models.

Another approach, for simplifying Equatidh16 not explored in this chapter, employs the
approximate methods underlying first-order reliability analysis. In this method, contours of the crit-
ical combination of wind speed and turbulence intensity are found for prescribed reliability levels.
It then becomes a straightforward task to obtain an estimate of the 50-year load by (1) identify-
ing an appropriate percentile of the short-term load, and (2) identifying the maximum response
along the prescribed contour, e.g. 50-year contour. Under the assumptions of first-order reliability
analysis, the maximum response along the contour is associated with prescribed reliability level of
interest p7]. This approach is the subject of Chapder



Chapter 4

Estimation of Extreme Load Events
Using Environmental Contours!

This chapter presents and explores the application of the environmental contour method to wind
turbines. Contours promise to provide both practical reliability estimation and valuable information
about the combination of joint environmental variable values, e.g. wind speed and turbulence, most
critical to each specific wind turbine. We present the background of the development of environ-
mental contours as applied to wind energy systems, and apply this theory, in three examples, to
develop contours based either (1) on design code description of environmental conditions, or (2) on
measured field data which describes the site environment. From these contours, and a functional
description of the short-term response of the turbine, implicit first-order reliability method estimates
are made for the turbine response. These estimates are then compared with results obtained from
numerical integration of the short-term response of the turbine over the joint distribution of wind
speed and turbulence. We find that the environmental contour method provides reasonable estimates
of the expected extreme load, compared with the full integration method.

4.1 Introduction

Wwind turbine blades are typically designed to survive the entire operating lifetime of the system.
Certification standard2p] reflect this approach when the design extreme wind speed is selected to
be the 50-year maximum. If the reasonable assumption that the turbine can be parked before the
worst case wind speed is encountered, the design condition is relatively easy to deal with; assume

A portion of this chapter was previously published in the proceedings of the American Society of Mechanical Engi-
neering’s22™ Wind Energy Symposiunsg]
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a stationary blade immersed in a uniform flow with a velocity equal to the 50-year maximum wind
speed at the blade height.

Some studies have implied that the simple quasi-static maximum wind condition may not gen-
erate the maximum load. Madsen, et all][suggested parked loads that include turbulence could
exceed the uniform gust approach. In Chaf@eve saw it is even possible that operating loads
in much lower wind speeds can generate the highest loads in some cases. The reason that lower
wind speeds can generate higher loads is twofold. First, turbulence in the inflow causes the highest
load in any 10-minute sample to have higher variability. Second, when the variability in loads is
combined with the greater frequency of occurrence of lower wind speeds, the extrapolation to 50
years can produce a higher design load. Add to this the fact that turbulence levels at any site are not
constant, but span a range of values described by the joint probability distribution of wind speed and
turbulence 23]. The designer is therefore left with the much more difficult proposition of sweeping
the entire environmental space of wind speed and turbulence for the worst-case loading.

In Chapter3 we evaluated various models of the variation in extreme loads from extensive
aeroelastic simulations. We considered the entire design space of the joint distribution of wind
speed and turbulence, fitting distribution models to the variation of extreme short-term loads at each
combination of values of the environmental variables. Integrating the short-term distribution of ex-
tremes over the long-term joint probability distribution of wind speed and turbulence generates the
long-term distribution of extreme loads. The one-year and 50-year extremes are found by picking
off the once-per-year and once-per-50-year probability levels from the long-term distribution. Thus
the response of the turbine and the environment of the turbine are evaluated separately and only
combined in the final step. We saw in Chapehat this method provides an accurate method of
extrapolating to the long-term extreme from short-term simulations, although it is quite computa-
tionally expensive.

This chapter presents a method for reducing the space over which combinations of wind speed
and turbulence must be evaluated from the plane to a curved line. We show that the joint distribution
of mean wind speed and turbulence can be used to find a locus, or contour, of points describing in
effect the once in one-year or 50-year combinations of mean and turbulence experienced in a 10-
minute interval. This locus is found by using the theory of structural reliability and an approach
called First-Order Reliability Method7[ 8, 12]. The contour has the property that all the points
share the same associated reliability level. The contour is searched to find the point where the
specific combination of values of the environmental variables engender the maximum response of
the turbine. The location of this point depends on the nature of the individual turbine’s sensitivity
to wind speed and turbulence. Thus, again, the problem is split into the environmental part, now
described by a contour instead of a joint probability density, and a turbine part that describes the



CHAPTER 4. ENVIRONMENTAL CONTOURS 126

response due to specific combinations of wind-speed and turbulence.

The environmental contour concept is demonstrated here by first showing how the aerent
standard joint distribution of wind speed and turbulence can be transformed into contours of one-
year and 50-year extreme combinations. This is repeated for a joint distribution derived from field
measurements. Then the turbine response levels are defined using a complete mapping of the short-
term (10-minute) extremes over the entire space of mean wind speed and turbulence combinations.
In this chapter, we will ignore the variability of the short-term extremes. We will see later how we
have considered the short-term response as random (see Ei§ufer the purpose of determin-
ing the short-term mean extreme response, but we ignored the variability of the short-term extreme
response, i.e., we considered the short-term extreme response deterministic at its mean level. The
complete mapping of the response is generated to clearly illustrate where the maximum response
intersects with the contours. The intersection of the largest response with the contour defines the
design load, or design point. However, in future applications the more efficient approach of only
evaluating the response levels along the contour, searching for the location of the highest response,
is necessary. Thus, the problem is simplified over the need to evaluate the turbine response every-
where. Results from this approach are compared with results using the long-term distribution as in
Chapter3.

4.2 Estimating the Long-term Expected Response

We are interested in finding an estimate of the capacity that should be designed into the structural
system of a wind turbine. This capacity may be defined in terms of the extreme response of the
turbine due to a loading environment over a period of time. More specifically, a capacity associated
with a prescribed mean return period of the expected extreme response— e.g., 50-year mean return
period. This can be written as

Psoyears= P[L > lcap 4.1)

Where,ps years is the probability associated with the 50-year mean return pefiod,the extreme
response, anldapis the structural load capacity of the turbine. Our interest is in finding an estimate
of lcapsuch that the prescribed probability level, epge.years is satisfied. We know that the response

is a function of the loading environment. Therefore we may construct a funétiavhich relates

the relative characteristic random variables of the environment—e.g., mean wind $jesal]
turbulence/, to the observed response.

L =h(V,I) (4.2)
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With this relationship given above, Equatidrl may be written as

psoyears= PIh(V, 1) > lcag (4.3)
Furthermore, we may construct a limit state functigrsuch that

Plg < 0] = P[h(V,I) > lcag (4.4)

In this context, the expression for the limit state function which satisfies Equatdasgiven below
as

The First-Order Reliability MethodroRM), described in Appendi, can be used to solve for
the probability that the limit state function is less than or equal to zearM is an approximate
method. The limit state function is approximated by a straight line tangent to the limit state surface
at the point on the surface closest to the origin of standard normal space. Therefore, the smoothness
of the limit state function can have an affect on the efficacy of the method to provide an accurate
approximation. Using trial and error we can find an estimatggfsuch thatP[g < 0] is equal to
the probability associated with the prescribed mean return period. Iteratively solving for an estimate
of lcapin this way can be tedious.

The forwardroRM problem discussed above, seeks to find= P[g < 0]. In our problem we
are looking for an estimate &f,p with a prescribeg,. Therefore it would be more efficient if the
process could be inverted. Winterstein, et &B][describes this process. Instead of transforming
the random variables and limit state function from the basic space into the standard normal space
and solving forp, with inverseFORM, one starts with a prescribed reliability indek= o1(1 -
pr), Which describes a hyper-spheresirdimensional standard normal space. The hyper-sphere
is then transformed to basic space. The resulting contour in basic space has the property that all
the points on the contour share the same associated reliability as defined in standard normal space.
The contour in basic space can then be searched for the maximum response. This is the maximum
response associated with the prescribed reliability level. Using the method of im@rseto
develop environmental contours has been applied previously in other engineering fields including:
offshore engineeringg), 61] and earthquake engineeringd].

For our problem, an estimate Gf, can be obtained by searching the contour in basic space
for the maximum value ok (V. I). For example: searching the locus of poiritsassociated with
P50 years WE can obtain an estimate of the 50-year ldag, as:

L5y = ax, [lcag = A, [h(V, 1)] (4.6)



CHAPTER 4. ENVIRONMENTAL CONTOURS 128

This process of using inversesrM to develop environmental contours in the basic space will be
demonstrated in examples, which follow this discussion. In each example, estimates of the one-year
and 50-year extreme flap and edge bending loads on a horizontal axis wind turbine will be obtained.
These estimates will be compared with estimates obtained through the full-integration method.

4.3 Overview of Examples

The remainder of this chapter will present three examples which apply invers®; as discussed

in the previous sections, to obtain estimates of the one-year and 50-year blade root flap and edge
bending loads considering two site environments and both stall-regulated and pitch-regulated tur-
bines. For all the examples presented here, the description of the short-term extreme response of the
turbine is based on modeling the global peaks by a Gumbel distribution. Also, in all the examples
we consider the turbine in both operating and parked conditions. We have seen in previous chapters
that there is a discontinuity in the response at the cut-out wind speed, when the turbine transitions
from operating to parked conditions. This discontinuity in the limit state function will test the ability

of FORM to provide a reasonably accurate approximation.

The first two examples demonstrate how estimates of the one-year and 50-year extreme blade
root flap and edge bending loads on a stall-regulated 15/50 turbine (see Sectiadh4.2 may
be obtained using environmental contours. The environment in the first example is based on the
IEC classlA wind environment with turbulence variable defined as the standard deviation of the
10-minute wind process. The short-term response ofathe 15/50 machine developed in Ap-
pendixC.3is used with the constructed environmental contour to obtain an estimate of the one-year
and 50-year blade root bending loads.

In the second example, the environment is based on an analysis of wind data from the Lavrio,
Greece, test site. The description of the environment given for this site was defined in terms of the
mean and coefficient of variation of the 10-minute wind process. Therefore, in the first example
turbulence is defined in terms of standard deviation and in the second example turbulence is defined
in terms of coefficient of variation. This is done to demonstrate the approach with both sets of
variables commonly used to describe the wind environment. The reader should note that the same
notation in the examples is used for turbulence, regardless of which definition is used, as either is
valid.

The third example again uses the description of the environment from the Lavrio test site. In this
case, however, the short-term response ofthe 15/50 machine, in the regime of operating wind
speeds, is modified to simulate the typical non-monotonic response of a pitch-regulated machine.
This contributes a slope discontinuity in the limit state function, which tests the abilitpri
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to provide a reasonable approximation, with a second discontinuity. The response for parked wind
speeds was not modified and, in this example, represents an unfeathered blade condition. Note
in this example we only consider obtaining estimates of the one-year and 50-year blade root flap
bending load.

In all of the examples, the estimates obtained from the environmental contour method are com-
pared with estimates obtained from integrating the short-term extreme response over the long-term
distribution of the environmental variables.

4.4 Example 1 —IEC Model with Stall-Regulated Turbine

In this example amoc 15/50, stall-regulated, turbine is assumed to operate irearclasslA
environment. The turbulence variable is defined in terms of the standard deviation of the 10-minute
wind process.

4.4.1 Description of Environment

The description of the environmental variables, in this example, is based on the criteria given in the
IEC wind energy safety code for a clags environment 23]. Specifically, the annual distribution

of the 10-minute mean wind speeH, is given by the Rayleigh distribution shown below, with
wy=10m/s.

fv(v) = %exp [— (Z)Q] 4.7
_ 2uv
G

The standard deviation of the 10-minute wind process is taken as the measure of wind turbu-
lence, denoted by. The conditional distribution of turbulence is assumed to follow the lognormal
distribution shown below.

N 2

The parameters of the lognormal distributiorand(, are defined as:

¢ = /(2 +1) (4.9)

A= Inugy) - 5 (4.10)
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Figure 4.1:Joint probability density function based on wind clé&sy;y,=10m/s,/15=0.18,a=2

with, 67/, the conditional coefficient of variation given as:

aIwv
Sy = —~ (4.11)
Hrnv
The functions of conditional meap,,, and standard deviationy,, of the turbulence are given
by thelec wind energy safety code. For turbulence clasg:A70.18 andz=2.

115(15m/8—|— CZU)
(a+1)

oy = 2m/siys

By = —2m/siys

The joint probability distribution of the environmental variables is then obtained by multiplying
together Equationd.7 and4.8.

fvr(v,i) = frv(ilv) fv (v) (4.12)

The resulting joint probability density function for clagsis shown in Figurel.1
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4.4.2 Constructing the Environmental Contour

We seek to find a contour in the physical space of wind speed and turbulence such that all the points
on the contour have the same level of reliability. We start in standard normal €pagewhere,
because of symmetry, the locus of constant reliability is a circle with radisee Figuret.2).
Transforming this circle from standard normal space to the physical space will produce the contour
we seek in terms of the physical variables. The equations to transform the circle, in standard normal
space, into the space described by the random variables for wind speed and turbulence are given as
follows.

Transformation of U; to wind speed,V.

TheU; coordinates of a circle in standard normal space are transformed to the physical space where
the wind speedV/, follows a Rayleigh distribution, by first equating the probability valuesof
andv, in terms of the cumulative distribution functions{F) and then solving fov in terms ofu;.

®(u1) = Fy(v)

@0“):1—%mp[—(2>1

—exp{—(“)T::@@“)—1

«
v

QJZZ—mu—®@g)

«

v=ay/—In(1l—®(u)) (4.13)

Transformation of U; given V' to conditional turbulence, 1.

After having transformed the first standard normal variable to basic space, the second random vari-
able may be transformed. The derivation of the equation for transforming the second coordinate,
U,, of the circle in standard normal space to the basic space where the conditional turbillence,
follows a lognormal distribution is shown below. Again, thers are first equated, and then in this
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casej is found in terms of.; and the wind speed dependent terkrend(.

P(u2) = Frv (4,0)

In(i) — A

¢
In(i) = w2l + A
i = exp (u2C + A) (4.14)

4.4.3 Transform circle to contour

In order to calculate the probability levels associated with the one-year and 50-year mean return
periods, we assume the statistics of the wind process remain in a steady state condition over a
duration of 10-minutes. The probability levels associated with the return periods of interest are then
based on the number of 10-minute segments occurring in the prescribed time interval. We saw in
Chapter3 (Section3.2) that the probability levels associated with the one-year and 50-year loads
are:

10

= —1.9x107° 4.15

Pryear= 15365 waax 60 0 Y (4.15)
10 .

P50 years= 50 % 365 x 24 < 60 3.8 x 10 (4.16)

The radius,3, of the circle in standard normal space is equal to the standard normal fractile
associated with a prescribed probability level. In our case, the two valygsafesponding to our
return periods of interest are:

B1year= ‘I’_l(l — P1yea) = 4.1190
B50 years= ‘5_1(1 — P50 yeay) = 4.9451

Figure4.3 shows the environmental contours associated with one-year and 50-year return periods.
The contours were developed by first finding the coordinates of a circle with a prescribed fadius,

in standard normal space (i.e2 + u3 = 32, see Figuret.2) and then transforming the circle from

the standard normal space into basic space using Equdtid8and4.14 For example, we may
consider the pointi(; =0, u2=/350 yearg ON the circle in standard normal space, where wind speed is
at its median level, and the conditional turbulence is at its 50-year level. This transforms into the
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point,

v =ay/—In(1l — &(0))
= ay/—1n(0.5)
= 9.3944m/s

wherea=11.28m/s (see Equati@n?). Next we find the corresponding valueiadt this point. With
B50 years4.9451,
i =exp (4.9451¢ + )

where( and\ are given by Equation$.9and4.10with parameterd;5=0.18 anth=2.

0.18(15m/s+ 2(9.3944m/s))

= 1.6673m/s
and
oy = 2m/s(0.18) = 0.36m/s
implying
0.36m/s
Sry = —oo—- = 0.21
1V = Tee73mis ~ 020
SO
¢ = +/In((0.2159)2 4+ 1) = 0.2135
1
A =1n(1.6673) — 5(0.2135)2 = 0.4884
hence

i = exp (4.9451(0.2135) + 0.4884) = 4.6834m/s

So the point (0,4.9451) on the circle with radigs4.9451 in the ¢, u2) plane maps to the point
(9.3944m/s, 4.6834m/s) in the, i) plane. Clearly this transformation is easily programmed to
provide the entire contour in basic spag@ei) corresponding to the circléu;, uz) in standard
normal space.

We have developed a set of contours of the environmental variables that are related to prescribed
return periods. The contours describe a locus of points each of which represent a point on a circle
in standard normal space such that the probability of lying in a region outside a tangent line drawn
through this point, in standard normal space, is equal to the probability level associated with the
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standard normal space

Figure 4.2:Circle in 2-D standard normal space defined®8y= u? + u3.

prescribed return period. Note that the contours are dependent only on information that describes
the environment and a prescribed reliability level.

To make use of the contour to estimate extreme events we need a description of the short-term
response of the turbine—i.e., the response given a set of values of the environmental variables. In
Chapter3 we saw how we might obtain a description of the short-term response of the turbine. An
estimate of the long-term extreme load can then be obtained by searching the contour for the max-
imum response. This estimate can be compared with an estimate obtained by integrating the short-
term conditional response over the long-term distribution of the environmental parad@ters|

4.4.4 Describing the Short-Term Response

In the first two examples, we are interested in estimating the long-term extreme loadamtan
15/50 horizontal axis wind turbine. The turbine, described in Chabtgragel18), has a rotor
diameter of 15m and a nominal rotor speed of/f8@M at the rated wind speed of 12m/s. ltis a
three-bladed, fixed pitch turbine with a hub height of 25 met2?k [The data set used to develop
the description of the short-term response of the turbine is described in detail in ChgmHgeEG6)
and consisted of multiple 10-minute simulations of Gaussian wind fields and corresponding blade
root bending moments. The wind input processes is described by the hub height wind speed.
AppendixC.3 presents a discussion on the development of the short-term extreme response of
theaoc 15/50 turbine considering modeling the global peaks by a Gumbel distribution and defining
the environmental variables in terms of the mean and standard deviation of the 10-minute wind
process. In general, the methodology of the analysis consists of two steps. First, we compute the
statistics of the response of interest, here the 10-minute extreme. Second, these statistics are related
to the environmental variables. The functional form of the mean or expected short-term response
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Figure 4.3:Environmental contour based arc IA wind class, one-year and 50-year return periods.

from AppendixC.3is given as p4]:

b c
() ()

WhereVet and I are the reference 10-minute mean wind speed and reference turbulence values
respectively. In the remainder of this analysis, however, we treat the short-term extreme response as
deterministic using the mean level conditioned on wind speed and turbulence. Therefore, the mean
response givef and/ becomesheresponse. We will come back to this point, in a later section,
and discuss how the variability of the conditional short-term extreme response may be accounted
for in obtaining an estimate of the long-term response. The coefficiehteindc were found using
regression analysfs. The results of the regression analysis for the expected 10-minute extreme
flap and edge bending loads are presented in TallleThe reference wind speed and reference
turbulence used in the regression analysis are given in FaBleAlso, with some wind turbines,

e.g., pitch regulated machines, the response in the operating regime may not be monotonic with
wind speed. This issue is addressed in the final example presented in this chapter.

2There are two load regimes for the turbine: one as a fixed structure when the turbine is parked, the other while the
turbine is operating. Separate regression analyzes were conducted for each of these load regimes. The two functional
forms that describe the turbine response are discontinuous at the maximum operating wind speed, se€.Emues
C.3
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Regression of the Mean of
10-Minute Maximum on V and [

Blade root flap bending

a (KN-m) b c R?
V <24m/s| 25.669 | 0.6090| 0.0460| 0.9233
V >24m/s| 40.181 | 2.5137| 0.0184| 0.9979

Blade root edge bending
a (KN-m) b c R?

V < 24m/s| 8.6107 | 0.2693| 0.0135| 0.9718
V >24ml/s| 7.2485 | 3.9850| 0.0138| 0.9960

Table 4.1:Regression coefficients used in Equatibh?to fit mean of the extreme 10-minute flap
and edge bending loads as functions of the mean wind speeahd turbulence intensity,
1.

Reference Wind Speed and Turbulence

‘ Viet (M/S) ‘ Tret (M/s)
16.474 2.5176
34.861 4.6074

V < 24m/s
V > 24ml/s

Table 4.2:Reference wind speed and turbulence values used in Equatign



CHAPTER 4. ENVIRONMENTAL CONTOURS 137

4.4.5 Environmental Contours vs. Full Integration Method
Applying Environmental Contours

Figure 4.4 shows the 10-minute maximum blade root flap and edge bending iso-response lines
plotted with the environmental contour from Figute3. The response lines are calculated based
on the regression models for the 10-minute extremes. This is done by fixing the value of the mean
extreme response and plotting tfieversus/ contour associated with this value, and then repeating
for various values of the mean extreme response. These contours are shown for the purpose of
pedagogy and illustrating the respective response surfaces. In practice, it is only necessary to search
the contour to find the maximum response. The maximum response corresponds to the response
with the prescribed return period, as shown by s in Figure4.4. Searching for the maximum
response along the one-year mean return period contour results in an estimate of 47.4kN-m, for the
blade root flap-bending load and 9.7kN-m, for the edge-bending load. Correspondingly, estimates
of 69.9kN-m and 17.4kN-m were found for the flap and edge bending loads associated with the
50-year mean return period. Note that in three of the four cases the extreme is caused by the parked
condition.

Figure4.5shows a plot of the value of the turbine response as a functiéracdund the one-
year and 50-year contour. The largest response is our estimate of the one-year or 50-year load
respectively. Note that there may be local maxima, or instances where the global maximum is not
that much larger than other peak response values along the contour. In these cases we may have
a condition where multiple design points exist, where two or more sets of environmental variables
yield similar load response on the turbine. Appendigiscusses how these multiple design points
may affect ourrorM estimates. It is clear from Figure5(a) considering blade root flap bend-
ing moment, only one maximum exists for both the one-year and 50-year contours. In4£kime
considering the one-year contour, however, it is not clear that we should necessarily discount the en-
vironmental condition & = Orad in favor of the actual global maximum showr@at 1rad. In this
example, a study of the shape of the limit state function in standard normal space, see Appendix
shows that a reasonable approximation is achieved if we only consider the global maximum, little
probability mass is excluded if we do not consider the set of environmental conditi@ras @t

Full Integration Method

An alternative to the contour method shown above is to obtain an estimate of the one-year and 50-
year loads from integrating the short-term response over the entire range of values of the environ-
mental variables. Specifically, Equatidri8shows how an estimate of the long-term distribution of
the 10-minute extreme load, can be obtained from integrating the distribution of the conditional
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Figure 4.4:Environmental contour with blade root flap and edge bending iso-response curves. The
%’s represent the maximum response with the prescribed return period.



CHAPTER 4. ENVIRONMENTAL CONTOURS 139

[e]
o

--- l-year Return Period
- 50-year Return Period
* Design Point

-
P
¥

1

m

[o)]

2
I

a
¥o
L

Extreme response, kN-
w IS
= =

)
Q

Theta, rad

(a) Blade root flap bending

20 ‘ ‘

--- 1-year Return Period
18- -« 50-year Return Period -
* Design Point '

[
S
Il Il

Extreme response, kN-m
[E=Y
Q
Il

3
Theta, rad

(b) Blade root edge bending

Figure 4.5:Extreme response as a function of anglein radians around circle in standard nor-
mal space for one-year and 50-year reliability levels. Hie represent the maximum
extreme response.



CHAPTER 4. ENVIRONMENTAL CONTOURS 140

short-term response over the joint probability density function of the environmental variables: wind
speedV/, and turbulencd.

PIL>1 = /a"v PIL > V) (v ) duds (4.18)

In implementing Equatiord.18the range of values of the environmental variables is discretized into
evenly spaced intervals. For each pair of values of the environmental variables the corresponding
distribution of the conditional short-term response is obtained. The conditional short-term response
distributions are summed together; each weighted by the probability of the respective environmental
variables, i.e., pair of values of the environmental variables occurring. The summation is performed
over the entire range of environmental variables.

In this approach the three variables in Equa#oh8 conditional short-term response, condi-
tional turbulence, and mean wind speed are considered random. In the examples presented in this
chapter, however, the conditional short-term response is considered to be deterministic. We have
shown in ChapteB that treating the short-term response deterministic but using a higher fractile,
larger than the mean, may be used to recover the variability introduced when considering the short-
term response random. We use the mean level here for simplicity and illustrative purposes; of
course, other fractile levels could be used. (Note, to compare the results of the two methods, envi-
ronmental contour and full integratidrthe same fractile for the short-term response must be used
for each analysis.) Figure 6 shows the long-term distributions of blade root flap and edge bending
loads, considering the short-term response deterministic at its mean level, employing E4uation
and the joint probability density function defined in Equatibh2and shown in Figurd.l Esti-
mates of the one-year and 50-year load are the fractiles associated with the prescribed probability
levels p1 year andpsg yearsand for blade root flap-bending are found to be equal to 47.4kN-m and
69.9kN-m, respectively. The estimates of the one-year and 50-year edge bending loads are 9.7kN-
m and 17.4kN-m, respectively.

Comparison of Results

In this first example both methods return virtually the same estimates for the one-year and 50-year
blade root flap and edge bending loads onathe 15/50 turbine installed at a hypothetical site with
conditions similar to those described by tee class IA environment.

SWhat we refer to here as the full integration method only integrates over mean wind speed and turbulence, while
fixing the short-term extreme at the mean value.
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sidering the short-term extreme load deterministic at mean level, for both: (a) flap and
(b) edge bending. considered deterministic.
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4.5 Example 2 — Field Data Model with Stall-Regulated Turbine

In this example amoc 15/50, stall-regulated, turbine is assumed to operate at a test site in Lavrio,
Greece. The turbulence variable is defined in terms of the coefficient of variation of the 10-minute
wind process.

4.5.1 Description of Environment

In this second example, recorded field data is used to build a probabilistic description of the re-
lationship between mean wind speed and turbulence. The distribution of mean wind speeds was
assumed to be the same as in the first example, a Rayleigh distribution with gpedl§m/s. The

data collected at a test site in Lavrio, Greece, was used to fit a rough estimate of the conditional
distribution of turbulence. The analysis of the data was conducted by Manuel, 8fjallq this
analysis the mean wind speed and turbulence are the environmental variables considered. Note that
in this case the turbulence was alternatively defined as the coefficient of variation of the 10-minute
wind process. (In the previous example the turbulence was defined as the standard deviation of the
10-minute wind process.) The resulting probabilistic description of these environmental variables,
presented ing0], is used here. (Note that there was no attempt to match the model at the low
wind speed end of the spectrum.) The conditional distribution of turbulence is given by the normal
distribution shown below.

i — 2
frv(ilv) = \/27301“/@(1) [—; ( U]M;W) ] (4.19)

The functions of conditional mean and standard deviation of turbulence intensity given wind speed
are shown in Equation$.20and4.21, respectively.

frpy = 2.4486v 0997 (4.20)

The joint probability density function of the environmental variables for the Lavrio test site is ob-
tained by applying Equatiof.12 A plot of the resulting joint probability density function is shown

in Figure4.7. In comparing Figuré.7, in this example, with Figurd.1in Example 1, the reader

is reminded that in Figurd.7, and the analysis in this second example, turbulence is defined as the
coefficient of variation of the 10-minute wind process. Also note thatdbeclass IA environment

is intended to encompass a large variety of site conditions and is therefore generally more severe
and conservative when compared to most specific sites.
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Figure 4.7:Joint probability density function for Lavrio, Greece site.

4.5.2 Constructing the Environmental Contour

In this case, the 10-minute mean wind speed follows the same probability distribution as presented
in the first example. Therefore, the same transformation equation, to transfolih tuordinate
of a circle in standard normal space to mean wind sp&edn physical space applies and the
derivation is not repeated here.

The equation for transforming the second coordinéte of a circle in standard normal space to
physical space where the conditional turbulengéollows a normal distribution is shown below.

i = w0y + prv (4.22)

Note the transformation is found by equating the probability levels and then solvingifoterms
of ug, andpgy, oy, the conditional mean and standard deviation of turbulence.

4.5.3 Description of Short-Term Response

The description for the short-term response ofAbe 15/50 turbine in this example is taken from
Chapter3. Note that except for the different definition of turbulence, the previous description of
the short-term response of the turbine could have been used. The short-term description of the
turbine can be used with any set of environmental contours, provided that environmental variables
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Figure 4.8:Environmental contour: Lavrio, Greece site.

are defined in a consistent manner.

The power law model in Equatioh17was used to relate the extreme response to the environ-
mental variables. The results of the regression analysis in each load regime are shownn3lable
The reference wind speed and reference turbulence used in the regression analysis are given in
Table4.4.

4.5.4 Environmental Contour vs. Full Integration Method

Figure4.9 shows the 10-minute maximum iso-response lines plotted with the environmental con-
tour from Figure4.8. The response lines are calculated based on the regression model given in
Equation4.17 and the coefficients in Tabk.3 for the 10-minute extreme. A grid of pairs of en-
vironmental variables are evaluated and plotted as iso-response lines. Searching for the maximum
response along the one-year return period contour results in an estimate of 40.2kN-m, for the one-
year flap-bending load. Similarly, an estimate of 49.3kN-m was found for the 50-year flap-bending
load. Correspondingly, estimates of the one-year and 50-year blade root edge bending loads are
10.2kN-m and 11.8kN-m, respectively.

Figure4.10shows a plot of the value of the turbine response as a functiéracdund the one-
year and 50-year contour. The largest response is our estimate of the one-year and 50-year load,
respectively. In the cases presented in this figure, it is clear that there are no local maximums close
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Regression of the Mean of
10-Minute Maximum on V and I

Blade root flap bending

a (KN-m) b c R?
V <24m/s| 25.664 | 0.7928| 0.7129| 0.9682
V >24ml/s| 37.304 | 2.6079| 0.0604| 0.9985

Blade root edge bending
a (KN-m) b c R?

V <24m/s| 8.6100 | 0.3231| 0.2084| 0.9924
V > 24m/s| 7.2275 | 4.1052| 0.7718| 0.9965

Table 4.3:Regression coefficients used in Equatdbbh7to fit mean flap and edge bending loads as
a functions of the mean wind speédd, and turbulence intensity,

Reference Wind Speed and Turbulence

‘ Viet (M/S) ‘ Tret (%)
16.474 15.28

V < 24mls

V >24m/s| 34.861 13.18

Table 4.4:Reference wind speed and turbulence values used in Equafign
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in value to the global maximum as we saw in the first example. Regardless, the limit state functions,
plotted in standard normal space, are shown in Appebdix

Figure4.11 shows the long-term distribution of flap-bending loads employing Equdtib@
and the joint probability density function defined by Equatibh2 and shown in Figurd.7. In
this example, the conditional short-term loads are considered to be deterministic at their mean
level. Estimates of the one-year and 50-year flap-bending load are 37.8kN-m and 48.1kN-m, re-
spectively. Corresponding estimates of the one-year and 50-year edge-bending loads are 10.0kN-m
and 11.4kN-m respectively

In this example, the percent difference between the flap-bending load estimates obtained from
the full integration method as compared with the environmental contour method is 6.0% and 2.4%
for the one-year and 50-year extreme load, respectively. Similar results were found for edge-bending
loads, i.e., 1.6% and 3.3% for the one-year and 50-year extreme loads, respectively. These estimates
of the extreme loads apply to thec 15/50 machine, if it where installed at the Lavrio, Greece,
test site. These results are lower than those predicited for the turbine if operatirgcatlass IA
site. As mentioned earlier, thec class IA environment is intended to represent a wide range of
site charateristics and is therefore more conservative when compared to most specific sites. If we
contend that theec class IA environment is more conservative than the environment at the Lavrio,
Greece, site, then we would expect to see lower estimates of extreme events at the Lavrio site than
would be predicted from theec class IA environment. Indeed this is the result we find here.

4.6 Example 3 — Field Data Model with Pitch-Regulated Turbine

In this final example, we investigate a source of concern—if the contour method would give reason-
able results, if in the operating regime the response of the turbine were not monotonic with wind
speed. This behavior would be generally characteristic of a pitch-regulated turbine. To pursue this
guestion we again consider the environmental description given in the previous example (Lavrio,
Greece—turbulence defined as the coefficient of variation of the 10-minute wind process), and a
hypothetical horizontal axis wind turbine with the flap-bending response behavior shown in Fig-
ure4.12 This response behavior is based on the analysis ofaleel5/50 turbine conducted in the
previous example. However, the operating response has been modified by the author solely for the
purposes of this illustration, by dividing it into two sections. The first section, below a 10-minute
mean wind speed of 16.5m/s, the response increases with wind speed. The second section, above
a wind speed of 16.5m/s, the response decreases with increasing wind speed. Both sections of the
operating regime follow the power law model given in Equatioh7 and the requisite coefficients
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sent the maximum response with the prescribed return period.
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Figure 4.11:.Long-term distributions of 10-minute extreme blade root bending moniegtyin,
considering the short-term extreme load deterministic at mean level, for both: (a) flap
and (b) edge bending. considered deterministic.
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Flap Loading

Regression on Mean of 10-minute maximum
\ a (KN-m) \ b \ c

V £ 16.5m/s 25.664 | 0.7928 | 0.7129
16.5 <V £24 | 25.664 | -0.7928| 0.7129
V > 24m/s 37.304 | 2.6079 | 0.0604

150

Table 4.5:Regression coefficients used in Equatioh7for flap load as a function of the mean wind
speedV, and turbulence intensity,.

Mean of 10-minute maximum, KN-m
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Figure 4.12:Constructed flap load response versus mean wind speed.

are shown in Tabld.5 The reference wind speed and reference turbulence used are given in Ta-
ble 4.4. Note, that for the first section of the operating response (below 16.5m/s) the behavior of
the turbine is the same as presented in Example 2. We have simply forced the behavior of the

turbine above 16.5m/s to exhibit a non-monotonic behavior by prescribing the values of the power
law model coefficients. The response in the parked wind speed regime has not been modified and

represents an unfeathered blade condition. In this example, two discontinuities exist. The first dis-
continuity is in the operating regime of the turbine; a slope discontinuity occurs at 16.5m/s for the

10-minute mean wind speed. The second discontinuity occurs at the maximum operating 10-minute
mean wind speed (24m/s), where the response of the turbine switches from the operating regime to

parked regime.
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4.6.1 Comparing Environmental Contour and Full Integration

Figure4.13shows the 10-minute maximum iso-response lines plotted with the Lavrio test site envi-
ronmental contour from Figur€.8. The response lines are calculated based on the model given in
Equation4.17 and the coefficients in Tabke5 for the 10-minute extreme. Searching for the max-
imum response along the one-year return period contour, results in an estimate of 38.2kN-m, for
the one-year flap-bending load. Similarly, an estimate of 49.2kN-m was found for the 50-year flap-
bending load. We can see a significant change in the iso-response lines, compared with.Bjgure

as a result of the non-monotonic description of the response of the turbine. We would expect higher
extreme loads near a 10-minute mean wind speed of 16.5m/s and the iso-response lines reflect this.
In the previous example we observed that the maximum response of the one-year extreme load oc-
curred at the highest operating wind speed. For the description of the response used here, we would
expect to see the maximum response along the one-year return period contour to occur closer to the
16.5m/s wind speed rather than at 24m/s, the highest operating wind speed, since in this section the
extreme load is decreasing with wind speed. We find that from the contour analysis the maximum
response does occur at a much lower wind speed; just below 16.5m/s, seedl@uiidhe 50-year
extreme load is still driven by higher wind speeds. We would expect this outcome as we have only
slightly modified the operating regime model and the description of the environment has stayed the
same.

Figure 4.14 shows a plot of the value of the turbine response as a functighavbund the
one-year and 50-year contour. The largest response is our estimates of the one-year and 50-year
load, respectively. In this figure we can see how the response changes as we traverse the contour.
From Figure4.13we may anticipate, for the one-year contour, that we may have multiple design
points. Figure4.14 confirms this suggestion. The sets of environmental variables corresponding
to# = 0.5 andfd = 1.57 produce a similar load response on the turbine. A study of the shape
of the limit state function plotted in standard normal space (see Appé&)jdikows that under the
assumptions of form analysis, similar results would be obtained if either point were used. How-
ever, a more accurate approximation may be obtained if a more complicated method of implement-
ing second-order methods and system analysis were employed. A further discussion is presented
in AppendixD. Figure4.15shows the long-term distribution of flap bending loads employing
Equatior4.18and the joint probability density function defined by Equadioh?and shown in Fig-
ure4.7. In this example the conditional short-term loads are considered to be deterministic at their
mean level. Estimates of the one-year and 50-year flap-bending load are 33.8kN-m and 48.1kN-m,
respectively.

In this example, the percent difference between the flap bending load estimate obtained from the
full integration method as compared with the environmental contour method is 13.0% and 2.2% for
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Figure 4.15:.Long-term distribution of 10-minute extreme blade root flap bending moniggtyin,
considering the short-term extreme load deterministic at mean level.

the one-year and 50-year extreme load, respectively. These results confirm the estimates obtained
from the contour method for our hypothetical pitch-regulated turbine subjected to the description of
the environmental conditions at the Lavrio, Greece, test site. We might attribute the larger difference
in the estimates of the one-year load between the two methods as a result of the added slope discon-
tinuity. These discontinuities present a major test tortheM methodology. One of the underlying
assumptions irORM analysis is that the limit state function is generally smooth.

4.7 Including the Third Random Variable

In the previous examples the environmental contours were based on the two environmental random
variables. The short-term extreme loads were considered deterministic. We know, however, that the
short-term loads have an associated variability.

If we considered the short-term extreme response of the first example random, modeled by a
Gumbel distribution, for example, as shown in Appen@i8 and use the full-integration method,
then the estimates of the one-year and 50-year flap-bending loads are 52.4kN-m and 74.3kN-m,
respectively. This is a difference of 9.5% and 5.9% for the one-year and 50-year loads compared
with the estimates considering the short-term extreme loads deterministic and integrating. Similarly,
considering the edge bending loads, the estimates of the one-year and 50-year loads, considering
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the short-term loads modeled by a Gumbel distribution, are 12.26kN-m and 19.3kN-m, respectively.
This is a difference of 20.9% and 9.8% for the one-year and 50-year loads, respectively.

For the second example, if we consider the short-term extreme response random, also modeled
by a Gumbel distribution (this is the analysis presented in Ch&pténen the estimates of the one-
year and 50-year flap-bending loads are 49.1kN-m and 59.7kN-m, respectively. This is a difference
of 23.0% and 19.4%. Similarly, considering the edge bending loads, the estimates of the one-year
and 50-year loads considering the short-term loads modeled by a Gumbel distribution are 11.8kN-
m and 13.7kN-m, respectively. This is a difference of 15.3% and 16.8% for the one-year and
50-year loads, respectively. Again, these comparisons are based on implementing the integration
method to demonstrate the difference between considering the short-term extremes deterministic or
random. These results are summarized in TalBeThis topic was discussed in detail in Chagger
Therefore, from these comparisons we can see that the appropriate choice of the fractile of the short-
term response used in the contour analysis is not a trivial matter. There are several ways to include
or recover the variability of the short-term response in the contour method presented earlier. We
will discuss briefly a few of them here.

We might consider using inflated fractiles, similar to the work discussed in CHa(pliezwater
and Cornell #9]) or omission factors (see Winterstein, et &@9]). In these approaches, the 2-

D environmental contours are “inflated” to account for variability in the short-term load. How
much the contours, based on expected extreme loads, would have to be inflated, may be based
on the variability of the short-term response, which of course may differ between turbine designs.
Universal fractiles would need to be chosen judiciously.

Another approach would be to consider constructing a 3-D contour including the randomness
of the load variable directly. After having constructed transformation equations, a contour in 3-
D space, wind speed, conditional turbulence, and conditional short-term response, could be con-
structed. It would then be a more involved matter to search the 3-D contour for the maximum
response.

It should be noted, however, that implementing any of the methods above re-couples the prob-
lem between the wind turbine machine and the site. The contour developed would be specific to
a particular site and wind turbine. The 2-D environmental contours presented in this paper are de-
pendent only on the site conditions, and therefore any consistently defined description of short-term
wind turbine response could be used. The 3-D contours developed would be applicable only to the
specific turbine used in the analysis. A new analysis would have to be conducted to obtain a 3-D
contour for a different wind turbine at the same site. The question of how to deal with the variability
associated with a third variable (or more) continues to be a topic of ongoing research.
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Comparison of One-Year and 50-Year Blade Root Flap and Edge Bending Loads
Considering Conditional Short-Term Load Alternatively Random and Deterministic

Example 1—ec Model with Stall-Regulated Turbine

1-Year Load(kN-m) 50-year Load(kN-m)
Random| Deterministic| % Diff. | Random| Deterministic| % Diff.
Flap 52.4 47.4 -9.5% 74.3 69.9 -5.9%
Edge 12.3 9.7 -20.9% 19.3 17.4 -9.8%

Example 2—Field Data Model with Stall-Regulated Turbine

1-Year Load(kN-m) 50-year Load(kN-m)
Random| Deterministic| % Diff. | Random| Deterministic| % Diff.
Flap 49.1 37.8 -23.0% 59.7 48.1 -19.4%
Edge 11.8 10.0 -15.3% 13.7 11.4 -16.8%

Table 4.6:Comparison of one-year and 50-year blade root flap and edge bending loads, considering
conditional short-term load alternatively either random, modeled by a Gumbel distribu-
tion, or deterministic.

4.8 Conclusion

In this chapter we have presented a brief discussion of the theory of first-order reliability analysis
and how through inverseerM, contours of design environmental conditions can be constructed.
These theories were applied in three different examples. The first two examples demonstrated
how estimates of the one-year and 50-year extreme blade bending loadssor 45/50 turbine
might be obtained using environmental contours. The description of the environment was differ-
ent in each of these examples. The environment in the first example was basedeanciass
IA wind environment. In the second example the environment was based on an analysis of field
collected data at the Lavrio, Greece, test site. In both examples, the estimates obtained from the
environmental contour method were compared with estimates obtained from integrating the short-
term extreme loads over the long-term distribution of the environmental variables. In general, the
estimates differed by only about 5%. We mentioned earliersb&m™ is an approximate method,
and the non-linear nature of the limit state function can have an effect on the efficacy of the method
to provide an accurate approximation. We have seen in the examples considered here, even with
the presence of a discontinuity in the limit state function at the cut-out wind sjpesdy pro-
vides a reasonable approximation. This is, of course, not true in general, and our result is based
on the turbine, site data, and distribution models seen here. In general terms, we may expect this
result, however, if it can be shown that the discontinuity in the limit state function is sufficiently far
away from the design point so as not to affect the gradient calculations. The reader is referred to
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AppendixD for a further discussion.

The third example again used the description of the environment from the Lavrio test site. In
this case, however, the short-term response was developed to simulate the typical non-monotonic
response of a pitch-regulated machine. This contributed a slope discontinuity in the limit state
function. Again estimates of the one-year and 50-year extreme flap-bending loads were obtained
from both methods. The estimates of the one-year load differed by about 13% while the estimates
of the 50-year load differed by about 2% between the two methods. Including the additional slope
discontinuity did not greatly affect the efficacy ®brM to provide an acceptable approximation, at
least for the turbine, site data, and distribution models used in this analysis.

We have demonstrated that the environmental contour method provides estimates of extreme
response similar to those obtained by the integration method. One advantage of using environ-
mental contours is that the contours themselves are developed only based on data relating to the
environment and a reliability criterion for the turbine. Therefore, the contours immediately give
some insight into the critical combinations of environmental variables and may lead to a reduction
in the required number of environmental conditions explored in the design process. In particular,
instead of interrogating the entire space of combinations of environmental conditions for the critical
response of the turbine, the contour identifies the critical environmental conditions. We only need
to search the points along the contour to find the critical response of the turbine, for a prescribed
reliability level. This can be a great benefit when running expensive computer simulations—we only
need to run simulations at environmental conditions on the contour. A carefully constructed search
algorithm, to interrogate the environmental contour, may lead to additional reduction in the number
of environmental conditions considered in the quest to find the critical response of the turbine.



Chapter 5

Estimation of Fatigue Distributions

International standards for wind turbine certification depend on finding long-term fatigue load prob-
ability distributions that are consistent with respect to the state of knowledge for a given system.
Statistical moment-based models of loads for fatigue applications are described and demonstrated
here using flap and edge blade-bending data from a commercial turbine. Distributions of rain-flow-
counted range data are characterized by a limited number of their statistical moments. Beyond the
convenient two-moment (Weibull) model, a few higher-moment models are considered. These in-
clude: (1) a “quadratic Weibull” model, which uses a quadratic distortion of the original Weibull
model to preserve the first three moments of the data; and (2) a “damage-based” Weibull model,
which seeks to fit a two-moment model not to the stress ranges themselves, but to a power-law
transformation of these that directly reflects “damage” (e.g., based on typical material fatigue prop-
erties). The damage-based model is shown to follow the upper tail of the observed data, while the
three-moment model also gives a good tail-fit if the non-damaging low-amplitude ranges are first
excluded.

5.1 Introduction

The capital cost of new product development has driven the industry toward a sophisticated reliance
on numerical simulation and analysis. Fatigue loads are required to be estimated using extreme
turbulence levels—intended to envelop the worst measured turbulence levels from around the world.
Standards (e.glec [23]) therefore specify analysis at conditions that are easily simulated, but may
never be measured on a prototype in the field. Loads must be extrapolated from site conditions to
design standard conditions.

Parametric, moment-based models have the ability to describe the reliance of the turbine on the

157



CHAPTER 5. LONG-TERM FATIGUE DISTRIBUTIONS 158

specified turbulence levels by determining the relationship between the governing parameters (mo-
ments) of the turbine response and the wind environment (average wind $fiesat] turbulence
intensity, I). The fatigue response is characterized by the rain-flow counted load ra&nigethe
response time history. A minimal number of central moments of the rain-flow ranges can be used
to characterize the distribution of ranges at a given set of inflow conditions. Remaining questions
include (1) how many moments are sufficient to predict fatigue damage, which is nonlinearly re-
lated to load range amplitude, and (2) how can “higher-moment” models (i.e., including moments
of higher than second order) be conveniently constructed?

Here, we present two such higher-moment models: a quadratic Weibull model based on three
moments, and a “damage-based” Weibull model based on even higher moments, which are propor-
tional to fatigue damage. The quadratic Weibull model has been previously introduced and applied
to other cases of fatigue loads (e.g., Lang@;[Veers and WintersteirbH]; Ronold et al. #6]) and
we saw how this model could be applied to extreme loads in Chaptand 3 (also see Fitzwater
and Winterstein38]). In contrast, the damage-based Weibull model is new, suggested here as an
alternative that confers certain advantages in some fatigue applications. We demonstrate the use of
these models by studying two orthogonal blade-root bending moments: “flap” (out of the plane of
blade rotation) and “edge” (in the plane of rotation). The challenges in these cases for the random
vibration analyst include the harmonic content of the loads from the rotational motion of the blades,
as well as other less easily described nonlinear effects.

The fatigue-load spectra are calculated by splitting the problem into “short-term” and “long-
term” aspects. The short-term distribution of load ranges is characterized by operation of the tur-
bine in short (10-minute) quasi-stationary wind conditions (constant average wind $peauai
turbulence intensity]). The short-term distribution of load ranges is tied to the relevant statistical
moments of the ranges - which, in turn, are related by regression to the input average wind speed and
turbulence intensity. Thus, the short-term distribution of ranges may be predicted for any combina-
tion of wind conditions. The long-term distribution of ranges is then easily obtained by integrating
over the joint annual distribution of input conditions.

The approach described above is conducted considering two alternatives for modeling the short-
term load. In Sectiob.4, an estimate of the long-term distribution of fatigue loads is obtained where
the short-term fatigue ranges are modeled by a quadratic Weibull distribution. Alternatively, in Sec-
tion 5.5, an estimate of the long-term distribution of fatigue loads is obtained where the short-term
fatigue ranges are modeled by a damage-based Weibull model. In addition to obtaining estimates of
the long-term distribution of fatigue stress ranges, we estimate a measure of the expected damage
for different material fatigue exponent values.
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5.2 Data Set

The data set used in this analysis is for the Atlantic Orient Corporatianl5/50 turbine, described

in Chapterl (pagel8). The turbine has a rotor diameter of 15m, a fixed rotor speed of ab&r B0

and a rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25
meters 2]. The data set is described in detail in Chadpage66) and consisted of multiple
10-minute simulations of Gaussian wind fields and corresponding blade root bending moments.
The wind input processes is described by the hub height wind speed. The blade root flap and edge
bending moment response time histories were assumed to be repeating and were rain-flow counted
using the simplified rain-flow counting for repeating histories method givexsirm standard E-

1049.

5.3 Probability Models for Fatigue Loads

Similar to the analysis performed in the previous chapters, we assume here that the stress response
of the wind turbine remains stationary within each 10-minute duration event. To predict fatigue
damage in such an event, it is common to assume that a single stressRapgecuces damage

D o Rr. More formally, the basic relation between fatigue stress ranges and the number of cycles
to failure, NV, is given by Basquin’s Relatior6f):

R =o%(N)" (5.1)

Where,a}, is the fatigue strength coefficient, atis the fatigue strength exponent. The damage
per cycle is defined as one ovéy, .
D= N (5.2)
Solving Equatiorb.1for N and relating to EquatioB.2, we have a relation for the damage based
on the stress range.
by
D= (?) — D xRY (5.3)
¥
where,by = 1
B
If R,the stress range, is taken as a random variableq;aaddbf are deterministic coefficients,
then the damagd), will also be a random variable. The expected damage from an arbitrary cycle,
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k, may be found by taking the expectation of Equatos

E[Dy] x E[RY] (5.4)

The important conclusion is that we should be interested in some higher mom&r(bef being

greater than one for the materials of interest). We will refer back to this in the next sections, which
describe three probability models used for estimating the distribution of fatigue ranges. This result
will also be used in a later analysis to estimate the expected total damage in an arbitrary 10 minutes
or over longer durations.

5.3.1 The Standard Weibull Model

A conventional approach is to model an arbitrary stress raRgas a random variablé) = R,
with Weibull probability distribution function:

P[W > w] = exp [—(w/aw)ﬁw (5.5)
The corresponding statistical momentd/Bfare given by
E[W™] = agyr(m/fw)! (5.6)

where(-)! denotes the factorial function. In practice, one estimates the first two statistical moments
from the data, and uses Equat®@®with m = 1 and 2 to infer the parameter valuesogf andgyy .
The mean damage per cycld D] « E[R"/] (Equation5.4), is also found directly from Equatidh6
for arbitrarym = by.

There are two main benefits of this Weibull model. First, it requires relatively little data; specif-
ically, data sufficient only for accurate prediction of the first two moments of the stress ranges.
Second, the closed-form moment results facilitate both the parameter fittimg @nd 5y from
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the data, and the consistent estimatio[d] from ay andgyy. To illustrate the fit of the standard
Weibull model to data, Figurg.1shows range results for a turbine operating in wind conditions: 10-
minute mean wind speelf, = 24m/s and turbulence clags This data is taken from one of the 100
simulated samples for the turbine operating in these environmental conditions. The data are plotted
on a Weibull scale for the flap data in Figusel(a)and for the edge loads in Figugel(b) These

plots transform the vertical scale by plotting not the cumulative distributigir) = P[R < r] but
rather—In[1 — Fr(r)], so that the Weibull distribution will appear as a straight line on a log-log
plot. Figure5.2 shows range results for a parked turbine. The data were taken from one of the 100
simulated samples with wind conditiong: = 50m/s turbulence class A, and the turbine parked.
The flap loads are shown in Figuse2(a)and the edge loads are shown in Figbira(b)

The simple two-moment characterization of the Weibull model is also its potential drawback.
Typicalb; values for metals may range from 3 to 8, with lower values more typical for welded steels
and higher values for aluminum. As increasesE[D] « E[R’/] becomes increasingly sensitive to
the details of the stress range distribution in its upper tail. Any deviation from the Weibull model in
this upper region can lead to erroneous damage predictions. Composites often show stilh higher
values—e.g.by = 10 or higher—and hence give still larger potential for the two-moment Weibull
model to err. We describe here two models that seek to address these potential modeling errors
through the use of higher-order statistical moments.

5.3.2 The Quadratic Weibull Model

The quadratic Weibull model again starts with a Weibull varidlble whose parametersy;, and
Bw are chosen to preserve the first two range moments. A quadratic perturbation term is then added
to better model the actual range,

R = Ry + k[W + eW?] (5.7)

The coefficient is chosen here so that the skewness (third normalized moment) of the range
data is preserved. The remaining parameteid Ry, are finally chosen to preserve the variance
and mean of respectively. (Note that Equatidn? is applied directly only when the skewness of
R is found to exceed that of the Weibull variatilé. In this case, the quadratic ter#’? serves
to enhance the skewness, from that of the Weibull variable to that of the observed ranges. If the
skewness of? is instead found to be less than thatldf, the roles ofR and W in Equation5.7
are interchanged.) Additional technical details can be found in Laé8e6p] and Manuel, et
al. [52, 53]. Other applications of this model to fatigue loads can be found in Ronold, dithhfd
Manuel, et al. $0]. We saw how this model could be applied to extreme loads in Chaptand3;
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Figure 5.1:Standard Weibull model fit to blade root flap and edge bending moment fatigue ranges

for Aoc 15/50 turbine operating in an environment with a 10-minute mean wind speed
of 24m/s and turbulence class
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also see Fitzwater and Winterste88].

Thus, the resulting quadratic Weibull distribution Bfpreserves the first three statistical mo-
ments of the data. Its distribution function appears as a quadratic curve when plotted on Weibull
probability scale. To illustrate, quadratic Weibull models are fit to the same data, relating to the
operating turbine, as presented for the standard Weibull model previously. The data are plotted on a
Weibull scale for the flap data in Figuke3(a)and for the edge loads in Figube3(b)

Figuress.3(a)and5.3(b)show attempts to fit the entire flap and edge data with quadratic Weibull
models. As seen in Figug3(a) and especially Figurg.3(b) the data have a kinked appearance
which the smooth probability distribution, in spite of its quadratic distortion, has difficulty matching.
Closer examination of the data reveals that the kink is due to a large number of cycles at relatively
low amplitudes. By truncating the loads at a lower-bound threshold, however, the kink in the data
can be eliminated without significantly reducing the implied damage. In the edge case, there are
a great number of cycles of smaller amplitude than the dominant gravity load at about 8-9kN-m
(8.5kN-m was used as the filtering threshold). The flap loads have a less distinctive kink at around
10 kKN-m. Figuress.4(a)and5.4(b) are similar to Figure$.3(a)and5.3(b) but include only a
subset of the data by removing all ranges beneath a lower-bound thrégfoland modeling the
shifted variableR — Ry, with our (positively valued) quadratic Weibull model. Clearly, the fit of the
quadratic Weibull models are improved dramatically. It has also been shown (Manuei@) gt
the damage omitted through using a threshold can be negligible, which is consistent with findings
that have long been available in the fatigue literature (e.g., Nelson and Faghs A quadratic
Weibull model fit to fatigue loads on a parked turbine for 10-minute mean wind speed of 50m/s is
shown in Figures.5. The fit of the model to the data seems reasonable and no additional shifting
and truncating of the data were performed.

In summary, the quadratic Weibull model offers the ability to match the first three moments
of the data set. The resulting quadratic behavior of its distribution function, on Weibull scale, can
yield a good fit to stress range data (e.g., the edge data in Figliig). In other cases, a simpler
linear/Weibull model may suffice (e.g., the flap data in Fighw(a). The main drawbacks of the
guadratic Weibull model are that (1) simple closed-form moment results are no longer available
so that parameter estimation must be performed numerically; and (2) the analyst may need to first
impose a lower-bound threshold to exclude uninteresting, small-amplitude ranges. Neither of these
problems is insurmountable; indeed, numerical algorithms are available to facilitate the use of these
higher-moment models (e.g., Manuel et 8R,[53]). However, next we explore an alternative, the
“damage-based” Weibull model that is somewhat simpler to implement.
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Figure 5.3:Quadratic Weibull model fit to blade root flap and edge bending moment fatigue ranges
for Aoc 15/50 turbine operating in an environment with a 10-minute mean wind speed
of 24m/s and turbulence class
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5.3.3 The Damage-Based Weibull Model

As noted earlier, the damage per cycle is commonly relatel’to the bt}‘ power of the stress
rangeR. Because typicab; values far exceed unity, standard second-moment Weibull fits may
not accurately predict the higher moméajfz'/] that drives damage accumulation. Our proposed
damage-based Weibull model notes thaRiffollows a Weibull distribution, then the power-law
transformationk?, wherez is an arbitrary power on the ranges, also follows a (modified) Weibull
distribution. We therefore use a second-moment Weibull fit not of the r&nbet rather an associ-
ated variable

W = R? (5.8)

By choosingz = b/2, and matching the second moment of the resulting distributioi¥’ pthe
damage potential of the range distribution for a given material (wheiie the slope of the S-N
curve) is preserved. For example, with= 3, this Weibull fit will preserve botlt[ R3] andE[RY],
which are typical for some welded steelg (= 3) and aluminumsy; = 6), respectively. For
wind turbine applications, even higher moments are of interest because fiberglass composite blades
posses$; values equal to 8, 10, or even higher.

In practice, the damage-based Weibull model is fit by (1) transforming the rangg& diataugh
Equation5.8, (2) using a standard second-moment fit for the Weibull parametgrsand Gy ;
and (3) plotting the resulting distribution functiofyy (w), versus notw but ratherr = w'/2.
The benefits of this model are that (1) it requires only a standard second-moment Weibull fitting
procedure easily implemented without specialized algorithms; and (2) it explicitly ensures accurate
distribution modeling in the range most relevant for damage prediction, i.e., in the upper tail of the
stress range distribution. (A similar upper tail fit model could be used to predict ultimate loads as
well, although in this case there is no physical motivation for a particular choige-6f2z value.)

Figuress.6and5.7repeat the Weibull scale distribution plots of all data for an operating turbine
condition considering both flap and edge loads, respectively, for one 10-minute sample. Also shown
on these figures are three damage-based Weibull predictions which utilize the parameter choices
z = 3,4, and 5. (A choice of = 5 may be most appropriate for wind turbine blades, preserving
theb, = 10™ moment which may govern damage of these composite components.) Similarly,
Figures5.8 and5.9 show the damage-based Weibull model fit=£ 3, 4, 5) to fatigue range data
for a parked turbine condition considering flap and edge loads, respectively. As may be expected,
these models provide accurate load distribution estimates in the upper tail of interest. (Incteasing
values leads to enhanced emphasis on the upper tail.) Note again the advantages of these models, by
permitting tail-fitting in an automated, physically-based way. They also avoid the need to impose a
lower-bound load threshold; all ranges may be included, and the original cycle rate preserved. Of
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course, the damage-based Weibull model, because it emphasizes upper-tail behavior, will provide a
poor estimate of low-fractile loads, but these loads have little or no effect on damage prediction.

5.4 Long-Term Analysis Based on Modeling Fatigue Ranges
with Quadratic Weibull Model

5.4.1 Short-term Analysis

To review, the load models proposed here estimate the probability distribution of load r&nbgs,
preserving a limited set of statistical moments= E[R’]. The relevant moments here are model-
dependent;; and o are used for the standard Weibull model, through s for the quadratic
Weibull model, and:. and . for the damage-based Weibull modeldn the order of 3-5); =

6 — 10). The moments of the fatigue ranges were calculated for all blade root flap and edge bending
response time histories. For each pair of environmental variables ¥e=@0Qm/s and/=classA)

the 100 observations of the moments, e.g., mean, or variance, etc., were pooled together and the
mean of these pooled observations was reported. We saw in CBafitat the statistical moments

of the global or local peaks could be related to the environmental variables through regression
analysis. The same can be done here to relate the statistical momgr$ the fatigue ranges to

the environmental variables: mean wind spéédand turbulence intensity, through the power-

law relation we have seen befofe]:

= o (v) (z) 5:9)

Hence, for these parametric load models, the wind turbine characteristics are reflected solely
through the moment relations in Equatibrd. For example, with the quadratic Weibull model we
require the 9 coefficients;, b;, ¢; (i = 1,2,3) that govern the first three moments of the ranges.
For clarity, we organize these coefficients here into a vector, defoted

0 = [a1,b1,c1,a2,b2, c2, a3, b3, c3] (5.10)

The other (standard or damage-based) Weibull models require only two moments, and hence 6
coefficients in the vectof. Linear regression analysis, applied to the logarithm of Equdiién

yields point estimates of these coefficients. To demonstrate typical results, we pursue the quadratic
Weibull model here; the alternative damage-based Weibull model will be discussed in $etion
There are two distinct general loading conditions for the turbine, one when the turbine is operating
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Figure 5.6:Damage-based Weibull model fit to blade root flap bending fatigue ranges faw@n
15/50 turbine operating in an environment with a 10-minute mean wind speed of 24m/s
and turbulence clags, for z = 3, 4, 5.
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Figure 5.7:Damage-based Weibull model fit to blade root edge bending fatigue rangesAoican
15/50 turbine operating in an environment with al0-minute mean wind speed of 24m/s
and turbulence clags, for z = 3, 4, 5.
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Figure 5.8:Damage-based Weibull model fit to blade root flap bending fatigue ranges fa@n
15/50 turbine parked in an environment with a 10-minute mean wind speed of 50m/s
and turbulence clags, for z = 3, 4, 5.
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Figure 5.9:Damage-based Weibull model fit to blade root edge bending fatigue rangesAoican
15/50 turbine parked in an environment with a 10-minute mean wind speed of 50m/s
and turbulence clags, for z = 3, 4, 5.
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Reference Wind Speed and Turbulence

‘ Vret (M/s) ‘ Iret (%)
16.474 15.28
34.861 13.18

V < 24mls
V > 24mls

Table 5.1:Reference wind speed and turbulence values used in Eqiafion

(i.e., 10-minute mean wind speeds24m/s) and the other while the turbine is parked (i.e., 10-
minute mean wind speeds 24m/s). Separate regression analyzes were performed under each
of these conditions. The reference wind speed and reference turbulence used in the regression
analysis are given in Tab& 1 The calculated regression coefficients &fdstatistics are shown
in Tables5.2 and5.3for blade root flap and edge bending fatigue ranges, respectivélstatistics
near unity indicate that a large percentage of the variability in the data is explained by the regression
model. LowR? statistics indicate that other influences not contained in the regression model may
be affecting the loads. We may note that Rrestatistic for the regression analysis of the coefficient
of skewness are low in a few instances (i.e., skewness—parked edge bending), implying the data
exhibit variability which the model is unable to explain. In performing the regression analysis it
was determined that the proposed functional model, Equéat®lid not have enough flexibility to
sufficiently model the observed behavior of the mean and standard deviation of the blade root flap
bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten
out with higher wind speeds above 17m/s as compared with the behavior below 17m/s. Therefore,
a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for
both the mean and standard deviation of blade root flap bending fatigue ranges. A similar result was
found in ChapteB when we considered modeling the local peaks with a quadratic Weibull model,
see Figure8.25and3.26

Finally, graphical regression results are shown in Figbt&8-5.12 Each figure contains both
blade root flap and edge bending conditions considering: mean of fatigue ranges, F=iire
standard deviation of fatigue ranges, Figar&l;, and coefficient of skewness of fatigue ranges,
Figure5.12 In all plots, the turbulence intensity has been set equal to the reference value.

5.4.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by a
quadratic Weibull model. We saw how this model can be represented by the moments of the data.
Further, we have just shown through regression analysis, how these statistical moments may be
related to the environmental variables.
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Blade Root Flap Bending
Regression of Statistics of Fatigue Ranges dri and

Mean of Fatigue Ranges

a (KN-m) b c R?
V = 17m/s 6.3777 | 1.2545| 0.9231| 0.9742
17 <V £24mls | 7.4424 | 0.2782| 1.3015| 0.9850
V > 24m/s 44473 | 4.4517| 0.0512| 0.9948

Standard Deviation of Fatigue Ranges

a (KN-m) b c R?
V < 17mls 5.6064 | 1.1212| 0.9078| 0.9889
17<V £24m/s| 6.5411 | 0.3492| 1.2073| 0.9843
V > 24m/s 4.6646 | 4.2613| 0.6871| 0.9922

Coefficient of Skewness of Fatigue Ranges

a (KN-m) b c R?
V < 24mls 1.3941 | 0.1551| 0.0398| 0.4886
V > 24m/s 2.3150 | -1.325| 0.7810| 0.9404

Table 5.2:Regression coefficients used in Equatto8to fit flap bending moment fatigue ranges as
functions of the mean wind spedd, and turbulence intensity, The turbine is operating
for V' < 24ml/s, otherwise the turbine is parked.
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(b) Pooled statistics of the mean of the fatigue ranges in 10-minute blade root edge
bending response time history

Figure 5.10:Mean fatigue range of 10-minute blade root flap and edge bending response, based on
100 pooled observations for each 10-minute mean wind speed and turbulence class.
The wind turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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(b) Pooled statistics of the standard deviation of the fatigue ranges in 10-minute blade
root edge bending response time history

Figure 5.11:Standard deviation of fatigue ranges for 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operatiny far 24m/s, otherwise
the turbine is parked.
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Figure 5.12:Coefficient of skewness of fatigue ranges for 10-minute blade root flap and edge bend-
ing response time histories, based on 100 pooled observations for each 10-minute mean
wind speed and turbulence class. The wind turbine is operatinig fér24m/s, other-
wise the turbine is parked.
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Blade Root Edge Bending
Regression of Statistics of Fatigue Ranges dr and /

Mean of Fatigue Ranges

‘ a (KN-m) ‘ b ‘ c ‘ R?
V <24m/s| 0.5971 | 0.6772| 0.9331| 0.9572
V >24m/s| 1.0970 | 4.6834 | -0.1105| 0.9955

Standard Deviation of Fatigue Ranges

a (KN-m) b c R?

V <24m/s| 0.5194 | 0.6798 | 1.1092| 0.9814
V >24m/s| 1.1338 | 4.6159 | 0.4885| 0.9937

Coefficient of Skewness of Fatigue Ranges
a (KN-m) b c R?
V <24m/s| 1.8741 | 0.0762 | 0.2110 | 0.0232
V >24m/s| 1.9540 | -0.4800| 0.8844 | 0.2430

Table 5.3:Regression coefficients used in Equatifto fit edge bending moment fatigue ranges
as functions of the mean wind spedd, and turbulence intensity,. The turbine is
operating forl/ < 24m/s, otherwise the turbine is parked.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period, is found
in much the same way we found the long-term distribution of extreme events in Clgapier
review, in ChapteB we saw how the turbine specific conditional probability distribution model of
the 10-minute extreme load could be combined with the long-term distribution of the environmental
variables, through Equatidh16 to obtain an estimate of the long-term distribution of the extreme
load. Equatior3.16is an application of the Law of Total Probability. We can apply, with little
modification, the same methodology here. In this case, Equatidtan be written as:

Filr) = [ Frlrlo.d) fuao,i) dods (5.11)

Where, Frjy1(r|v, ), is the short-term conditional distribution of fatigue ranges, #nd(v,i),
the joint density function of the environmental variables. Equalidd is also an application of
the Law of Total Probability. Where the conditional probability distribution of the fatigue ranges,
given a set of values of the environmental variables, is weighted by the probability of those values
occurring and then summed over the domain of the environmental variables.

We will again assume that threoc 15/50 turbine is installed at a site with environmental con-
ditions similar to the Lavrio, Greece, test site, described in Chap{page77). The long-term
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distribution of the 10-minute mean wind speed is assumed to follow a Rayleigh distribution with
mean,uy = 10m/s. The conditional distribution of turbulence is given by a Gaussian distribution
with conditional meary.;,; = 2.4486v~"%"" and constant standard deviatian,,, = 0.025. A
plot of the joint density function of the environmental variables is shown in FiguteChapter).!

The ranges of values of the environmental variables are discretized into evenly spaced intervals.
For each pair of values of the environmental variables, the corresponding short-term distribution
of fatigue ranges is generated, and any required threshbifi) (s reintroduced. Then, per Equa-
tion 5.11, the short-term conditional fatigue range distributions are summed together, each weighted
by the probability of the respective environmental condition, i.e., pair of values of the environmental
variables. The summation is performed over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case, to develop the long-term distribution, the appropriate regression
model is used for each wind speed value. For wind speeds below 24m/s the regression relating
operating loads is used and, correspondingly, for wind speeds above 24m/s the regression relating
parked loads is used. This results in a combination of the operating and parked long-term distribu-
tions of fatigue ranges as shown in Figré3 It was assumed that there was 100% availability of
the turbine during all wind speeds. Considering the blade root flap bending direction, we see in Fig-
ure5.13(a)that the blade root flap bending moment fatigue ranges are dominated by the operating
conditions. In Figuré.13(b) we see that parking the turbine avoids increased probability of large
blade root edge bending moments.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, another inter-
esting question is how we might obtain an estimate of the fatigue damage in an arbitrary 10-minute
interval. The expected fatigue damage from an arbitrary cycle, given values of the environmental
variables, was given in Equatidh4. We may then estimate the expected total damage by first
calculating the expected damage in 10 minutes given values of the environmental variables as:

E[D1o minlv, 1] = E[No(v,7)]E[D]v, ] (5.12)

WhereE[Ny(v, )], is the expected number of cycles as a function of wind speed and turbulence,
andE[D|v, ], is given by Equatio.4. It is generally assumed th&iNy(v, )] andE[D|v, i] are at

least uncorrelated, if not independef}. [We again turn to our regression model for a relationship
between the expected number of cycles and the environmental variables. The same power law

1A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Clptets.
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Figure 5.13:.Long-term distributions of blade root fatigue bending moment ranBespnsidering
three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine parked
over all wind speeds, 3) turbine operating below cutout wind speed and parked above
cutout wind speed; for both: blade root (a) flap and (b) edge bending.
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functional form, Equatio®.9, was used.

b c
E[No(v,7)] =a (‘/‘}/(ef) <Irlef> (5.13)

The calculated regression coefficients &tdbstatistics are shown in Tabfe4 for blade root flap and

edge bending fatigue ranges. Graphical regression results are shown inFigureurthermore,

the expected total damage in an arbitrary 10 minutes may be obtained by again applying the Law of
Total Probability; weighting the results of Equatibri2by the probability of the values of the pair

of environmental variables occurring and integrating over the environmental space.

ElDsomel = ([ ELNo(w. DJELDJo. i) (0. i) v (5.14)

It is a simple matter to calculate the expected total damage at longer time intervals, e.g., a year,
by multiplying the result of EquatioB.14by the number of 10 minute periods in the desired time
interval.

We showed earlier th&[D] « E[R/]. A similar relation can be written as:

E[D10 min] o / /V IE[NO(v,i)]E[Rbf|v,i] fu.i(v,i)dvdi = DMy (5.15)

In Equation5.15we substitutedE[R/ |v, i] for E[D|v,4]. DM;o denotes thedamage measure in
10-minute$and is used as a proxy for the expected total fatigue damage in an arbitrary 10 minutes.
This is not an actual estimate of the expected total fatigue damage, but it is proportional to it so
that higher values dPM;( are associated with larger fatigue damage estimates and vise versa. The
estimates of the damage measd],, for blade root flap and edge bending considetipgalues

from 1 to 10 are presented in Talllé&. The values in this table will be used to compare with results
from modeling the short-term fatigue ranges with a damage-based Weibull model in the next section
instead of the quadratic Weibull model used here.

We may also consider the portion of the expected damage contributed at different environmen-
tal conditions. Figuré.15 presents the plot of damage density for both blade root flap and edge
bending moments. Here, we only consider the 10-minute wind speed as the environmental variable
of interest. The damage density is defined as the contribution to the expected total damage for a
given wind speed. Since our analysis was conducted considering both the 10-minute wind speed
and turbulence intensity, the values given in the figure reflect summing together all the contributions
to DM, from different turbulence intensities for a constant wind speed. We can see clearly from
the figure that most of the damage occurs while the turbine is operating, i.e., for wind speeds below
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Regression of the Number of Fatigue Ranges
onVand/

Blade Root Flap Bending

a (KN-m) b c R?

V <24m/s| 0.5971 | 0.6772| 0.9331 | 0.9572
V >24m/s| 1.0970 | 4.6834| -0.1105| 0.9955
Blade Root Edge Bending

a (KN-m) b c R?
V <24m/s| 05194 | 0.6798| 1.1092 | 0.9814
V >24m/s| 1.1338 | 4.6159| 0.4885 | 0.9937

Table 5.4:Regression coefficients used in Equattofito fit the expected number of fatigue ranges,
E[No(v, )], for blade root flap and edge bending, as functions of the mean wind speed,
V', and turbulence intensity,

Estimate of Damage MeasureDM;y,
for Fatigue Exponent Values,by = 1,...,10.

by Flap Bending Edge Bending
1 3.490e+3 3.783e+3
2 6.381e+4 3.481e+4
3 1.349e+6 3.244e+5
4 3.281e+7 3.053e+6
5 9.134e+8 2.908e+7
6 2.884e+10 2.819e+8
7 1.024e+12 2.802e+09
8 4.054e+13 2.906e+10
9 1.776e+15 3.257e+11
10 8.569e+16 4.223e+12
Table 5.5:Estimate of damage measui@)l,, for fatigue exponent values; = 1,..., 10, con-

sidering blade root flap and edge bending fatigue loads.
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Figure 5.14:Expected number of fatigue rang&s$Vy (v, 7)], in 10-minute blade root flap and edge
bending response time histories, based on 100 pooled observations for each 10-minute
mean wind speed and turbulence class. The wind turbine is operatifgfo24m/s,
otherwise the turbine is parked.
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24m/s. Also, we see from Figufel15that as the value of the fatigue expondnt, increases, we
are relatively more sensitive to higher wind speeds while the turbine is parked.

5.4.3 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-
bility distribution of the long-term distribution of fatigue loads. This was accomplished by modeling
the short-term distribution of fatigue ranges by a quadratic Weibull model. The statistical moments
of the fatigue range data were related to the environmental variables by a power-law functional form.
The parameters of the functional form were obtained through regression analysis. Using the method
of moments, a quadratic Weibull distribution could be obtained for each specific set of values of the
environmental variables. Finally, an estimate of the marginal distribution of the long-term fatigue
loads was obtained by summing the conditional short-term load distributions over all environmental
conditions. Each conditional short-term load distribution was weighted by the probability of the
associated environmental condition occurring. The next section presents a similar analysis, only
this time the short-term fatigue ranges are modeled with a damage-based Weibull distribution.

5.5 Long-Term Analysis Based on Modeling Fatigue Ranges with the
Damage-Based Weibull Model

5.5.1 Short-Term Analysis

In the last section we considered modeling the distribution of fatigue ranges using the quadratic
Weibull model. Here, in contrast, we consider modeling the distribution of the fatigue ranges using
our proposed damage-based Weibull model. To review, the load models discussed here estimate the
probability distribution of load ranges by preserving a limited set of statistical momegntsE[R’].
The relevant moments here are model-dependenthrough:s for the quadratic Weibull model,
andy.. andy. for the damage-based Weibull modelgn the order of 3-55,=6-10). In particular,
in this section we will look at damage-based Weibull models in three cases vidues equal to
3, 4, and 5. In the first case for example, where 3, this corresponds to fatigue exponent values
equal to 3 and 6. The model is tuned to fit the third and sixth moment of the data. Similarly,
for = = 4 (by=4 and 8), the model is tuned to fit the fourth and eighth moment of the data, and
for z = 5 (by=5 and 10), the fifth and tenth moment. Separate regression analysis and long-term
integration will be conducted for each of these cases. In some instances the results of only the first
transformationz = 3, will be presented as we find similar results for the other transformations.

In the previous section the statistical moments of the data were related to the environmental
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variables by the power-law model given in Equatto® the same functional form and methodology
are followed here, again. In this case, however, the vettaontains only six elements instead
of nine, which we had when we considered the quadratic Weibull model which matched the first
three moments. The damage-based model matches only two moments, albeit the two moments
that are matched are typically of higher order. Linear regression analysis applied to the logarithm
of Equation5.9 was used to obtain estimates of the coefficients. The reference wind speed and
reference turbulence used in the regression analysis are given irbTablée calculated regression
coefficients andR? statistics are shown in Tabl&s6 and5.7 for blade root flap and edge bending
transformedz = 3, fatigue ranges, respectively. Similar results are shown in Tdb&snd5.9
for z = 4 transformed fatigue ranges and Tabte$0and5.11for z = 5 transformed fatigue
ranges. R? statistics near unity indicate that a large percentage of the variability in the data is
explained by the regression model. L& statistics indicate that other influences not contained
in the regression model may be affecting the loads. In performing the regression analysis, it was
again determined that the applied functional model, Equéatigrdid not have enough flexibility to
sufficiently model the observed behavior of the mean and standard deviation of the blade root flap
bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten
out with higher wind speeds above 17m/s as compared with the behavior below 17m/s. Therefore,
a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for
both the mean and standard deviation of blade root flap bending fatigue ranges. We saw a similar
result in Sectiorb.4when we fit the quadratic Weibull model to the fatigue ranges.

Finally, graphical regression results for the case where the fatigue ranges are transformed for
z = 3, are shown in FigureS.16and5.17. Each figure contains regression results for both blade
root flap and edge bending conditions considering the mean of the fatigue ranges SFiguaad
standard deviation of the fatigue ranges, Figau®’. In all plots, the turbulence intensity has been
set equal to the reference value. Similar results were found for the other transformation cases and,
in the interest of brevity, these additional plots are not presented.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 910.14 | 3.7443| 2.2384| 0.93414
17 <V £24m/s| 1354.7 | 0.7145| 2.9149| 0.9899
V > 24m/s 661.22 | 12.498| 2.0233| 0.9950

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 3647.1 | 3.3155] 2.2479| 0.9638
17 <V <24m/s| 5425.1 | 1.0043| 2.7920| 0.9686
V > 24m/s 3358.3 | 10.688| 2.8186| 0.9944

Table 5.6:Regression coefficients used in Equat®8 to fit transformed { = 3) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges on/ and [

la(N-m)| b | ¢ | R
V <24m/s| 673.44 | -0.0361| -0.0251| 0.1926
V > 24mis| 9.2980 | 13599 | 1.1361| 0.9949

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ R?
V <24m/s| 19139 | 1.220 | 1.5619| 0.9842
V >24m/s| 46.567 | 13.011| 1.4599| 0.9867

Table 5.7:Regression coefficients used in Equatm®® to fit transformed £ = 3) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
=4

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 20167 | 4.7638 | 2.9951| 0.9454
17 <V £24m/s| 34234 | 1.0877 | 3.8399| 0.9847
V > 24m/s 15041 | 15.723 | 3.2836| 0.9948

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 115610 | 4.2740 | 2.9899] 0.9731
17 <V < 24m/s| 197600 | 1.5268 | 3.6015| 0.9519
V > 24m/s 122030 | 13.3432| 3.9646| 0.9940

Table 5.8:Regression coefficients used in Equat®8 to fit transformed { = 4) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
=4

Regression of the Mean
of Fatigue Ranges on/ and [

| a(kN-m) | b c | R
V < 24mis | 6041.45 | 0.0094| 0.03198| 0.0097
V > 24mis | 50.0689 | 17.307| 0.86779| 0.9911

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ | R?
V <24m/s| 2183.3 | 1.1139| 15163 | 0.9894
V >24m/s| 511.42 | 17.033| 0.7763 | 0.9878

Table 5.9:Regression coefficients used in Equat®m® to fit transformed £ = 4) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 514011 | 5.7290| 3.740 | 0.9548
17 <V £ 24m/s| 995500 | 1.5177| 4.7144| 0.9770
V > 24m/s 435827 | 18.582| 4.4772| 0.9939

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 4008800 | 5.2460] 3.7288| 0.9787
17 <V < 24m/s | 7920800 2.1053| 4.3682| 0.9382
V > 24m/s 4916000 | 16.139| 5.1216| 0.9930

Table 5.10:Regression coefficients used in Equat®A to fit transformed £ = 5) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges on/ and [

laN-m)| b | ¢ | R
V < 24m/s | 54502.4 | 0.0628| 0.1017 | 0.2822
V > 24m/s| 380.13 | 20.360| -1.1755| 0.9886

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ | R?
V <24m/s| 24785 | 1.1121| 1.5806| 0.9904
V >24m/s| 6813.8 | 20.790| -0.9950, 0.9883

Table 5.11:Regression coefficients used in Equatt# to fit transformed £ = 5) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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Figure 5.16:Mean of transformedz( = 3) fatigue ranges for 10-minute blade root flap and edge
bending response, based on 100 pooled observations for each 10-minute wind speed
and turbulence class. The wind turbine is operatingiforc 24m/s, otherwise the
turbine is parked.
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Figure 5.17:Standard deviation of transformed+£ 3) fatigue ranges for 10-minute blade root flap
and edge bending response time histories, based on 100 pooled observations for each
10-minute mean wind speed and turbulence class. The wind turbine is operating for
V' < 24m/s, otherwise the turbine is parked.
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5.5.2 Long-Term Analysis

For the discussion here, we defined the conditional probability distribution of fatigue ranges by a
damage-based Weibull model. We saw how this model can be represented by the moments of the
data. Further, we have just shown through regression analysis how these statistical moments may
be related to the environmental variables.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period, is found in
the same way as implemented in Secttohd We will again assume that theoc 15/50 turbine is
installed at a site with environmental conditions similar to the Lavrio, Greece, test site described in
Chapter3 (page77). The long-term distribution of the 10-minute mean wind speed is assumed to
follow a Rayleigh distribution with mean,;, = 10m/s. The conditional distribution of turbulence
is given by a Gaussian distribution with conditional meap;, = 2.4486v"*""! and constant
standard deviation;; ), = 0.025. A plot of the joint density function of the environmental variables
is shown in Figuret.7 (Chapterd).?

The ranges of the values of the environmental variables are discretized into evenly spaced in-
tervals. For each pair of values of the environmental variables the corresponding short-term distri-
bution of fatigue ranges is generated. Then, per Equ&tibh the short-term conditional fatigue
range distributions are summed together, each weighted by the probability of the respective envi-
ronmental condition, i.e., pair of values of the environmental variables, occurring. The summation
is performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. To develop the long-term distribution of the fatigue ranges, the appropriate
regression model is used for each wind speed value. FigliBshows three long-term distributions
of fatigue ranges. Each distribution is based on a different transformation of the fatigue ranges
(z = 3, 4, 5). For the most part, all of the distributions appear very similar, only at low probability
levels (below10~®) do the distributions, for either blade root flap or edge bending fatigue ranges,
show a significant difference.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in
the previous section that we may obtain an estimate of the fatigue damage in an arbitrary 10-minute
interval. We again turn to our regression model for a relationship between the expected number of
cycles and the environmental variabfeShe same power-law functional form, Equatis®, was

2A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Cl&ptets.

3When we transform the fatigue ranges, with= 3, 4, 5, only the magnitude of the fatigue ranges is transformed,
the number of fatigue ranges stays the same. Therefore, the expected number of fatigue ranges stays the same regardless
of the transformation. The results of the regression analysis presented here is valid for any valusedffor the
transformation.



CHAPTER 5. LONG-TERM FATIGUE DISTRIBUTIONS 194

B 1 — J
E X, Normal Operation

£ X, Normal Operation ===+

g X®, Normal Operation "+

< 0.01

Pl

S

% ':«,,w

¢ 00001

£

>

c

"5 1e-06

5 "o

6 1 08 '..". \“\

2 e SRS

S ’...' \\ q
o . .

T 1e-10 ‘ ‘

’ 2 40 60 80 100

Bending moment range, KN-m

(a) Long-term distribution of blade root flap bending fatigue ranges for an arbitrary 10

minutes.
8 1 | _ |
E X, Normal Operation
£ X, Normal Operation -+
g X®, Normal Operation
< 0.01
Pl
S
%
¢ 00001
£ :
= it
= :
c
"5 1e-06
o
&
G
2 1e-08 .
= \‘."E.
3 ""~'<:,~_.....
< T,
[@] "::;:.: .....
& lel0b—— N ] e
’ “ 40 60 80 100

Bending moment range, KN-m

(b) Long-term distribution of blade root edge bending fatigue ranges for an arbitrary
10 minutes.

Figure 5.18:.Long-term distributions of blade root fatigue bending moment ranBespnsidering
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Regression of the number of Fatigue Ranges
onV and/

Blade Root Flap Bending

‘ a (KN-m) ‘ b ‘ c ‘ R?
V <24m/s| 1764.1 | -0.0977| 0.03662| 0.3734
V >24m/s| 5024.1 | 0.2823| -0.3971| 0.9623

Blade Root Edge Bending

‘ a (KN-m) ‘ b ‘ c ‘ R?
V <24m/s| 670.69 | 0.1326 | 0.1307 | 0.7836
V >24ml/s| 5474.2 | 0.1793| -0.2630| 0.9634

Table 5.12:Regression coefficients used in Equati®® to fit the expected number of fatigue
ranges, for blade root flap and edge bending, as functions of the mean wind speed and
turbulence intensity. The turbine is operating 6r< 24m/s, otherwise the turbine is
parked.

used. The calculated regression coefficients RAdstatistics are shown in TabE12 for blade

root flap and edge bending fatigue ranges. Graphical regression results are shown irb Bigure
Applying Equation5.15 we can obtain estimates of the damage measure for blade root flap and
edge bending considerirtg values corresponding toand2z for z = 3, 4, 5; these estimates are
presented in Tablg.13 We may also consider the portion of the expected damage contributed at dif-
ferent environmental conditions. Figuse20presents the plot of damage density for both blade root
flap and edge bending moments. We can see from Fig@@a) which shows damage densities

for flap bending fatigue ranges and different valuesofthat ash s increases the damage measure

is more sensitive to higher wind speeds. This trend is also seen in FE{réb) considering edge
bending fatigue ranges, although fgr = 10 the accumulated damage is much more sensitive to
fatigue ranges resulting from high wind speeds when the turbine is parked. We might expect this
behavior where the material is much more sensitive to loads above the kink in Big8(b)

5.5.3 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate
of the marginal probability distribution of the long-term distribution of fatigue ranges. The short-
term fatigue loads were modeled using the damage-based Weibull model, however. The general
methodology remained the same. In this case however, the statistical moments were obtained after
having first transformed the fatigue ranges, ezg= 3, 4, 5. By performing this transformation

when we employed the method of moments to obtain estimates of the distribution parameters, our
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Estimate of Damage MeasureDM;,

for fatigue exponent valuesp; = 1, .. ., 10.
by Flap Edge
z2=3 3 7.909e+4 | 4.445e+5
6 90.482e+9| 3.416e+8
z=4 4 1.487e+7| 3.939e+6
8 8.705e+12 3.512e+10
z2=5 5 3.574e+8| 3.654e+7
10 1.006e+16| 4.142e+12
Table 5.13Estimate of damage measul&)l;, for fatigue exponent values; = 1, ..., 10, con-

sidering blade root flap and edge bending loads.

model was fit to the® and2zt" moments of the untransformed data. Eot 3, this amounts to

fitting the standard Weibull model to the third and sixth statistical moment where we suspect a ma-
terial with fatigue exponertt; = 3-6 would be most sensitive to these higher fatigue ranges. The
statistical moments of the transformed fatigue ranges were related to the environmental variables
through regression analysis. Finally, an estimate of the marginal distribution of the long-term load
was obtained by summing the conditional short-term load distributions (each weighted by the prob-
ability of the values of the environmental variables occurring) over all environmental conditions.
We considered three transformation cases; 3, 4, and 5. We found that the marginal long-term
distributions of the fatigue ranges for an arbitrary 10-minute interval were very similar, and only
exhibit significant difference at low probability levels.

5.6 Comparison of Long-Term Estimates Based on Different Short-
Term Models

In Section5.4, we saw how one could obtain an estimate of the long-term distribution of fatigue
ranges based on the short-term distribution of fatigue ranges model by a quadratic Weibull model.
Later, in Sectiorb.5, we saw how a similar estimate of the long-term distribution may be obtained
by modeling the short-term distribution of fatigue ranges by a damage-based Weibull model. We
have explored two alternative models for describing the short-term fatigue ranges.
Figure5.21shows the estimates of the long-term distribution of fatigue loads based on modeling
the short-term fatigue ranges by quadratic or damage-based Weibull models. In this case, using
the quadratic Weibull distribution to model the short-term fatigue ranges generates a long-term
distribution with higher fatigues loads compared with the the long-term distribution of fatigue loads
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Comparison of Estimates of Damage Measurd)M;,
Blade Root Flap Bending

Damage- Percent Difference

by Q. W. Based z=3 z=4 z=25
3 1.349e+6| 7.909e+4| -94%

4 3.281e+7| 1.487e+7 -54%

5 9.134e+8| 3.574e+8 -61%
6 2.9e+10 | 9.482e+9| -67%

8 4.1e+13 | 8.7e+12 -78%

10 8.6e+16 | 1.0e+16 -88%

Table 5.14:.Comparison of damage measub&)l,(, estimates for blade root flap bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3,4,5 (z = by /2).

considering the damage-based model. This is the case for both blade root flap and edge bending
loads. In the blade root flap bending case, the difference in the distributions is fairly uniform. In the
blade root edge bending case the quadratic Weibull model does not exhibit a strong influence from
the parked turbine fatigue loads, as the damage-based models do at low probability levels.

Tables5.14and5.15 compare estimates of damage measuigd, o, obtained from our two
model definitions. We saw above that the quadratic Weibull produced higher loads for the long-term
distribution for both blade root flap and edge bending loads. It would follow that we would expect
to see higher damage measures. In fact, this is the case for flap loads—the damage-based Weibull
models do estimate lower damage measures compared with the estimates from the quadratic Weibull
model. In the edge bending case, however, even though the quadratic Weibull model does estimate
higher fatigue loads, significantly higher fatigue loads at low probability levels, the damage measure
estimates are just slightly lower than those estimated from the damage-based Weibull model. Even
though the quadratic Weibull model predicts some higher fatigue loads, they are at extremely low
probability levels and therefore occur only rarely and their contribution to the fatigue damage is
limited.

We can alternatively compare our estimates of the fatigue damage measure from each of the
proposed models to an empirical estimate of the fatigue damage measure. The empirical estimate of
the fatigue damage measure is obtained by using the raw rainflow counted range data directly from
a representative time history for a given set of values of the environmental variables. The fatigue
damage measure is weighted by the probability of the values of the environmental variables. The
data set examined here contained 24 different values of the environmental variables, considering the
turbine during both operating and parked conditions. The weighted fatigue damage measures were
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Figure 5.21:Comparison of estimates of the long-term distribution of fatigue ranges based on
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Comparison of Estimates of Damage Measurd)M;,
Blade Root Edge Bending

Damage- Percent Difference

by Q. W. Based z=3 z=4 z=25
3 3.244e+5| 4.445e+5] +37%

4 3.053e+6| 3.939e+6 +29%

5 2.908e+7| 3.654e+7 +26%
6 2.819e+8| 3.416e+8| +21%

8 2.9e+10 | 3.5e+10 +21%

10 4.2e+12 | 4.1e+12 -1.2%

Table 5.15:Comparison of damage measubg\l,,, estimates for blade root edge bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3,4,5 (z = by /2).

summed across this range of the environmental variables.

Tables5.16 and5.17 show the fatigue damage measure for different values of the fatigue ex-
ponent,bs, based on the empirical model and compared to the estimates obtained based on the
quadratic Weibull and damage based models. In general, compared to the empirical model, the
estimates of the fatigue damage measure for the flap bending direction, both the quadratic Weibull
and damage-based models under-predict the fatigue damage measure for all fatigue exponents that
we considered. We found slightly different results for the edge bending direction. In this case, the
damage-based model still under-predicted the fatigue damage measure for all fatigue exponents that
we considered. The quadratic based model under-predicted the fatigue damage measure for fatigue
exponent values below severy, < 7 and over-predicted for values greater than setgn; 7. In
this particular case, neither of the models does a very good job of estimating the fatigue damage
measure compared with the empirical model. However, it should be noted that since the damage-
based models are exact at matching the empirical damage at the moments for which they are fit it is
really the regression model that is being tested. Additional research would be required to evaluate
the general efficacy of these models and regression techniques to predict fatigue damage.

5.7 Conclusions

Parametric, moment-based, statistical models have been introduced to model rain-flow-counted fa-
tigue ranges. Two “higher-moment” models (including third and/or higher moments) have been
presented: (1) a quadratic Weibull model, which uses a quadratic distortion of the original Weibull
model to preserve the first three moments of the data; and (2) a “damage-based” Weibull model,
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Comparison of Estimates of Damage Measurd)M;j,
for Fatigue Exponent Values,by = 1,. .., 10, Flap Bending

Empirical | Quadratic Weibull || Damage-based Weibull

by DM, DMio % DMy, %
diff. diff.

1 || 6.612e+3 || 3.490e+3 | -47.2% - -

2 || 8.620e+4 | 6.381le+4 | -26.0% - -

3 | 2.105e+6| 1.349e+6| -35.9% | 7.909e+4 | -96.2%

4 8.629e+7 || 3.281e+7| -62.0% | 1.487e+7 | -82.8%

5 | 5.232e+9 | 9.134e+8| -82.5% | 3.574e+8 | -93.2%

6 | 4.044e+11]| 2.884e+10| -92.8%| 9.482e+9 | -97.6%

7 || 3.493e+13| 1.024e+12 -97.1% - -

8 || 3.308e+15|| 4.054e+13| -99.0% || 8.705E+12| -99.7%

9 || 3.327e+17|| 1.776e+15| -99.5% - -

10 | 3.506e+19|| 8.569e+16| -99.8% || 1.006e+16| -99.9%

Table 5.16:Comparison of estimates of blade root flap bending fatigue damage mdadiyg,for
fatigue exponent valueg; = 1, ..., 10, considering empirical, quadratic Weibull, and
damage based models.

Comparison of Estimates of Damage Measurd)M;j,
for Fatigue Exponent Values,by = 1,. .., 10, Edge Bending

Empirical | Quadratic Weibull || Damage-based Weibull

by DM DM % DM %
diff. diff.

1 || 5.622e+3 | 3.783e+3| -32.7% - -

2 | 4.938e+4| 3.48le+4| -29.5% - -

3 | 4.367e+5|| 3.244e+5| -25.7% || 4.445e+5| -96.2%

4 || 3.88le+6| 3.053e+6| -21.3% | 3.939e+6 | -82.8%

5 3.467e+7 || 2.908e+7 | -16.3%| 3.654e+7 | -93.2%

6 | 3.115e+8| 2.819e+8| -9.5% || 3.416e+8 | -97.6%

7 2.815e+9 || 2.802e+9 | -0.5% - -

8 || 2.564e+10|| 2.906e+10| 13.4% || 3.512E+10| -99.7%

9 || 2.363e+11|| 3.257e+11| 37.8% - -

10 || 2.261e+12|| 4.223e+12| 86.8% || 4.142e+12| -99.9%

Table 5.17:Comparison of estimates of blade root edge bending fatigue damage mdaslig,
for fatigue exponent valueg; = 1,...,10, considering empirical, quadratic Weibull,
and damage based models.
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which seeks a two-moment Weibull fit, not to the fatigue ranges themselves but to power trans-
formations that directly relate to “damage” (i.e., based on material properties defining S-N curve
slope,by). Both models have their advantages. Compared with fatigue load data, the damage-
based Weibull model is found to follow the tails of the observed data (as seen, for example, in
Figure5.6-5.9). It also requires no special numerical algorithms to estimate its parameters. In con-
trast, the quadratic Weibull does require such algorithms, and its accurate modeling of distribution
tails can require the analyst to impose a lower-bound threshold on the load ranges to be modeled
(see Figurés.3versus Figurd.4). The potential benefit of the quadratic Weibull model includes its
reliance only on moments through third order. The damage-based model requires moments of order
z = by /2, where typicak values may range from 3 to 5 reflecting material propettjes 6 — 10.

Hence, to the degree it remains accurate, the quadratic Weibull model can be fit more accurately
from limited data.



Chapter 6

Uncertainty in Estimation of Extreme
Loads

In the previous chapters we have presented a methodology for obtaining estimates of fatigue and
extreme load distributions. In these chapters we acknowledge the natural randomness of the three
constituent variables—conditional short-term load, wind speed, and turbulence—»by fitting or as-
signing probability models to these variables. In applying these relations, however, we assumed
that all the parameters of the probability models were known, i.e., the parameter values were deter-
ministic. In this chapter we consider examining some of the sources of uncertainty in our analysis.
In particular we consider how to include these sources of uncertainty and how these uncertainties
influence our estimate of extreme loads.

Usually, the goal in doing an analysis of the epistemic uncertainty in an engineering design
problem is to understand which variables contribute the most to the overall uncertainty. Those
candidate variables are then the target of additional analysis to reduce their attendant uncertainty,
and thereby increase the certainty, or confidence, in the final design. In the context of this discussion
we should be interested in understanding the contribution each variable makes to the uncertainty in
our prediction of the one-year load or 50-year load, for example. With this in mind, we look to
address three areas of epistemic uncertainty, (1) The epistemic uncertainty in our estimates of the
model parameters which define the long-term distributions of the environmental variables. (2) The
epistemic uncertainty in our estimates of the regression coefficients which relate statistics of the
short-term response of the turbine to the environmental variables. And finally, (3) quantifying our
model uncertainty, how does our predictive model compare with observations of the response of the
turbine in the field.

204
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6.1 Introduction

In the previous discussions we have concerned ourselves with presenting a methodology for ob-
taining an estimate of the 1-year and 50-year extreme load in Chaptaid 4, or an estimate

of the long-term distribution of fatigue loads in Chapferin these discussions we acknowledge

the natural randomness of the three constituent variables—conditional short-term load, wind speed,
and turbulence—Dby fitting or assigning probability models to these variables. We showed how the
natural randomness of these variables may be combined and contribute to the variability of the long-
term distribution of fatigue or extreme loads. This was accomplished by applying the Law of Total
Probability as shown in the equation below considering extreme loads,

P[Liomin> 1] = //P[Llo min > 1| v, [ frv (i[v) fy (v)didv (6.1)

where,L1g min, IS the maximum response in 10-minut&s,and, I, are the 10-minute mean wind
speed and turbulence, respectively. A similar equation, applying the Law of Total Probability was
used for estimating the long-term distribution of fatigue loads. In applying these relations, however,
we assumed that all the parameters of the probability models were known, i.e., the parameter values
were deterministic. In this chapter we consider examining some of the sources of uncertainty in our
analysis. In particular, we will consider how we might include these sources of uncertainty and to
what degree these uncertainties influence our estimate of extremetloads.

6.1.1 Types of Uncertainty

In this section we present a short discussion on the types of uncertainty in estimation of long-term
distribution of extreme loads. These types of uncertainty are generally common to many types of
predictive models, e.g., extreme wave height models for off-shore structures, ground-motion models
for earthquake engineering, weather forecasting, etc.

Aleatory uncertainty The uncertainty that is associated with the nature of physical models is re-
ferred to asaleatoryuncertainty. Other names for the aleatory uncertainty include “stochas-
tic” or “random” uncertainty. Even under the condition of “prefect information”, i.e., the
model of the physical phenomenon is validated and the values of the parameters of the model
are known, these aleatory uncertainties still remain. Formally, the portion of the uncertainty
in our prediction of the outcome of an event which is irreducible and attributed to the natural
randomness of the event is the aleatory uncertainty. Given a model, one can not reduce the

LA similar discussion could be presented for fatigue loads.
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aleatory uncertainty by the collection of additional information. It may be possible, however,
to better quantify the aleatory uncertainty by using additional data.

Epistemic uncertainty The uncertainties that arise from our lack of knowledge concerning the
validity of the chosen models or the values of the parameters are referrecepstamic
uncertainty, as distinct from randomness (or aleatory). Sometimes, in the literature, these
are referred to simply as “uncertainties”. Formally, the epistemic uncertainty is the portion
of uncertainty in our prediction of the outcome of an event which is related to our state, or
accumulation, of knowledge of the event under observation. In other words, the epistemic
uncertainty is that portion of the uncertainty in our prediction which can be reduced by con-
tinued diligent study and observation of more realizations of the process under examination.

These definitions may be more clearly explained through the following example. Let us assume
that we observe the outcome of an event—the roll of a die. We do not know if the die is fair, and
further we don’t know the number of sides on the die. At this point we have only one outcome, and
little way of quantifying the uncertainty—aleatory or epistemic—of our prediction of the outcome
of the next roll of the die. After sufficient observations, we may ascertain all possible outcomes of
rolling the die, and construct a probability model of the likelihood of each of these possible out-
comes. With each roll, our knowledge about the possible outcomes of the event, and their relative
likelihoods (i.e., long-term frequencies or next roll probabilities), has increased and our epistemic
uncertainty was decreased. Which one of the possible outcomes will occur with any given roll is
the irreducible aleatory uncertainty. The probability model we constructed quantifies the aleatory
uncertainty. We will be able to refine the probability model, and better quantify our aleatory uncer-
tainty by continuing to observe the outcomes of the event, but it is by definition irreducible. Which
possible outcome occurs with any given future roll of the die is still unknown. Some sources, or
types, of epistemic uncertainty include modeling and parametric uncertainty.

Modeling Uncertainty Represents the differences between the actual physical process that man-
ifests the event and the simplified models used to predict the event. Here we may consider
the physical processes that generate extreme blade bending loads on a wind turbine com-
pared with the simple models used to predict these extreme events. Probabilistic models, e.g.,
the shape (or name) of the distribution, are also subject to such uncertainty. The modeling
uncertainty can be estimated by comparing model predictions with actual, observed events.

Parameter Uncertainty Is the uncertainty associated with the estimated values of model param-
eters. These may include parameters in both the mechanical (deterministic) models (e.g.,
the blade load predictions) and the random process models (e.g., the wind speed probability
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distribution model). The parametric uncertainty is quantified by observing the variation in
parameters inferred from collected data.

6.1.2 Motivation

Usually the goal in doing an analysis of the epistemic uncertainty in an engineering design problem
is to understand which variables contribute the most to the overall uncertainty. Those candidate
variables are then the target of additional analysis to reduce their attendant uncertainty, and thereby
increase the certainty, or confidence, in the final design. In the context of this discussion we should
be interested in understanding the contribution each variable makes to the uncertainty in our pre-
diction of the one-year load, or 50-year load for example. Up to now we have only considered the
aleatory uncertainty, as described by the probability distributions for the variables: short-term load,
10-minute mean wind speed and turbulence. In Ch&pter undertook a qualitative analysis to see
how the “randomness” (as we called it in Cha@gror “aleatory uncertainty” contributed to the
variability in our estimate of the long-term distribution of extreme loads. Here, we seek to under-
stand how including some of the sources of epistemic uncertainty contribute to the uncertainty in
our estimate of the long-term distribution of extreme events.

We saw in ChapteB that the calculations involved in developing a prediction of the long-term
distribution of extreme loads involved separating the problem into two parts: the short-term condi-
tional distribution of the response of the turbine given prescribed environmental conditions, and the
long-term distribution of the environmental variables. In the context ofgbecode, however, the
parameters of these long-term distributions are legisl&&jd The resulting epistemic uncertainty
is zero as the parameters are presumed known, and the aleatory uncertainty is prescribed as a result
of the prescribed distributions.

The currentec code breaks down the environmental conditions into four wind classes (wind
classed-1V), and two turbulence classes (clasgeandB) [23]. For the wind classes, the long-
term distribution of the 10-minute mean wind spe¥dis prescribed to follow a Rayleigh model.

For each wind class a different annual average 10-minute mean wind spee&dprescribed, with

classl and clasdV assigned the highest and lowest valueg:pf respectively. The long-term
distribution of turbulence, conditional on wind speed, is assumed to follow either a Gaussian or
lognormal model. Turbulence cla8ds associated with higher turbulence whereas turbulence class

B is associated with lower turbulence values. Therefore, wind thassintended to encompass a
large variety of site conditions and is therefore generally more severe and conservative than most
specific sites. Clad¥/B is at the other end of the range of wind classes and describes a more benign
wind environment than clagé.
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Considering these prescribed distributions with known parameters effectively reduces the epis-
temic uncertainty in the environmental variables to zero. It becomes straightforward for the engineer
to design and test the wind turbine to specific wind and turbulence class, as specified=aycibee.

A certifying agency reviews the design process and testing results and, hopefully, approves the tur-
bine for use in the same wind and turbulence class for which it was intended. Itis the intention of the
code that wind turbines designed to higher wind classes, e.qg.,|8lagse more robust considering

more severe environmental conditions, compared with the lower wind classes, e.dVBldsss a

matter then of economics to fit the right turbine to a specific set of site conditions. Generally, more
robust turbines, turbines designed téAawind class, are more expensive since they are expected

to operate in a more severe environment. Therefore, it would not necessarily be most efficient to
install a clasdA turbine in a benign wind environment. It is necessary then to estimate the model
parameters of the environmental variables based on environmental data collected at the site. The
guestion then becomes how good are our estimates of the model parameters for mean wind speed
and turbulence. How well does the site fit the description of the four classes listed in the code? We
can ask the question from another perspective. How good are our estimates of the model parame-
ters for mean wind speed and turbulence and how does the epistemic uncertainty in our estimates
of these parameters, from limited data, affect our estimate of the long-term distribution of extreme
loads? This issue will be discussed in Sectod

The epistemic uncertainty associated with the short-term loads may be of more interest to the
design engineer. We will consider two sources of epistemic uncertainty of the short-term loads,
(1) parameter uncertainty, and (2) modeling uncertainty. In Ch&ptex saw how the short-term
distribution of extreme loads could be based on modeling either the global or local peaks. In either
case the parameters of the model were fit to the data using the method of moments. The observed
moments of the data were related to the environmental variables through regression analysis. There
are several sources of epistemic uncertainty in the parameters. First, the statistical moments of the
observed responses are based on limited data. Second, the moments are related to the environmental
variables through regression analysis. This raises the question, “how well does the regression model
fit the data?” These questions are considered in Seétibfh Modeling uncertainty is considered in
Section6.4.3 where the short-term loads based on our mechanical model are compared with actual
recorded data. We estimate the variability of the bias of the predictive model to the observed field
data and show how we may include this uncertainty and its effect on the variability of long-term
distribution of extreme events.
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6.2 Data Set

The data set used in this analysis is for the Atlantic Orient Corporatianl5/50 turbine, described
in Chapterl (pagel8). The turbine has a rotor diameter of 15m, a fixed nominal rotor speed of about
60 rRPM, and a rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height
of 25 meters22]. The data setis described in detail in Cha@grage66) and consisted of multiple
10-minute simulations of Gaussian wind fields and corresponding blade root bending moments. The
wind input processes is described by the hub height wind speed. For the analysis presented in this
chapter only the blade root flap bending loads are used.

In the discussions that follow we will assume thatleec 15/50 turbine is installed at a site with
environmental conditions similar to the Lavrio, Greece, test site described in CRBgpiage77).
The long-term distribution of the 10-minute mean wind speed is assumed to follow a Rayleigh
distribution with meany,;, = 10m/s. The conditional distribution of turbulence is given by a Gaus-
sian distribution with conditional meap,;,, = 2.4486v~%%°"! and constant standard deviation,
ony = 0.025. A plot of the joint density function of the environmental variables is shown in
Figure4.7 (Chapterd).?

6.3 Uncertainty in Long-Term Environmental Distributions

We have seen in previous chapters how the natural randomness, or aleatory uncertainty, of the long-
term distribution of the environmental variables may be described by prescribing probability models
with knownparameters, i.e., the parameters are considered known constants with no associated
uncertainty. Further, we saw how an estimate of the long-term distribution of extreme loads may be
obtained by combining the aleatory uncertainty of the short-term extreme response with the aleatory
uncertainty of the environmental variables. This was accomplished through an application of the
Law of Total Probability, as described in Chap®rThis section presents a discussion on how we
might first consider quantifying the influence of uncertainty in the parameters of the distributions
of the environmental variables. The uncertainty in our estimates of the parameter values arise from
having limited data, i.e., limited observations or realizations of the environmental variables. Our
lack of knowledge, associated with limited observations, about the values of the parameters is a
source of epistemic uncertainty.

To aid in our discussion let us consider the description of the environment at the Lavrio, Greece,
test site as first presented in ChapderThe aspects critical to our discussion are reviewed here.
The long-term distribution of the 10-minute mean wind spééds assumed to follow a Rayleigh

2A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Cliagter4.
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distribution shown below,

foio) = 2o |- (2)] 62)
_ 2w
NG

This is a single parameter distribution. The standard deviatipnis given by

/4
ov =yl - 1=0.523uy (6.3)

The coefficient of variation of the 10-minute wind process is taken as the measure of wind turbu-
lence, denoted by. The conditional distribution of turbulence is assumed to follow a Gaussian
distribution shown below,

L 1 1 [i—pny 2
fl\v(lm = mexp [—2 (UIV> ] (6.4)

At this point we have three parameters to estimate: the annual average 10-minute mean wind
speed 11/, the conditional mean turbulenge;|,,, and standard deviationy;,. We may consider
a campaign to collect wind process data at the site of interest for installing the wind turbine. We
saw in Chaptet how we may obtain unbiased estimates of statistical moments, e.g., our parameters
of interest, from sample data. In addition, we showed how we might obtain an estimate of the
uncertainty in the estimate of the mean. Formally, the standard error of estimation of the mean of a
random variableX is given by,

G
Seny = \/—)% (6.5)

Where,ix, andgx are our estimates of the mean and standard deviatioh fstbm sample data

andn is the number of observations o&f in our sample. With respect to the standard error of
estimation, or epistemic uncertainty in our estimate of the annual average 10-minute mean wind
speed we can write,

sepy, = (6.6)

vn
We might conclude from Equatiof6that in order to reduce the epistemic uncertaintyijn our
estimate ofuy, we need only to increase the valuergfi.e., collect a large amount of data. Taken
out of context, one might consider 1000 data points a large amount of data, even 100 data points

3The annual average 10-minute mean wind speed is defined as the mean of a set of measured 10-minute mean wind
speed data of sufficient size and duration to serve as an estimate of the expected value of the quantity. The averaging time
interval shall be a hole number of years to average out non-stationary behavior effects such as seasonality
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could be considered a large amount. In the current context, or frame of reference, 1000 observations
of the 10-minute mean wind speed may represent about a week of independent observations of the
10-minute mean wind speed. Note, Equatto@requires that the observations be independent.
We discussed in Chaptérthat for wind applications, seasonal, synoptic, and diurnal variations

in the wind process make monthly, weekly, daily, or hourly values different from annual values.
That is to say that our estimate of the annual average 10-minute mean wind speed taken over just a
few months, e.g., 3-months, may be biased due to seasonal conditions. If our parameter estimates
are,f1,y=10m/s andryy = 5.23m/s, from about 3-months of data, we can obtain the standard error of

estimation ofy as,

O .23m/s
s, = 2V = DZMS 5031072 (6.7)

Vn /10,000
which may mislead us to think we have about 0.52% érimour estimate of the annual average
10-minute mean wind speed. In reality, our estimate may be biased due to seasonal conditions. The
next 3-months of data may result in a significantly different estimajg,ofvith a presumably very
similar estimate of the standard error of estimation. In this situation, data must be collected over a
much longer period of time, a period which accounts for these longer time interval changes. There-
fore, we see that additional analysis must be undertaken to more accurately quantify the uncertainty
associated with our estimates of the distribution parameters. If we assume that we are interested
in obtaining a better estimate of this uncertainty, then we would also be interested in how this un-
certainty may affect our estimate of the long-term distribution of extreme loads. In the analysis
presented in this section, we will assume that we can reasonably quantify our uncertainty in our
estimates of the distribution parameters of the environmental variables.

In the remainder of this discussion we will consider the effect of including the epistemic uncer-
tainty in our estimate of some of the parameters of the distributions of the environmental variables.
In particular, we will consider the effect of the epistemic uncertainty in the annual average 10-
minute mean wind speeg,;-, on our estimate of the long-term distribution of extreme loads. A
separate analysis will consider assessing the effect of epistemic uncertainty in the conditional mean

4The error discussed about is found as:

o se
Cov,, = Y = 2BV — 0.52%

Hv 1
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turbulencey;y-, on our estimate of the long-term distribution of extreme loa@nally, we con-

sider the effect of including the epistemic uncertainty in our estimates of bptandy . At this

level we can compare qualitatively the sensitivity of our estimate of the long-term distribution of
the extreme load to the epistemic uncertainty associated;witand.;y,. For each of these sce-
narios we will assume that the functions for conditional mean turbulence, and standard deviation,
oy given 10-minute mean wind speed previously presented for the Lavrio, Greece, site still apply.
These relations are summarized below and discussed in more detail in Cl3zqutelrs

pry = 2.4486v 70997 (6.8)

The analyzes presented below considerabe 15/50 turbine installed at a site with environ-
mental conditions similar to those present at the Lavrio, Greece, test site. We will present analysis
for the blade root flap bending direction only. The methodology discussed here is equally applicable
to the blade root edge bending direction. The short-term blade root flap bending extreme response
of the Aoc 15/50 turbine based on modeling global peaks was presented and discussed in Chap-
ter 3; these results are used in this analysis below but are not re-presented or reviewed. The reader
is encouraged to refer to Chap&efor the details of the development of this model.

6.3.1 Estimating the Long-Term Distribution of Extreme Loads Considering Uncer-
tain Parameters of the Distributions of Environmental Variables

Uncertain Annual Average 10-Minute Mean Wind Speed

This section considers estimating the long-term distribution of extreme blade root flap bending loads
including the epistemic uncertainty associated with the parameter of the Rayleigh distribution of 10-
minute mean wind speed, the annual average 10-minute mean wind speed. We will consider three
cases. In each of the three cases, we will assume that we have ample information to quantify the
uncertainty in our estimate of,;-. The level of epistemic uncertainty associated with our estimate

of uy, we denote by, , the coefficient of variation ofyy. If we 1, is known with no attendant
uncertainty them,,,, =0. We consider three cases whére = 5%, 10%, and 20%.

SNote that because the Rayleigh distribution is a single parameter distribution we need not also deal with the uncer-
tainty in o. The contribution made by the epistemic uncertainty in the conditional standard deviation of turbulence to
variability of the long-term distribution of the extreme loads is not considered in this analysis. The epistemic uncertainty
in our estimate of the conditional standard deviation of turbulence is considered to be sufficiently small compared with
that of the mean, and therefore the standard deviation is considered to be a known constant with no attendant uncertainty
or bias. This may or may not be a reasonable assumption. The uncertainty in this parameter could be introduced by the
same method illustrated here for the means.
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The analysis used Monte Carlo simulation. For each case, the distribution efas as-
sumed to be Gaussian wiljuy] = 10m/s (note in the long-term analysis presented in Chapter
py = 10m/s), and the coefficient of variation equaldg, = 5%, 10%, or 20%. Five hundred
simulations were performed for each case. For each simulation a different realizajignveds
obtained. This parameter defines the Rayleigh model for the long-term distribution of 10-minute
mean wind speed. Each simulation then has a different long-term distribution of the 10-minute mean
wind speed as defined by its particular realizatioppf The Gaussian model for the conditional
distribution of turbulence was defined based on Equatio®and6.9. An estimate of the long-term
distribution of extreme blade root flap bending loads is obtained from Equawtl@nThe values of
the environmental variables are discretized into evenly spaced intervals. For each pair of values of
the environmental variables, the corresponding short-term load distribution is generated. The short-
term load distributions are summed together, each weighted by the probability of the respective
environmental conditions, i.e., pair of values of the environmental variablem(l I) occurring.
The summation is performed over the entire range of environmental variables. Following this pro-
cess for each realization pf; results in 500 estimates of the long-term distribution of extreme blade
root flap bending moments for an arbitrary 10-minute period. The megi@f fanked) and mean
estimates of the long-term distribution of extreme blade root flap bending moments for an arbitrary
10-minute interval considering three levels of uncertaintyin(i.e., 6, = 5%, 10% and 20%)
are shown in Figuré.1(a) The median estimate is found by sorting the probability of exceedance
values associated with the 500 long-term distributions for a given bending moment and selecting
the 250" highest value. Similarly, the mean estimate is found by calculating the mean probability
of exceedance value over the 500 long-term distributions for a given bending moment.

The probability distribution function that results from the above analysis is for an arbitrary 10-
minute period. We defined in Chapteithe 50-year load as the valdiesuch that, an estimate of
the 50-year load is associated with a 0.02 probability of exceedance of the distribution of annual
extreme loads.

1= 1/50 = 0.98 = Fiy o (1) = (Fryo o))" (6.10)

WhereFry, .. (1) is the distribution of the annual extreme lodd,,, ,,.() is the distribution of the
10-minute extreme load, andl is the number of 10-minute segments in one y@ar= 365 x

24 x 6 = 52,560. Further, we saw in Chapt&rthat if we assume that the 10-minute segments
were independent and if the value Bf, __is close to one, an estimate of the 50-year load could
be obtained simply from the distribution of 10-minute extreme loads. The estimate was obtained by
considering the appropriate probability level, i.e., the probability level associated with the 50-year

1year
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mean return period; more formally,

(50yearsx N)Gpr,omn(l) =1 (6.11)
1 1
~ 50N 50 x 52,560

GLyomn(D) = 3.805 x 1077 (6.12)
whereN is the number of 10-minute segments in 1-year @d x) is the complimentary cumula-

tive distribution function(Gx (z) = 1 — Fx(x). In this case, where the annual average wind speed,
wy, s itself assumed to be a random variable, our assumption of independence above is no longer
valid, however. Further we are interested in all value&'dfom 1 to 0. The distribution of.19 min

is conditional on the realization of the annual average wind speed. Once we have an estimate of

it does not change from one 10-minute period to the next, but rather it is fixed with respect to time.
This is an important point, s, is not independent from 10-minute to 10-minute period, we can no
longer perform the analysis on the basis ofabitrary 10-minute segment as we did in Chaper

In this case we must obtain our estimate of the 50-year load as the probability level associated with
the 50-year return period from the annual distribution of extreme loads. However, given a value
for uy (i.e., instance or realization in the Monte Carlo simulation), we can assume independence
and obtain an estimate of the annual long-term distribution of the extremeApag,.({), from the
long-term distribution of the extreme load in an arbitrary 10-minukgs, .. by

FLlyear(l) = {FLlo min(l)}N (6.13)
= {1 = GrymD} (6.14)

Figure 6.1(b) shows the median and mean estimates of the long-term distribution of annual
extreme blade root flap bending loads. The probability level associated with the 50-year mean
return period is;olr0 = 0.02 = 2%. The median estimate of the 50-year blade root flap bending load
is 59.7kN-m for all three levels of uncertaintyify, 6,,,, = 5%, 10% and 20% an8[;./] = 10m/s.

We could obtain an estimate of the 50-year load by considering the load associated with a mean
annual exeedance probability of 2%. In this case, our estimate of the 50-year load is 60.1kN-m for
O, =5% level, 62.3kN-m fop,,,, =10% level, and 78.0kN-m fay,, =20% level. Again, at all levels

E[uy] = 10m/s. If we consider 20% uncertainty in our estimatg.f then the load with a mean
annual exceedance probability of 2% is 30.7% higher than if we consiggreteterministic. On

the other hand, if the epistemic uncertainty is reduced to about 5%, the load with a mean annual
exceedance probability of 2% is about 0.7% higher than considgtirdgeterministic. These results

are summarized in TabR 1
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Also shown in Figures.1(b)are the 95% upper confidence estimates of the long-term distribu-
tion of annual extreme blade root flap bending loads. An upper confidence level, specifically the
95% upper confidence level, is found by sorting the probability of exceedance values associated
with the 500 long-term distributions for a given bending moment and selecting7tife highest
value. Our 95% upper confidence limit estimates of the 50-year blade root flap bending load con-
sidering uncertain with 6, = 5%, 10% and 20%, are 62.5kN-m, 70.2kN-m, and 93.5kN-m,
respectively. If we consider 20% epistemic uncertaintyjn our high confidence estimate of the
50-year load increases by 56.6%. On the other hand, if the epistemic uncertainty is reduced to about
5%, our 95% upper confidence limit estimate of the 50-year load increases but only by about 5%.

Uncertain Conditional Mean Turbulence

In the previous section we saw how we may obtain median and mean estimates of the long-term
distribution of annual extreme blade root flap bending load including epistemic uncertainty in our
estimate of the annual average 10-minute mean wind speed. Here, we consider a similar question:
what is the effect on our estimate of the 50-year blade root flap bending load if we consider epistemic
uncertainty in our estimate of the conditional mean turbulence?

Equation6.8 gave the relation for the mean turbulence given 10-minute mean wind speed. Now
we consider the condition where the mean turbulence is uncertain

ppy = 2.44860" 0% g (6.15)

Weree,,, ., is an error term, wittk[e,, .| = 0 andVar[e, ] such that, for three separate cases, the
coefficient of variation of the conditional mean turbulence, denoté by, is equal to 5%, 10%,
and 20%.

A similar Monte Carlo simulation analysis was conducted to determine the long-term distribu-
tion of extreme blade root flap bending loads In this case, however, we returned to considering the
annual average 10-minute mean wind speed deterministiez 10m/s. The conditional mean tur-
bulence,.;,,, was assumed to follow a Gaussian distribution Vifh /] = 2.44860~"9°"!, and
the coefficient of variatiod = 5%, 10%, or 20%. Five hundred simulations were performed
for each case.

17340%

In each case, the values of the 10-minute mean wind speed were discretized into evenly spaced
intervals. For each value of 10-minute mean wind speed, five hundred simulations of conditional
mean turbulence were obtained. The conditional standard deviation of turbulence was consider
deterministic and given in Equatiach9. In this manner, 500 observations were obtained for the
conditional mean turbulence for each increment of 10-minute mean wind speed. The error terms,
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.1:Median, mean, and 95% upper confidence level estimates of the long-term distribution
of extreme blade root flap bending moment, considering the parameter of the Rayleigh
distribution of 10-minute mean wind speed uncertain. Three conditions are presented,
duy = 5%,10% and 20%. Also shown, for comparison, is the long-term distribution
with all parameter values considered deterministig, = 0.
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Eury» Were assumed to be perfectly correlated from one increméiittofthe next. An alternative
approach would have been to use a (common) multiplicative error; this approach was not employed.
The two parameters, conditional mean and standard deviation define a Gaussian model for the dis-
tribution of conditional turbulence. The values of the conditional turbulence were discretized into
evenly spaced intervals.

An estimate of the long-term distribution of extreme blade root flap bending loads is obtained
from Equatior3.16 For each pair of values of the environmental variables the corresponding short-
term load distribution is generated. Again, here the short-term load distribution is based on modeling
the global peaks as discussed in Chafterhe short-term load distributions are summed together
each weighted by the probability of the respective environmental conditions, i.e., pair of values
of the environmental variables occurring. The summation is performed over the entire range of
environmental variables. This results in 500 estimates of the long-term distribution of extreme
blade root flap bending moments for an arbitrary 10-minute period. The median and mean estimate
of the long-term distributions of blade root flap bending moment for an arbitrary 10-minute interval
are shown in Figuré.2(a) considering the three cases whégg = 5%, 10% and 20%.

Figure 6.2(b) shows the mean and median estimates of the long-term distributions of annual
extreme blade root flap bending loads. Our median estimate of the 50-year blade root flap bending
load is 59.7kN-m considering uncertgin;- with 6, = 5%, 10% and 20%. This is the same
value we obtained for our estimate of the 50-year load when we considgfedeterministic, as
given in Equatiort.8. Taking our estimate of the 50-year load as the load associated with a mean
annual exceedance probability of 2% results in estimates of 59.9kN-m, for = 5%, 60.7kN-m
for g = 10%, and 63.5kN-m foh = 20%. If we consider 20% epistemic uncertainty in our
estimate ofuy/, then the load with a mean annual exceedance probability of 2% is 6.4% higher
than if we considereg |, deterministic. On the other hand, if the epistemic uncertainty is reduced
to about 5%, the load with a mean annual exceedance probability of 2% is about 0.3% higher than

12340% Hrv

consideringuy deterministic. These results are summarized in Tékle

Also shown in Figures.2(b)are the 95% upper confidence estimates of the long-term distribu-
tion of annual extreme blade root flap bending loads. Our 95% upper confidence limit estimates
of the 50-year blade root flap bending load considering uncegtajnwith Opry = 5%, 10% and
20%, are 61.7kN-m, 63.7kN-m, and 67.7kN-m, respectively. If we consider 20% epistemic uncer-
tainty in our estimate of;;y/, our 95% confidence limit estimate of the 50-year load is 13.4% higher
than our estimate if we considered the parameter deterministic. On the other hand, if the epistemic
uncertainty is reduced to about 5%, our 95% upper confidence limit estimate of the 50-year load is
about 3.3% higher.
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(a) Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes.
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.2:Median, mean, and 95% upper confidence level estimates of the long-term distribu-
tions of extreme blade root flap bending moment, considering the mean of the Gaus-
sian distribution of conditional turbulence uncertain. Three conditions are presented,
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with all parameter values considered deterministic.

v = 5%,10% and 20%. Also shown, for comparison, is the long-term distribution
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Uncertain Annual Average 10-minute Mean Wind Speed and Conditional Mean Turbulence

In the case considered here the analysis consists of nesting the uncertain conditional mean analysis
within the uncertain annual average 10-minute mean wind speed analysis. Again, three cases were
considered where,, =, ,, = 5%, 10%, and 20%. The epistemic uncertainty in the conditional
mean turbulence is considered to be independent of the epistemic uncertainty in the annual average
10-minute mean wind speed.

The Monte Carlo simulation results in multiple realizations of the long-term distribution of
extreme blade root flap bending loads. The median and mean long-term distributions for an arbitrary
10-minute interval in Figuré.3(a) considering the three cases whégg = ¢ = 5%, 10% and
20%.

Figure6.3(b) shows the median and mean estimate of the long-term distribution of annual ex-
treme blade root flap bending loads. Our median estimate of the 50-year blade root flap bending
load is 59.7 kN-m for all three conditions of uncertaipr and yi7y (6, = 6y, = 5%, 10%,
and 20%), which is the same estimate we obtained when we consjderaad.,-|; deterministic,
i.€., 0, = 0y, = 0. Taking our estimate of the 50-year load as the load associated with a mean
annual exceedance probability of 2% results in estimates of 60.2kN-m, for = 5%, 62.7kN-m
for 6, = 10%, and 81.9kN-m fob,, . = 20%. If we consider 20% epistemic uncertainty in our
estimate ofuy andy)y, then the load with a mean annual exceedance probability of 2% is 37.2%
higher than if we considered the parameters deterministic. On the other hand, if the epistemic un-
certainty is reduced to about 5%, then the load with a mean annual exceedance probability of 2% is
about 0.8% higher. These results are summarized in Tahle

Also shown in Figures.3(b) are the 95% upper confidence limit estimates of the long-term
distribution of annual extreme blade root flap bending loads. Our 95% upper confidence limit
estimates of the 50-year blade root flap bending load considering ungeytaindy. ;| with 6, =
(SMW = 5%, 10% and 20%, are 63.1kN-m, 70.2kN-m, and 93.5kN-m, respectively. If we consider
20% epistemic uncertainty in our estimate of the parameters then our upper confidence estimate of
the 50-year load increases by 56.6% over our estimate if we considered the parameters deterministic.
On the other hand if the epistemic uncertainty is reduced to about 5%, our 95% upper confidence
limit estimate of the 50-year load increases by only about 5.5%.

Hrv
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(a) Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes.
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.3:Median, mean, and 95% upper confidence level estimates of the long-term distribu-
tions of extreme blade root flap bending moment, considering both the parameter of
the Rayleigh distribution of 10-minute mean wind speed and the mean of the Gaus-
sian distribution of conditional turbulence uncertain. Three conditions are presented,
Opy = Oy = 5%,10% and 20%. Also shown, for comparison, is the long-term
distribution with all parameter values considered deterministic.
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Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Long-term Environmental Variable Distribution Parameters

Parameters deterministic, 50-year load = 59.7kN-m

Estimate
Median | % with mean % 95% %
Wind speed | §,, | estimate| diff. | annual exceed diff. confidence diff.
(KN-m) Prob = 2% estimate (kN-m)
(kN-m)
5% 59.7 | 0% 60.1 0.7% 62.5 4.8%
10% | 59.7 | 0% 62.3 4.4% 68.2 14.2%
20% | 59.7 | 0% 78.0 30.7% 87.1 46%
Turbulence | 4,
5% 59.7 | 0% 59.9 0.3% 61.7 3.3%
10% | 59.7 | 0% 60.7 1.7% 63.7 6.7%
20% | 59.7 | 0% 63.5 6.4% 67.7 13.4%
Wind speed &| 6,,,, =
turbulence | 4,
5% 59.7 | 0% 60.2 0.8% 63.0 5.5%
10% | 59.7 | 0% 62.7 5.0% 70.2 17.5%
20% | 59.7 | 0% 81.9 37.2% 935 56.6%

Table 6.1:Comparison of estimates of 50-year blade root flap bending moment, including uncer-
tainty long-term environmental variable distribution parameters, with considering all pa-
rameters deterministic.
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6.3.2 Summary

In the previous three sections we have considered three general conditions—each assessing the
effect on including epistemic uncertainty in the distribution parameters on our estimate of the 50-
year load. Tablé.1 summarizes the results from these previous sections. In the first section we
considered including the epistemic uncertainty in our estimate of the annual average 10-minute
mean wind speed. In the second section we considered including the epistemic uncertainty in our
estimate of the conditional mean turbulence. We found that for the turbine, site data, and probability
models considered here including the epistemic uncertainty in the conditional mean turbulence did
not increase our estimate of the 50-year blade root flap bending load, defined as the load associated
with a annual exceedance probability of 2%, as much as including the the epistemic uncertainty
in the annual average 10-minute mean wind speed. Further analysis, which included considering
the epistemic uncertainty associated with both model parameters, did not show a significant further
increase in this estimate of the 50-year blade root flap bending load, about a 5% percent increase for
the case with 20% coefficient of variation, over only considering epistemic uncertainty associated
with the annual average 10-minute mean wind speed.

6.4 Uncertainty in short-term load distribution

6.4.1 Uncertain regression coefficients

The methodology presented in Chapsdior predicting the long-term extreme response, involved
fitting a probability model to the observed responses for a given set of realizations of the environ-
mental variables by the method of moments. The statistical moments of the responses were related
to the realizations of the environmental variables by regression analysis. Then, finally, the condi-
tional distributions of the responses are weighted by the probability of the respective realizations of
the environmental variables occurring, and summed over the domain of the environmental variables.
In the context of understanding the sources of epistemic uncertainty in the short-term loads
distribution, let us again consider the analysis of constructing the short-term loads model of extreme
loads based on modeling global peaks,with a Gumbel distribution as shown in Equatiéria
We are interested in the uncertainty in our estimates of the parameters of the énaddl;. But
we saw in ChapteB that we can relate the parameters of the Gumbel model to the the first two
statistical moments of the observed 10-minute maximum response, i.e., global ped&tned in
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Chapterl by the method of moments,

Fz(z) = exp (—exp (—a(z — 1)) (6.16)
R s
o=
66%
N N “YEuler
U= pz -
o
Yeuler = 0.577

Wherejiz anda% are the estimates of the mean and variance of the 10-minute maximum response,

respectively. So we can turn our attention to the uncertainty in the estimates of the statistical mo-

ments/iz ando%. We saw in Chaptet that the standard error of our estimate of the mean is,
oz

Wheren, is the number of observations for a given pair of values of the environmental variables,

(v,7). Similarly, we may assume that the standard error of the estimate of the variance is also

inversely proportional to the number of observations such that,

2
se , o 2Z (6.18)

9z n
This is only one portion of the uncertainty in our estimates of the statistical moments, however.
In the process of computing the long-term response we relate the statistical moments of the response
to the environmental variables through regression analysis (see ApgEndpecifically, we have
used the power law function proposed by Veers and Wintersidin [

PR B _ i =1.92 A
Hi “ (Vref> <Iref> J ’ (6 9)

Whereu; = pz andps = o%. The uncertainty in our estimates of the regression coefficients

is related to the epistemic uncertainty in the statistical moments used in the regression analysis
as seen in Equatiod.19 Two methods for estimating the epistemic uncertainty in the regression
coefficients are presented here. First, we consider having a large number of samples of the response
for a given set of values of the environmental variables. In this case the bootstrap d&hsd$ed

to estimate the uncertainty. Second, we could use the principals of regression analysis to estimate
the uncertainty in the regression coefficients. This approach, however, assumes that the covariance
matrix of the regression coefficients is known with certainty. In general, we must consider that the
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covariance matrix is also unknown—we only have an estimate of it. This is the benefit of the first
method. In general, the application of the bootstrap method as described below does notrequire
priori knowledge, or assumption, of the covariance matrix. It works directly with the data—as we
will see. It does, however, require a large amount of data. If only a few samples have been collected
for each set of values of the environmental variables (e.g. 10-20 samples) the second method would
be an appropriate alternative to provide an estimate of the uncertainty. It is important to realize that
this second method will discount some sources of uncertainty, i.e., because it prescribes a known
covariance matrix.

6.4.2 Using Bootstrap Method to Estimate Uncertainty in Regression Coefficients

In this analysis, a bootstrag] methodology is employed to estimate the uncertainty associated
with the regression coefficients. Let us first consider the condition where we are interested in es-
timating the uncertainty in the regression coefficients based on only 10 mechanical-math-model
simulations for each set of values of the environmental variables from which to estimate the mean
and standard deviation of the 10-minute maximum response. In this case, our estimates of the
statistics of the 10-minute maximum response given a set of values of the environmental variables
are based on only these 10 response time histories. The reader should recall that in Ethegpter
estimates of these statistics were based on 100 time histories.

To estimate the epistemic uncertainty associated with these estimates based on only 10 response
time histories the following methodology is employed. 10 response time histories are selected at
random with replacement from the set of 100 original response time histories, for each set of values
of the environmental variables as described in Chaptérhen we obtain the statistics of the 10-
minute extreme response from thisotstrap sampleThis process is performed for each set of the
values of the environmental variables. Based on this data and following the procedure developed
in Chapter3, we obtain an estimate of the distribution bfg min, the long-term distribution of the
extreme 10-minute flap bending load. This process of selecting 10 time histories with replacement
and then obtaining an estimate of the distributiod.@f min is performed 1000 times. At the end, we
have 1000 estimates of the distributioniofy min. The median 300th ranked) and mean estimates
of the long-term distribution of blade root flap bending moments for an arbitrary 10-minute interval
considering 10, 20, 50 and 100 mechanical-math-model simulations are shown in &igurée
median estimate is found by sorting the probability of exceedance values associated with 1000 long-
term distributions for a given bending moment and selecting®& highest value. Similarly, the
mean estimate is found by calculating the mean probability of exceedance value over the 1000
long-term distributions for a given bending moment.

Figure6.5shows the median and mean estimates of the long-term distribution of annual extreme
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blade root flap bending loads using 10, 20, 50, and 100 mechanical-math-model simulations upon
which to base the estimates of the statistics of the 10-minute extreme response, and thereby affect the
uncertainty in the estimates of the regression coefficients. The reader is reminded that our estimate
of the 50-year load in Chapt& where we assumed the regression coefficients were known, was
59.7kN-m. From Figur®.5(a) using the bootstrap method to obtain an estimate of the uncertainty

in the regression coefficients, our median estimate of the 50-year load ranges from 107.2kN-m
(if based on 10 mechanical-math-model simulations for each set of values of the environmental
variables) to 60.4kN-m (if based on all 100 simulations). Considering an estimate of the 50-year
load given as the load with a mean annual probability of exceedance of 2% is only 1.1% higher
(60.4kN-m) than our estimate from Chap&ISimilarly, the load with a mean annual probability of
exceedance of 2% based on 50 simulations is 206kN-m, 245% higher. Estimates of the 50-year load
defined as the load with a mean annual probability of exceedance of 2% are significantly higher if
only 10 or 20 simulations are used, on the order of 6,000 kN-m, or more.

Also shown in Figures.5are the 95% upper confidence limit estimates of the long-term distri-
bution of annual extreme blade root flap bending loads. The 95% upper confidence level is found by
sorting the probability of exceedance values associated with 1000 long-term distributions for a given
bending moment and selecting th&0™ highest value. Our 95% upper confidence limit estimate
of the 50-year load considering all 100 simulations is 11.4% higher (66.5kN-m) than our estimate
from Chapter3. Similarly, our 95% upper confidence limit estimate of the 50-year load based on
50 simulations is 270kN-m, 352% higher. Our upper confidence level estimates of the 50-year load
are significantly higher if only 10 or 20 simulations are used, on the order of 9,500kN-m, or more.
These results are summarized in Tabl2 Note that the results based on only a few simulations
are far beyond the range of realistic design loads, and further illustrates the effect of higher levels
of epistemic uncertainty.

Uncertain Regression Coefficients with Known Covariance

In this section we consider using the principals of regression analysis to estimate the uncertainty in
the regression coefficients. The variance in the regression coefficients is related to the variance of
the residuals. The variance of the residuals is discussed below. We may consider the general form
of the regression problefn,

Y=XB+¢ (6.20)

Where,Y is the vector of predicted valuek is the matrix of predictor variables (parametefs,),
is the vector of regression coefficients, ands the vector of residuals. Here the elements of the

5Additional discussion on regression analysis is presented in App&idiee also Weisbur@f] and Rice P4]
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Figure 6.4:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes, considering regression coefficients uncer-
tain. The bootstrap method was used to estimate uncertainty in regression coefficients.

Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Regression Coefficients—Bootstrap Method

Regression coefficients deterministic, 50-year load = 59.7kN-m

Estimate 95%
Number of | Median with mean confidence
time history | estimate| % annual exceed. % estimate %
simulations| (kN-m) | diff. prob. = 2% diff. (KN-m) diff
(KN-m)
10 107 79.5% 224,000 375,000%| 1.35 x 10° NA
20 64.5 8.1% 6,345 10,500% 9,515 15,000%
50 61.0 2.2% 206 245% 270 352%
100 60.4 1.1% 65.9 10.4% 66.5 11.4%

Table 6.2:Comparison of estimates of 50-year blade root flap bending moment, considering un-
certain regression coefficients. The bootstrap method was used to estimate uncertainty.
Estimates of the 50-year blade root flap bending moment are compared with results ob-
tained with regression coefficients considered deterministic.
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(a) Median estimates of the long-term distribution of annual extreme blade root flap
bending moment.

50-year MRP prob. level - - - - -
10 sims., mean —=—
95% upper conf. -—--&---
20 sims., mean —e—
95% upper conf. ----e---
50 sims., mean ———
95% upper conf. ----&---
100 sims., mean ——
95% upper conf. ----v---

Annual probability of exceeding |

0.01

10 100 1000 10000 100000 1e+06  1le+t07  1e+08
Bending moment, KN-m

(b) Mean estimates of the long-term distribution of annual extreme blade root flap
bending moment.

Figure 6.5:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment, considering regression coefficients uncertain. The bootstrap method
was used to estimate uncertainty in regression coefficients.
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vector of regression coefficients ate(a), b, ande. An estimate foy3 can be found by,
B =XTX)"'XY (6.21)

From Weisburg§7), if E[e] = 0 andVar[e] = ¢2I,,, then is unbiasedE|3] = 3, and
Var(B) = Ygg = o?(X'X) ™ (6.22)

whereXgg denotes the covariance matrix of the regression coefficients, and an estimateaof

be found from, RS
o2 == (6.23)
n—p

with »’ equal to the number of pairs of values of the environmental variailes) ;, (j=1,... '),
p is the number of parameters in the regression analysisy+8, and the sum of squared residuals
(RSS)is

RSS =¢éTée = (Y - XB)T(Y — XB) (6.24)
SO
Var(B) = 02(XTX)™! (6.25)

We may consider this error the model fit error, i.e., the uncertainty associated with the lack of fit of
the functional form of the model to the data.

The total model error, includes model fit error but also uncertainty in our estimates of the statis-
tics of the response, i.e., mean and standard deviation of the 10-minute maximum response. If
we were to know that the functional form of the model was correct, then, given enough observa-
tions of the response at different environmental conditions, i.e., paivsarid I, the model error
would approach zero. The total model error in this case would only depend on the number of ob-
servations/simulations per environmental conditions. In this case, we could potentially drive the
uncertainty to zero, purely by continuing to collect data, across both multiple observations of the
response for a given specific set of environmental conditions and also across a range of different en-
vironmental conditions. If on the other hand the functional form does not contain enough flexibility
to fit to the data, or the data actually follows some other functional form, then the model fit error is
irreducible beyond some point, even as we continue to collect data. Data collected for the response
at additional different environmental conditions will not reduce this error because the functional
form is not “correct”. Multiple observations of the response for a given environmental condition
will reduce the standard error of the statistics and reduce the total error. However, in the limit with
enough observations the total model error will only reduce to equal the model fit error.
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Figure 6.6 shows mean and median estimates of the long-term distribution of extreme blade
root flap bending loads for arbitrary 10 minutes, where the statistics of the maximum response are
based on an increasing number of mechanical-math-model simulations. For each condition, the re-
quired number of mechanical-math-model simulations are selected at random from the pre-existing
data set where 100 mechanical-math-model simulations were performed at each set of values on
the environmental variables. The pooled statistics of the maximum response are calculated and a
regression analysis performed. From the regression analysis, the covariance matrix of the regres-
sion coefficients is obtained. We assume the residuals of the regression analysis follow a Gaussian
distribution and therefore our estimates of the regression coefficients also follow a Gaussian distri-
bution. The covariance matrix of the regression coefficients is used to determine the uncertainty in
the regression coefficients for the Monte Carlo analysis.

One thousand simulations of a Monte Carlo analysis were conducted where the regression co-
efficients are considered uncertain. The error terms of the regression coefficients are calculated as
follows: U is the matrix of uncorrelated standard normal error tednis the resulting lower tri-
angular matrix of a Cholesky decompositionXpg. The matrix of correlated normal error terms,

U, is found by
U, =LULT (6.26)

for each set of error terms is added to the expected regression coefficients and the moments cal-
culated for each. The standard process of calculating the estimate of the long-term distribution of
extreme flap bending loads follows from this point. At the end of the Monte Carlo simulation 1000
estimates of the long-term distribution of extreme loads are obtained. Fagusbows the median

and mean estimates of the long-term distribution of annual extreme blade root flap bending loads
using 10, 20, 50, and 100 mechanical-math model simulations upon which to base the estimates of
the statistics of the 10-minute extreme response. From Fiyid(a) all our median estimates of the
50-year load are in a narrow range from a minimum of 57.3kN-m for the case when 50 mechanical-
math-model simulations for each set of values of the environmental variables are used, to 64.1kN-m
if based on only 10 simulations. It is important to point out here that the estimates obtained here are
specific to the set of data randomly selected for our sample of 10, 20, or 50. If a different sample
of similar size were chosen, with different expected value of the regression coefficients, different
median values would result. This is why we observe a lower estimate when only 20 simulations are
used instead of 50—another set of 20 simulations may result in a estimate higher than the estimate
obtained from the 50 simulations used here. (Note, the bootstrap method, discussed above, inher-
ently includes this additional uncertainty). An estimate of the 50-year load given as the load with a
mean annual probability of exceedance of 2%, using all 100 simulations, is 0.9% higher (60.3kN-m)
than our estimate from Chapter Similarly, the load with a mean annual probability of exceedance
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Figure 6.6:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes, considering regression coefficients uncer-
tain with fixed covariance matrix.

of 2% based on 10 simulations is 907.5kN-m, 1420% higher. These results are summarized in Ta-
ble 6.3 The width of the distance between median and mean annual probability of exceedance (at
the 2% level) estimates calculated assuming a known covariance is smaller compared with the width
between median and mean annual probability of exceedance (at the 2% level) estimates based on
using the bootstrap method for all of the different number of mechanical-math model simulations
analyzed here. Therefore, we may conclude that there is some uncertainty that is not accounted
for by considering the covariance matrix of the regression coefficients fixed. Although, when the
number of simulations included in the analysis becomes large (e.g., 100) we observed only a small
difference in the estimates obtained from the two methods.



CHAPTER 6. UNCERTAINTY ANALYSIS 231

1 T T T T
50-year MRP prob. level - - - - -
10 simulations., median —&—
20 simulations., median —e—
— 50 simulations., median —=—
2 100 simulations., median —~—
§
&
B
2 01
3
Qo
o
S
®
>
c
c
<
0.01 \\

20 30 40 50 60 70 80 0 100
Bending Moment, kN-m
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Figure 6.7:Median and mean estimates of the annual long-term distributions of extreme blade root
flap bending moment, considering regression coefficients uncertain. Regression coeffi-
cients considered uncertain with fixed covariance matrix.
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Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Regression Coefficients with Known Covariance

Regression coefficients deterministic, 50-year load = 59.7kN-m

Estimate 95%
Number of | Median with mean confidence
time history | estimate| % annual exceed, % estimate %
simulations| (kN-m) | diff. prob. = 2% diff. (KN-m) diff
(KN-m)
10 64.1 7.4% 908 1,420% 693 1,061%
20 58.7 | -1.7% 128 114% 140 135%
50 57.3 | -4.1% 133 123% 98.7 65%
100 60.3 0.9% 65.5 9.7% 65.7 10%

Table 6.3:Comparison of estimates of 50-year blade root flap bending moment, considering uncer-
tain regression coefficients with known covariance. Estimates of the 50-year blade root
flap bending moment are compared with results obtained with regression coefficients
considered deterministic.
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6.4.3 Model Uncertainty

In the previous section we discussed epistemic uncertainty with respect to the regression coeffi-
cients. Here, we discuss the uncertainty associated with our estimate of the 10-minute maximum
response from simulated mechanical-model-based data versus observed field data.

The National Renewable Energy Laboratory collected field data oxoan15/50 turbine in-
stalled at the National Wind Technology Center test site in Boulder, Colorado. They recorded 152
10-minute time histories at different sets of values of 10-minute mean wind speed and turbulence
were recorded during November and December, 99%is included both time histories of the
wind process and time histories of the response blade root flap and edge bending moments. Only
the blade root flap bending moment data is used in the analysis considered here. Of the 152 time
histories, two of the time histories were removed from the data set because erroneous data had
been recorded.Figu&8shows plots of the statistics of the environmental conditions for each time
history of the wind process. The coefficient of variation of the 10-minute wind process versus 10-
minute mean wind speed is shown in Fig6r8(a) The standard deviation of the 10-minute wind
process versus 10-minute mean wind speed is shown in Fig8fie)

The observed 10-minute maximum blade root bending moment is plotted versus 10-minute
mean wind speed in Figu&9(a) For each set of environmental conditions shown in Figugéa)
one simulated response was generated usinyAleDYN [20] aerodynamics and dynamics model
first presented in Chapt& This is the same mechanical model and analysis code that was used
to generate the simulation data used to develop the description of the short-term load models in
Chapter3 and later used for the fatigue analysis in ChapteFigure6.9(b) shows the 10-minute
maximum blade root flap bending load from simulation versus the 10-minute mean wind speed for
the same set of values of the environmental variables. Each simulated or observed response, for
a given set of environmental conditions, represents one draw from an unknown population of re-
sponses. We know that if we ran a second simulation at the same set of environmental variables
we would get a different estimate of the 10-minute maximum blade root flap bending load. We
saw this in ChapteB where we ran 100 simulations for the same set of values of the environmental
variables. In one case in Chap&uwe fit a Gumbel model to the distribution of the 100 realizations
of the 10-minute maximum response. In this case, we acknowledge that we have some irreducible
uncertainty, i.e., randomness in the 10-minute maximum response. This is aleatory uncertainty. The
epistemic uncertainty results in our lack of knowledge in estimating the Gumbel model parameters
which define the model. In this analysis we are interested in concentrating on the epistemic uncer-
tainty. Taking only the one draw, i.e., on observation from the population of either simulated data
or observed data for a given set of environmental conditions, allows us to consider the epistemic

"This data was provided by Rick Santos of the National Renewable Energy Laboratory



CHAPTER 6. UNCERTAINTY ANALYSIS

04
+ +
+
0.35
. +
+
3 .
& 03 +
> + + F
5 A
8 + + L+t
£ o025 e -
s = . I
o
8 i+ i++ 4 -+
8 H + et
=] 0.2 + +- + o+t +.
a R ¥ i by e =+
: o bty NN e
I I e E
0.15 ; TR T +
: T -
R BESES Ea
I +% ++ FF +
0.1 ==
4 8 10 12 14 16 18 20

(a) Coefficient of variation of 10-minute wind process,= %%, versus 10-minute

mean wind speed.

10-minute mean wind speed, m/s

5
45
+
4 + ory T *
" + + I +
e 35 + + b e
= ++ ++++ firg "
S 3 S s 7 A WS S
~ + + ++ H o+t
8 T ‘FFJ,» + + 4 ++++£ #H:FFJ'» +
& 25 I ot
ko . jf + iﬁﬁ i ++ £
2 + +
S + R : JCR N U= N
F RS R B
I +
15 ot
1
+
+
05
4 8 10 12 14 16 18 20

(b) Standard deviation of 10-minute wind process= oy, versus 10-minute mean

wind speed.

Figure 6.8:Environmental conditions for 150 field recorded time histories.

10-minute mean wind speed, m/s

22

234



CHAPTER 6. UNCERTAINTY ANALYSIS 235

Regression of the Observed 10-minute Maximum on
Predicted 10-minute Maximum

Blade root flap bending
6 ‘ a-s'm ‘ R2
1.3569 kN-m| 37.675 (kN-mj | 44204

Table 6.4:Numerical results of regression of the observed 10-minute maximum blade root flap
bending moment on the predicted 10-minute maximum blade root flap bending moment
from simulation. (Figuré.10

uncertainty on a individual draw basis without the additional complication of considering any irre-
ducible uncertainty. In some respect, with only the one draw, all of the uncertainty is epistemic, or
based on our lack of knowledge.

We may ask at this point if any bias exists between our prediction of the maximum 10-minute
blade root flap bending load compared with the observed response based on individual draws from
each population, as discussed above. Figut@shows observed versus predicted 10-minute max-
imum blade root flap bending moment. A simple linear regression analysis with zero intercept, i.e.,

Lobs = BLpred+ em (6.27)

was used to determine the bias factérbetween the predicted responégses and the observed
response Lops Wheree,, is a random error term witl[e,,,] = 0 andVar[e,,] = o2 . The
regression results are shown in Tabld. From the regression analysis we find that the bias factor,

i.e, slope of the regression line, is about 1.36. (Note that if there had been ng was|d equal

one.) Our observations, from field data, are about 36% higher on average than what was predicted
from the mechanical-math-model. The standard deviation of the residualss 6.14kN-m.

Additionally, we may consider a measure of error that is based on the ratio of observed response
to predicted response. Where the ratio is greater than one are instances where the analysis based on
the mechanical model under-predicted the response. Conversely, where the ratio is less than one the
mechanical model over-predicts the response. Figurshows the ratio of observed to predicted
10-minute maximum blade root flap bending moment versus 10-minute mean wind speed. We find
that most of the ratios are greater than one and would indicate that our model under-predicted the
response of the turbine. This is consistent with the results found from the regression analysis.

We may obtain a mean estimate of the long-term distribution of extreme blade root flap bending
loads including model uncertainty by inflating our estimates of the mean and standard deviation
of the short-term extreme loads model developed from the mechanical-math-model data presented
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in Chapter3 to reflect the model error as described by Equa@dv and Table6.4. In Chapter3

the short-term extreme load distribution was based on modeling the global peaks from simulated
data. We showed in the analysis in this chapter that the predicted flap loads were on average biased
by about 1.36 and the standard deviation of the model error residuals was 6.14kN-m. To correct
for the bias we include a multiplicative term to the results we obtain from the regression analysis
that relates the mean 10-minute maximum response to the environmental variables. We can write
Equation3.19from Chapter3 considering the mean 10-minute maximum blade root flap bending
load and including the bias correction fact,éras

1% 0.7928 I 0.7129 R
117 = 25.66kN-m () () « (6.28)
Wef Iref

Where 3 = 1.36 We can include the uncertainty associated with regression analysis, i.e., ran-
domness associated with the prediction error by adding the variance of the res&@%alm the
variance predicted by our model in Chapseiin this case, we can write Equati8ril9considering

the standard deviation of the 10-minute maximum, blade root flap bending load and including the
uncertainty,agm, in our prediction error as

v\ 03231 /N 0.2084 2
o7 = +| [ 8.61kN-m <> <) + o2 (6.29)
Vref Iref m

Whereo? = 37.675(kN-m)2. Figure6.12shows the expected estimate of the long-term distribu-
tion of maximum blade root flap bending loads for an arbitrary year. Our estimate of the 50-year
blade root flap bending load, defined as the load with a mean annual exceedance probability of 2%,
considering uncertainty in our prediction from the mechanical model, is 107kN-m. An estimate
of the 50-year load of 59.7kN-m was obtained if we considered our mechanical-math-model to be
correct. Including a correction for the model error and the uncertainty associated with the model
error, our estimate of the 50-year load increases by 79.2%. 36% is due to the bias—the rest is due
to “model error”.
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6.5 Conclusions

In this chapter we have discussed some of the sources on epistemic uncertainty in our analysis of
estimating the long-term distribution of extreme blade root flap bending loads. We considered the
effect of including the epistemic uncertainty associated with estimates of the long-term distribution
parameters of the environmental variables. Including the uncertainty associated with the annual
average 10-minute mean wind speed, the parameter for the Rayleigh model of long-term 10-minute
mean wind speed had a greater contribution to the estimate of the long-term distribution of extreme
flap bending loads, than did including the epistemic uncertainty associated with the conditional
mean turbulence parameter, for the same level of parametric uncertainty of 20%. Including 20%
epistemic uncertainty in our estimate of the annual average 10-minute mean wind speed, our esti-
mate of the 50-year load, based on a mean annual exceedance probability of 2%, was 30.7% higher
than if we assumed the annual average 10-minute mean wind speed to be known. On the other hand,
including the 20% epistemic uncertainty in the conditional mean turbulence parameter our estimate
of the 50-year load, again based on a mean annual exceedance probability of 2%, was only 6.4%
higher than if we assumed this parameter was known. This shows that in this analysis the long-term
distribution of the extreme response is more sensitive to epistemic uncertainty in the annual aver-
age 10-minute mean wind speed. It is critical to consider both the uncertainty and the sensitivity
of the analysis to the uncertainty. Even though we have the same uncertainty in both parameters,
annual average 10-minute mean wind speed and conditional mean turbulence, the analysis is more
sensitive to changes in the annual average 10-minute mean wind speed. Given the choice, it would
be a better use of resources to collect data to reduce the epistemic uncertainty in the estimate of the
annual average 10-minute mean wind speed than the conditional mean turbulence if they have the
same level of uncertainty, because the analysis is more sensitive to changes in the former.

We considered two approaches for estimating the uncertainty associated with the regression
coefficients from limited data: (1) bootstrap method and (2) variance of coefficients through regres-
sion analysis. In the first approach, the bootstrap method was used to estimate the uncertainty in
the regression coefficients. In the bootstrap method, a few time-histories at a time were randomly
selected from the database. Then, based orbthisstrap samplewe obtained an estimate of the
long-term distribution of the 10-minute extreme flap bending loads. This was repeated several times
in order to obtain median and mean estimates of the long-term distribution of extreme blade root
flap bending loads. We found that, in this case, if we considered 100 simulations at each set of
values of the environmental conditions our estimate of the 50-year load, based on a mean annual
exceedance probability of 2%, was 65.9kN-m about 10% higher than if we assumed the regression
coefficients were known. If we considered only 50 simulations at each set of values of the envi-
ronmental conditions our estimate of the 50-year load, again based on a mean annual exceedance
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probability of 2%, increased to 206kN-m, about 3 times greater increase than if we used twice as
many simulations.

The second approach utilized the assumptions in regression analysis to obtain a estimate of the
variance of the regression coefficients. This approach may be useful if only a few (i.e. less than
20) simulations were run at each set of values of the environmental variables. In implementing this
method, however, we assume that the covariance matrix of the regression coefficients remains fixed,
or known. This eliminates one potential source of additional epistemic uncertainty. Monte Carlo
simulation was used to randomly select sets of regression coefficients from jointly correlated Gaus-
sian distributions. These distributions were defined by the mean vector of regression coefficients and
the associated covariance matrix. One hundred mechanical-math-model simulations at each set of
values of the environmental conditions resulted in an estimate of the 50-year load, based on a mean
annual exceedance probability of 2%, of 65.5kN-m, about 10% higher than if the regression coeffi-
cients were known. If we considered only 50 simulations at each set of values of the environmental
conditions, our estimate of the 50-year load, again based on a mean annual exceedance probability
of 2%, increased to 133kN-m, about 2 times more than if we used twice as many simulations. The
width of the distance between median and mean annual probability of exceedance (at the 2% level)
estimates calculated assuming a known covariance is smaller compared with the width between
median and mean annual probability of exceedance (at the 2% level) estimates based on using the
bootstrap method for all numbers of mechanical-math-model simulations analyzed here. For exam-
ple, the width of the distance between median and mean annual probability of exceedance estimates
for 50 mechanical-math-model simulations using the bootstrap method is 145kN-m. Whereas, the
distance between these estimates for the same number of simulations but assuming a known covari-
ance matrix is 75.7kN-m. Therefore, we may conclude that there is some uncertainty that is not
accounted for by considering the covariance matrix of the regression coefficients fixed. Although,
when the number of simulations included in the analysis becomes large (e.g., 100), we observed
only a small difference in the estimates obtained from the two methods.

Keeping the results of the long-term analysis in mind, the analysis considering the model uncer-
tainty showed that there was enough bias, and variability in the bias, that if included would inflate
our estimate of the 50-year load by 79.2%. Just from these simple analyzes we can determine the
most effective areas to assign resources to reduce the epistemic uncertainty and then more accurately
estimate the 50-year load.



Chapter 7

Summary and Conclusions

The purpose of this work has been to provide a probabilistic based approach to estimate fatigue
and extreme load distributions on wind turbines. We started our discussion by looking at how we
might model the short-term extreme response conditional on variables which describe the wind
environment acting on the turbine. These models were then used to build estimates of the long-
term distributions of extreme load events, i.e., extreme blade bending moment, from which we
were able to estimate the one-year and 50-year loads. Subsequent to this work, we considered
alternative methods to simplify the intensive calculations to obtain these estimates and also how we
might quantify the associated uncertainty due to limited data in these estimates. Quantifying the
epistemic uncertainty, and qualitatively understanding the sensitivity to the sources of uncertainty,
provide a guideline to effectively target resources for further study and analysis. Additionally, we
showed how the methodology developed for estimating long-term distributions of extreme loads
could be applied to obtain estimates of the long-term distribution of fatigue ranges and estimates
of fatigue damage. The next few sections reflect on each of these points in more detail and present
suggestions for further research in several areas on the topic of fatigue and extreme load estimation
for wind turbines.

7.1 Modeling Short-Term Extremes

We started with considering the appropriate choice of short-term extreme load models (i.e., process
model, local peak model, or global peak model). Chaptéemonstrated the use of both random
process and random peak models to predict short-term extreme wind turbine loads. In particular,
we studied the efficacy of 3-moment random peak models, i.e., quadratic Weibull, and 3- and 4-
moment random process Hermite models. We found that for a parked wind turbine experiencing
50-year winds, all models were nearly unbiased, and achieved a significant reduction, e.g., about

242
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50%, in our epistemic uncertainty in estimating the mean 10-minute maximum load, compared
with the statistics of theaw data. i.e., maximum event from 10-minute response time history of
blade root flap or edge bending moment. On the other hand, for rotating blades during operation,
at lower wind speeds, the random process models showed a notable bias. In contrast, the random
peak models remained consistently accurate, and displayed consistently lower epistemic uncertainty
in all cases. This suggested that rather than model the entire 10-minute time history, we could
model a set of its local peaks and retain enough information about the rotating nature of the load
process to permit obtaining accurate estimates of extreme behavior. Having found an accurate way
of estimating the short-term extreme loads given prescribed environmental conditions, we needed a
way to combine these short-term loads to estimate the marginal distribution of the extreme loads.

7.2 Estimating Long-Term Extreme Events

7.2.1 Integration Method

In Chapter3 we presented a methodology for obtaining an estimate of the marginal distribution
of the extreme loads by applying the Law of Total Probability. Starting from initial simulated
response time histories of thec 15/50 turbine, we fit distribution models to first the observed
10-minute extremes and then later to the set of local peaks in a 10-minute response time history. In
both cases the statistical moments that define the distribution model parameters were related to the
environmental variables—which describe the wind processes—through regression analysis. Finally,
an estimate of the long-term distribution of extreme blade root flap and edge bending moments
were obtained by integrating the conditional short-term blade root bending moment distributions
over the long-term distribution of the environmental variables. We found that the estimate of the
long-term distributions of extreme blade root flap and edge bending moments based on modeling
the local peaks were unbiased compared with the estimates of the long-term distributions of bending
moments based on modeling the observed 10-minute extremes. Solving the two-fold integration is
computationally intense, however. We discussed one method for mitigating this issue that simplified
the two-fold integration problem down to a single-fold integration by using deterministic fractiles
of the short-term load, turbulence intensity, and wind speed distributions. We showed that this
methodology captured a significant portion of the contribution that these variables made to the
variability of the long-term extreme bending moment distributions.

We should note that the fractiles obtained from the analysis presented in CBayply to
the data considered (turbine response and site description) in this analysis and moreover to the
assumptions made in choosing the associated distribution models. Different fractiles may apply for
other turbine response data under different assumptions. In particular, basing our expectations on
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the results of similar analysis in other fields, i.e., off-shore structures, and earthquake engineering,
we would have expected that the randomness in the short-term loads was less important than the
randomness associated with the environmental variables. We found that, in general, this was not
the case for the data used in our analysis. It would be beneficial to validate these results by looking
at other stall-regulated turbines using different mechanical-math-model simulation technigues, and
different site conditions. It would be of interest to determine if the results found here were typical
of the conditions of wind turbine behavior, or for some reason pathological in this case.

7.2.2 Environmental Contour Method

Chapter4 presented an alternate approximate approach for estimating the one-year and 50-year
extreme turbine blade bending moment load. This approach essentially employed the approximate
methods underlying first-order reliability analysisrrMm. In this method, contours of the critical
combination of wind speed and turbulence intensity are found for a prescribed acceptable reliability
level. It then becomes a straightforward task of (1) identifying an appropriate percentile of the
short-term load, and (2) identifying the maximum response along the prescribed contour. Under
the assumptions aforRM analysis, the maximum response along the contour is associated with
prescribed reliability level of interest. These theories were applied in three different examples where
the short-term extreme loads were considered deterministic at the mean level.

The first two examples demonstrated how estimates of the one-year and 50-year extreme blade
bending loads on aroc 15/50 turbine might be obtained using environmental contours, consider-
ing two different site environments. In both cases operating and parked loads on the turbine were
considered. This introduced a discontinuity in the limit state function. One of the key assumptions
in FORM analysis is that the limit state function is generally smooth. The reliability is approxi-
mated based on a straight line tangent to the limit state function at the point of highest probability
density along the limit state function. If large discontinuities exist in the limit state function, then
potentially significant areas of probability density may not be accounted for properly. The fact that
this discontinuity is present is a challenge to the effectivenes®rfv to provide a reasonable ap-
proximation. In both examples the estimates obtained from the environmental contour method were
reasonable (e.g., 0-6% difference) compared with estimates obtained from integrating the determin-
istic short-term extreme loads over the long-term distribution of the environmental variables. Even
in the presence of the discontinuity in the limit state function at the cut-out wind speed, we found
that FORM still provided a reasonable approximation (e.g., 2-13% difference), compared with the
results from integration.

In the third example, the short-term response was developed to simulate the typical non-monotonic
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response of a pitch-regulated machine. This contributed a slope discontinuity in the limit state func-
tion, in addition to the discontinuity at the cut-out wind speed. Again, estimates of the one-year and
50-year extreme flap-bending loads were obtained from both methods. We found that including the
additional slope discontinuity did not greatly affect the efficacfgoRM to provide an acceptable
approximation, at least for the turbine, site data, and distribution models used in this example.

We demonstrated that the environmental contour method provides reasonable estimates of ex-
treme response similar to those obtained by the integration method. One advantage of using the
two-dimensional environmental contours, presented in Chdptierthat the contours themselves
are developed based only on data relating to the environment and a reliability criterion for the tur-
bine. Therefore, the contours immediately give some insight into the critical combinations of envi-
ronmental variables and may lead to a reduction in the required number of environmental conditions
explored in the design process. In particular, instead of interrogating the entire space of combina-
tions of environmental conditions for the critical response of the turbine, the contour identifies the
critical environmental conditions. We only need to search the points along the contour to find the
critical response of the turbine, for a prescribed reliability level. This can be a great benefit when
running expensive computer simulations—we only need to run simulations at environmental con-
ditions on the contour. A carefully constructed search algorithm, to interrogate the environmental
contour, may lead to additional reduction in the number of environmental conditions considered in
the quest to find the critical response of the turbine.

We might ask, “which fractile of the short-term extreme response should be used’? In the
analysis presented in Chapterwe used the mean value of the short-term extreme response. We
saw, however, in Chapté that considering the short-term extreme response deterministic at its
mean level and integrating over the long-term distribution of the environmental variables resulted
in an estimate of the one-year and 50-year loads that was at times significantly lower, i.e., about
5%-25%, than had we included the randomness of the short-term extreme response. There may be
some concern about how we account for the variability of the short-term extreme response in the
environmental contour method. Some approaches to this problem were discussed in £Hhaister
important to point out that applying any of these methods discussed in CHametd re-couple the
short-term turbine specific portion of the problem with the long-term environment specific portion
of the problem. There is a parallel, however, with the discussion of simplifying the long-term
integration problem presented in Chap@eHere we showed that considering the short-term loads
deterministic, but at a higher fractile above the mean, we could recover the randomness that the
short-term extreme load distribution contributed to the variability of the long-term distribution of
extreme loads. This same fractile concept could potentially be used for the environmental contour
method. In that case, if a universal fractile could be found that would cover a sufficiently large
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number of stall-regulated turbines the fact that the problem has effectively been re-coupled may be
mitigated. The reader should note that it is anticipated that a different fractile might be required for
pitch-regulated turbines, because the nature of the loading is different.

7.3 Modeling Fatigue Ranges and Damage

These first chapters addressed estimating the long-term distribution of extreme loads. The method
developed in Chapte® was then applied to estimating the long-term distribution of fatigue load
distributions in Chapteb. Parametric, moment-based, statistical models were introduced to model
short-term rain-flow-counted fatigue ranges. Two “higher-moment” models (including third and/or
higher moments) have been presented: (1) a quadratic Weibull model, which uses a quadratic dis-
tortion of the original Weibull model to preserve the first three moments of the data; and (2) a
“damage-based” Weibull model, which seeks a two-moment Weibull fit, not to the fatigue ranges
themselves but to power transformations that directly relate to “damage”. Both models have their
advantages. Compared with fatigue load data, the “damage-based” Weibull model was found to
follow the tails of the observed data. It also requires no special numerical algorithms to estimate its
parameters. In contrast, the quadratic Weibull does require such algorithms, and its accurate model-
ing of distribution tails can require the analyst to impose a lower-bound threshold on the load ranges
to be modeled. The potential benefit of the quadratic Weibull model includes its reliance only on
moments through third order. This may also be its draw back as the third moment may not be high
enough to fit the model to upper tail of the distribution where we anticipate the loads will contribute
the most to the accumulated fatigue damage. The damage-based model requires moments of higher
order—typically three to five—which reflect material fatigue exponent values of six to ten.

From the analysis, we found that the two models gave two different estimates of the expected
damage for the same value of the fatigue exponent. We stated that the quadratic Weibull model was
fit to the first three moments of the data. Although the third moment affects the fit of the model in
the tail of the data, the fit is still primarily influenced by the body of the data. To the degree that we
believe that a majority of the fatigue damage will be caused by loads in the upper tail, this model,
being fit to the body of data with some influence to the tail of the data, may not fit very well to the
extreme tail of the data. Conversely, the damage-based model is fit to the higher moments than the
third moment, is less influenced by the body of the data, and is tuned to the behavior of the extreme
tail. Although, as we have mentioned, this is where we anticipate the loads to contribute the most to
the fatigue damage, some damage should be expected from the body of the data. The damage-based
model may not fit to this data very well. It may be overly influenced by the extreme tail of the data,
and either over- or under-predict the loads in the body of the data.
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Another point is that when implementing the quadratic Weibull model, either for modeling
short-term fatigue ranges or short-term local peaks, a threshold was applied and the data was trun-
cated and shifted to improve the fit of the model to the data. In these cases, the purpose of imposing
the threshold was to remove a second population of either fatigue ranges or local peaks. In either
case, where to impose the threshold is a difficult question. In our work here, the thresholds were
based on qualitative examination of the data. It would be extremely helpful to establish some guide-
lines to help the engineer implement a reasonable threshold value—trading off the benefits of the
goodness of the fit of the model to the data with the amount of data retained. Also, in general, assess-
ing the goodness of fit of the model to the data, has been a qualitative evaluation. If the processes
laid out in the previous chapters are to be implemented in an automatic way, we need to establish
some quantitative evaluation of the goodness of fit of the model to the data. Poorly fit models to the
observed or simulated data will only lead to erroneous estimates of the design loads.

7.4 Quantifying Epistemic Uncertainty

Finally, having established a methodology for estimating the long-term distribution of fatigue and
extreme loads, we considered some of the possible sources of uncertainty in the analysis and showed
how, at least at a first pass, the epistemic uncertainty may be incorporated into the analysis and it
may affect our estimate of the 50-year load. We considered the effect of including the epistemic
uncertainty associated with estimates of the long-term distribution parameters of the environmental
variables. The analysis showed that the long-term distribution of the extreme response is more
sensitive to epistemic uncertainty in the annual average 10-minute mean wind speed. It is critical
to consider both the uncertainty and the sensitivity of the system to the uncertainty. If we have the
same uncertainty in both parameters, annual average 10-minute mean wind speed and conditional
mean turbulence, the system considered in Chdpbes more sensitive to changes in the annual
average 10-minute mean wind speed. Given the choice, for this system, it would be a better use of
resources to collect additional data to reduce the epistemic uncertainty in the estimate of the annual
average 10-minute mean wind speed than the conditional mean turbulence if they have the same
level of uncertainty.

Keeping the results of the long-term analysis in mind, we considered how we might incorporate
some of the sources of uncertainty in the short-term conditional loads. Two sources of epistemic
uncertainty were considered: (1) uncertainty associated with the regression coefficients and (2)
model uncertainty. In the latter, we were concerned with how we might quantify the uncertainty
associated with differences between the results from our mechanical model of the turbine compared
with actual data from the turbine collected in the field.
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We considered two approaches for estimating the uncertainty associated with the regression
coefficients from limited data: (1) bootstrap method and (2) variance of coefficients through re-
gression analysis. In the first approach—the bootstrap method—a few time-histories at a time were
randomly selected from the database and then based dnathiistrap sampl&ve obtained an esti-
mate of the long-term distribution of the 10-minute extreme flap bending loads. This was repeated
several times in order to obtain mean and median estimates of the the long-term distribution. The
second approach utilized the assumptions in regression analysis to obtain an estimate of the vari-
ance of the regression coefficients. This approach may be useful if only an few (e.g. less than 20)
simulations were run at each set of values of the environmental variables. In implementing this
method, however, we assume that the covariance matrix of the regression coefficients remains fixed
or known. Monte Carlo simulation was used to select sets of regression coefficients from jointly
correlated Gaussian distributions. Their distributions were defined by the mean vector of regression
coefficients and the associated covariance matrix. We observed that the width of the distance be-
tween the median estimate and the estimate obtained by considering the load with a mean annual
exceedance probability of 2%, calculated assuming a known covariance, is smaller compared with
the width between these estimates if obtained based on using the bootstrap method. Therefore, we
may conclude that there is some uncertainty that is not accounted for by considering the covariance
matrix of the regression coefficients fixed. Although, when the number of simulations included in
the analysis becomes large (e.g., 100) we observed only a small difference in the estimates obtained
from the two methods.

The analysis considering the model uncertainty showed that there was enough bias and variabil-
ity in our estimate that if included, would inflate our estimate of the 50-year load by 80%. About
half of this increase (36%) was due to the bias and the rest was due to case to case variability in
model error. Just from these simple analyzes we can determine the most effective areas to assign
resources to reduce the epistemic uncertainty and then more accurately estimate the 50-year load on
wind turbines.
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Appendix A

Filtered Time Histories

In Chapter3 we noted that the time histories for blade root edge bending response of the parked
turbine were filtered. This appendix briefly presents the methodology used in filtering these time
histories.

The simulations of the load response of a pseudo-paskeri15/50 turbine at different wind
speeds were run usingwDYN . Running a pseudo-parked condition came out of a constraint of the
YAWDYN program, which can not simulate blade load responses for a parked turbine. Therefore, the
simulations were run with the turbine very slowly idling, one rotation in ten minutes. Presumably,
the variation of the response due to the wind field for a parked turbine would be very closely approx-
imated by the simulation where the turbine was slowly idling. This seemed to produce acceptable
results for the 50m/s high wind speed case. For the lower wind speeds, specifically the in-plane,
edge, bending response (the out-of-plane, flap, bending response was not effected), the variation in
the response due to the input simulated wind field was much smaller compared to the gravity cycle
introduced by the slowly idling turbine, see Figured.(a), A.2(a), andA.2(a). This gravity cycle
would not occur if the turbine was parked, however.

In order to remove the erroneous gravity cycle from these parked turbine response time histories,
a Discrete Fast Fourier TransformrfFT) was applied to the edge-bending response time histories.
By applying theDFFT to the time history we are able to determine the frequency content of the time
history as well as the power associated with the various frequencies. In the frequency domain then it
was simple to establish the once per 10 minute cycle (i.e. 1.67e-3 Hz) and set the power associated
with this frequency to zero, effectively removing this frequency from the spectrum. An inverse-
DFFT was applied to the modified frequency spectrum to recover a revised time history without the
offending gravity cycle. This process was applied to all the edge bending response time histories
for the three parked turbine conditions with 10-minute mean wind speeds of 24, 30, and 40m/s.
FiguresA.l, A.2, andA.3 show example unfiltered and filtered time histories.
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Unfiltered blade root edge bending response, kN-m

0 100 200 300 400 500 600
Time, seconds(s)

(a) Unfiltered 24m/s parked turbine, blade root edge bending response time history

Filtered blade root edge bending response, kN-m

0 100 200 300 400 500 600
Time, seconds(s)

(b) Filtered 24m/s parked turbine, blade root edge bending response time history

Figure A.1:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 24m/s turbulence claswind environment.
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Unfiltered blade root edge bending response, kN-m
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Time, seconds(s)

(a) Unfiltered 30m/s parked turbine, blade root edge bending response time history

10

Filtered blade root edge bending response, kN-m

0 100 200 300 400 500 600
Time, seconds(s)

(b) Filtered 30m/s parked turbine, blade root edge bending response time history

Figure A.2:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 30m/s turbulence claswind environment.
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(a) Unfiltered 40m/s parked turbine, blade root edge bending response time history

15

ol

Al |

L i

5 1 I 1 | |l|

-10

Filtered blade root edge bending response, kN-m
o

-15

0 100 200 300 400 500 600
Time, seconds(s)

(b) Filtered 40m/s parked turbine, blade root edge bending response time history

Figure A.3:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 40m/s turbulence claswind environment.



Appendix B

Regression Analysis

B.1 Introduction

This appendix presents a summary of the concepts of linear regression analysis. Additional infor-
mation on the topics presented here can be found in Rifleahd Weisberg§7].

Regression analysis is concerned with the prediction of a variatilased on information pro-
vided by a set of other variable$s;, X, ..., X,,. The case where the relationship betwéeand
X is linear is calledinear regression This relationship can be written as,

Y =00+5X1+ X+ - +3,X,+¢ (B.1)

Where theX'’s are calledindependenbr predictor variables and are not random. Tj& are
called regression parameters or regression coefficients; srcindom error termY” is called the
dependentariable oresponsend is random as a result of

The case where there is only one predictor variable,Y.e5 Gy + 51X1 + ¢, is calledsimple
linear regression On the other hand, the case where there are multiple predictor variables is called
multiple regressionOur interest here, in this discussion, lies with multiple regression. Before we
continue further, one point should be made aboutXr® the “independent” variables. This name
can be somewhat misleading, as tkis may be related to each other. Therefore, it is possible to
model relationships that have non-linear termXinFor example we may consider the relationship
Y = o+ 31X + X2 +¢, which may be modeled in a linear regression context by seling: X
and X, = X?2. In other words, the important point is that the linear regression model is linear with
respect to thel’s, the parameters, but not necessarily in ¥e.
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B.2 Multiple Linear Regression—Matrix Formulation

261

We will use matrix notation to ease the discussion of multiple regression. In general, vectors and
matrices will be denoted by boldface letters suchXse, 3, etc. Elements of vectors and matrices

are denoted as; j, ej, and;.

The values of thg's and the statistics afare not known, but can be estimated from a sample of
observations of and the corresponding’s. For thei", (i = 1, ..., n) observation, EquatioB.1

can be written written as,

Yi = Bo + 1 X1 + BoXio + -+ BpXip + €

wherey; is the:™ observation ol’, X;; is thei™ observation of thg'", (j = 1,. ..

variable, and; is thei™ observation of.
EquationB.2 can be written in terms of matrices as,

Y1
Y2 _
Yn
defining
Y1 1
v- "] x=|
Yn 1

EquationB.3 can be written as,

1 z11 z12

1 z91 oo

1 Tnl Tn2

T21

Tni

T1p ﬁO €1
T1p| | B €
+

Tnp 5;0 €n
T12 T1p Bo €1
x99 T1p B €2

) /6 = . 3 € =
Tn 2 Tnp ﬁp €n
Y =XB+c¢€

(B.2)

, p) independent

(B.3)

(B.4)

(B.5)

If we consider the condition where we assulje;] = 0, andVarle;] = o2 with Cov[e;, €] = 0

which implies,

and

Ele] =0

Var[e] = Elee’] = 0T

(B.6)

(B.7)

wheree! denotes the transpose @fandl is the identity matrix. From Equatior.6 andB.7 the
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expected value oY can be found by,

E[Y] = E[X8 + €]
= X3+ El€]
— X3 (B.8)

B.3 Least Squares Estimation of3

One common method for obtaining an estimate for the regression coeffiigmts 52, . .., 3, is
the least squares method, which minimizes the the sum of the squares of the residuals. We will
denote the vector of residuals byand is defined as,

e=Y -Xp3 (B.9)

WhereB is our estimate of the vector of regression coefficients. Therefore, and estinfhtaaf
be found by minimizingRS'S the residual sum of squares, or the sum of the squares of the elements
of e, more formally:

RSS =e'le
= (Y - XB)"(Y - XB)
Y'Y —YTX3-YXT3" + 3" XTX3 (B.10)
However, the tern¥ 7X 3 is a scalar and can be replaced by its transpose. Substituting into Equa-

tion B.10yields,
RSS =YTY — 23" XY + 3 X"X3 (B.11)

We want to minimize the residual sum of squarBs,S, so we differentiateR RS, EquationB.11
above with respect t@ which yields,

81;; = —2XT 4+ 2XTX3 (B.12)

Setting EquatioB.12 equal to zero gives,

XT'xp3=x"y (B.13)
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which yields the least square estimatedodis

B=X"X)"'x"Y (B.14)

B.4 Expected Value and Variance of3

Taking the expectation of both sides of Equatihi4 yields:

e (B.15)

BecauseE[B] = 3, in EquationB.15, B as defined in EquatioB.14 is said to be an unbiased
estimator.
Taking the variance of both sides of Equati®iri4yields:

Var[8] = 5 = Var[(X"X) ' X"Y]
= (XTX) ' XT2y X(XTX) ! (B.16)

where under the assumptions given in EquatiBrisandB.7 X+ can be obtained as,

E[Y)(Y — E[Y])"]

Y - X8)(Y - XB)"]
7]

E[(Y
E[(
E[

€€

=01 (B.17)
Substituting EquatioB.17 into EquationB.16yields:

= (XTX) T X IX(XTX)
= ?(XTX)IXTX(XTX)™!

=}(XTX)! (B.18)
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Weisburg p7] states that an estimate ©f can be obtained as,

02 = RSS, (B.19)
n—p

weren is the number of observations Wi and therefore also the number of observations, iand
p’ = p+1, the number of predictor variables,plus the intercept. We may obtain an estimate of the
covariance matrix of the regression coefficients by substituting our estimatérndb EquatiorB.18
which yields,

Var(8) = 55 = o2(XX) ! (B.20)

B.5 Coefficient of Determination,R2

The coefficient of determination is a statistic which gives a measure of the proportion of the vari-
ability of Y explained by the regression && The coefficient of determination is defined as,

Varle] _ | se (B.21)

R*=1-
Var[Y] s%

wheres? is the sample variance of the residuals agds the sample variance of the response.



Appendix C

Estimation of Long-Term Extremes with
IEC Environment

C.1 Introduction

In this appendix we consider a similar analysis of the estimation of the long-term distribution of
extreme loads to that presented in Chaptarith two major differences. First, in the analysis that

will be presented here the turbulence intensity is defined as the standard deviation of the 10-minute
wind process rather than the coefficient of variation of the wind process. Second, the long-term
description of the environment is derived from tee design codeZ3]. In particular we consider

a site that conforms to the clags standard.

C.2 Data Set

The data set used in this analysis is for the Atlantic Orient Corporatianl5/50 turbine, described

in Chapterl (pagel8). The turbine has a rotor diameter of 15m and a nominal rotor speedri 80

at the rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25
meters P2]. The data set is described in detail in Cha@¢page66) and consisted of multiple 10-
minute simulations of Gaussian wind fields and corresponding blade root bending moments. The
wind input processes is described by the hub-height wind speed. A plot of observed turbulence
intensity, standard deviation of the hub-height wind process, versus observed 10-minute mean wind
speed, calculated from the simulation data, for all 10-minute time histories is shown in Eidure

265
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Figure C.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

C.3 Long-Term Analysis Based on Modeling Global Extremes

C.3.1 Short-Term Analysis

In this section we consider estimating the long-term distribution of extremes based on modeling the
global peaks. The short-term conditional distribution of global peaks is modeled using the Gumbel
model. To review, the load models discussed in Chapterd considered again here, estimate the
probability distribution of short-term extreme load ranges by preserving a limited set of statistical
moments:y; = E[Z] (i = 1,2) for the Gumbel model of global peaks, pf = E[Y?] (i =
1,3) for the quadratic Weibull model of local peaks. In particular, in this section we will look at
estimating the long-term distribution of extreme loads based on modeling the global peaks by a
Gumbel model. This model is fit to the first two moments of the data. Separate regression analysis
and long-term integration will be conducted. Later in SectibdAwe will consider estimating the
long-term distribution of extreme loads by modeling the local peaks with a quartic Weibull model.
Chapter3 showed how the statistical moments of the data could be related to the environmental
variables: mean wind speeld, and turbulence intensity, through the power-law relation we have
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seen befored4):

1% b; I \¢
i=ai | — — c.1
K ¢ (Vref> <Iref> ( )

Where, Vit is the reference 10-minute mean wind speed, &gds the reference turbulence inten-

sity.! This functional form and methodology are followed here again with some modification. In this
case, with the definitions chosen for the environmental variables, mean and standard deviation of the
10-minute wind process, for 10-minute mean wind speed and turbulence intensity respectively, the
variables are highly correlated,= 0.9911. In order to avoid problems with the regression analysis

due to highly correlated predictor variables a constrained regression analysis was performed. For
constrained regression analysis, a simple linear regression of the statistics of the extreme load is
performed on the first predictor variable, the 10-minute mean wind speed. The residuals are then in
turn regressed on the second predictor variable, turbulence intensity. The issue with highly corre-
lated predictor variables is that they tend to explain the same variability in the data. Following the
procedure above, we prescribe the 10-minute mean wind speed to be the more important predictor
variable and through the simple linear regression remove the variability explained by the 10-minute
mean wind speed first. The second predictor variable is left to explain the variability which is left
over, that portion of the variability it can explain that did not overlap (i.e. correlate) with the first
predictor variable, which with highly correlated variables is generally very little. As a result the
second predictor variable will play a less significant role than the first predictor variable.

The constrained linear regression analysis described above, applied to the logarithm of Equa-
tion C.1, yields point estimates of the coefficients. To demonstrate typical results, we pursue mod-
eling the global extremes by a Gumbel model here; the alternate approach based on modeling the
local peaks by a quadratic Weibull model in Secttod. The Vief and If Values for the operating
conditions are 16.474m/s and 2.518m/s respectively. The correspdrigdiamd I;¢; values for the
parked conditions are 34.861m/s and 4.607m/s respectively. The calculated regression coefficients
andR? statistics are shown in Tabl€s1andC.2for flap and edge bending conditions respectively.

R? statistics near unity indicate that a large percentage of the variability in the data is explained by
the regression model. LoiR? statistics indicate that other influences not contained in the regression
model may be affecting the loads.

Finally, graphical regression results are shown in Fig@@&sand C.3for blade root flap and
edge bending respectively. Regression results for the mean and standard deviation of the maximum
10-minute flap bending moment versus 10-minute mean wind speed are shown in Eidi(es
andC.2(b) Corresponding results for edge bending are shown in Figtu&s)andC.3(b) In all
plots the turbulence intensity has been set equdldg the reference value.

!Recall that the turbulence intensity in this analysis is defined as the standard deviation of the 10-minute wind process,
rather than the coefficient of variation as considered at times in previous chapters.
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Blade Root Flap Bending
Regression of Statistics of 10-Minute Maximum o/ and [

Mean of 10-Minute Maximum

a (KN-m) b c R?

V < 24mls 25.6694 | 0.6090| 0.0460 0.9233
V > 24m/s 40.1812 | 2.5137| 0.01839| 0.9979

Standard Deviation of 10-Minute Maximum

a (KN-m) b c R?

V < 24mls 2.7765 | 0.7698| 0.0287 0.9214
V > 24m/s 3.955 | 2.6841| 0.0259 0.8713

Table C.1:Regression coefficients used in Equatfor to fit statical moments of blade root flap
bending loads as functions of the mean wind sp&&ednd turbulence intensity,

Blade Root Edge Loading
Regression of Statistics of 10-Minute Maximum on/ and [

Mean of 10-Minute Maximum

a (KN-m) b c R?

V < 24m/s 8.6107 | 0.2693| 0.0135 0.9718
V' > 24m/s 7.2485 | 3.9850| 0.0138| 0.99602

Standard Deviation of 10-Minute Maximum

a (KN-m) b c R?
V < 24mls 0.3049 | 1.6252| 0.0739 0.9105
V > 24m/s 1.4264 | 3.3673| 0.0232 0.8932

Table C.2:Regression coefficients used in Equati®i to fit statistical moments of blade root edge
bending loads as functions of the mean wind sp&ednd turbulence intensity,
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(b) Regression of the standard deviation of 10-minute maxima on the 10-minute mean
wind speed and turbulence intensity.

Figure C.2:Regression of the moments of 10-minute maximum on the 10-minute mean wind speed
and turbulence intensity for blade root flap bending.
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(b) Regression of the standard deviation of 10-minute maxima on the 10-minute mean
wind speed and turbulence intensity.

Figure C.3:Regression of the moments of 10-minute maximum on the 10-minute mean wind speed
and turbulence intensity for blade root edge bending.
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C.3.2 Long-term Analysis

For the discussion here, we defined the conditional short-term probability distribution of global
peaks by a Gumbel model. Further, the moments of the global peaks have been related to the
environmental variables through regression analysis.

The long-term distribution of extreme loads, in an arbitrary 10-minute period, is found in the
same way as described in Secti®d.2 by performing the integration below,

FL(l) = //Fle’[(”U,’L')fV’](’U,i)dvdi (CZ)

Where,Fp,y;(l|v,4), is the short-term conditional distribution of extreme loads, Ang(v, i), the
joint density function of the environmental variables.

We will assume that theoc 15/50 turbine is installed at a site with environmental conditions
conforming to alec classlA site. The description of the environmental variables is based on the
criteria given in thaec wind energy safety code for a clal#s environment 23]. Specifically, the
annual distribution of the 10-minute mean wind spegd,is given by the Rayleigh distribution
shown below, withuy,=10m/s.

fv(v) = %exp [— <Z>2] (C.3)
_ 2w
\/E

The standard deviation of the 10-minute wind process is taken as the measure of wind turbulence
intensity. The conditional distribution of turbulence intensity is assumed to follow the lognormal
distribution shown below.

N 2

The parameters of the lognormal distributiorand(, are defined as:

¢ =/In(07,, +1) (C.5)

A =In(uy) - 3¢ (C6)
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with, 67y, the conditional coefficient of variation given as:

anv
onv = I (C.7)
1201\
The functions of conditional meap,y,, and standard deviationy, -, of the turbulence are given

by thelec wind energy safety cod@8§]. For turbulence class A;5=0.18 anth=2.

115(15m/5+ CLU)
By = (a T 1) —2m/siy;s (C8)
onv = 2m/siys (Cg)

A plot of the joint density function of the environmental variables is shown in FigLréChapte#).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.
For each pair of values of the environmental variables the corresponding short-term distribution of
the extreme load is generated. Then, per Equdaiid) the short-term conditional fatigue range
distributions are summed together each weighted by the probability of the respective environmental
condition, i.e., pair of values of the environmental variables occurring. The summation is performed
over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case to develop the long-term distribution the appropriate regression
model is used for each wind speed value. This results in a combination of the operating and parked
only long-term distributions as shown in Figu@e4. Also shown in the figure are the long-term
distributions of the load if the turbine is either parked or operating in all wind speeds. The prob-
ability levels associated with the one-year and 50-year mean return pemadprob. level) are
also shown (note Equatio®s13and3.14). In all of the preceeding cases it was assumed there was
100% availability of the turbine during all winds speeds. It would require only minor modification
to the procedures developed here to include the condition when the turbine was available for only
a portion of the time for a given wind environment. Using the full distribution for each of the ran-
dom variables, estimates for the one-year flap and edge bending load are 52.4kN-m and 12.3kN-m
respectively. Correspondingly estimates for the 50-year flap and edge bending load are 74.3kN-m
and 19.3kN-m respectively.
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(a) Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure C.4:Long-term distributions of 10-minute extreme blade root bending monegtsin, con-
sidering three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine
parked over all wind speeds, 3) turbine operating below cutout wind speed and parked
above cutout wind speed; for both: (a) flap and (b) edge bending.
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C.3.3 Simplifying the Long-term Analysis

In this section a methodology for simplifying the calculations required for solving Equ@tidn
is presented. The full distributions of some of the random variables are replaced with appropri-
ate deterministic fractiles, thereby reducing the number of numerical integrations required to be
performed. It is appropriate to consider this methodology for those random variables which have
only a small contribution to the overall variability in our estimate of the long-term extreme load
distribution. Here a qualitative analysis is employed to determine the degree to which each of the
variables in Equatiol€.2 contributes to the long-term extreme load distribution. Further based on
this analysis we present how an appropriate deterministic fractile of, for example, the short-term
load distribution, the conditional distribution of turbulence intensity or both, may be used, instead
of their full distributions.

We investigate such simplifications further in the remainder of this section. F@&rehows
the long-term distribution of the 10-minute flap and edge loads for three cases that consider, in turn,
the short-term load variable and each of the environmental variables deterministically. Only one
variable is considered deterministic in each analysis, the other variables are assumed random and to
follow the distributions defined previously. These three analyzes give a qualitative understanding of
how the terms in Equatio@.2 contribute to the variability in the long-term load distribution. From
this analysis one finds that the considering the turbulence intensity deterministic does not affect the
results at all. This is not completely unexpected and is a result of the constrained regression. We
saw from the regression analysis that very little of the variability in the data, which was not already
explained by the wind speed, was explained by the turbulence intensity. Therefore, we should not
expect the turbulence to play much of a role in the long-term distribution of the extreme response.
The largest drop in our estimate of the 50-year load did occur, however, when we set the wind
speed variability to zero. Whereas reducing the variability in the short-term load did not reduce
our estimate of the 50-year load as drastically. Qualitatively, one can conclude that, less of the
variability in the long-term load distribution is explained by the randomness in the short-term load,
than by the variability in wind speed, for the structure, site data, and distribution models used here.

From this analysis, we may consider using prescribed fractiles of the distribution of the short-
term load. In this case, Figufe6(a)shows the results of considering the short-term load determin-
istic, but using the 86% fractile of the distribution rather than the mean value. Using the 86% fractile
of the load distribution results in estimates of the one-year and 50-year blade root flap bending load
of 52.1kN-m and 76.9kN-m respectively with associated errors of 0.5% and 3.5%, respectively. In
Figure C.6(b) we see that using the 74% fractile of the short-term load distribution results in an
estimate of the 50-year blade root edge bending load of 18.8kN-m with an associated error of 2.5%.
The fractile must be increased to the 90% fractile of the short-term load distribution to obtain an
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Figure C.5:Long-term distributions of 10-minute extreme blade root bending momgyitin, con-
sidering load, turbulence intensity, and wind speed deterministically for both: (a) flap
and (b) edge bending.



APPENDIX C. LONG-TERM EXTREMES—IEC ENVIRONMENT 276

estimate of the one-year blade root edge bending load of 11.8kN-m with an associated error of 4.1%.

Considering the short-term load deterministic simplifies Equaii@to a single fold integration
problem over only the distribution of annual wind speed. The results of this integration are shown
in Figure C.6. In this case, additionally, we can eliminate the remaining integration by using the
complementary cumulative distribution function of the annual wind speed distribution and then
evaluate the expression at the wind speed associated with the return period of interest.

C.3.4 Summary

In this section, we obtained an estimate of the marginal probability distribution of the long-term
load. This was accomplished by modeling the global peaks by a Gumbel distribution for the con-
ditional short-term load. The statistical moments of the global peak data were related to the envi-
ronmental variables by a power-law functional form. The parameters of the functional form were
obtained through regression analysis. Using the method of moments, a Gumbel distribution could
be obtained for each specific set of values of the environmental variables. Finally, an estimate of
the marginal distribution of the long-term load was obtained by summing the conditional short-term
load distributions over all environmental conditions. Each conditional short-term load distribution
was weighted by the probability of the associated environmental condition occurring. We found
from this analysis that the estimate of the one-year and 50-year blade root flap bending loads were
52.1kN-m and 74.3kN-m respectively. Correspondingly, the one-year and 50-year blade root edge
bending loads were 12.3kN-m and 19.3kN-m, respectively.

We then under took a qualitative, yet systematic, analysis to determine which of the three
variables—conditional short-term load, conditional turbulence, or mean wind speed—contributed
the most to the variability in the distribution of the long-term load. We found that at least for the
Aoc 15/50 turbine, site data, and distribution models used here the wind speed distribution of the
loads contributed the most to the variability in the distribution of the long-term load, with the con-
ditional short-term load contributing less. The turbulence intensity variable was essentially tuned
out by the constrained regression analysis. We found that by treating the conditional short-term
load deterministic, and considering fractiles higher than the mean, much of the contribution to the
variability in the distribution of the long-term load could be recovered. Specifically, considering
the 86% fractile of the distribution of the conditional short-term load, our estimates of the one-year
and 50-year blade root flap bending loads are 0.5% and 3.5% high respectively, over our estimates
employing the full distributions. For blade root edge bending, considering the 74% fractile of the
conditional short-term load distribution, our estimate of the 50-year root edge bending load is 2.5%
low. We needed to consider the 90% fractile of the conditional short-term load distribution for an
estimate of the one-year root edge bending load that was 4.1% low. The next sections presents a
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Figure C.6:Long-term distributions of 10-minute extreme blade root bending momegsin, con-
sidering the short-term load at prescribed deterministic levels compared with the full
distribution solution.
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similar analysis, only this time the short-term loads are based on modeling the random peaks with a
quadratic Weibull distribution.

C.4 Long-Term Analysis Based on Modeling Local Peaks

C.4.1 Short-Term Analysis

In the previous section, we obtained an estimate of the marginal long-term distributioR @f,

from a short-term conditional loads model fit £ the global extreme over the duration of a 10-
minute response time history. In this section an estimate of the marginal long-term distribution of
L1ominis found following a similar procedure. In this case, however, a quadratic Weibull model for
the short-term conditional load is fit td;, the random local peaks of a 10-minute response time
history, see Sectioh.5.5

Peaks of the response time histories where found based on the definition provided in €hapter
the largest value of the time history between successive up-crossings of its mean level. The process
mean level and number of peaks were calculated for all blade root flap and edge bending response
time histories. For each pair of environmental variables (&/g10m/s and/=classA) the 100
observations of process mean or number of peaks were pooled together and the mean of these pooled
observations was reported. A 4.75kN-m threshold was imposed on the edge bending response data
for operating conditions only, to provide a better fit of the quadratic Weibull to data. Statistics other
than the process mean that describe the blade root edge bending response from operating conditions
are based only on the peaks above this threshold.

In the previous section the statistical moments of the data were related to the environmental
variables by the power-law model given in Equat®d, the same methodology is used again, here.
When obtaining a long-term estimate of the 50-year load based on a short-term distribution which
models the local peaks, two parameters and three statistical moments are required. InGS8ction
where the short-term distribution modeled the global peaks, only the relationships between two
statistical moments and the environmental variables were required. In this case, we need the rela-
tionship between the environment and two other parameters in addition to the statistical moments
required to fit the probabilistic model. These two additional parameters in this case are: the number
of local peaks and the process mean.

The same values dfes and I;¢; defined in SectiorC.3 were used for this analysis. Théet
and /e values for the operating conditions are 16.474m/s and 2.518m/s, respectively and the corre-
sponding values for the parked conditions are 34.861m/s and 4.607m/s, respectively. The calculated
regression coefficients amtf statistics, calculated from constrained regression analysis, are shown
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in TablesC.3andC.4for both blade root flap and edge bending conditions, respectiRélgtatis-

tics near unity indicate that a large percentage of the variability in the data is explained by the
regression model. Lowk? statistics indicate that other influences not contained in the regression
model may be affecting the loads. In performing the regression analysis it was determined that the
applied functional model, Equatidh 1, did not have enough flexibility to sufficiently model the ob-
served behavior of the mean and standard deviation of the local blade root flap bending peaks. The
values of the mean and standard deviation of the peaks flatten out with higher wind speeds above
17m/s as compared with the behavior below 17m/s as seen in FigWesdC.1Q Therefore a
separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for
both the mean and standard deviation of local blade root flap bending peaks.

Finally, graphical regression results are shown in Fig@esC.11 Each figure contains re-
gression results for both blade root flap and edge bending conditions considering: process mean,
Figure C.7, number of peaks, Figuré.8, mean of local peaks, Figui@.9; standard deviation of
local peaks, Figur€.10 and skewness of local peaks, Fig@ell In all plots, the turbulence
intensity has been set equal to the reference value.

C.4.2 Long-term Analysis

For the discussion here, we defined the conditional short-term probability distribution of local peaks
by a quadratic Weibull model. Further, the moments of the local peaks and parameters have been
related to the environmental variables through regression analysis.

The long-term distribution of extreme loads, in an arbitrary 10-minute period is found in the
same way as described in Secti@Gmi3.2 We will again assume that theoc 15/50 turbine is
installed at a site with environmental conditions conforming t&@ classlA site, described in
SectionC.3.2 The long-term distribution of the 10-minute mean wind speed is assumed to follow
a Rayleigh distribution with meap, = 10m/s. The conditional distribution of turbulence is given
by a lognormal distribution with conditional mean and standard deviation given by Equéti®ns
andC.9, respectively. A plot of the joint density function of the environmental variables is shown
in Figure4.1(Chapterd).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.
For each pair of values of the environmental variables the corresponding short-term local peak dis-
tribution is generated. Through Equati®23 an estimate of the distribution of short-term extreme
events,P[Liomin < [|V, I], is obtained. The process mean and any required additional threshold
are re-introduced. Then as per Equat{or? the short-term extreme load distribution values are
summed together each weighted by the probability of the respective environmental conditions, i.e.,
the pair of values of the environmental variables occurring. The summation is performed over the
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Blade Root Flap Loading
Regression of Statistics of Random Peaks d¥ri and I

Mean of 10-Minute Response Process

a(kN-m) | b c R2
V < 24mls 3.0234 | 1.6105 | -0.0022 | 0.95250
V > 24mis 13.7605 | 1.8909 | -0.0013 | 0.99855

Expected Number of Random Peaks

a(kN-m) | b c R2
V < 24mis 800 | 0.2163 | -0.0095 | 0.70233
V > 24mis 1700 | 2.3252 | -0.0212 | 0.98381

Mean of Random Peaks

a (KN-m) b c R?
V <17m/s 3.950 0.7021 | 0.1877 | 0.84633
17 <V < 24m/s| 4.6571 | 0.0850| 0.2609 | 0.26266
V > 24mls 4.0833 | 3.7348 | 0.0118 | 0.99099

Standard Deviation of Random Peaks

a (KN-m) b c R?
V < 17m/s 3.500 0.7327 | 0.18203| 0.85968
17 <V <24m/s| 4.1934 | 0.0600| 0.2548 | 0.25144
V > 24mls 3.8721 | 3.1545| 0.0191 | 0.98368

Coefficient of Skewness of Random Peaks

a (KN-m) b c R?
V < 24m/s 1.2745 | -0.0365| -0.0071 | 0.07286
V > 24ml/s 215.3 | -1.2905| 0.0039 | 0.95904

Table C.3:Regression coefficients used in Equatidi to fit flap load moments as functions of the
mean wind speed/, and turbulence intensity,
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Blade Root Edge Loading
Regression of Statistics of Random Peaks o¥i and 1

Mean of 10-Minute Response Process

a (KN-m) b c R?

V <24m/s| 2.4066 | 0.3613 | -0.0053 | 0.95099
V >24m/s| 0.7327 | 1.8043 | -0.0013 | 0.99596

Expected Number of Random Peaks
a (KN-m) b c R?

V < 24m/s 104 -0.1581| 0.1445 | 0.05724
V >24m/s| 2927 0.8485 | -0.0201 | 0.87987

Mean of Random Peaks
a (KN-m) b c R?
V <24m/s| 0.2697 | 0.5587 0.0734 | 0.81101
V >24m/s| 0.8038 | 4.2402 0.0087 | 0.99785

Standard Deviation of Random Peaks
a (KN-m) b c R?

V <24m/s| 0.2699 | 0.8794 0.0708 | 0.91066
V >24m/s| 0.8244 | 4.3343 | 0.014649 | 0.99645

Coefficient of Skewness of Random Peaks

a (KN-m) b c R?

V <24m/s| 1.7613 | 0.68540| 0.0077871 0.85539
V >24m/s| 1.9343 | -0.0143| 0.0077 | 0.04407

Table C.4:Regression coefficients used in Equatidr to fit edge load moments as functions of
the mean wind speedl;, and turbulence intensity,
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(a) Regression of the process mean of 10-minute blade root flap bending response on
the 10-minute mean wind speed and turbulence intensity.
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(b) Regression of the process mean of 10-minute blade root edge bending response on
the 10-minute mean wind speed and turbulence intensity.

Figure C.7:Regression of the process mean on the 10-minute mean wind speed and turbulence
intensity for blade root flap and edge bending.
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(b) Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root edge bending.

Figure C.8:Regression of the expected number of local peaks on 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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(a) Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root flap bending.
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(b) Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root edge bending.

turbulence intensity for blade root flap and edge bending.
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Figure C.9:Regression of the mean of the local peaks on the 10-minute mean wind speed and



APPENDIX C. LONG-TERM EXTREMES—IEC ENVIRONMENT 285

14 , :
ClassA  +
£ o ClassB  ©
z 12 + Operating wind speeds; I=I, .
= Parked wind speeds; 1=l ====s===
0O )
§3 10
o g
55 8 /
S
g & /
o ° ;
5z :
z;%%g 4 oy B e
s ,45"
8 2 "
® -
0

5 10 15 20 25 30 35 40 45 50 55
10-minute mean wind speed, m/s

(a) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.

4.5 T T T T T T T T
ClassA +

1S 4L ) ) ClassB ©

= Operating wind speeds; |=I,« K

=~ Parked wind speeds; = g ==mseess- e
wd 35 ;
% 3 I
o 3 ;
é & 25 ;
f '
-c ’
o o
g3
-.£ 15 o
BE ;

=} o

o 1 y

g 05

' m ______ L
0 wa "

5 10 15 20 25 30 35 40 45 50 55
10-minute mean wind speed, m/s

(b) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure C.10:Regression of the standard deviation of the local peaks on the 10-minute mean wind
speed and turbulence intensity for blade root flap and edge bending.
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(a) Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.
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(b) Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure C.11:Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity for blade root flap and edge bending.
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entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case to develop the long-term distribution the appropriate regression
model is used for each wind speed value. This results in a combination of the operating and parked
only long-term distributions as shown in Figutel2 Also shown in the figure are the long-term
distributions of the load if the turbine is either parked or operating in all wind speeds. The prob-
ability levels associated with the one-year and 50-year mean return psmisdpfob. level), are
shown (note Equation3.13and3.14). In all of the preceeding cases it was assumed there was
100% availability of the turbine during all winds speeds. It would require only minor modification
to the procedures developed here to include the condition when the turbine was available for only
a portion of the time for a given wind environment. Using the full distribution for each of the ran-
dom variables, estimates for the one-year blade root flap and edge bending loads are 51.9kN-m and
12.0kN-m, respectively. Corresponding estimates for the 50-year blade root flap and edge bending
loads are 76.7kN-m and 20.0kN-m, respectively

C.4.3 Simplifying the Long-term Analysis

In this section, we consider simplifying the calculations required for solving Equatit by
replacing the full distributions of some of the random variables with appropriate deterministic frac-
tiles. As seen previously, Sectidh3.3it is appropriate to consider this methodology for those
random variables which have only a small contribution to the overall variability in our estimate of
the long-term extreme load distribution. Here, a qualitative analysis is employed to determine the
degree to which each of the variables in Equatih@ contributes to the long-term extreme load
distribution.

FigureC.13shows the long-term distribution of the 10-minute flap and edge loads considering
the short-term load variable and each of the environmental variables deterministically. Only one
variable is considered deterministic in each analysis, the other variables are assumed random and
follow the distributions defined previously. This analysis gives a qualitative understanding on how
the terms in Equatiof.2 contribute to the variability in the long-term load distribution. From this
analysis one finds that the largest drop in our estimate of the 50-year load to occur when we set
the short-term load variability to zero. Whereas, reducing the variability in the wind speed does
not reduce our estimate of the 50-year load as drastically. We found the opposite result in the
analysis presented in Secti@3. The turbulence intensity variable was essentially tuned out by
the constrained regression analysis. Qualitatively one can conclude that compared to the short-term
load less of the variability in the long-term load distribution is explained by the randomness in the
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(a) Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
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Figure C.12:Long-term distributions of 10-minute extreme blade root bending momiggtyin,
considering three turbine conditions: 1) turbine operating over all wind speeds, 2)
turbine parked over all wind speeds, 3) turbine operating below cutout wind speed and
parked above cutout wind speed; for both blade root (a) flap and (b) edge bending.
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wind speed, at least for the structure, site data, and distribution models used here.

Following the methodology previously presented, we consider using a higher fractile of the wind
speed distribution where we may be able to recover the associated contribution to the long-term
load variability, and still reduce the computational effort in calculating the marginal distribution of
L1omin- FigureC.14shows that even by considering the 99% fractile of the wind speed distribution
we are unable to recover the variability contributed by the the wind speed, for flap bending. If we
consider edge bending using the 95% fractile of the wind speed distribution, rather than the mean
value, we are able to recover a reasonable estimate, of about 11.8kN-m, for the one-year load. This
is 1.6% different compared to the result from the full random model. Again, however, even with the
99% fractile of the wind speed distribution we are unable to recover a reasonable estimate of the
50-year edge bending load.

FigureC.15(a)shows the results for flap bending considering, alternatively, the short-term load
deterministic, but using the fractile associated with the mean increased by six standard deviations of
the distribution rather than just its mean value. The estimates of the one-year and 50-year loads are
49.8kN-m and 77.1kN-m, respectively. These estimates have associated errors of 4.1% and 0.6%
compared with the results of the full random model. Correspondingly, Figut®(b)shows the
results for blade root edge bending if we consider the fractile associated with the mean increased by
8 standard deviations. Our estimates of the one-year and 50-year blade root edge bending loads are
10.7kN-m and 20.3kN-m, respectively. These estimates have associated errors of 11.0% and 2.0%
compared with the results of the full random model.

C.4.4 Summary

Similar to the previous section, here we obtained an estimate of the marginal probability distribution
of the long-term load. The short-term load was based on a quadratic Weibull model of local random
peaks, however. The general methodology remained the same. The statistical moments were related
to the environmental variables through regression analysis. Using the method of moments, the dis-
tribution of the short-term loads was obtained for each specific set of values of the environmental
variables. Finally, an estimate of the marginal distribution of the long-term load was obtained by
summing the conditional short-term load distributions (each weighted by the probability of the val-
ues of the environmental variables occurring) over all environmental conditions. We found from this
analysis that the estimate of the one-year and 50-year blade root flap bending loads were 51.9kN-m
and 76.7kN-m, respectively. Correspondingly, the one-year and 50-year blade root edge bending
loads were 12.0kN-m and 20.0kN-m, respectively.

Again, a qualitative analysis was conducted to determine which of the three variables—conditional
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10
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Figure C.13:Long-term distributions of 10-minute extreme blade root bending monmiegtyin,
considering load, turbulence intensity, and wind speed deterministically for both blade
root (a) flap and (b) edge bending.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
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Figure C.14:Long-term distributions of 10-minute extreme blade root bending monigegtyin,
considering the 10-minute mean wind speed at prescribed deterministic fractiles com-
pared with the full distribution solution.
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
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Figure C.15:Long-term distributions of 10-minute extreme blade root bending momiggtyin,
considering the conditional short-term extreme load at prescribed deterministic levels
compared with the full distribution solution.
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short-term load, conditional turbulence, or mean wind speed—contributed the most to the variabil-
ity in the distribution of the long-term load. We found that at least forabe 15/50 turbine, site

data, and distribution models used here the conditional short-term model of the loads contributed
the most to the variability in the distribution of the long-term load, with the mean wind speed con-
tributing less. We treated the wind speed distribution deterministic, considering fractiles higher than
the mean, and were unable to recover much of the variability in the distribution of the long-term
load. Considering the short-term load distribution deterministic, we found using the fractile asso-
ciated with mean increased by six standard deviations for the blade root flap bending load that our
estimates of the one-year and 50-year loads were 4.1% and 0.6% high, respectively. Correspond-
ingly, for the blade root edge bending loads if we considered the fractile associated with the mean
increase by 8 standard deviations for the short-term blade root edge bending loads our estimate of
the one-year load was low by about 11% and high by about 2.0% for the 50-year load.

C.5 Comparison of Long-Term Estimates Based on Different Short-
Term Models

In SectionC.3, we obtained an estimate of the long-term distribution of extreme events based on
modeling the 10-minute maximum event by a Gumbel distribution. Later, in SeCtibwe ob-
tained a similar estimate of the long-term distribution based on modeling the short-term local peaks
with a quadratic Weibull distribution. Figur€.16 shows a comparison of the estimates of the
long-term distribution of the 10-minute loads based on a short-term loads modeling the 10-minute
extreme (Gumbel) or local peaks (Weibull). The estimates of the one-year and 50-year blade root
flap and edge bending loads are presented in Taldalong with the associated percent difference
between the two estimates.

The data presented in the figure and the corresponding table show that the estimate based on
modeling the local peaks is generally unbiased for both blade root flap and edge bending compared
with the estimate based on modeling the raw conditional 10-minute extremes.
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10-
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Figure C.16:Comparison of estimates of the long-term distribution of 10-minute extreme blade
root bending moment, 1o min based short-term Gumbel model for 10-minute extreme
events or a short-term Weibull model for local peaks.
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Comparison of Long-Term Estimates
Based on Short-Term Gumbel and Quadratic Weibull Models

Blade Root Flap Bending
Gumbel Model| Quadratic Weibull Model Percent Difference
1-year Bending Load 52.4kN-m 51.9kN-m 1.0%
50-year Bending Load  74.3kN-m 76.7kN-m 3.2%

Blade Root Edge Bending
Gumbel Model| Quadratic Weibull Model Percent Difference
1-year Bending Load 12.3kN-m 12.0kN-m 2.4%
50-year Bending Load  19.3kN-m 20.0kN-m 3.6%

Table C.5:Comparison of long-term estimates of one-year and 50-year bending loads based on
using Gumbel distribution fit to observed extreme events for the short-term load model
versus fitting a quadratic Weibull distribution to the local peaks for the short-term load
model.



Appendix D

First Order-Reliability Method

D.1 Introduction

The purpose of this appendix is to provide the reader with a short discussion of the first-order
reliability method €orRM). The reader is encouraged to consider the references in the text for
further detailed discussion of the topics presented.

D.2 Background

The objective of reliability analysis is to provide an assessment of the performance of a structure or
other engineering system, while taking into account the randomness of the design critical variables
and uncertainties associated with limited data. The performance is evaluated based on a set of
criteria orlimit states which define acceptable behavior. In general, if the response of the structure
violates a limit state the performance is unacceptable, and often referred to as “failure”.

Here we letX = {Xj,..., X,,} denote the vector of random variables which influence the
performance of the structure. From this vector we can formulate a limit state fungtn, such
thatg(X)=0 defines a boundary in ti¥ space between the safe and failure states of the structure.
We furthermore defing(X) < 0 as the failure region ang(X) > 0 as the safe region. The
probability of failure can then be obtained by solving théold integral below.

pf= /g <0 fx(x) dx (D.1)

One major problem associated with evaluating Equdidhis that only in special cases does there
exist an analytical solution. Additionally, evaluation of the multifold integral numerically can be
intensive. However, approximate methods that provide good estimates of the probability of failure

296
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do exist, e.qg. first-order reliability method.

D.3 First-Order Reliability Method ( FORM)

As noted above, one major obstacle in reliability assessment is the evaluation of Equéatiblere

we are interested in presenting a brief discussion of the theory underlying the first-order reliability
method. For a more detailed discussion the reader is referred to the work of Madseny]ebral. [
Melchers B].

The first-order reliability method takes advantage of two special properties of the standard mul-
tivariate normal distribution: total radial symmetry of the joint probability density function about the
origin, and that the probability density function decays exponentially in both the radial and tangen-
tial directions. We will come back to the important role these properties play later in this discussion.
In order to take advantage of these properties, the basic random vari¥blesist be transformed

into a set of standard normal variat&s,= {U1, ..., U, }, with a joint probability density function
given by
1 1 7

The transformation can be writtenas= u(x), e.g., Equatiod.14showsu, as a function of. Note
that if one or more of the;'s are non-normal then the transformation is nonlinear. It is sufficient
for this discussion to acknowledge that the transformation takes place. Methods for conducting
the transformation are given in Madsen, et @.dnd Melchers §]. Note also that the limit state
function in standard normal spad&(u), must also be transformed, i.€&(u) = g(x(u)). Where
x(u) is the inverse ofi(x); e.g., in Equatiod.14we see as a function ofi,. These transformation
processes are illustrated in FiguDel.

In the original space the probability of failure was given by Equalildh After the transforma-
tion to standard normal space the probability of failure can be written as

pr = / b () du (D.3)
G(u)<0

In general, EquatioD.3 is as difficult to solve as Equatidd.1. The standard normal space has
two properties that enable us to obtain an accurate estimate of EqDaBiomhese two properties
as mentioned earlier are (1) the radial symmetrypgfu), and (2) the exponential decay of; (u)
in the radial and tangential directions. As a result of these properties, the pbjrdn the limit
state function(Z(U), closest to the origin has the highest probability density among all the points
in the failure space. It is common to refer to this point as the failure point or design point. The
design point is found using a constrained optimization algorithZ)§8]. Due to the exponential
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Figure D.1:Transformation of basic random variables to standard normal space.

decay of the probability density when the probability of failure is small, most of the contribution
to EquationD.3 comes from the region very close to the design point. Therefore, this suggests
that a good approximation to Equati@n3 can be obtained by replacing the limit state surface by

a tangent line at the design point and computing the probability content of the region beyond the
tangent line as shown in Figue2. The distancey, from the origin to the design point is given as:

B8 =alu* (D.4)

wherea is the unit normal vector to the tangent line. A first-ordeogMm) estimate of EquatioB.3
is given as] 2]
py = (=) (D.5)

It is important to note that while* is the most likely failure point in the standard normal space,
x* = x(u*), is not necessarily the most likely failure point in the original space. For most problems,
howeverx* is close to the most likely failure point in the original space. The error associated with a
FORM estimate ofp; depends on how curved the limit state function is in the standard normal space.
This curvature may arise from the fact that the limit state function is non-linear in the original space
to begin with, or may be due to the non-linear transformation of non-normal variables to the standard
normal space. Experience has shown that for most structural engineering problems the accuracy is
sufficient p9]. Note that the method (curiously) works better in the tails (i.e. whénlarge). For
6 = 0, the exponential decay is not in effect.
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Figure D.2:Probability content behind first-order approximation of limit state function at design
point, u®.

D.4 Affect of Multiple Design Points onFORM Estimate

In Chapter4 we discussed the occasion of multiple design points. In this section we present a brief
discussion on the effect of these multiple design points orFo®m estimates.

FigureD.3 shows a plot of the limit state function in standard normal space for the first example
shown in Chapted, for both blade root flap and edge bending moment. For FiguB¢a) blade
root flap bending, it is clear that there is only one design point. FiguB¢b), blade root edge
bending shows that there are two points that may be design points. The question is, “how do we
account for the probability mass associated with the second design point™?

The starting premise for implementing the environmental contour method discussed in Chap-
ter 4, was that the locus of points associated with the sg@naalue, i.e., reliability level, formed a
circle in standard normal space. More formally, the probability content outside a line drawn tangent
to any point on the surface of the circle is constant. The issue here is that with multiple design
points, other design points may not be included in the area outside the line drawn tangent to the cir-
cle at the most probable design point (i.e., design point closest to the origin). The further these other
design points are from theORM estimate the less accurate #herRM estimate becomes in estimat-
ing the reliability. In general, a system reliability analysis is required to accurately account for the
probability mass associated with multiple design posts, see Melghandl Madsen, et al.7]. We
will not discuss system reliability here but the reader is encouraged to consult the listed references.
Instead we will take a qualitative look at the location of the design point and the shape of the limit
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state function in standard normal space, for the three examples presented in @hagketermine
if the FORM estimate misses a significant portion of the probability mass associated with additional
design points.

The implication is that if multiple design points exist and contribute additional probability mass
not already included in theorRM estimate the estimate may be inaccurate and unconservative. In
our examples in Chapter we have inherently assumed that there will be only one design point.
This is evident in the fact that thevalue is directly related the number of 10-minute segments in a
prescribed return period, and th#svalue defines the radius of the circle in standard normal space.

If multiple design points occurred, and for example a second design point contributed probability
mass not included in theorM estimate for the most probable point, then a simple tangent at the
most probable point would not be sufficient. In this case, two tangent lines would be appropriate and
the probability mass that overlapped in the two regions would need to be discounted so that it was
not accounted for twice, i.e., system reliability analysis. If system reliability analysis is required to
account for the added probability mass associated with multiple design points, an iterative method
may be required to find the appropriate scaled circle in standard normal space associated with the
reliability, taking into account the contribution for all relevant design points.

Turning our attention to FigurB.3(b) the shape of the limit state function at the design point
with theFORM estimate shown indicates that very little probability mass is encompassed by the limit
state function. If this was the only design point then Ho®RM estimate would significantly over
estimate the probability mass. In this case, however, a second design point exists which includes a
large probability mass, to which o#oRM estimate would give a good approximation. Note that
both the limit state function and oapRM estimate are straight lines. So in this case one might argue
that we have offsetting errors. OBORM estimate is drawn at a point where the limit state function
contains very little probability mass, but we have another potential design point not contained in the
FORM estimate which does define a comparable probability mass.

FiguresD.4 andD.5 show a plot of the design points and limit state functions for Examples 2
and 3 of Chapte# considering both blade root flap and edge bending. In Fibudefor Example
2, the second design point is not included with #@RM estimate at the most probable point.
Although, the amount of probability mass not included with#lb&m estimate appears to be small.

We would expect that our estimate would be reasonable if only a small portion of probability mass
was excluded, and the results shown in Chagtanfirm this assumption. It should be noted that if

we underestimated the probability mass we would expect our estimate of the one-year load, based
on theFORM estimate, to be slightly higher than indicated by the integration. This is because the
circle based on only one tangent line would be larger than the circle associated with the probability
content rescaled to account for probability mass associated with two tangent lines. This is also
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Figure D.3:Plot of limit state functions in standard normal space for Exampleelc-Model with
Stall-Regulated Turbine, from Chapt&rfor (a) flap and (b) edge bending.
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confirmed by the results shown in Chapfepur estimate based arorM analysis is slightly larger

than the estimate based on integration. Fidu® for Example 3, shows that a second design point

is not included in theeORM estimate at the most probable point, and in this case a more significant
portion of probability mass is neglected. Qualitatively, it seems that it may be advantageous in this
case to conduct a system reliability analysis to account for the additional probability mass. This
would potentially reduce the 13% difference in our estimates of the 1-year load basegmrand
integration methods.
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Figure D.4:Plot of limit state functions in standard normal space for Example 2—Field Data Model
with Stall-Regulated Turbine, from Chap#rfor (a) flap and (b) edge bending.
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Appendix E

Environmental Contours Based on
Propsed Changes to IEC 61400-1

E.1 Introduction

The IEC technical committee responsible for revising the international standard of safety require-
ments for wind turbine generator systensq 61400-1) R3] has proposed several changes to the
existing code. In particular, the technical committee has proposed three wind clasgaagtead

of the current four wind classes, as well as three turbulence cladd <] instead of the current

two turbulence classes. We present a brief discussion of developing environmental contours for
these new wind turbine generator system classes. In particular, in the last section of this appendix
we show how the environmental contours can be normalized with respect to turbulence class. The
reader should note that in this analysis we have assumed that the turbulence intensity is well de-
scribed by a lognormal distribution.

E.2 Definition of Environmental Random Variables

E.2.1 Wind Speed

The annual distribution of the 10 minute mean wind spé&&ds given by a Rayleigh distribution

defined as: ) )
fo(v) = 25 exp [— (=) ] (E.1)
_ 2wy
NG
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Wherepy is shown in Tablde.1for wind speed classddll.

Wind Speed Class Vies m/s | py m/s

I 50 10
Il 42.5 8.5
I 37.5 7.5

Table E.1:Mean value of annual distribution of 10-minute mean wind speed, for wind clasi$es

E.2.2 Turbulence Intensity

The standard deviation of the 10-minute wind process is taken as the measure of turbulence, denoted
by I. The conditional distribution of turbulence is assumed to follow the lognormal distribution

N 2

The parameters of the lognormal distributiorand(, are defined as:

shown below.

(= ln((S%W +1)
1
A=In(ugy) — §C2
with, 67y, the conditional coefficient of variation given as:

anv
opy = ——
Hrv

The functions of conditional meap,y,, and standard deviationy,y-, of the turbulence are given
by the equations below

O-I\V = 1-44Iref (E4)

The parameterges andce are found in Tabld. 2 for turbulence classes throughC.
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Turbulence Class Ief | ¢ (M/S)

A 0.16| 3.8
B 0.14, 3.8
C 0.12, 3.8

Table E.2:Parameterd,ef and ¢ for annual conditional distribution of turbulence, for Turbulence
classeA-C.

E.2.3 Joint Probability Density Function of Environmental Variables

The joint probability density function of the environmental variables is obtained by multiplying
together Equationg.1landE.2

fvi(v,i) = fryv(ilv) fv (v) (E.5)

The resulting joint probability density function for clagsis shown in Figurde. 1
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Figure E.1:Joint probability density function for wind cla$4, y,=10m/s,/;¢=0.16,¢=3.8
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E.3 Transformation Equations

The equations to transform a circle in standard normal sgéce, into the basic space described
by the random variables for wind speéd, and turbulencel, are given below.

E.3.1 Transformation of U; to basic space, wind speed/

The U, coordinates of a circle in standard normal space are transformed to the basic space where
the wind speedV/, follows a Rayleigh distribution, by first equating the probability valuesof
andwv, in terms of the cumulative distribution functionst{F) and then solving of in terms ofu;.

®(u1) = Fy(v)

®(ur) =1 — exp [— (Zﬂ

—exp {— (”)1 — ®(ur) — 1

«
v

(&)2 — —In(1— ®(u))
v=oy/—In(1—®(uy)) (E.6)

E.3.2 Transformation of U, givenV/, to basic space, turbulence/

After having transformed the first standard normal variable to basic space, the second random vari-
able may be transformed. The derivation of the equation for transforming the second coordinate,
U,, of the circle in standard normal space where (conditionaVdnhe turbulence/, follows a
lognormal distribution is shown below. Again, tb®Fs are first equated, and then in this case

found in terms ofu, and the wind speed dependent tetkrend(.

(uz) = Fpy (i,v)
() — (111(@)(— )\>
~In(i) — A

<
In(i) = ual + A

i =exp (uaC + \) (E.7)
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E.4 Plot of Environmental Contours for Wind ClasseslA-IlIC

Figuresk.2throughE.10are plots of environmental contours, as discussed in Chépfer wind
classed-lll and turbulence classésthroughC, corresponding to 1-year and 50-year return periods.
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Figure E.2:Environmental contour, wind cla$&, 1-year and 50-year return periods.
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Figure E.7:Environmental contour, wind clasdB, 1-year and 50-year return periods.
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E.5 Normalized Contours

In this section, we consider normalizing the turbulence variable, such that one contour can repre-
sent the three classes of turbulence initially introduced in Tekite The normalized turbulence
is obtained by dividing Equatiors.3 andE.4 by the conditional standard deviation of turbulence
(EquationE.4). As shown in the equations below.

The conditional mean normalized turbulence is given as,

Iief(0.75v 4+ ¢)  0.750 + ¢

— = E.8
v 1.44Tref 1.44 E8)
The conditional standard deviation of normalized turbulence is given as,
144Iref
= =1 E.9
IV T Ay (E9)

These normalized equations are used in EqudEi@iThe general form of the transformation
equations presented earlier, however, remain unchanged. The normalized contours are shown in
FiguresE.1landE.12for 1-year and 50-year return periods, respectively.
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Figure E.11:Environmental contour with normalized turbulence intensity, wind clalsBgsl-year
return period.
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Appendix F

Estimation of Fatigue Distributions with
IEC Environment

F.1 Introduction

In this appendix, we consider a similar analysis of the estimation of fatigue load distributions and
fatigue damage to that presented in Chaptetth two major differences. First, in the analysis that

will be presented here the turbulence intensity is defined as the standard deviation of the 10-minute
wind process rather than the coefficient of variation of the wind process. Second, the long-term
description of the environment is derived from tEe design codeZ3], in particular we consider a

site that conforms to the cla$A standard.

F.2 Data Set

The data set used in this analysis is for the Atlantic Orient Corporatianl5/50 turbine, described

in Chapterl (pagel8). The turbine has a rotor diameter of 15m and a nominal rotor speed of

60 RPM at the rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub
height of 25 meters2]. The data set is described in detail in Chaf@€page66) and consisted

of multiple 10-minute simulations of Gaussian wind fields and corresponding blade root bending
moments. The wind input processes is described by the hub height wind speed. A plot of observed
turbulence intensity versus observed mean 10-minute wind speed, calculated from the simulation
data, for all 10-minute time histories is shown in Figat& The blade root flap and edge bending
moment response time histories were assumed to be repeating and were rain-flow counted using the
simplified rain-flow counting for repeating histories method giveadmm standard E-1049.

316
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Figure F.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

F.3 Long-Term Analysis Based on Modeling Fatigue Ranges
with Quadratic Weibull Model

F.3.1 Short-term Analysis

In this section, we consider modeling the distribution of fatigue ranges using the quadratic Weibull
model. This model is fit to the first three moments of the data. To review, the load models, discussed
in Chapter5 and considered again here, estimate the probability distribution of load ranges by
preserving a limited set of statistical moments, = E[R!]. The relevant moments are model-
dependenty; throughps for the quadratic Weibull model, and, and -, for the damage-based
Weibull model ¢ on the order o8 — 5, fatigue exponent;; equal to2z = 6 — 10). The moments of
the fatigue ranges were calculated for all blade root flap and edge bending response time histories.
For each pair of environmental variables (elg=10m/s and =classA) the 100 observations of the
moments, e.g., mean, variance, etc., were pooled together and the mean of these pooled observations
was reported.

Chapters showed how the statistical moments of the data could be related to the environmental
variables: mean wind speed, and turbulence intensity, through the power-law relation we have
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seen befored4):

1% b; I \¢
i=ai | — — F.1
K ¢ (Vref> <Iref> ( )

Where, Vit is the reference 10-minute mean wind speed, &gds the reference turbulence inten-

sity.! This functional form and methodology are followed here again with some modification. In this
case, with the definitions chosen for the environmental variables, mean and standard deviation of the
10-minute wind process, for 10-minute mean wind speed and turbulence intensity respectively, the
variables are highly correlated,= 0.9911. In order to avoid problems with the regression analysis

due to highly correlated predictor variables a constrained regression analysis was performed. For
constrained regression analysis, a simple linear regression of the statistics of the fatigue ranges is
performed on the first predictor variable, the 10-minute mean wind speed. The residuals are then in
turn regressed on the second predictor variable, turbulence intensity. The issue with highly corre-
lated predictor variables is that they tend to explain the same variability in the data. Following the
procedure above, we prescribe the 10-minute mean wind speed to be the more important predictor
variable and through the simple linear regression remove the variability explained by the 10-minute
mean wind speed first. The second predictor variable is left to explain the variability which is left
over, that portion of the variability it can explain that did not overlap (i.e. correlate) with the first
predictor variable, which with highly correlated variables is generally very little. As a result the
second predictor variable will play a less significant role than the first predictor variable.

The constrained linear regression analysis described above, applied to the logarithm of Equa-
tion F.1, yields point estimates of the coefficients. To demonstrate typical results, we pursue the
guadratic Weibull model here; the alternative damage-based Weibull model will be discussed in
SectionF.4. There are two distinct general loading conditions for the turbine, one when the turbine
is operating (i.e., 10-minute mean wind spee®4m/s) and the other while the turbine is parked
(i.e., 10-minute mean wind speed 24m/s). Separate regression analysis were performed under
each of these conditions. The reference wind speed and reference turbulence used in the regression
analysis are given in Table L The calculated regression coefficients &fdstatistics are shown
in TablesF.2andF.3for blade root flap and edge bending fatigue ranges, respectivélstatistics
near unity indicate that a large percentage of the variability in the data is explained by the regression
model. LowR? statistics indicate that other influences not contained in the regression model may
be affecting the loads. We may note that ke statistic for the regression analysis of the coeffi-
cient of skewness are low in a many cases, the data exhibit variability which the model is unable
to explain. In performing the regression analysis it was determined that the proposed functional
model, Equatiorf.1, did not have enough flexibility to sufficiently model the observed behavior of

!Recall that the turbulence intensity in this analysis is defined as the standard deviation of the 10-minute wind process,
rather than the coefficient of variation as considered at times in previous chapters.
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Reference Wind Speed and Turbulence

‘ Vret (M/s) ‘ Iret (M/s)
16.474 2.518

V < 24mls
V > 24mls

34.803 4.607
Table F.1:Reference wind speed and turbulence values used in Equation

the mean and standard deviation of the blade root flap bending fatigue ranges. The values of the
mean and standard deviation of the fatigue ranges flatten out with higher wind speeds above 17m/s
as compared with the behavior below 17m/s. Therefore a separate model was fit to each of these
regions, one below 17m/s and the other above 17m/s, for both the mean and standard deviation of
blade root flap bending fatigue ranges. A similar result was found in Chaptben we considered
modeling the local peaks with a quadratic Weibull model, see Fighigsand3.26

Finally, graphical regression results are shown in Figl@d-.4. Each figure contains both
blade root flap and edge bending conditions considering: mean of fatigue ranges,F-&yatan-
dard deviation of fatigue ranges, Figure3, and coefficient of skewness of fatigue ranges, Fig-
ureF.4. In all plots, the turbulence intensity has been set equal to the reference value.
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Blade Root Flap Bending
Regression of Statistics of Fatigue Ranges dri and

Mean of Fatigue Ranges

a (KN-m) b c R?
V = 17mls 6.0105 | 0.9855| 0.1933| 0.8935
17 <V £24m/s| 7.6080 | 0.0133 | 0.2868| 0.2387
V > 24mls 4.4478 | 4.4437 | 0.0010/| 0.9948

Standard Deviation of Fatigue Ranges

a (KN-m) b c R?
V < 17m/s 5.2900 | 0.8567 | 0.1902| 0.8871
17<V £24m/s| 6.6759 | 0.1034 | 0.2630| 0.2678
V > 24mls 4.6655 | 4.1542 | 0.0124| 0.9918

Coefficient of Skewness of Fatigue Ranges

a(kN-m) | b c R?
V < 24mis 1.3940 | 0.1447 | 0.0003| 0.4873
V > 24mls 2.3154 | -1.4468| 0.0140| 0.9369

Table F.2:Regression coefficients used in Equatto8to fit flap bending moment fatigue ranges as
functions of the mean wind spedd, and turbulence intensity, The turbine is operating
for V' < 24ml/s, otherwise the turbine is parked.
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Blade Root Edge Bending
Regression of Statistics of Fatigue Ranges dn and

Mean of Fatigue Ranges
a (KN-m) b c R?
V <24m/s| 0.5963 | 0.4346 | 0.0598 | 0.8292
V >24m/s| 1.0970 | 4.7006 | -0.0019| 0.9954

Standard Deviation of Fatigue Ranges

a (KN-m) b c R?

V <24m/s| 0.5186 | 0.3915| 0.0711| 0.7747
V >24m/s| 1.1339 | 4.5399 | 0.0089 | 0.9936

Coefficient of Skewness of Fatigue Ranges
a (KN-m) b c R?
V <24m/s| 1.8736 | 0.0213 | 0.0138 | 0.0064
V >24m/s| 1.9544 | -0.6177| 0.0161| 0.2369

Table F.3:Regression coefficients used in Equatio@to fit edge bending moment fatigue ranges as
functions of the mean wind spedd, and turbulence intensity, The turbine is operating
for V' < 24m/s, otherwise the turbine is parked.
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(b) Pooled statistics of the mean of the fatigue ranges in 10-minute blade root edge
bending response time history

Figure F.2:Mean fatigue range of 10-minute blade root flap and edge bending response, based on
100 pooled observations for each 10-minute mean wind speed and turbulence class. The
wind turbine is operating fov < 24m/s, otherwise the turbine is parked.
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(b) Pooled statistics of the standard deviation of the fatigue ranges in 10-minute blade
root edge bending response time history

Figure F.3:Standard deviation of fatigue ranges for 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating fér24m/s, otherwise the
turbine is parked.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT

Class A +
ClassB o}
Operating wind speeds; 1=1
Parked wind speeds; =1 g =-=--r----

+ N
o, +

IS
T

..
.
-,
Ly
~

Parked ranges un-shifted

[N

Coefficient of skewness of ranges
Operating ranges shifted, 10 kN-m

5 10 15 20 25 30 35 40 45 50 55
10-minute mean wind speed, m/s

(a) Pooled statistics of the coefficient of skewness of the fatigue ranges in 10-minute
blade root flap bending response time history.

ClassA  +
ClassB ©
Operating wind speeds; =1,

Parked wind speeds; =l -=--=-----

SN
T

Parked ranges unshifted

=

Coefficient of skewness of ranges
Operating ranges shifted, 8.5kN-m

5 10 15 20 25 30 35 40 45 50 55
Observed mean 10-minute wind speed, m/s

(b) Pooled statistics of the coefficient of skewness of the fatigue ranges in 10-minute
blade root edge bending response time history

Figure F.4:Coefficient of skewness of fatigue ranges for 10-minute blade root and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
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speed and turbulence class. The wind turbine is operating fér24m/s, otherwise the

turbine is parked.
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F.3.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by
a quadratic Weibull model. Further, the moments of the fatigue ranges have been related to the
environmental variables through regression analysis.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period is found in
the same way as described in Sectiofj by performing the integration below,

Fg(r) = /FR|V,1(7“|UJ) fvi(v,i) dvdi (F2)

Where,Fgy;(r|v, i), is the short-term conditional distribution of fatigue ranges, Andlv, i), the
joint density function of the environmental variables.

We will assume that theoc 15/50 turbine is installed at a site with environmental conditions
conforming to alEc class IA site. The description of the environmental variables is based on the
criteria given in thaec wind energy safety code for a clalgs environment 23]. Specifically, the
annual distribution of the 10-minute mean wind spegd,is given by the Rayleigh distribution
shown below, withuy,=10m/s.

fv(v) = %exp [— <Z>2] (F.3)
_ 2w
\/E

The standard deviation of the 10-minute wind process is taken as the measure of wind turbulence
intensity. The conditional distribution of turbulence intensity is assumed to follow the lognormal
distribution shown below.

. 1 1 (In(i) — /\>2
= — g e F.4
fiv (i) = o= exp[ 2( : (F.4)

The parameters of the lognormal distributiorand(, are defined as:
¢ =/In(07,, +1) (F.5)

A=In(pny) — %CQ (F.6)
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with, 67y, the conditional coefficient of variation given as:

anv
Sy = —% (F.7)
1201\
The functions of conditional meap,y,, and standard deviationy, -, of the turbulence are given
by thelec wind energy safety code. For turbulence clasgA+0.18 anch=2.

115(15m/5+ CLU)
By = (a T 1) —2m/siy;s (F8)
onv = 2m/sIl5 (Fg)

A plot of the joint density function of the environmental variables is shown in FigLréChapte#).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.
For each pair of values of the environmental variables the corresponding short-term distribution
of fatigue ranges is generated, and any required threshbifi) (s reintroduced. Then, per Equa-
tion F.2, the short-term conditional fatigue range distributions are summed together, each weighted
by the probability of the respective environmental condition, i.e., pair of values of the environmental
variables. The summation is performed over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. In this case, to develop the long-term distribution of fatigue ranges, the ap-
propriate regression model is used for each wind speed value. This results in a combination of the
operating and parked only long-term distributions as shown in FigiEeAlso shown in the fig-
ure are the long-term distribution of the fatigue ranges if the turbine is parked or operating in all
wind speeds. We see in FiguFes(a)that the blade root flap bending moment fatigue ranges are
dominated by the operating conditions. In Figaré3(b)we see that the blade root edge bending
moment fatigue ranges are also dominated by the operating conditions expect at very low probabil-
ity levels were the parked condition dominates. This is similar to what was seen with the extreme
load problem addressed in Chapseand AppendixC

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in
Chaptel5 how we may obtain and estimate of the fatigue damage in an arbitrary 10-minute interval
from,

E[D1o mir] o / /V ELN (0. JELR oo (v dodi = DMy (F.10)

WhereE[Ny(v,7)], is the expected number of cycles as a function of wind speed and turbulence,
andE[RY |v, 1], is theb‘}‘ conditional moment of the fatigue rangedM;, denotes thedamage
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Figure F.5:Long-term distributions of blade root fatigue bending moment rangBegonsidering
three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine parked
over all wind speeds, 3) turbine operating below cutout wind speed and parked above
cutout wind speed; for both: blade root (a) flap and (b) edge bending.
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Regression of the Number of Fatigue Ranges
onV and/

Blade Root Flap Bending

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 24m/s 268 0.9776| 0.0593 | 0.7219
V >24m/s| 5178 | 0.3440| -0.0070| 0.9462

Blade Root Edge Bending

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 24m/s 455 0.0502| -0.0080| 0.5686
V >24m/s| 5476 | 0.0203| -0.0047| 0.9965

Table F.4:Regression coefficients used in Equatiofto fit the expected number of fatigue ranges,
for blade root flap and edge bending, as functions of the mean wind Speadd turbu-
lence intensity/.

measure in 10-minutéand is used as a proxy for the expected total fatigue damage in an arbitrary
10 minutes. This is not an actual estimate of the expected total fatigue damage, but it is proportional
to it so that higher values ddM;, are associated with larger fatigue damage estimates and vise
versa. The expected number of cycles is related to the environmental variables through regression
analysis. The same power-law functional form, Equatid was used. The calculated regression
coefficients andk? statistics are shown in Tabf4 for blade root flap and edge bending fatigue
ranges. Graphical regression results are shown in FigéreApplying EquationF.10then we can

obtain estimates of the damage measDié,, for blade root flap and edge bending considetipg
values from 1 to 10 are presented in Tablg The values in this table will be used to compare with
results from modeling the short-term fatigue ranges with a damage-based Weibull model in the next
section instead of the quadratic Weibull model used here.

We may also consider the portion of the expected damage contributed at different environmental
conditions. Figurd-.7 presents a plot of damage density for both blade root flap and edge bending
moments. Here, we only consider the 10-minute wind speed as the environmental variable of inter-
est. The damage density is defined as the contribution to the expected total damage for a given wind
speed. Since our analysis was conducted considering both the 10-minute wind speed and turbulence
intensity, the values given in the figure reflect summing together all the contributions of different
turbulence intensities for a constant wind speed. We can see clearly from the figure that most of the
damage occurs while the turbine is operating, i.e., for wind speeds below 24m/s when the turbine is
assumed to be operating. Also we see from Figurehat as the value of the fatigue exponént,
increases we are relatively more sensitive to higher wind speeds, while the turbine is parked.
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Figure F.6:Expected number of fatigue ranges in 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
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speed and turbulence class. The wind turbine is operating fér24m/s, otherwise the

turbine is parked.
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Estimate of Damage MeasureDM;,
for Fatigue Exponent Values,by = 1,.. ., 10.

by Flap Bending Edge Bending
1 2.321e+3 3.929e+3
2 3.713e+4 3.505e+4
3 6.835e+5 3.146e+5
4 1.447e+7 2.833e+6
5 3.540e+8 2.557e+7
6 9.961e+9 2.316e+8
7 3.193e+11 2.140e+09
8 1.152e+13 1.920e+10
9 4.634e+14 1.459e+11
10 2.080e+16 1.623e+12
Table F.5:Estimate of damage measuieM,, for fatigue exponent values; = 1,..., 10, con-

sidering blade root flap and edge bending fatigue loads.

F.3.3 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-
bility distribution of the long-term distribution of fatigue loads. This was accomplished by modeling
the short-term distribution of fatigue ranges by a quadratic Weibull model. The statistical moments
of the fatigue range data were related to the environmental variables by a power-law functional
form. The parameters of the functional form were obtained through regression analysis. Using the
method of moments, a quadratic Weibull distribution was obtained for each specific set of values
of the environmental variables. Finally, an estimate of the marginal distribution of the long-term
fatigue loads was obtained by summing the conditional short-term load distributions over all envi-
ronmental conditions. Each conditional short-term load distribution was weighted by the probability
of the associated environmental condition occurring. The next section presents a similar analysis,
only this time the short-term fatigue ranges are modeled with a damage-based Weibull distribution.
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F.4 Long-Term Analysis Based on Modeling Fatigue Ranges with the
Damage-Based Weibull Model

F.4.1 Short-Term Analysis

In the last section we considered modeling the distribution of fatigue ranges using the quadratic
Weibull model. Here, in contrast, we consider modeling the distribution of the fatigue ranges using
our proposed damage-based Weibull model as defined in CHapfes review, the load models
discussed here estimate the probability distribution of load ranges by preserving a limited set of
statistical momentsy; = E[R’]. The relevant moments here are model-dependenthroughy3

for the quadratic Weibull model, and, and u,, for the damage-based Weibull model¢n the

order of 3-5,by = 6 — 10). In particular in this section we will look at damage-based Weibull
models in three cases, fervalues equal to 3, 4, and 5. In the first case for example whete3

this corresponds to fatigue exponent values equal to 3 and 6. The model is tuned to fit the third and
sixth moment of the data. Similarly, far = 4 (by=4 and 8) the model is tuned to fit the fourth

and eighth moment of the data, and fo= 5 (b;=5 and 10), the fifth and tenth moment. Separate
regression analysis and long-term integration will be conducted for each of these cases. In some
instances the results of only the first transformation: 3, will be presented as we find similar
results for the other transformations.

In the previous section the statistical moments of the data were related to the environmental
variables by the power-law model given in Equatied; the same functional form and method-
ology are followed here, again. The damage-based model matches only two moments, albeit the
two moments that are matched are typically of higher order. Constrained linear regression analysis,
applied to the logarithm of Equatidal, was used to obtain estimates of the coefficients. Recall
constrained regression analysis was implemented due to the high correlation between the environ-
mental variables, i.e., the predictor variables for the regression analysis. The reference wind speed
and reference turbulence used in the regression analysis are given irFlablée calculated re-
gression coefficients arig® statistics are shown in Tabl&ss andF.7 for blade root flap and edge
bending transformed; = 3, fatigue ranges, respectively. Similar results are shown in T&b&es
andF.9for z = 4 transformed fatigue ranges and TabfesO0andF.11for = = 5 transformed fa-
tigue rangesR? statistics near unity indicate that a large percentage of the variability in the data
is explained by the regression model. L& statistics indicate that other influences not contained
in the regression model may be affecting the loads. In performing the regression analysis it was
again determined that the applied functional model, Equdiitrdid not have enough flexibility to
sufficiently model the observed behavior of the mean and standard deviation of the blade root flap
bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten
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out with higher wind speeds above 17m/s, as compared with the behavior below 17m/s. Therefore
a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for
both the mean and standard deviation of blade root flap bending fatigue ranges. We saw a similar
result in Sectiorb.4when we fit the quadratic Weibull model to the fatigue ranges.

Finally, graphical regression results for the case where the fatigue ranges are transformed for
z = 3, are shown in FigureB.8 andF.9. Each figure contains regression results for both blade
root flap and edge bending conditions considering the mean of the fatigue ranges,F-8gmd
standard deviation of the fatigue ranges, Figtge In all plots the turbulence intensity has been set
equal to the reference value. Similar results were found for the other transformation cases and, in
the interest of brevity, these additional plots are not presented.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 788 3.0914 | 4.689 | 0.8859
17 <V £ 24mls 1471 | -0.0146| 0.6942| 0.2636
V > 24mls 662 12.183 | 0.0364| 0.9947

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 3156 | 2.6597 | 4.7121] 0.8975
17<V <24m/s| 5869 | 0.3059 | 0.6649| 0.2781
V > 24m/s 3361 | 10.249 | 0.0526| 0.9934

Table F.6:Regression coefficients used in Equatid to fit transformed £ = 3) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges on/ and [

la(N-m)| b | ¢ | R
V<24mis| 673 |-0.0296] -0.0017| 0.1878
V>24mis| 93 | 13.422| 0.0207| 0.9948

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ R?
V <24m/s| 105 | 0.8172] 0.1011| 0.8718
V >24m/s| 46.6 | 12.784| 0.0266| 0.9866

Table F.7:Regression coefficients used in Equatfef to fit transformed £ = 3) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 335

Transformed Blade Root Flap Bending Fatigue Ranges
=4

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 16624 | 3.8901| 0.6276| 0.8907
17<V £24m/s| 38139 | 0.1271| 0.9145| 0.2396
V > 24ml/s 15054 | 15.212| 0.0590| 0.9942

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 95320 | 3.4021| 0.6266| 0.9013
17 <V < 24m/s| 218818 | 0.6259| 0.8576| 0.3331
V > 24m/s 122149 | 12.815| 0.0710| 0.9928

Table F.8:Regression coefficients used in Equatid to fit transformed £ = 4) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
=4

Regression of the Mean
of Fatigue Ranges on/ and [

laN-m)| b | ¢ | R
V' <24mis| 6041 | 0.0012| 0.0204|  0.0009
V>24mis| 50 |17.172| 0.0163| 0.9911

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ | R?
V <24m/s| 2184 |0.7229|0.0981|  0.8567
V >24m/s| 511 | 16.912|0.0147| 0.9878

Table F.9:Regression coefficients used in Equatd to fit transformed £ = 4) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 336

Transformed Blade Root Flap Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges on/ and 1

‘ a (KN-m) ‘ b ‘ c ‘ R?
V < 17m/s 403931 | 4.6380| 0.7838| 0.8946
17 <V £ 24m/s| 1137109| 0.3384| 1.123 | 0.2542
V > 24m/s 436263 | 17.885| 0.0804| 0.9931

Regression of the Standard Deviation
of Fatigue Ranges ori/ and

la(kN-m)| b | ¢ | R?
V < 24m/s 3153425 4.1583[ 0.7819| 0.9038
17 <V < 24m/s | 8957484| 1.0125| 1.0402| 0.3907
V > 24m/s 4925813 | 15.336| 0.0925| 0.9915

Table F.10:Regression coefficients used in Equatkd to fit transformed £ = 5) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges on/ and [

laN-m)| b | ¢ | R
V < 24mi/s| 54502 | 0.0366| 0.0066| 0.2222
V >24mis| 380 | 20.543|-0.0199| 0.9886

Regression of the Standard Deviation
of Fatigue Ranges or/ and

la(kN-m)| b | ¢ | R?
V <24m/s| 24810 |0.7046| 0.1023| 0.8415
V >24m/s| 6811 |20.945| -0.0167 0.9883

Table F.11:Regression coefficients used in Equatfef to fit transformed £ = 5) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating fdr < 24m/s, otherwise the turbine is parked.
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Figure F.8:Pooled statistics of the mean of transformed=( 3) fatigue ranges in 10-minute blade

root flap and edge bending response time histories for given 10-minute mean wind

speeds. The wind turbine is operating Tor< 24m/s, otherwise the turbine is parked.
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F.4.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by a
damage-based Weibull model. Further, the moments of the data have been related to the environ-
mental variables through regression analysis.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period is found in
the same way as discussed in Sectio® We will again assume that theoc 15/50 turbine is
installed at a site with environmental conditions conforming taemclasslA site, described in
SectionF.3. The long-term distribution of the 10-minute mean wind speed is assumed to follow a
Rayleigh distribution with meany,, = 10m/s. The conditional distribution of turbulence is given
by a lognormal distribution with conditional mean and standard deviation given by EquBti®ns
andF.9, respectively. A plot of the joint density function of the environmental variables is shown in
Figure4.1(Chapterd).

The ranges of the values of the environmental variables are discretized into evenly spaced in-
tervals. For each pair of values of the environmental variables the corresponding short-term dis-
tribution of fatigue ranges is generated. Then, per Equatigrnthe short-term conditional fatigue
range distributions are summed together, each weighted by the probability of the respective envi-
ronmental condition, i.e., pair of values of the environmental variables, occurring. The summation
is performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During
normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds
greater than 24m/s. To develop the long-term distribution of the fatigue ranges the appropriate
regression model is used for each wind speed value. FigGihows three long-term distributions
of fatigue ranges. Each distribution is based on a different transformation of the fatigue ranges
(z = 3, 4, 5); all of the distributions appear very similar.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in
Chapter5 how we may obtain an estimate of the fatigue damage in an arbitrary 10-minute interval.
The expected number of cycles and the environmental variables through regression ariEtgsis.
same power-law functional form, Equatibri, was used. The calculated regression coefficients and
R? statistics are shown in Tabke12for blade root flap and edge bending fatigue ranges. Graphical
regression results are shown in Figir&l Applying EquationF.10we can obtain estimates of the
damage measure for blade root flap and edge bending considenatues corresponding toand
2z for z = 3, 4, 5, these estimates are presented in T2 We may also consider the portion of

2When we transform the fatigue ranges, with= 3, 4, 5, only the magnitude of the fatigue ranges is transformed,
the number of fatigue ranges stays the same. Therefore, the expected number of fatigue ranges stays the same regardless
of the transformation. The results of the regression analysis presented here is valid for any valusedffor the
transformation.
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Figure F.10:.Long-term distributions of blade root fatigue bending moment ranBespnsidering
three fatigue range transformations= 3, 4 and 5; for (a) flap and (b) edge bending.
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Regression of the number of Fatigue Ranges
onV and/

Blade Root Flap Bending

la(kN-m)| b | ¢ | R?
V < 24mls 1843 | 0.1488| 0.0035 | 0.4978
V >24m/s| 5023 | 0.3442| -0.0070| 0.9463

Blade Root Edge Bending

la(kN-m)| b | ¢ | R?
V < 24m/s 671 0.0989| 0.0085 | 0.7379
V >24m/s| 5474 | 0.2203| -0.0047| 0.9463

Table F.12:Regression coefficients used in Equattohto fit the expected number of fatigue ranges,
for blade root flap and edge bending, as functions of the mean wind speed and turbulence
intensity. The turbine is operating fof < 24m/s, otherwise the turbine is parked.

Estimate of Damage MeasureDM;y,

for fatigue exponent valuesp; =1, ..., 10.
by Flap Edge
z=23 3 2.315e+6 4.303e+5
6 1.952e+11] 3.123e+8
z=4 4 8.788e+7 3.812e+6
8 5.575e+14| 2.552e+10
z=25 5 3.897e+9 3.394e+7
10 1.787e+18 2.085e+12
Table F.13 Estimate of damage measul&\l, for fatigue exponent valueg; = 1, ..., 10, con-

sidering blade root flap and edge bending loads.

the expected damage contributed at different environmental conditions. Fig@mesents the plot
of damage density for both blade root flap and edge bending moments. We can see fror.ERure
that ash; increases the damage measure is more sensitive to higher wind speeds.

F.4.3 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate
of the marginal probability distribution of the long-term distribution of fatigue ranges. The short-
term fatigue loads were modeled using the damage-based Weibull model, however. The general
methodology remained the same. In this case however, the statistical moments were obtained after
having first transformed the fatigue ranges, e:g= 3, 4, 5. By performing this transformation



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 342

10000
o -
g) -
= 1n
]
>
i
B
©
o)
Qo
= & —
Class A N
i ; ClassB ©
Operating wind speeds; 1=l
Parked wind speeds; 1=l g -s--s-s---

1000 | | ‘ . 1 1 1 1

5 10 15 20 25 30 35 40 45 50 55
10-minute mean wind speed, m/s

(a) Expected number of fatigue ranges in 10-minute blade root flap bending time his-

tory.
10000
@ P > -
8
(o))
&
[<H]
=
2
8B 1000 |
< ! e &
o) s T
o
IS
=]
4
ClassA  +
. ) ClassB o)
Operating wind speeds; 1=I
100 Parked wind speeds; =l g ===--==---

5 10 15 20 25 30 35 40 45 50 55
10-minute mean wind speed, m/s

(b) Expected number of fatigue ranges in 10-minute blade root edge bending time
history.
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when we employed the method of moments to obtain estimates of the distribution parameters, our
model was fit to the!" and22t" moments of the untransformed data. Eoe 3, this amounts to

fitting the standard Weibull model to the third and sixth statistical moment where we suspect a ma-
terial with fatigue exponertt; = 3-6 would be most sensitive to these higher fatigue ranges. The
statistical moments of the transformed fatigue ranges were related to the environmental variables
through regression analysis. Finally, an estimate of the marginal distribution of the long-term load
was obtained by summing the conditional short-term load distributions (each weighted by the prob-
ability of the values of the environmental variables occurring) over all environmental conditions.
We considered three transformation cases; 3, 4, and 5. We found that the marginal long-term
distributions of the fatigue ranges for an arbitrary 10-minute interval were very similar.

F.5 Comparison of Long-Term Estimates Based on Different Short-
Term Models

In SectionF.3, we obtained an estimate of the long-term distribution of fatigue ranges based on the
short-term distribution of fatigue ranges model by a quadratic Weibull model. Later, in SEgtion

we obtained a similar estimate of the long-term distribution by modeling the short-term distribution
of fatigue ranges by a damage-based Weibull model.

FigureF.13shows the estimates of the long-term distribution of fatigue loads based on model-
ing the short-term fatigue ranges by quadratic or damage-based Weibull models. Considering flap
bending loads, using the quadratic Weibull distribution to model the short-term fatigue ranges gen-
erates a long-term distribution with generally lower fatigues loads compared with the the long-term
distribution of fatigue loads considering the damage-based model. The fatigue loads based on the
quadratic Weibull model are higher for fatigue ranges less than about 20 kN-m, however. For the
edge bending case, the long-term distribution of fatigue loads based on either quadratic Weibull or
damage based models are very similar.

TablesF.14 and F.15 compare estimates of damage measuigd, o, obtained from our two
model definitions. We saw above that the quadratic Weibull produced lower loads for the long-term
distribution for both blade root flap and edge bending loads. It would follow that we would expect
to see lower damage measures. In fact this is the case, for flap loads, that the damage-based Weibull
models do estimate much higher damage measures compared with the estimates from the quadratic
Weibull model. In the edge bending case, however, even though the quadratic Weibull model does
estimate similar fatigue loads the damage measure estimates are lower than those estimated from
the damage-based Weibull model.

We can alternatively compare our estimates of the fatigue damage measure from each of the
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Comparison of Estimates of Damage Measurd)M;y,
Blade Root Flap Bending

Damage- Percent Difference
by Q. W. Based | z=3 | z2=4 | z=5
3 | 6.835e+5| 2.315e+6| 238%

4 | 1.447e+7| 8.788e+7 511%

5 | 3.540e+8| 3.897e+9 1000%
6 | 9.961e+9| 2.0e+11 | 1859%

8 | 1.2e+13| 5.6e+14 4739%

10| 2.1e+16| 1.8e+18 8491%

Table F.14:Comparison of damage measul#yl,, estimates for blade root flap bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull

model forz = 3,4,5 (z = by /2).

Comparison of Estimates of Damage Measurd)M;,
Blade Root Edge Bending

Damage- Percent Difference
by Q. W. Based | z2=3 | 2=4 z=25
3 | 3.146e+5| 4.303e+5| +37%

4 | 2.833e+6| 3.812e+6 +35%

5 | 2.557e+7| 3.394e+7 +32%
6 | 2.316e+8| 3.123e+8| +35%

8 | 1.9e+10| 2.6e+10 +33%

10| 1.6e+12| 2.1e+12 28%

346

Table F.15:Comparison of damage measubg\l,,, estimates for blade root edge bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3,4,5 (z = by /2).
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proposed models to an empirical estimate of the fatigue damage measure. The empirical estimate
of the fatigue damage measure is obtained by using the raw rain-flow counted range data directly
from a representative time history for a given set of values of the environmental variables. We saw
in Chapter5 how we could obtain an empirical estimate of the damage measure.

TablesF.16 andF.17 show the fatigue damage measure for different values of the fatigue ex-
ponent,by, based on the empirical model and compared to the estimates obtained based on the
guadratic Weibull and damage based models. In general, compared to the empirical model the es-
timates of the fatigue damage measure for the flap bending direction the quadratic Weibull model
under-predicts the fatigue damage measure for all fatigue exponents that we considered. The dam-
age based model on the other hand, over-predicts damage for fatigue exponent values less that 7,
by < 7 and under-predicts for values greater tham 7> 7. We found slightly different results
for the edge bending direction. In this case, the quadratic Weibull model still under-predicted the
fatigue damage measure for all fatigue exponents that we considered, but not as drastically. The
damage based model over predicted the fatigue damage measure for all fatigue exponent values that
we considered. Similar to the results found in Chaptaeither of the models do a very good job
of estimating the fatigue damage measure compared with the empirical model. However, it should
be noted that since the damage-based models are exact at matching the empirical damage at the
moments for which they are fit it is really the regression model that is being tested. Additional re-
search would be required to evaluate the general efficacy of these models and regression technigues
to predict fatigue damage.
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Comparison of Estimates of Damage Measurd)M;j,
for Fatigue Exponent Values,by = 1,. .., 10, Flap Bending

Empirical | Quadratic Weibull | Damage-Based Weibull

by DM, DM, % DM, %
diff. diff

1 | 6.106e+3 || 2.321e+3| -62.0% - -

2 7.170e+4 || 3.713e+4 | -48.2% - -

3 | 1.491e+6| 6.835e+5| -54.2% || 2.315e+6| 55.2%

4 5.068e+7 || 1.447e+7| -71.5% | 8.788e+7| 73.4%

5 || 2.684e+9| 3.540e+8| -86.8% | 3.897e+8| 45.2%

6 || 1.924e+11| 9.961e+9| -94.8% | 1.952e+9| 1.46%

7 || 1.635e+13| 3.193e+11 -98.1% - -

8 || 1.535e+15|| 1.152e+13| -99.2% | 5.575e+12| -63.7%

9 || 1.538e+17| 4.634e+14 -99.7% - -

10 || 1.619e+19| 2.080e+16| -99.9% | 1.787e+16| -89.0%

Table F.16:Comparison of estimates of blade root flap bending fatigue damage mdadiyg,for
fatigue exponent valueg; = 1, ..., 10, considering empirical, quadratic Weibull, and
damage based models.

Comparison of Estimates of Damage Measurd)M;j,
for Fatigue Exponent Values,by = 1,. .., 10, Edge Bending

Empirical | Quadratic Weibull | Damage-Based Weibull

by DM DM % DM; %
diff. diff

1 | 5.614e+3 || 3.929e+3| -30.0% - -

2 || 4.921e+4| 3.505e+4 | -28.8% - -

3 || 4.342e+5| 3.146e+5| -27.5% | 4.303e+5| 36.8%

4 || 3.847e+6| 2.833e+6| -26.4% | 3.812e+6| 34.6%

5 3.424e+7 || 2.557e+7| -24.7% | 3.394e+7 | 31.7%

6 || 3.063e+8| 2.316e+8| -24.4%| 3.123e+8 | 34.8%

7 2.754e+9 || 2.140e+9| -22.3% - -

8 || 2.493e+10|| 1.920e+10| -23.0% | 2.552E+10| 32.9%

9 || 2.281e+11]| 1.759e+11| -36.0% - -

10 || 2.155e+12|| 1.623e+12| -24.7% | 2.085e+12| 28.5%

Table F.17:Comparison of estimates of blade root edge bending fatigue damage mdasLig,
for fatigue exponent valueg; = 1,...,10, considering empirical, quadratic Weibull,
and damage based models.
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