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ABSTRACT 
 
An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may 
be obtained by separating the problem into two uncoupled parts, (1) a turbine specific 
portion, independent of the site and (2) a site-specific description of environmental 
variables. We consider contextually appropriate probability models to describe the 
turbine specific response for extreme loads or fatigue. The site-specific portion is 
described by a joint probability distribution of a vector of environmental variables, which 
characterize the wind process at the hub-height of the wind turbine.  Several approaches 
are considered for combining the two portions to obtain an estimate of the extreme load, 
e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain 
accurate estimates, including various levels of epistemic uncertainty, of the turbine 
response.  
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Chapter 1

Introduction

1.1 Motivation

Over 15,000 wind turbines, providing a clean and economical source of renewable energy, were

installed in California during the 1980’s, with a total combined power capacity of more than 1,500

Mega-Watts (MW) [1]. Today over 4,000 MW of wind power have been installed in the U.S. [2].

On average, one percent of electrical energy consumed throughout California is produced by these

wind turbines. “Wind farms” provide an environmentally friendly alternative to fossil fuels. Since

the 1970’s energy crisis, research has been conducted to improve the efficiency and reliability of

wind turbines in order to mitigate society’s dependence on fossil fuels.

Electricity consumption is growing in most areas of the United States. Due to the continued

low fuel costs and de-regulation, many U.S. utility companies are risk-averse, unwilling to make the

investments that could reduce long-term energy costs and mitigate environmental risks. Worldwide

installed capacity for wind-generated energy has grown from 5,000 Mega-Watts in 1995 to upwards

of 24,000 MW today [1, 3]. Most of these new installations of wind power are in Europe and

developing countries.

Many improvements in turbine design by manufacturers have made wind energy more attractive

to electric utilities. Early installations of wind turbines were fairly unreliable. This has improved

to where new installations have exceeded 95% availability. The levelized1 cost of wind energy in

the 1980’s ranged from $.25 - $.30 per kilowatt-hour (kWh) [1, 5]. The American Wind Energy

Association (AWEA) estimates that the current levelized cost of wind energy at state-of-the-art wind

power plants with excellent site conditions is less than $0.05/kWh [6]. Typical levelized costs of

other energy sources range between $0.039–$0.145/kWh (e.g., coal: $0.048–$0.055, natural gas:

1A levelized cost is the average cost over the lifetime of a facility with future costs discounted by the time value of
money [4].

1
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$0.039–$0.044, and nuclear: $0.111–$0.145) [4, 6]. Even with these improvements, the continued

low cost of fossil fuels since the 1970’s energy crisis has made the wind energy market more com-

petitive among wind turbine manufacturers. This has led some manufacturers to operate with very

narrow profit margins, and has pushed others into financial collapse.

The national and international structural design standards by which wind turbines are certified

greatly impact the competitive edge of the companies participating in the wind energy industry.

By developing methods to better predict both the extreme structural forces and the distribution of

fatigue loads, we can reduce the cost of energy while improving safety and reliability. The need to

reduce the cost of energy is self-evident; the means to achieve this through better understanding of

structural forces acting on the wind turbines may not be as clear. Where current design practices

and safety factors are too conservative, increased understanding in modeling the load process and

associated uncertainties can permit reduced manufacturing and other start-up costs. Where they

are non-conservative, improvement can extend component life and reduce maintenance and other

service costs.

Engineering design performed in a purely deterministic way, i.e., where we assume that we

know the forces applied to the structure and the strength of the material, can have surprising results

when the component is put into service. Nature tells us that we cannot be certain about the demand

(i.e., the forces applied) and the capacity (i.e., the strength of the material). The old adage of a

chain being as strong as its weakest link is a very precious reality that is at times overlooked in

design. Although failure can have a broad range of definitions, here we define it as the event where

the forces on the structure exceed the ability of the material to withstand those forces. The reality

is that it is not only a physical, but also an economic impossibility to eliminate the probability of

failure. There is virtually always the possibility of a force being large enough to break the structure

no matter how low the probability of that force occurring.

In order to negotiate this uncertainty we assign a safety factor when designing structural com-

ponents. This factor is in general defined as the ratio of capacity to demand. If the capacity exactly

matches the demand, by definition the safety factor is one. When the value falls below one, the part

is inadequately designed. The question then arises how much added capacity is required to cover

our seemingly unquantifiable uncertainty. Large safety factors are generally correlated with high

levels of uncertainty, or extraordinary consequences of failure. As discussed previously these fac-

tors can impact both initial manufacturing and recurrent maintenance costs. The resulting economic

impacts can be profound.

Let us look at the issue from the other direction, assigning an acceptable probability of failure.

As stated earlier, it is impossible to remove the possibility of failure. Therefore resigning ourselves

to this actuality, what level of probability of failure are we willing to accept? Engineering design
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methods are generally calibrated to produce an acceptably low probability of failure (e.g., Madsen,

et al. [7] or Melchers [8]), which in many cases may be established to be consistent with past accept-

able experience. For instances when there is little experience, an acceptable probability of failure

may be chosen based on economic cost/benefit analysis, or by analogy with risk levels inherent in

other societal threats.

In the context of rotating machinery such as wind turbines, a technical challenge here is the de-

velopment of a mathematical expression that covers the underlying uncertainty of both the material

behavior and the fatigue loads. The complexities become intriguing when one realizes that in this

type of analysis the analyst is presented with a suite of fatigue loads on the structure and not just

one constant force. There is not just one material capacity; the capacities are now a function of the

demand and the number of times that particular demand is seen by the structure. In addition, failure

in this case is based on the accumulation of damage. With each cycle, microscopic cracks occur. It

is the rate at which these cracks accumulate and propagate that cause damage to the structure and

determines its useful life.

Current research efforts have focused on better prediction of the forces acting on the wind tur-

bines. A number of statistical models have been proposed to predict both the once in a lifetime

extreme structural forces and the day-to-day repeated operating forces. Systematic comparisons are

underway between these various models and observed behavior, as estimated from either field data

or computer model simulation. These statistical models hold the promise of providing robust force

estimates for more reliable wind turbine design, while minimizing the cost of extensive simulation

and/or field measurement projects.

Better estimation of extreme forces and the distribution of fatigue loads will enable us to find

more realistic, and thereby more economic safety factors that meet an acceptable probability of

failure. With well-founded safety factors, manufacturing processes and maintenance procedures can

be optimized. All of this results in producing an economical, reliable, and clean energy resource.

In the remainder of this chapter we will discuss how we may proceed from prescribing a target

probability of failure for a structural system to focusing on the long-term probability distribution

of structural loads. This will be demonstrated through a formulation of the probability of failure

as a relationship between the demand on the structure and the capacity of the structural system to

withstand those demands. Based on this formulation we can develop a methodology for estimating

the long-term distribution of loads on a structure by conditioning the loads by a set of environmental

variables. Also, since this work is concerned with estimating these loads on horizontal axis wind

turbines it seems appropriate to spend a little time describing the general configuration of these

turbines, to facilitate the discussions that follow. In particular, some of the unique behavioral char-

acteristics of wind turbines which we will have to deal with to make accurate estimates of the load



CHAPTER 1. INTRODUCTION 4

distributions will be discussed. We will briefly discuss the strict assumptions used to describe the

behavior of the wind environment. Finally, we present a few moment-based probability models that

will be used in the next several chapters to estimate the distributions of fatigue and extreme loads.

1.2 Background

The objective of reliability-based design methods is to provide a balance between sufficiently safe

structures and reasonable costs while taking into account the randomness of design critical variables

and the uncertainties associated with having only limited data. This is a formidable task. As a re-

sult, many methods ranging in complexity have been developed to address these issues. Structural

reliability methods have been divided into four general levels characterized by the amount of data

about the structural problem that is used or provided [7]. The most basic structural reliability meth-

ods are non-probabilistic in nature and employ only one “characteristic” value of each uncertain

parameter and are calledLevel I methods. This is essentially the traditional safety factor and load

factor formats. Partial safety factor approaches likeAISC-LRFD[9] or AIC-318-89[10] are part of

this category.Level II methodsemploy two values—usually the mean and standard deviation—to

represent each random or uncertain variable. In addition, a measure of the correlation between each

pair of random variables, typically the covariance, may be included. Reliability index methods–

e.g., Cornell[11], Hasofer and Lind[12], and Ditlevsen[13]–are examples of this category. Methods

which attempt to obtain the best estimate of the probability of failure based on probabilistic models

and therefore require the knowledge of the joint distribution of all uncertain parameters are called

Level III methods. Finally, Level IV methodsuse additional economic data to evaluate the system

according to the principles of engineering economics under uncertainty. This classification of relia-

bility methods is not exhaustive and it is not the intention here to provide a summary of the broad

range of research, but moreover to provide a background to the development of the problems set

forth in the coming sections and chapters.

In this section, our focus is on Level III reliability methods, which limit the probability of failure,

pf , of a structure—e.g., wind turbine—to a prescribed target value,pftarget. The term “failure” can

have a wide range of interpretations. Consider an office building structure which has sustained some

damage from a recent earthquake. The tenant of the building may consider the system to have failed

if he or his employees are not able to return to work immediately after the event. The work stoppage

may be a result of “superficial” damage that requires the building to be unoccupied during the clean-

up. Here the failure criteria is based on serviceability. The insurer may only consider the structure

to have failed after a claim cost threshold has been exceeded. From this perspective the failure

criterion is based on a repairability criteria. Further, the structural engineer may consider issues of
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occurred or impending collapse of the structure in determining if the building has failed. Here, the

failure criterion is based on issues of life-safety. Appropriate choice ofpftarget depends on the type

of failure considered. Higher target values are typically permitted where serviceability or economics

are the dominant issues. On the other hand, much lower target values are generally required where

personal injury or loss of life may occur. These target values ofpf are usually reported on an annual

basis. In this way, it is easy to compare the reliability of different structures. In conditions where the

probability of failure may increase over time, due to strength degradation (such as failures caused

by fatigue or fatigue and over-load),pftarget may be specified for the lifetime of the structure.

Each of the failure conditions considered above qualitatively describes a differentlimit state

function, g(X), which divides the space ofX—the vector of basic variables which describe the

state of the structure and the loads—between “failed” and “safe” regions.

g(X) > 0 safe

g(X) ≤ 0 failed (1.1)

Variables typically included in,X, are: actions, such as forces, temperature changes, and forced

displacements;material propertiessuch as yield strength and modulus of elasticity;structural di-

mensionsandmodel parameters, such as blade pitch angle and drag coefficients. These variables

may be stochastically dependent on one another, e.g., structural stiffness and displacement in a non-

linear analysis. In addition the basic variables may also vary over time, i.e., be random processes,

X = X(t). We might describe the different failure mechanisms or types of failure asfailure modes,

each described by a different limit state function,gi(X). Then the probability of failing in mode,

i, is the probability that there exists some time,t, less than the lifetime of the structure,TL, such

that the limit state function for that mode of failure is less than or equal to zero. This is expressed

formally below:

pfi = P [ ∃ 0 ≤ t ≤ TL s.t.gi(X(t)) ≤ 0] (1.2)

whereP [·] denotes the probability that the bracketed statement occurs.pfi , could also be calculated

over some other time interval, e.g., one year, and in which casepfi is an annual probability of

failure.

Given Equation1.2, one way to calculate the probability of failure of a structural system would

be to include all failure modes in the limit state function substitutingg(X(t)) for gi(X(t)). Where,

g, is a vector in which each element is a limit state function associated with a different failure mode.

Now the structural system is considered safe if and only if all the limit state functions ing(X(t)) are

positive. This approach is the essence of expensive probabilistic risk analysis undertaken for nuclear

reactors, for example [14]. In general, a structural system may contain several failure modes andX
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may contain hundreds of elements. The problem of solving Equation1.2 in this form quickly be-

comes very complex. Alternatively, the probability of failure may by calculated separately for each

structural element and failure mode. This type of analysis is referred to as component reliability

analysis. The theory of system reliability then provides a set of methods as to how these “compo-

nent” probabilities may be used, together with information about their associated dependencies, to

find the probability of failure of the entire structural system. The reader is referred to Madsen, et

al. [7] and Melchers [8] for further discussion on system reliability.

One approach for findingpf from Equation1.2 is to recognize the fact thatg(X) < 0 at some

point over the time interval of interest if and only if the minimum value of the limit state function is

less than zero over the prescribed time interval. In this case Equation1.2can be written as:

pf = P [ min
0≤t≤TL

g(X(t)) < 0] (1.3)

Formulating the problem in this way is sometimes referred to as thetime integratedapproach [8].

In addition, we may consider the case when some of the elements ofX, are assumed to be relatively

independent of time when compared to the other constituents. Such thatg(X(t)) can be written as:

g(X(t)) = g(X1)− g(X2(t)) (1.4)

whereX1 is the vector of time independent variables. Substituting Equation1.4 into Equation1.3

the probability of failure can be found from the expression below:

Pf = P [g1(X1) ≤ max
0≤t≤TL

g2(X2(t))] (1.5)

The constituents ofX1 are often basic variables that determine resistance or structural capacity, e.g.,

material properties and structure dimensions. Whereas the elements ofX2(t) are loads or actions

applied to the structure. Of course there are exceptions: time-dependent material properties such as

fatigue or creep may be included inX2(t), and time independent loads or actions such as dead load

or pre-tensioning may be included inX1. With this understanding in mind we may choose to letR

represent the vector of time independent capacities, or in general resistance, and letS(t) represent

the vector of time dependent demands or “stresses” on the structure. With this new nomenclature

Equation1.5may be written in terms of the scalar random variablesR andSmax=max0≤t≤TL
S(t)

as:

Pf = P [R ≤ Smax] (1.6)

In the above equation the probability of failure is defined by the eventR ≤ Smax and can be found
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from the joint distribution ofR andSmax:

Pf =
∫ ∫

r≤s
fR,S(r, s) drds (1.7)

wherefR,S(r, s) denotes the joint probability density function (PDF) of R andSmax. If R andSmax

are statistically independent wherefR,S=fR(r)fS(s), then Equation1.7can be simplified as:

Pf =
∫ ∫

r≤s
fR(r)fS(s) drds

=
∫ ∞

−∞
FR(s)fS(s)ds

=
∫ ∞

−∞
fR(r)GS(s)ds (1.8)

where the notationFX(x) denotes the cumulative distribution function (CDF) of X defined as

FX(x) = P [X ≤ x], andGX(x) = P [X > x] = 1− FX(x).
Equation1.8 reduces the problem of finding the probability of failure to that of finding the

probability distributions ofR andSmax independently. In this work we focus ourselves on finding

the probability distribution ofSmax, either for extremes or fatigue. This portion of the problem can

often be more interesting, as not only are the demands on the structure usually time varying but they

may usually dominate the problem as a result, e.g., of a larger coefficient of variation. This may

imply that the demands on the structure may play a more dominant role in Equation1.8 and need

to be understood and modeled more carefully than the capacities. This is complicated by the fact

that we may have only limited data with which to understand the nature of the demands, leading to

greater “uncertainty” in the loads as compared to the capacities. We will come back to this notion of

“uncertainty”, as distinct from randomness, later in this discussion and again in regard to estimation

of extreme loads in Chapter6.

We have definedSmax as the maximum, over a specific duration of time, of the limit state func-

tion ofX2(t). Finding the distribution ofSmax is not a trivial matter even if the marginal probability

distributions ofX2 are known. In general, the methods developed to resolve this problem require

the marginal distribution of each load/demand and the dependencies between the loads and/or their

rate of change with time. It may be a straight forward task to find the probability distribution of

each load by measurements or simulations. These measurements or simulations must be carried out

over the entire range of environmental conditions that may exist during the structure’s intended op-

erational lifetime, however. Therefore, very large sample sizes are required such that the long-term

distribution of environmental events is represented and not biased toward a particular environmental

condition.
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Loads or demands on the structure may occur over very different time scales. The occurrence

of load events may be sporadic in nature, e.g, the occurrence of earthquakes or storms, and the

nature of the loading during an event may be slowly varying or fluctuate rapidly. Conversely, the

loading may be constant, such as sustained live loads, or loads due to wind and wave action on

the structure. Different load modeling techniques are used for these various loading conditions. In

general, these loading conditions may be characterized by their relative time scales. One might

consider loading events which have an inter-event time much longer than the duration of the event

itself. If the load is constant during each event, such as extraordinary live loads, or varies slowly,

such as snow loading, it is considered to havemacro-scaletime variability only. If, however, the

loading fluctuates rapidly during the loading event, then it is considered to have both macro-scale

and micro-scale time variability. In these latter cases, such as earthquakes, two separate models

are used. The first models the probability of the occurrence of the event; the second models the

probability distribution of the loads given the occurrence of an event. Similarly, loads due to wind

and waves which fluctuate continuously while the gross characteristics change slowly over time

are also considered to exhibit macro and micro time variability. When modeling the loads in these

cases, it is convenient to consider these processesstationary2 over short periods of time. These

time periods are typically called environmental states. The duration for these environmental states

is defined such that the assumption of stationarity is at least reasonably valid. Typical values are ten

minutes for wind states and three - six hours for sea (wave) states.

In all the characterizations given above, each event or state is typically described by a set of

environmental variables. For example, in the case of loads due to wave or wind action, the vector of

environmental variables may be the wave period and significant wave height for wave loading or 10-

minute mean wind speed and turbulence intensity for wind loading. With earthquakes, magnitude of

the event, and source-to-site distance may be considered. In some cases the environmental variable

may be a scalar quantity. In others, as cited above, it may be a vector of variables. In all cases, the

probability distribution of the loads within the event is defined by these parameters.

The complication in finding the joint probability distribution ofX2 directly is the requirement

of having representative samples across all environmental conditions. This complication is often

ameliorated by conditioning the joint probability distribution ofX2 on the vector of environmental

2A stochastic processX(t), t ≥ 0, is considered to bestrictly stationary if for alln, s, t1, . . . , tn the random vectors
X(t1), . . . , X(tn) andX(t1 + s), . . . , X(tn + s) have the same joint distribution. In other words, choosing any fixed
point as the origin, the ensuing process has the same probability law. All the statistical moments are invariant with time.
A stochastic process is considered to beweaklystationary if and only if the first two statistical moments are invariant with
time,E[X(t)] = E[X(t+ s)] and the covariance,Cov[X(t1), X(t+ s)] does not depend ont. As the finite-dimensional
distributions of a Gaussian process are uniquely determined by their means and covariances, it follows that aweakly
stationary Gaussian process is alsostrictly stationary [15, 16].
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parameters,E:

fX2 =
∫
· · ·

∫

all E
fX2|E(x2|e)fE(e) de (1.9)

where the notationfX|Y (x|y) denotes the conditional probability density function defined as:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
(1.10)

Equation1.9 is an application of the Law of Total Probability, where the probability distribution of

the loads given a set of realizations of the environmental parameters are weighted by the probability

of those realizations of the environmental parameters occurring. These results are then summed

over the entire range of the environmental parameters. A caveat exists, however. That if the load

distributions are affected by an environmental parameter, sayE′, that is not explicitly included in

the vector of environmental variablesE, then the conditional probability distribution of the loads

given the vector of environmental variables must be found from data which is sampled across a

representative range of values ofE′. If we know or can reasonably assume a distribution ofE′, then

we could re-apply the Law of Total Probability and obtain:

fX2|E(x2|e) =
∫

all E′
fX2|E,E′(x2|e, e′)fE′|E(e′|e) de′ (1.11)

In other words while Equation1.9holds for any vectorE, if E does not include all the important, i.e.,

relevant environmental variables affectingfX2 , then this formulation may not hold much benefit.

This is a condition ofsufficiency[17] that is not easily verifiable. In practice, we may convince

ourselves that a condition of sufficiency has been met by showingfX|E,E′
∼= fX|E, or (more easily

but not completely—i.e., necessary but not sufficient) by assumingE[X|E, E′] = a+ bE+ cE′ and

then show that the coefficient,c, is not statistically different from zero. If the data has been sampled

over a broad range of environmental states and the variables chosen to be included inE are able

to reasonably describe the load distribution, then there may be little increased benefit of including

additional environmental variables.

One major benefit of the formulation given in Equation1.9 is it separates the calculation of

fX2 into the need to provide two separate terms, a structure-dependent termfX2|E(x2|e) and a

decoupled site-dependent term,fE(e). Therefore, if a robust probability distribution of the loads

on the structure can be obtained for a broad range of realizations of the environmental variables,

then one only needs the probability distribution of the environmental variables at a specific site in

order to obtain the loads on the structure at that particular site. The “generic” structure-dependent

model,fX2|E(x2|e), can be used over and over at different sites where only,fE(e), the probability

distribution of the environmental variables changes from site to site. This only holds, however, if
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eitherE contains all the important environmental variables, or iffE′|E(e′|e) is identical at each site.

The joint probability distribution ofE is often provided to the structural engineer by specialists

in other fields such as meteorology for loading due to wind and waves, or seismology for earth-

quakes. Therefore, the structural engineer or analyst must consider both the importance of the

environmental parameters as well as the availability of relevant data for determining their long-term

distributions.

In this section a discussion has been presented where we proceed from prescribing a target

probability of failure for a structural system to focusing on the long-term probability distribution

of structural loads. This was demonstrated through a formulation of the probability of failure as

a relationship between the demand on the structure and the capacity of the structural system to

withstand those demands. Based on this formulation, the discussion focused on the development

of a methodology for estimating the long-term distribution of loads on a structure by conditioning

the loads on the structure by a set of environmental variables. The discussion presented here is

based on the analysis of stochastic load models by Haghighi [18]. This sets the strategy that will

be investigated throughout the rest of this work for the estimation of extreme loads and fatigue

distributions on wind turbine structures.

1.3 Wind Turbines

This work is concerned with estimating fatigue and extreme load distributions on horizontal axis

wind turbines. Therefore, it seems appropriate in this section to spend a little time describing the

general configuration of these turbines to facilitate the discussions that follow. In particular, some

of the unique behavior characteristics of wind turbines which we will have to deal with to make

accurate estimates of the load distributions will be discussed. Also, since wind turbines do not

operate in a vacuum, we will briefly discuss the strict assumptions used to describe the behavior

of the wind environment. The general configuration of the turbine, and our assumptions of the

behavior of the environment presented here, will be the basis from which we start our discussions

on how we may estimate the fatigue and extreme loads encountered by these structural systems.

1.3.1 Configuration and Operation

A horizontal axis wind turbine generally consists of several standard components. The nacelle

located at the top of the wind turbine tower, contains the key components of the wind turbine

including the gearbox, which attaches the rotor hub to the electrical generator. The wind turbine

blades convert kinetic energy of the wind into rotational mechanical energy of the low speed shaft.

The blades of a wind turbine work much the same way as the wings of a fixed-wing aircraft or
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the rotor-blades of a helicopter. The wind passes over both sides of the airfoil. As it passes over

the longer upper surface of the airfoil, it creates an area of relative low pressure. The pressure

differential between the upper and lower surfaces causes a lifting force to act on the blade. In

an airplane or helicopter this lifting force supports the weight of the aircraft. For wind turbines,

however, this lifting force causes the blades to turn, since they are constrained to move in a plane

attached at the hub. A drag force, perpendicular to the lift, is also created as the wind passes over the

airfoil. This drag force impedes the rotation of the rotor. Wind turbine blades are designed in such

a way as to maximize the lift to drag ratio. The rotation, or pitch, of the blade about its long-axis

may change along the longitudinal axis to control and optimize the turbines energy output, while

limiting the structural loads on the turbine at varying wind speeds.

The low speed shaft connects the rotor hub to a gearbox, which determines the relative rotational

speed of the low and high-speed shafts. The high-speed shaft connects the gearbox to the electrical

generator. Generally, the rotor hub rotates too slowly for most generators to work efficiently. Low

speed generators do exist and are efficient, but expensive. The gearbox makes the high-speed shaft

turn faster and with lower torque. This then drives the electrical generator. The maximum power

output of installed wind turbines ranges between 500 and 1,500kW. Wind turbines on the market

today are 1,500kW machines, with up to 5MW machines in development. An electronic controller

located in the turbine continuously monitors the condition of the wind turbine. It takes information

from the anemometer and wind vane, which measure wind speed and direction, to turn the turbine on

at cut-in wind speeds and turn the turbine off atcut-outwind speeds. The controller also regulates

the yaw mechanism to turn the turbine into the direction of the wind. Usually the wind turbine

only yaws a few degrees per minute, with changes in wind direction. Significant power loss results

when the turbine is misaligned with the wind. Increasing the activity of the yaw controller can been

associated with higher fatigue damage, however.

There are two general methods for regulating the power output of wind turbines. The power

output is not allowed to greatly exceed the rated power, in order to avoid risk in damaging the

gearbox or generator. Pitch control provides a mechanism for reducing the angle of attack along the

entire length of the blade. The lower the angle of attack the less lift is generated. Stall-controlled

turbines rely on the inherent aerodynamic tailoring of the airfoil to stall progressive sections of the

blade during high wind speeds. As increasing sections of the blade stall, less of the blade is available

to create lift. The controlling of the power output to protect the generator and gearbox also serves

to mitigate the structural loads on the turbine. Other characteristics of wind turbines include: active

versus free yaw machines, up-wind versus down-wind operation, teetered versus fixed machines,

constant speed or variable speed operation, and of course the number of blades.

Figure1.1 shows a generic two-bladed wind turbine. Of specific interest are the two loading
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directions, on the wind turbine blade, that will be considered throughout the remaining chapters. In-

plane bending,Min−plane results in deflections parallel to the swept surface of the rotating turbine

blades. Out-of-plane bendingMout−of−plane results in deflections perpendicular to the plane of

rotation. Related to out-of-plane and in-plane bending are flap and edge bending. The flap direction

is defined as the direction that is perpendicular to the swept surface of the undeformed rotor blade

axis. Whereas the edge, or lead-lag, direction is defined as the direction which is parallel to the

plane of the swept surface and perpendicular to the longitudinal axis of the undeformed rotor blade.

Therefore the flap bending results in deformation of the blade perpendicular to the chord line. Edge

bending results in deformation of the blade parallel to the chord line. For fixed pitch blades (stall-

regulated turbines), where the angle between the angle of rotation and the leading edge of the airfoil

does not change with changes in wind speed, only a simple constant coordinate transformation is

required to relate flap and out-of plane bending moments (or edge and in-plane bending moments);

see Figure1.2. A more complicated time-dependent transformation is required to relate flap and out-

of-plane bending moments (or edge and in-plane bending moments) for pitch-regulated turbines.

The loading on wind turbines can be considered to fall into one of two general conditions, parked

and operating. When the turbine is parked it is much like other fixed structures and we might expect

the statistics of the response of the turbine to the input wind process to be analogous to extreme

winds on a building or other stationary structure. The other loading condition is when the turbine

is operating. The out-of-plane loads in either condition are generally very similar. The details of

this will be discussed in greater detail in subsequent chapters. The in-plane or edge loading on the

other hand is very different in the operating condition than in the parked condition. With horizontal

axis wind turbines, during the operating conditions as the blades turn in the wind field, they are also

subjected to the effects of gravity which induces sinusoidal load cycles on the leading and trailing

edges of the turbine blade. If we imagine a turbine blade starting at the top of the rotor, pointing

straight up, the bending load on the leading edge and the trailing edge of the blade is zero, the

gravity forces acts along the longitudinal axis of the blade. As the blade goes through one-quarter

cycle, the leading edge of the blade is in compression and the trailing edge is in tension due to

the gravity loading. When the blade is pointing straight down, the gravity force is acting along the

longitudinal axis of the blade and there is no bending load. The blade continues through 3/4 of a

revolution. Now, the leading edge is in tension and the trailing edge is in compression opposite to

the loading it saw half a cycle ago. This periodic loading in the edge bending direction is a unique

loading characteristic that will have to be carefully considered when we fit probabilistic models to

these loads.
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Mout-of-plane

Wind

Direction

of rotation

Plane of rotation

Figure 1.1:Generic diagram of a two bladed horizontal axis turbine, showing the directions of out-
of-plane,Mout-of-planeand in-plane,Min-plane, bending moments.
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Mout-of-plane

Mflap

Min-plane
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α

Figure 1.2:Cross-section through cord plane of generic wind turbine airfoil showing relation be-
tween out-of-plane and flap bending moments (also, in-plane and edge bending mo-
ments) through pitch angleα.

1.3.2 Stationarity of the Wind Process

In the discussion in Section1.2 it was stated in Equation1.9 that the probability distribution of

the loads,fX2 could be found by conditioning on a vector of variables,E, which described the

environmental process. For wind turbine design, typically the mean wind speed,V , and turbulence

intensity,I, are the variables which are used to describe the wind process. Also wind loading is

a process, like the loading due to waves, which has macro and micro time variability. The loads

fluctuate continuously while the gross characteristics change slowly over time. In these cases it is

convenient to consider these load processes stationary over a short reference period. For wind ap-

plications, seasonal, synoptic, and diurnal variations in the wind parameters make monthly, weekly,

daily, or hourly values different from annual values. These conditions result in a selection of a

reference time period during which the underlying environmental parameters can be considered to

remain in a statistically steady-state condition. This reference time period is less than one hour

and may commonly be taken asT=10 minutes. Therefore,V , is the 10-minute mean wind speed

andI, is the 10-minute turbulence intensity. The turbulence intensity can be defined in two ways.

Either the standard deviation of the 10-minute wind process,σV , or the coefficient of variation of

the 10-minute wind process:

I =
σV

V
(1.12)

Both definitions of turbulence intensity are used at different times in subsequent chapters. It will be

clear when each definition is being applied.
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1.4 Data Sets

Throughout this work several different sets of data are analyzed to illustrate the application of the

theories developed. In this section we briefly describe each of these data sets. The data sets represent

recorded or simulated data from three different horizontal-axis wind turbines.

1.4.1 DOE/NREL/NWTC Unsteady Aerodynamics Experiment Phase III Turbine

The Department of Energy/National Renewable Energy Laboratory/National Wind Technology Cen-

ter Unsteady Aerodynamics Phase III horizontal axis test turbine is a modified Grumman Wind

Stream 33. It is a three-bladed, fixed pitch, stall regulated turbine with a rotor diameter of 10 meters

and a hub height of 25m. It operates in free yaw down wind of the tower with a cut-in wind speed

of 6m/s and a nominal rotor speed of 72RPM. The nominal rated power is 20kW [19]. The turbine

is shown in Figure1.3, and a close-up of the turbine hub is shown in Figure1.4.

The data set described here was provided by the National Renewable Energy Laboratory and

consisted of multiple 10-minute simulations performed for three target 10-minute mean wind speeds,

V =14, 20, and 45m/s. The simulations were obtained using a general-purpose, commercially avail-

able structural analysis code,ADAMS, linked with the special purpose routines to estimate aero-

dynamic effects [20]. The details and assumptions in constructing the math-material model of the

turbine are documented in the work by Madsen, et al. [21]. The three cases considered are described

below:

1. V =14m/s, typical of nominal or “rated” wind conditions;

2. V =20m/s, the maximum or “cut-out” wind speed at which the turbine operates; and

3. V =45m/s, an extreme wind speed (e.g., 50-year level) during which the turbine is parked.

For each of the three cases, 100 simulation runs were performed. The duration of each simulation

was 605 seconds with data recorded at 25Hz [21]. The first 5 seconds of each simulation were

discarded to eliminate transients that may occur when the analysis is started. Seven data channels

were “recorded” during each simulation. The three data channels that are important to this work are:

wind speed, blade root out-of-plane (flap) bending moment, and blade root in-plane (edge) bending

moment. Note, the terms flap and edge bending are used consistently throughout this work to refer

to out-of-plane and in-plane bending, respectively. The remaining data channels correspond to loads

on the yaw bearing of the turbine and are not used in the analysis presented in future chapters.
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Figure 1.3:Department of Energy/National Renewable Energy Laboratory’s Unsteady Aerodynam-
ics Experiment Phase III turbine installed at the National Wind Technology Center. Pho-
tograph courtesy of the National Renewable Energy Laboratory, www.nrel.gov.
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Figure 1.4:Close-up of DOE/NREL Unsteady Aerodynamics Experiment Phase III turbine in-
stalled atNWTC. Photograph courtesy of the National Renewable Energy Laboratory,
www.nrel.gov.
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1.4.2 Atlantic Orient Corporation, AOC 15/50

Atlantic Orient Corporation’sAOC 15/50 horizontal axis turbine is a modified Enertech 44/60. It is

a three-bladed, fixed pitch, stall-regulated turbine with a 15-meter rotor diameter and a hub height

of 25 meters. It operates down wind of the tower with passive yaw control and a cut-in wind speed

of 6m/s. The nominal rated power is 50kW in an 12m/s wind speed. The turbine has a fixed rotor

speed of about 60RPM [22] and is shown in Figure1.5

The data set described here was provided by the National Renewable Energy Laboratory and

consisted of multiple 10-minute simulations of Gaussian wind fields and corresponding in- and out-

of-plane blade root bending moments. The wind input processes were recorded at the turbine hub

height.

One hundred 10-minute simulations have been performed for various choices of wind speed

and turbulence class with different random seed values. The simulations were carried out using

YAWDYN , an aerodynamics and dynamics analysis code for wind turbines. Target 10-minute mean

wind speeds, in the operating regime of the turbine were chosen from 10m/s to 24m/s in 2m/s

increments. Simulations were run at each wind speed considering both classA and classB IEC

turbulence classes[23]. Also, pseudo-parked conditions (turbine slowly idling) were run for both

turbulence classes, with a target 10-min mean wind speeds of 24, 30, 40, and 50m/s. The original

data set contained time histories corresponding to only the 50m/s environmental condition. The

remaining pseudo-parked conditions were added later to the data set by the author.

1.5 Moment-Based Models

The purpose of this section is to present a brief review of probability concepts that will facilitate

the discussion of future chapters. In particular, we are interested in how we might construct a small

set of measures—statistical moments—which may adequately describe a random variable. Also, a

topic of interest here, is given that we may have only limited observations of the random variable

under consideration, how may we construct unbiased estimates of the statistical moments and what

is the associated uncertainty in these estimates. A short discussion is presented here, and will be

expanded in a later chapter. Finally, we present a few moment-based probability models that will be

used in the next several chapters to estimate the distributions of fatigue and extreme loads.

1.5.1 Expectation and Statistical Moments

This section presents a summary of probability concepts used throughout this work. The reader

may proceed to Section1.5.2if they are familiar with this material. Additional information on the
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Figure 1.5:Atlantic Orient Corporation’sAOC 15/50 turbine installed in Burlington, Vermont. Pho-
tograph courtesy of the Atlantic Orient Corporation, www.aocwind.net.
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topics presented here can be found in Benjamin and Cornell [11], Grimmett and Stirzaker [16], and

Rice [24].

A continuous random variable is completely defined by its probability density function. It is

sometimes useful, however, to characterize a random variable by a set of measures which describe

the overall features of its distribution. Commonly included in the set are measures of central ten-

dency, breadth, and skewness of the distribution. Our interest here is in defining this set of measures

as well as other useful measures. We will see later, (e.g., Chapter2) that our problem will be that we

only have estimates of these measures for a random variable and from these estimates infer an ap-

propriate distribution of the random variable. In order to define this set of measures we first review

the Expectation operator.

Expectation of Random Variables

The concept of the expectation of a random variable,X, is similar to the idea of a weighted average.

The possible realizations of,X, are weighted by their associated probability of occurrence. It is

sufficient for the discussion here to focus our attention on continuous random variables. Therefore,

if X is a continuous random variable with probability density function,fX(x), then the expectation,

denoted byE[·], is given by

E[X] =
∫ ∞

−∞
x fX(x) dx (1.13)

More generally, the expectation operator may be applied to functions of random variables. Letg(X)
denote a function of the random variable,X. The expectation ofg(X) is then defined as:

E[g(X)] =
∫ ∞

−∞
g(x) fX(x) dx (1.14)

Expectation is a linear operation and its order can be interchanged with other linear operators as

shown below, giveng1(X) andg2(X).

E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)] (1.15)

The expectation of functions of joint random variables is given by

E[g(X1, X2)] =
∫ ∞

−∞
g(x1, x2) fX1,X2(x1, x2) dx1dx2 (1.16)
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Moments of Random Variables

The statistical moments of a random variable,X, are useful measures of the the probability dis-

tribution of X. Consider a functiong(X) = Xm, wherem is a deterministic constant. Themth

statistical moment ofX is defined as:

E[Xm] =
∫ ∞

−∞
xm fX(x) dx (1.17)

The first moment,m = 1, is called themean value, denoted byµX , and is a common measure of

central tendency of the probability mass.

Central Moments of Random Variables

Central moments of random variables are moments calculated about the mean. Themth central

moment of the random variableX is defined as:

E[(X − µX)m] =
∫ ∞

−∞
(x− µX)m fX(x) dx (1.18)

By applying Equation1.15we see that the value of the first central moment,m = 1, is always zero.

E[(X − µX)] = E[X]− E[µX ] = µX − µX = 0 (1.19)

The variance ofX is the second central moment (m = 2) and is denoted byVar[X] or σ2
X ,

defined as

E[(X − µX)2] =
∫ ∞

∞
(x− µX)2 fX(x) dx = σ2

X (1.20)

and is a measure of the dispersion of the probability mass aboutX = µX , the mean value, and

is always≥ 0. Alternatively, the variance may be found from the first two moments by applying

Equation1.15

E[(X − µX)2] = E[X2 − 2XµX + µ2
X ] (1.21)

= E[X2]− 2µXE[X] + E[µ2
X ] (1.22)

= E[X2]− µ2
X (1.23)

Which can be written as

E[(X − µX)2] = E[X2]− E2[X] (1.24)

Two other measures of the dispersion of the probability mass are commonly used. These are the
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standard deviation,σX , and the coefficient of variation,δX . The standard deviation ofX, is defined

as the positive square root of the variance,

σX =
√

Var[X] (1.25)

The coefficient of variation is defined as the ratio of the standard deviation to the mean, provided the

mean is not equal to zero in which case the coefficient of variation is undefined. Note the coefficient

of variation is a dimensionless quantity.

δX =
σX

|µX | (1.26)

The third central moment,m = 3, is a measure of skewness or asymmetry about the mean. The

coefficient of skewness,γX , is defined as:

γX =
E[(X − µX)3]

σ3
X

(1.27)

If the distribution ofX is symmetric thenγX = 0. WhenγX > 0, the distribution ofX is said to

be “right-skewed” and has a longer right-hand tail. Conversely, ifγX < 0, then the distribution of

X has a longer left-hand tail, and is “left-skewed”. Examples of symmetric, right- and left-skewed

distributions are shown in Figure1.6

The fourth central moment,m = 4, is a measure of flatness. That is the weight of the tails

compared with the weight of the body about the mean. The coefficient of kurtosis,κX , is defined

as:

κX =
E[(X − µX)4]

σ4
X

(1.28)

The normal or Gaussian distribution has a coefficient of kurtosis equal to 3.0. A value of the coeffi-

cient of kurtosis different than 3.0 is one measure of how much the distribution of a random variable

deviates from the Gaussian distribution, as shown in Figure1.7

Joint Central Moments

Two statistical moments that are commonly used to describe joint random variables (e.g.X1 and

X2) are the covariance and the correlation coefficient. The first joint central moment is the covari-

ance,Cov, and is defined as:

E[(X1 − µX1)(X2 − µX2)] =
∫ ∞

−∞
(X1 − µX1)(X2 − µX2) fX1,X2(x1, x2) dx1dx2 (1.29)
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Figure 1.6:Distributions with positive and negative skewness compared with the Gaussian distribu-
tion with zero skewness. Note, all distributions shown have the same mean and variance.
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and is a measure of the correlation between random variablesX1 andX2. If X1 andX2 are inde-

pendent then theCov[X1, X2] = 0. However,Cov[X1, X2] = 0, does not imply thatX1 andX2 are

independent [25].

The correlation coefficient,ρ, is a dimensionless measure of linear dependence between two

random variables and is defined as:

ρ1,2 =
Cov[X1, X2]

σX1σX2

− 1 ≤ ρ ≤ 1 (1.30)

A value ofρ1,2 = 1, implies perfect positive linear dependence, i.e., a linear deterministic functional

relationship exists betweenX1 andX2, e.g.,

X2 = a + bX1 (b > 0) (1.31)

Whereas a value ofρ1,2 = −1, implies perfect negative linear dependence, e.g.,b < 0 in Equa-

tion 1.31.

In this section we have reviewed a few probability concepts, in particular the expectation and

statistical moments of random variables. The next section discusses how we may obtain estimates

of these statistical moments from observed sample data and how good these sample statistics may

be as estimators of the unknown moments of the random variables.

1.5.2 Estimating Statistical Moments

In this section we review how we may obtain estimates of statistical moments from sample data.

Let us assume we have a set of,n, observations or realizations,{x1, x2, x3, . . . , xn}, of the random

variableX, from which we can calculate the sample mean

x̄ =
1
n

n∑

i=1

xi (1.32)

and the sample variance is

s2
X =

1
n− 1

n∑

i=1

(xi − x̄)2 (1.33)

We can interpret the observations ofX, however, as realizations ofn independent random vari-

ables, i.e.,x1 is a realization ofX1, x2 is a realization ofX2, etc. We may further interpretX as the

populationfrom which the observations were randomly sampled. The distribution ofX is a mathe-

matical construction and therefore the moments, e.g., the population mean,µX , and the population

variance,σ2
X , are constants. Each random variable,Xi, shares the same distribution asX, and in
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particular each variable has the same mean and variance as the population mean, and population

variance. Of course, in a strict sense, if the distributions are identical then all the moments are the

same, but here we restrict our discussion to the first and second moments. In this context we may

then express the sample mean as:

X̄ =
1
n

n∑

i=1

Xi (1.34)

and the sample variance as:

S2
X =

1
n− 1

n∑

i=1

(Xi − X̄)2 (1.35)

Therefore,̄x ands2
X defined in Equations1.32and1.33. and computed from the observed data are

realizations of the random variables,X̄ andS2
X , in Equations1.34and1.35. This illustrates that

the sample statistics are random variables, whereas the moments of the population are constants.

Consequently we are interested in the expected value and variance ofX̄ andS2
X as we will use

observations of̄X andS2
X as estimators of unknownµX andσX .

The Expected Value and Variance ofX̄

Taking the expectation of both sides of Equation1.34yields:

E[X̄] =
1
n

n∑

i=1

E[Xi] =
1
n
· nµX = µX (1.36)

BecauseE[X̄] = µX , in Equation1.36, X̄, as defined in Equation1.34, is said to be an unbiased

estimator of the population mean.

Taking the variance of both sides of Equation1.34yields:

Var[X̄] =
(

1
n

)2 n∑

1=i

Var[Xi] =
1
n2
· nσ2

X =
σ2

X

n
(1.37)

The standard error of,̄X, denoted by,seX̄ , is given by the standard deviation of̄X,

seX̄ =
σX√

n
(1.38)
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The Expected Value ofS2
X

Taking the expectation of both sides of Equation1.35yields:

E[S2
X ] =

1
n− 1

n∑

i=1

E[(Xi − X̄)2]

=
1

n− 1

[
n∑

i=1

E[X2
i ]− nE[X̄2]

]
(1.39)

applying Equation1.24we find,

E[X2
i ] = Var[Xi]− E2[Xi] = σ2

X − µ2
X (1.40)

E[X̄2] = Var[X̄]− E2[X̄] =
σ2

X

n
− µ2

X (1.41)

substituting Equations1.40and1.41into Equation1.39

E[S2
X ] =

1
n− 1

[n(σ2
X − µ2

X)− n(
σ2

X

n
− µ2

X)]

= σ2
X

(
n

n− 1

)(
1− 1

n

)

= σ2
X (1.42)

From Equation1.42, we see that,S2
X , as defined in Equation1.35 is an unbiased estimate of the

population variance. Similar to the first statistical moment, as the sample ofX becomes large,

n →∞, the sample variance will converge to the population variance [24].

Unbiased Estimates of Skewness and Kurtosis

We may observe from the analysis presented above that the leading coefficient in Equation1.34

was 1
n , whereas in Equation1.35 the coefficient was 1

n−1 . Furthermore, we may consider this

coefficient related to the free degrees of freedom, denoted,dof. In estimating the sample mean, the

first moment, all the degrees of freedom are free,dof = n. Whereas when estimating the variance,

the second central moment, we reduce the degrees of freedom by one because we have already

estimated one statistical moment from the data,dof = n − 1. In general for themth moment we

can determine the remaining free degrees of freedom as

n− (m− 1) (1.43)



CHAPTER 1. INTRODUCTION 27

An unbiased estimate of the coefficient of skewness, the third central moment (m = 3), denoted by

α3X , may be found by the equation below with(n− (3− 1)) = (n− 2) free degrees of freedom.

α3X =
∑n

i−1(Xi − X̄)3

(n− 2)S3
X

(1.44)

Similarly, an unbiased estimate of the coefficient of kurtosis, the fourth central moment (m = 4),

denoted byα4X , may be found by the equation below with(n− (4− 1)) = (n− 3) free degrees of

freedom.

α4X =
∑n

i−1(Xi − X̄)4

(n− 3)S4
X

(1.45)

1.5.3 Probability Models for Extreme Loads

Let us first suppose that we have a time varying random load process,X(t), which is assumed to be

stationary over time,T . To estimate the probability distribution ofLT , the maximum load event in

timeT , one may construct probability models over a number of different time scales. We introduce

three such models briefly in this section and describe each in more detail subsequently. In order of

decreasing time scales (and hence increasing use of data), these models are the following:

Global Extreme Models: These seek to directly model,Z, the “global” (largest) extreme overT ,

The advantage here is that we work most directly with the extreme of interest; i.e.,LT . The

drawback is that we discard all time history values below these global maxima.

Local Extreme/Random Peak Models:These models instead represent all local maxima of the

load historyX(t), possibly excluding those that fall beneath some user-defined lower-bound

threshold. (This is an example of what is sometimes referred to as a “peak-over-threshold”

model.) In this work, local maxima are defined as the maximum event between up-crossings

of the mean level. Compared with the global extreme models, local extreme models have

the advantage of including more data in the fitting process. A potential disadvantage is that

some of these data—in particular the lower-amplitude maxima—may come from a different

statistical population, which should not be included in extrapolating to large loads. Shown

in Chapter2, the complication introduced from multiple populations may be avoided by an

appropriate choice of a lower-bound threshold. In this workY denotes the vector of random

variable associated with the sequence of local maxima ofX(t).

Random Process Models:Finally, these models seek to statistically describe the entire time-varying

load history,X(t). These contain the largest possible information, e.g., all data points in a

digitized history. They may yield little advantage, however, over random peak models if there
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Figure 1.8:Time scales versus amount of available data: Global maximum,Z; local random peaks,
Y ; random process,X(t).

is little additional statistically independent (i.e., relevant) information contained in the details

of the time history between its peak values.

Figure1.8, shows realizationsx1(t), x2(t), . . . , xn(t) of the random processX(t), with realiza-

tions {y1,1, y1,2, y1,3, . . .}, {y2,1, y2,2, y2,3, . . .}, {yn,1, yn,2, yn,3, . . .} of Y, the vector of random

local peaks, and realizationsz1, z2, , . . . , zn of the global extremes,Z. This figure graphically

demonstrates the difference in time scales and the amount of available data associated with the

models presented above.

1.5.4 Global Extreme Model

If we model the global extremes, we immediately have the desired probability,P [LT < l], that the

maximum valueLT is less than anyl as:

P [LT < l] = P [Z < z] = FZ(l) (1.46)

It has been shown that for both the operating and parked conditions of a wind turbine, the 10-minute

extreme event follows an Extreme Value Type I model fairly well [21]. Additional analysis may be

required if field collected data is used [26, 27]. The expression for the Extreme Value Type I, or
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Gumbel model [28, 29], is given as:

FZ(z) = exp (− exp (−α(z − u))) (1.47)

and the parametersα andu (α is a measure of dispersion andu is the mode of the distribution) are

given in terms of the first two statistical moments ofZ as:

µZ = u +
γEuler

α
(1.48)

σ2
Z =

π2

6α2
(1.49)

whereγEuler≈ 0.577.

1.5.5 Random Peak Model

If one instead models all random peaks, as previously defined and denotedY1, Y2, ..., the corre-

sponding probabilityP [LT < l] can be estimated as:

P [LT < l] = P [(Y1 < l) ∩ (Y2 < l) ∩ (Y3 < l) ∩ · · · ∩ (YNT
< l)]

=
NT∏

i=1

Pi[Yi < l] = {P [Yi < l]}NT = [FY (l)]NT (1.50)

whereNT is the number of peaks,Yi values, in time durationT . Equation1.50holds assuming

that the number of peaks,NT , is deterministic and that their levels are mutually independent. The

assumption of stationarity ofX(t) implies that all the peaks,i = 1, 2, . . . , NT , have the same prob-

ability distribution,FY (y). None of these assumptions are strictly correct, but the approximation

generally becomes more accurate as one considers extremes in the upper tail of the load probability

distribution[30]. Rewriting Equation1.50in terms of theCDF of Z, and the complementaryCDF of

Y , one can apply an approximation for the exponential function as shown below:

FLT
(l) = [1−GY (l)]NT (1.51)

=
[
1− NT GY (l)

NT

]NT

(1.52)

≈ exp (−NT GY (l)) (1.53)

The approximation in Equation1.53holds forNT GY (l) ¿ 1, i.e., for large values ofl.

We are looking for an estimate of the expected maximum over a duration,T . We saw above
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that the distribution of 10-minute extremes was well described by the Gumbel distribution. Here we

also assume thatFLT
(l) follows a Gumbel distribution

FLT
(l) = exp (− exp (−α(l − u))) (1.54)

where the mean ofLT , denoted byµLT
, in terms of the parametersα andu is given by:

µLT
= u +

γEuler

α
(1.55)

If we evaluate Equation1.54at its mean value, and set it equal to Equation1.53, also evaluated at

µLT
, and solve forGY (µLT

), we find:

FLT
(µLT

) = exp (− exp (−α(µLT
− u))) = exp (− exp (γEuler)) ∼= exp (−NT GY (µLT

))
(1.56)

GY (µLT
) =

NT

exp (γEuler)
(1.57)

Where Equation1.57gives the probability level of the distribution ofY associated with expected

value ofLT . Formally,

µLT
= G−1

Y

(
NT

exp (γEuler)

)
(1.58)

whereG−1
Y is the inverse ofGY . Here we have obtained an estimate of the expected value of the

maximum load in time,T , based on the probability distribution and the number of the random peaks.

We shall use this result in Chapter2.

1.5.6 Process Model

Process models seek to describe the entire time-varying load history,X(t). Most research has

focused on Gaussian models ofX(t). The Hermite transformation has been found to be use-

ful in a range of applications in estimating the extreme statistics of non-Gaussian response pro-

cesses [31, 32, 33]. As described by Winterstein [34], the Hermite polynomial given in Equa-

tion 1.59functionally relates the fractiles of a Gaussian process to the fractiles of a non-Gaussian

process. This polynomial transformation is derived in such a way that its individual terms are sta-

tistically uncorrelated. The cubic polynomial given below, which has four terms and therefore is

capable of matching only the first four statistical moments, is often sufficient to capture the non-

Gaussian nature of the response process.

Here, the non-Gaussian load history,X(t), is presumed to be functionally related to a standard
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Gaussian processU(t). The Hermite polynomial for the condition when the coefficient of kurtosis,

κX , is greater than 3, is given by:

x = g(u) = µX + κσX [u + c3(u2 − 1) + c4(u3 − 3u)] (1.59)

where

κ = [1 + 2c2
3 + 6c2

4]
−1/2 (1.60)

A similar polynomial results from the derivation ifκX < 3. The simplest estimates ofc3 andc4 are

given as:

c3 ≈ γX

6
c4 ≈ κX − 3

24
(1.61)

These estimates assume there exists in the response process only small deviations from a Gaussian

process and are found from the third and fourth central moments of the marginal distribution of

X(t). Winterstein, et al. [35] found more accurate approximations forc3 andc4, which are useful

whenX(t) exhibits stronger deviations from a Gaussian process. The following equations forc3

andc4 are valid for3 < κX < 15 and0 ≤ γ2
X < 2(κX−3)

3 :

c3 =
γX

6

[
1− 0.15|γX |+ 0.3γ2

X

1 + 0.2(κX − 3)

]
(1.62)

c4 = c40

[
1− 1.43γ2

X

κX − 3

]1−0.1κ0.8
X

(1.63)

where

c40 =
[1 + 1.25(κX − 3)]

1
3 − 1

10
(1.64)

The Hermite polynomial transforms any fractile of a standard Gaussian distribution to the equivalent

fractile of a non-Gaussian response distribution. Therefore, for this transformation to be useful

in estimating fractiles ofLT we need to predict the extreme fractiles of a Gaussian process, i.e.,

extremes consistent with prescribed probability level. For example, we may consider the task of

obtaining an estimate of the expected values ofLT , E[LT ] = µLT
. Again we will assume that the

distribution ofLT is well described by the Gumbel distribution. The probability level,p, associated

with the mean of the Gumbel distribution and hence, the expected value ofLT is

FLT
(µLT

) = p = exp (− exp (−γEuler)) = 0.57 (1.65)

See Equation1.56as modified. Having found a probability level of interest, it then becomes of task

of finding the fractile ofUmax, the extreme of a Gaussian process associated with our prescribed
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probability level,p. From Rice [36, 37], assuming the up-crossings of high levels are assumed to

follow a Poisson process, it can be shown that

P [Umax≤ u] = exp (−ν0T exp (−u2/2)) (1.66)

whereν0, is the average up-crossing rate, andT is the duration. The expected number of cycles in

time,T is denoted by,NT and given as:

NT = ν0 × T (1.67)

SettingP [·] in equation1.66equal top = 0.57, the resulting fractile ofUmax is given by:

umax,p =

√√√√√2 ln


 NT

ln
(

1
p

)

 (1.68)

umax,p, is an estimate of the expected maximum of a Gaussian process with up-crossing rateν0 in

time, T . The result of Equation1.68 is used directly in the Hermite polynomial given in Equa-

tion 1.59to find an estimate ofXmax=LT . Of course the other fractiles, other than the mean, ofLT

may be found by substituting other values forp in to Equation1.68

An alternate approach to approximate the expected maximum of a standard Gaussian process in

NT cycles, which has recently been used in the analysis of extreme loads on wind turbines [21], is

estimated as:

E[Umax] = umax,p =
E[max(X)]− µX

σX
≈
√

2 lnN +
γEuler√
2 lnN

(1.69)

Again applying Type I Extreme Value Theory for the distribution ofLT and recalling Equation1.65,

the probability level associated with the expected value ofLT is given as:

FLT
(µLT

) = exp(− exp(−α(µLT
− u))) = exp(− exp(γEuler)) (= 0.57) (1.70)

Setting Equation1.70equal to Equation1.66, and solving for,u, yields:

umax,p=0.57 =
√

2 ln NT + 2γEuler (1.71)
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Comparing the squares of Equations1.71and1.69

(umax,p=0.57)2 = 2 lnNT + 2γEuler (1.72)

versus

(umax,p=0.57)2 = 2 lnNT + 2γEuler +
γ2

Euler

2 lnN
(1.73)

ForNT = 1, 000 these equations become:

(umax,p=0.57)2 = 13 + 1.1 (1.74)

versus

(umax,p=0.57)2 = 13 + 1.1 + 0.024 (1.75)

Therefore, consideringNT = 1, 000 the approximation in Equation1.69introduces a difference in

umax,p=0.57 of only about 0.1% as compared to a model based strictly on the Gumbel and Poisson

distributions.

1.6 Organization

This work is divided into three major sections. The first part deals with the short-term problem,

specifically, choosing probabilistic models to fit to data given the environmental conditions. The

second part, building on the analysis and results of the first part, addresses the long-term problem.

First, integrating the short-term models over the long-run distributions of the environmental vari-

ables. Then, two approximate approaches are investigated. The final part of this work deals with

the uncertainty associated with the parameters and statistics used to describe the short-term loads

models, and the long-run distributions of the environmental variables. Of particular interest is how

these uncertainties impact the estimates of extreme loads on wind turbines.

Part One is made up of Chapter2 for extreme loads and a portion of Chapter5 which addresses

fatigue. Each of these chapters address the choice of probabilistic model to fit to data. In Chapter2

the efficacy of random peak and process models to hold sufficient information about the load process

to accurately estimate the expected extreme event over a brief period of time of ten minutes to over a

period of several hours is investigated. Chapter5 introduces a new approach to fitting a probabilistic

model to fatigue load ranges. The process involves using established probabilistic models, but

tuning the fit of the model to the data based on expected damage. This introduces a link between

the material capacity and the demand on the wind turbine. It also allows the model to be fit to the

data in the region in which the data is most important, where the data has the potential to contribute
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most to accumulated fatigue damage.

Part Two comprises the next three chapters. Chapter3 presents a methodology for proceeding

from conditional short-term extreme load distributions to estimates of the one-year and 50-year ex-

treme load on anAOC 15/50 turbine, assumed to operate in an environment similar to that found

in Lavrio, Greece. The methodology involves relating the moments of the data, which are used

to fit the probabilistic model, to values of the environmental variables through regression analysis.

Then, the short-term conditional distribution models are summed, weighted by long-run probabil-

ities of the environmental conditions occurring. A qualitative analysis is undertaken to reduce the

complexity of the integration. Prescribed deterministic fractiles of some of the variables involved

in the integration are carefully chosen to account for the variability introduced if the entire distri-

bution where included. Applying this methodology reduces one level of integration for each of the

variables replaced by a prescribed fractile.

In Chapter4 we introduce another approach for estimating long-term extremes which employs

the approximate methods underlying first-order reliability analysis. In this method, contours of

the critical combination of wind speed and turbulence intensity are found for prescribed reliability

levels. It then becomes a straightforward task of (1) identifying an appropriate percentile of the

short-term load, and (2) identifying the maximum response along the prescribed contour. Under the

assumptions of first-order reliability analysis, the maximum response along the “environmental con-

tour” is associated with the prescribed reliability level. Later, in Chapter5 a similar methodology,

from Chapter3, is laid out for fatigue and applied to the sameAOC turbine also assumed to operate

in an environment similar to that in Lavrio, Greece. Note that appendicesC andF consider similar

analysis for both extremes and fatigue, respectively but an alternate description of the environmental

conditions is used, largely based on that of ClassIA conditions given by theIEC, international wind

turbine code [23].

Finally, Chapter6 discusses the sources of uncertainty in the analyzes previously presented and

demonstrates how including these uncertainties affects the estimates of the one-year and 50-year

extreme events on wind turbines. Some of the sources of uncertainty addressed include: uncertainty

in the long-term descriptions of the environmental variables, as well as uncertainty in the model

parameters of short-term load models. Also, modeling uncertainty associated with simulated loads

compared with recorded field data is discussed. The impact of considering all of these sources of

uncertainty on estimates of the one-year and 50-year load on wind turbine in Lavrio, Greece, is

assessed.



Chapter 2

Prediction of Short-Term Extreme Load

Distributions1

This chapter considers two distinct topics that arise in reliability-based wind turbine design. First,

it illustrates how general probability models can be used to estimate long-term design loads from a

set of limited-duration, short-term load histories. Second, it considers in detail the precise choice of

probability model to be adopted, for both flap and edge bending loads in both parked and operating

turbine conditions. In particular, a 3-moment random peak model and a 3- or 4-moment random

process model are applied and compared. For a parked turbine, all models are found to be virtually

unbiased and to notably reduce uncertainty in estimating extreme loads (e.g., by roughly 50 percent).

For an operating turbine, however, only the random peak model is found to retain these beneficial

features. This suggests the advantage of the random peak model, which appears to capture the

rotating blade behavior sufficiently well to accurately predict extremes.

2.1 Introduction

Probabilistic models have gained widespread acceptance and use within a range of engineering

disciplines. These models have formed the basis, either explicitly or implicitly, for a number of

design codes—especially those of theLRFD (load and resistance factor design) format. Recently

developed wind turbine standards [23] have begun to adopt these code formats, in analogy with

long-standing practice in the building and offshore structure communities.

In applying probabilistic models to design wind turbines, a number of practical challenges re-

main. A first question concernshow a particular probability model may be used to satisfy design

1A portion of this chapter was previously published in the American Society of Mechanical Engineering’s Journal of
Solar Energy Engineering [38]

35
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requirements as specified, for example, in wind turbine standards [39]. In particular, due to the wind

turbine’s complex dynamic behavior, an analyst may need to rely on a set of limited-duration load

histories over a range of wind conditions. These histories may result either from measurements on

prototype machines or from numerical simulation. In either case, there is a fundamental question

as to how one can proceed from theseshort-termload observations to specification of appropriate

long-termloads, as required in design codes. Future chapters address this question, presenting a

general methodology to relate the short-term statistics to the desired long-run design load. Chap-

ter 3, covers estimating long-term extreme events while Chapter5 addresses estimating long-term

distributions of fatigue loads.

A second question that arises concerns the precise details of the probabilistic modeling to be ap-

plied; namely,whichprobabilistic model or models are best suited to describe the dynamic behavior

of wind turbines. As will be noted below, a number of these have been proposed and applied in the

literature. These differ first in which quantity they seek to model; for example, some seek to model

the entire load historyx(t) as a random process, others seek to model only the local peaks (max-

ima) of x(t), while still others consider only more global peaks (e.g., 10-minute maxima). Once

this choice has been made, various functional forms are available to model the relevant probability

distribution at hand. In this chapter various random process and random peak models are compared,

for cases of both edge and flap bending loads in both operating and parked wind turbine conditions.

2.2 Probability Models for Extreme Loads and Responses

We saw in Chapter1 that we may construct probability models over a number of different time

scales, to estimate the conditional probability distribution ofLT , the maximum load even in timeT .

In order of decreasing time scales (and hence increasing use of data), these include the following:

Global Extreme Models: These seek to directly model,Z, the “global” (largest) extreme over

T . The advantage here is that we work most directly with the extreme of interest; i.e.,LT .

The drawback is that we discard all time history values below these global maxima, see

Section1.5.4.

Local Extreme/Random Peak Models:These models instead represent all local maxima of the

load historyX(t), possibly excluding those that fall beneath some user-defined lower-bound

threshold. (This is sometimes referred to as a “peak-over-threshold” model. Also recall that

we have defined local maxima as the maximum event between up-crossings of the mean

level.) Compared with the global extreme models, local extreme models have the advantage

of including more data in the fitting process, see Section1.5.5. A potential disadvantage
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is that some of these data—in particular the lower-amplitude maxima—may come from a

different statistical population, which should not be included in extrapolating to large loads.

Shown later, this can be avoided by an appropriate choice of a lower-bound threshold.

Random Process Models:Finally, these seek to statistically describe the entire time-varying load

history, X(t). These contain the largest possible information; e.g., all data points in the

digitized history. They may yield little advantage, however, over random peak models if there

is little additional statistically independent (i.e., relevant) information contained in the details

of the time history between its peak values, see Section1.5.6.

Note that if one models global extremes directly, one immediately has the desired probability,

P [LT < l], that the maximum valueLT is less than anyl (Section1.5.4). If one instead models all

random peaks, here denotedY1, Y2, ..., the corresponding probabilityP [LT < l] can be estimated

as

P [LT < l] = P [(Y1 < l) ∩ (Y2 < l) ∩ (Y3 < l) ∩ · · · ∩ (YNT
< l)] = {P [Yi < yi]}NT (2.1)

in which NT is the number of peaks,Yi values, in time durationT . We saw in Chapter1 that

Equation2.1holds assuming that the number of peaks,NT , is deterministic and that their levels are

mutually independent and identically distributed. Although none of these assumptions are strictly

correct, the approximation generally becomes more accurate as one considers extremes in the upper

tails of the load’s probability distribution [30] (Section1.5.5). Finally, if we instead model the

entire process,x(t), consistent statistics ofLT require somewhat additional effort (Section1.5.6).

An algorithm namedMAX FITS has been created to automate this process, permitting the user to

select between these three types of models to estimate extreme statistics [40, 41].

2.3 Data set

We used the database for theDOE/NREL/NWTC Unsteady Aerodynamics Experiment Phase III tur-

bine as described in Section1.4.1in this analysis. The database contains multiple 10-minute simu-

lations of Gaussian wind fields, and corresponding in- and out-of-plane bending moment responses.

The turbine has a rotor diameter of 10m and a nominal rotor speed of 1.2 Hz. It is a three-bladed

turbine with a hub height of 17m [21].

A total of 100 10-minute simulations have been performed for various choices of the mean wind

speedV . These use a general-purpose, commercially available structural analysis code (ADAMS),

linked with special-purpose routines to estimate aerodynamic effects [20]. The focus here is on

three cases:
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1. V =14m/s, typical of nominal or “rated” wind conditions;

2. V =20m/s, the maximum or “cut-out” wind speed at which the turbine operates; and

3. V =45m/s, an extreme wind speed (e.g., 50-year level) during which the turbine is parked.

The last case is somewhat analogous to extreme winds on buildings and other stationary structures,

and we may expect similar statistical behavior in this wind turbine analysis. The lower-speed cases,

however, correspond to operating conditions, in which the turbine blades rotationally sample the

stationary wind field. Also notable here are the systematic effects of gravity on blade root in-plane

(edge) bending: a strong sinusoidal trend is induced at the turbine operating speed. The work in this

chapter investigates whether various probabilistic response models can remain accurate in the face

of these special features that wind turbines exhibit.

2.4 Predicting Short-term Extreme Events

This section considers how the previously discussed models can be applied to estimate extreme

bending loads on wind turbines. In particular, the behavior of two different types of probabilistic

models are considered: (1)Hermite models of the load as a random process, and (2)quadratic

Weibull models of random load peaks (over a specified threshold). The Hermite model generally

utilizes four statistical moments ofx(t) [42], although a simplified three-moment version can be

used in some special cases of limited nonlinearity [21, 43, 44]. The quadratic Weibull model is

based on the first three statistical moments of the peak values,Yi [45, 46, 47]. As noted in these

references, there are no closed-form results for this model’s parameters in terms of its moments;

the parameters must be found numerically. Note that theMAX FITS routine implements both the

quadratic Weibull and Hermite models, as well as a number of others [40, 41].

2.4.1 Sample Time Histories

Figure2.1shows simulated wind and load time histories from one 10-minute simulation for a target

10-minute mean wind speed of 45m/s and the turbine parked. In particular, the histories shown are

brief, 10-second portions of the wind and load histories during which the wind input is maximized. It

should be noted that this maximum wind episode does not generally produce the maximum bending

loads.

To identify peaks from the response histories, we define a peak here as the largest value of the

history between successive up-crossings of its mean level. Many alternative strategies can be used

to identify peaks; e.g., the largest value per blade revolution. Later, however, we will show that
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for the edge load cases presented, a threshold that excludes somewhat more load cycles—retaining

roughly one peak for every two blade revolutions—is more beneficial. Figure2.1 shows the mean

levels of each history by horizontal lines, and the circled response points indicate the set of peaks

that are obtained. The blade root out-of-plane (flap) bending loads are found here to roughly follow

the wind speed process, although additional high-frequency content is observed. Note also that our

definition of peaks—the largest response per up-crossing of the mean—serves to filter out many of

these high-frequency response oscillations. The edge bending loads are of less interest in this case,

showing small oscillations about the mean load.

Figures2.2 and2.3 show similar simulated wind and load time histories, now for a target 10-

minute mean wind speed,V , of 20m/s and 14m/s during which the turbine is operating. Now

the effect of gravity is clearly seen in the edge bending histories, which show a strong sinusoidal

component at the operating speed of about 1.2 Hz. The flap bending histories also show system-

atic variations at this frequency, although it is combined with significantly larger high-frequency

content here than in the edgewise cases. Again, the peak identification method implemented here

removes some of this high-frequency effect. Note in the edgewise cases, however, that a some-

what anomalous effect can arise. While only one “large amplitude” peak is usually found per blade

revolution, other “secondary”, near-zero peaks are sometimes also identified. This arises from the

high-frequency small-amplitude oscillations shown by the edgewise loads about their mean level.

The resulting distribution of all peaks is found in such cases to be multi-modal; i.e., to possess a

probability density function with several distinct regions of relatively high probability (“modes”).

Figure2.4shows histograms of edge bending peaks for the two operating wind speeds investigated.

Each of the histograms clearly show two distinct modes. Because our models are unimodal—i.e.,

designed to be fit to the single most important probability “mode”—we shall find it useful in these

edgewise cases to pass a higher threshold (above the mean) to exclude these secondary peaks. We

shall return to this issue below.

Finally, recall that to estimate the distribution of thelargestpeak, it is common to assume that

successive peaks are mutually independent. This is the assumption inherent in the current imple-

mentation ofMAX FITS[40, 41] (see, for example, Equation2.1). To test this assumption, the corre-

lation coefficient,ρ, between adjacent peaksyi andyi+1 has been calculated for the various cases.

Typicalρ values, shown in Table2.1, are effectively negligible; for example,ρ=0.21 (flap bending,

V =45m/s),ρ=0.28 (edge bending,V =45m/s), andρ=0.15 (flap bending,V =20m/s). These values,

and corresponding scatterplots ofyi vs yi+1 in Figures2.5, 2.6, and2.7, for wind speeds 45m/s,

20m/s and 14m/s respectively, confirm that the assumption of independence should not induce large

modeling errors in this application. Indeed, even far higher correlations will tend to have minimal

effect when extreme loads and responses are considered. For example, successive 3-hour wave
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Figure 2.1:Simulated wind and blade responses;V =45m/s.
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Figure 2.2:Simulated wind and blade responses;V =20m/s.
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Figure 2.4:Histograms of the number of blade root edge bending peaks forV =20m/s and 14m/s.

Correlation Coefficient, ρ

Wind Speed Flap bending peaks Edge bending peaksShifted edge bending peaks
V = 45m/s 0.2092 0.2843 NA
V = 20m/s 0.1526 -0.0070 0.1249
V = 14m/s 0.1512 0.0770 0.1163

Table 2.1:Correlation coefficient,ρ , between adjacent peaksyi andyi+1 for various 10-minute
mean wind speeds

heights in the North Sea have been found to have correlation coefficientρ=0.96[30]. Nonetheless,

including the effects of this correlation is found to decrease the 100-year wave height by only about

2-3%. Note also, from the reference, that various methods are available to model this correlation, in

cases when its inclusion is important. Included here are the cases where a threshold is imposed on

the root edge bending peaks when the turbine is operating. In these cases only the peaks above the

threshold are considered. One would expect that the correlation between peaks above a prescribed

threshold would increase compared with the correlation of all the peaks, and this is the finding here.

The value of the correlation coefficient for these cases, however, is still small, similar to the values

found for the blade root flap bending peaks.

2.4.2 Observed vs Predicted Distributions of Peaks

First, the ability of a three-moment, quadratic Weibull distribution to accurately model the simulated

response peaks across various wind conditions is tested. For illustration purposes, the results for the

first (of the 100) 10-minute simulations of each of the three wind conditions are shown.
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Figure 2.8:Empirical and fitted quadratic Weibull probability distributions of response peaks;
V =45m/s.

We will consider the parked turbine,V =45m/s, first, whose statistical behavior may be ex-

pected to be most well-behaved. Figure2.8shows the cumulative probability distribution function

FY (y)=P [Y ≤ y] of all peaks, as estimated directly from the data. Specifically, for both flap and

edge cases, the peaksyi are first ordered so thaty1 ≤ y2 ≤ ... ≤ yn, and associated with the cumu-

lative probabilities,pi=FY (yi)=i/(n + 1). Results are plotted on a distorted “Weibull” scale, which

rather than plottingFY (y) versusy, plots− ln[1 − FY (y)] versusy. The results, when viewed on

log-log scale, should appear as a straight line if the data follow a Weibull probability distribution

model.2

The data here show slightly positive curvature on this Weibull scale. This suggests the value of

the quadratic Weibull model, which yields a quadratically varying distribution when plotted on the

Weibull scale of Figure2.8. The right-hand y-axis contains the corresponding values ofFY (y), for

clarity. This quadratic model is shown here to accurately follow both the flap and edge load data in

this case.

Figures2.9 and2.11shows similar Weibull scale plots of flap and edge loads in theV =20m/s

and 14m/s cases respectively, during which the turbine is rotating. While the distribution of flap

load peaks remains smooth, the distribution of edge load peaks shows a sharp change in behavior,

2This scale, however, does not emphasize the largey, smallP [Y > y] values of interest.
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with a “corner” located at roughlyy=1. This is a consequence of the bimodal character of the edge

load peaks, as discussed earlier (see Figure2.4). No smooth, single-moded distribution model can

capture both the large, one-per-revolution primary peaks and the small-amplitude, secondary peaks.

For both ultimate and fatigue load modeling purposes, however, these secondary peaks are of little

consequence. We therefore seek to model thetruncated and shiftedpeaks,Y − 1.5; i.e., we remove

all peaks below 1.5, and report the shifted valuesy′i=yi−1.5 of the remaining peaks. The shifting is

used to conform with quadratic Weibull models, which generally assigns probability to all outcomes

y′ ≥ 0. Figures2.10and2.12show the quadratic Weibull model to accurately follow the shifted

edge loads,Y − 1.5, for both wind conditions. Note that the optimal choice of shift parameter may

require some trial and error; e.g., comparing goodness-of-fit measures. This is a topic of ongoing

study. Also, in using these models to predict extremes, the shift value must eventually be reinstated.

2.4.3 Estimating 10-Minute Mean Maxima

Finally, predicted statistics ofL10 min, the maximum 10-minute load, are shown. In particular, we

seek here to find̂µL10 min, an estimate ofµL10 min, the mean value ofL10 min to be expected in an

arbitrary 10-minute period.

A simple, “raw” estimate ofµL10 min can be found by averaging the 100 observed maxima,zi,

from each of the 10-minute simulations:

µ̂L10 min = z̄ =
1

100

100∑

i=1

zi (2.2)

Alternatively, an estimate ofµL10 min can be found by fitting one of the foregoing models (e.g, a

quadratic Weibull model) to all response peaks (perhaps above a shifted level as shown in the pre-

vious section). Here, models are fit separately to each of the 100 simulations. Denotingµi as

the estimated value ofµL10 min found from the model fit to the data of simulationi (i=1,...,100), an

analogous average of these estimates is obtained:

µ̂L10 min = µ̄ =
1

100

100∑

i=1

µi (2.3)

The subtle issue between the two estimates is that with the “raw” average we have one obser-

vation of z̄, based on 100zi’s from which to estimateµL10 min. With the second method described

above we have 100 observations ofµ, (i.e., we obtain an estimate ofµL10 min, denoted byµ from

the model fit to the data for each of the 100 simulations), from which to estimateµL10 min. One ad-

vantage of the simple, “raw” estimatēz is that it is always “unbiased”,E[z̄] = µL10 min; i.e., correct
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Figure 2.9:Empirical and fitted quadratic Weibull probability distributions of response peaks;
V =20m/s.
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Figure 2.11:Empirical and fitted quadratic Weibull probability distributions of response peaks;
V =14m/s.
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response peaks above 1.5;V =14m/s.
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on average. A potential disadvantage is that because it is based on only the single observed maxi-

mum in each 10-minute history, it may show considerable variability. By instead fitting probability

models to form estimatesµ, one hopes to achieve results that (1) remain nearly unbiased and (2)

show reduced scatter, specifically, reduced standard deviation, compared with the raw estimatez̄.

To quantify these effects two factors are defined: a bias factor, defined as

Bias (B) =
µ̄

z̄
(2.4)

and a sigma reduction factor, defined as

Sigma Reduction (SR) =
σµ

σZ
(2.5)

One hopes to achieve bias factors of nearly unity, and sigma reduction factors far less than unity.

Again, the hope for sigma reduction lies with the fact that each estimatedµi uses more of the

simulation history—specifically, each peak-over-threshold value—than the raw estimatez̄, which

uses only the single maximumzi from each 10-minute simulation.

Figure2.13shows bias and SR factors, respectively, for the parked turbine (V =45m/s). Three

probability models are fit: a 3-moment quadratic Weibull model (“Peak Un-shifted”), and both 3-

and 4-moment Hermite models of the complete random response processx(t). The three-moment

simplification has been used in some mildly nonlinear wave applications, and has been derived

independently for wind turbine applications [21]. Note that all models yield roughly unbiased results

bias factor, B, near 1.0. The 3-moment models generally achieve a sigma reduction of 0.5 or less.

Inclusion of the 4th moment, with its attendant uncertainty, leads to higher values ofσµ and hence

sigma reduction factor, SR, closer to one. Figure2.14shows the trend in bias and sigma reduction

factors, as indicated by the 95% confidence intervals, over longer durations for the Weibull model.

Longer duration time histories were obtained by placing the existing 10-minute time histories end

to end. By placing all 100 10-minute time histories together in this way resulted in a 1000 minute

time history, the maximum duration length available from this data set. The Bootstrap method was

used to calculate the 95% confidence intervals [48]. For a prescribed length of time, the required

number of 10-minute time histories were selected at random and with replacement from the data

set and the observed maximum was recorded. This was done 1,000 times for a specific duration

of interest. The 1,000 observations of the duration maximum were sorted and the25th and975th

ordered values were used to construct the lower and upper bound of the 95% confidence interval,

respectively. Both factors, Bias and Sigma Reduction, stay fairly constant over the longer durations.

Figures2.15and2.16show analogous bias and SR factors forV =20m/s and 14m/s respectively,
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(b) Sigma reductionσµ/σZ between estimated and observed 10-minute maxima.

Figure 2.13:Bias and sigma reduction factors for three and four moment Hermite models and peak
un-shifted quadratic Weibull model,V =45m/s.
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(a) Blade root flap bending
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(b) Blade root edge bending

Figure 2.14:Estimated expected maxima over various time intervals,V =45m/s
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the operating wind speed conditions. Here the random process (Hermite) models, which are in-

tended to model rather general stochastic behavior, fail to accurately capture the rotating nature of

the blade response. Biases of about 10% are found from conventional (4-moment) Hermite models,

with considerably larger biases, 30%-50%, produced by the simpler 3-moment Hermite models.

In contrast, the quadratic Weibull models (“Peak” models in Figure2.15(a)and2.16(a)) remain

essentially unbiased in all cases. For cases of edge loads, models have been fit both to the original

datayi “Un-shifted” and the shifted datayi − 1.5 “Shifted”. For this particular choice of dura-

tion (T=10-minute maxima), even the un-shifted models appear reasonably accurate. Over longer

durations, however, estimates become increasingly tail-sensitive, and the use of the shift has been

found more beneficial in avoiding bias. This is reflected in Figures2.17(b)and 2.18(b), which

shows the benefit of including a shift when predicting maxima over a range ofT=10–1000 minutes.

The shifted predictions are generally unbiased and also retain the roughly 50% sigma reduction, as

shown by the 95% confidence intervals in Figures2.17(c)and2.18(c). Note that while these predic-

tions with the shift lie below the data, this bias is quite small, e.g., 1.1%-3.2% for the 20m/s wind

condition and 0.2%-0.8% for the 14m/s wind condition. Over the durations shown in Figure2.17(c)

the largest bias, Bu1.03, occurs at the largest return period (T=1000 min.). Of course, this is based

on only a single “true” observation of the 1000 minute max. In all operating and parked conditions,

sigma reductions for these peak models have been found to remain at roughly 0.5 or less.

Note also that when averaging results overN simulations, the standard deviation of an estimated

parameter decreases likeσ/
√

N . Hence, the 50% sigma reduction shown by the quadratic Weibull

fit permits a four-fold decrease in the number of simulations. For example, fitting a quadratic

Weibull model toN=1 10-minute simulation is roughly equivalent to using the “raw” 10-minute

maxima fromN=4 simulations.
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(b) Sigma reductionσµ/σZ between estimated and observed 10-minute maxima.

Figure 2.15:Bias and sigma reduction factors for three and four moment Hermite models, peak
shifted, and un-shifted quadratic Weibull models,V =20m/s.
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Figure 2.16:Bias and sigma reduction factors for three and four moment Hermite models, peak
shifted, and un-shifted quadratic Weibull models,V =14m/s.
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(a) Blade root flap bending: bias and sigma reduction.
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(b) Blade root edge bending: comparison of bias be-
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Figure 2.17:Estimated expected maxima over various time intervals,V =20m/s
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(a) Blade root flap bending: bias and sigma reduction.
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Figure 2.18:Estimated expected maxima over various time intervals,V =14m/s
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2.5 Conclusions

This chapter has demonstrated the use of both random process and random peak models to pre-

dict wind turbine loads. In particular, it has applied 3-moment random peak models (quadratic

Weibull), and 3- and 4-moment random process models (Hermite). Both the quadratic Weibull and

(4-moment) Hermite models are available withinMAX FITS[40, 41]. For a parked wind turbine ex-

periencing 50-year winds, all models have been shown to be nearly unbiased, Figure2.13(a), and to

achieve a significant reduction in our uncertainty, Figure2.13(b)in estimating the mean 10-minute

maximum. For rotating blades during operation at lower wind speeds, the random process models

can show notable bias: roughly 10% for the 4-moment models, and appreciably more if only 3

moments are used Figures2.15and2.16. In contrast, the random peak models remain consistently

accurate, and consistently beneficial (i.e., in reducing uncertainty) in all cases. This suggests that

by modeling not the entire time history but rather its set of peaks, enough information about the

rotating nature of the load process is retained to permit accurate estimates of extreme behavior.

In chapter3, the short-term distributions conditional on environmental variables developed here

are used to obtain long-term distributions of extreme events. This is achieved by weighting each

of the conditional short-term models by the probability of the environmental conditions occurring

and integrating over the range of the environmental variables. In particular, the Weibull model of

local peaks discussed in this chapter and a Gumbel model of global maxima are used to model

the short-term conditional loads. Given a probabilistic description of the long-run statistics of the

environment, predictions of the expected annual and 50-year load are obtained. Chapter3 details a

methodology for obtaining these predictions and compares the predictions based on the two different

short-term models.



Chapter 3

Prediction of the Long-term Distribution

of Extreme Loads1

In this chapter we present a methodology for proceeding from the short-term observations of ex-

treme loads to the long-run load distribution of these extreme events, for both flap and edge loading

in both operating and parked wind turbine conditions. First, a general approach utilizing full in-

tegration, where numerical routines are used to directly integrate the conditional short-term load

distribution over the annual occurrence of wind speeds and turbulence intensities, is presented.

Then, starting from this general approach, a qualitative analysis is undertaken to explore the extent

of the contribution of each of the three variables, in the governing equation, to the variability in the

long-term extreme load distribution. From this analysis, lower order models are considered, where

instead of using the entire distribution of the variables, a constant fractile of the short term extreme

load distribution, turbulence intensity distribution, or both are used. Finally, recommendations are

given to guide the analyst to decide when simpler, yet robust, methods which account for sufficient

variability in the extreme load event may be employed with confidence.

3.1 Introduction

This chapter presents methods for calculating the long-term distribution of extreme loads. In Chap-

ter2, several moment-based models were presented which estimate short-term load distributions of

the extremes from limited data. Continuing from this previous work, this current chapter explores

methods for calculating the long-term load distribution, from the short-term statistics.

1A portion of this chapter was previously published in the American Society of Mechanical Engineering’s Journal of
Solar Energy Engineering [49]
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In applying probabilistic models to design wind turbines, a number of practical challenges re-

main. One question concernshow a particular probability model may be used to satisfy design

requirements as specified, for example, in wind turbine standards [39]. In particular, due to the

wind turbine’s complex dynamic behavior, an analyst may need to rely on a set of limited-duration

load histories over a range of wind conditions. These histories may result either from measurements

on prototype machines or from numerical simulation. In either case, there is a fundamental question

as to how one can proceed from theseshort-termload observations to specification of appropriate

long-termloads, as required in design codes.

In this chapter a methodology is presented for proceeding from the short-term observations of

extremes to the long-run load distribution of these extreme events, for both flap and edge load-

ing in both operating and parked wind turbine conditions. First, a general approach utilizing full

integration, where numerical routines are used to directly integrate the conditional short-term load

distribution over the annual occurrence of wind speeds and turbulence intensities is presented. Then,

starting from the general problem where the entire distribution of the three random variables (ex-

treme load, wind speed, and turbulence intensity) is considered, a qualitative analysis is undertaken

to explore less complex models. The lower-order models consider using, instead of the entire distri-

bution, a constant fractile of the short-term extreme load distribution, turbulence intensity distribu-

tion, or both. This results in reducing the problem from a three-fold integration over extreme event,

turbulence, and wind speed to a single-fold integration, in the most reduced form, over only the

annual distribution of mean wind speed. Here, the efficacy of these lower-order models to account

for a sufficient portion of the variability, while reducing the necessary computations is examined.

Finally, recommendations are given to guide the analyst to decide when simpler, yet robust, methods

which account for sufficient variability in extreme load event may be employed with confidence.

The approach described above is conducted considering two alternatives for modeling the short-

term load. In Section3.4, an estimate of the long-term distribution of the extreme load is obtained

where the short-term load is based on modeling the 10-minute extreme load, or global peak, by

a Gumbel distribution. Alternatively, in Section3.5, an estimate of the long-term distribution of

the extreme load is obtained where the short-term load is based on modeling the random peaks

with a quadratic Weibull model. The latter is similar to the short-term load analysis conducted in

Chapter2. We will show that the estimate of the long-term distribution of extreme loads based on

modeling the random peaks is unbiased when compared to the estimate of the long-term distribution

of extreme loads based on modeling the global peaks.
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3.2 Estimating Long-Term Design Loads from Short-Term Histories

In Chapter1 a discussion was presented which introduced how the load modeling problem has been

divided into two parts. The first part being turbine specific and the second portion being site specific,

i.e., related to the environment where the turbine will be located. We return to this discussion to

provide more specific details how, once we have a description of the response of the turbine, we may

proceed to generate estimates, as required by the design specifications, of the long-term extreme

events on the turbine.

In general, Load Resistance Factor Design (LRFD)[9] code requirements typically compare a

nominal load and resistance,Lnom andRnom, weighted respectively by factorsγL andφR chosen to

achieve a desired reliability level:

φRRnom≥ γLLnom (3.1)

The nominal valuesLnom andRnom are commonly defined somewhat conservatively, relative to the

mean load and resistance, e.g.,Lnom=lN=the N -year load. HerelN is a specific fractile ofLT ,

which is a random variable describing the maximum load over an interval of lengthT , such that the

annualprobability of exceedinglN is 1/N . This relationship is formally defined below.

In particular, one proposed wind turbine design check applies the 50-year wind to a parked

turbine [23]. This suggests that other checks be made to ensure that this condition is satisfied with

Lnom=l50, the 50-yearload, which may not always coincide with the 50-year wind speed. For

example,l50 may more likely be caused in some cases by turbines operating at lower (but more

frequently occurring) wind speeds. Shown in this section is how one may consistently estimatel50,

properly accounting for randomness in the environmental conditions.

As noted above, it is common that the wind turbine analyst may have only limited-duration load

histories—formally, observations ofLT , the maximum of the load process,x(t), over a durationT

much less than 50 years:

LT = max
0≤t≤T

x(t); T ¿ 50 years (3.2)

Of course, as was seen in Chapter2, there may be an advantage to modeling something other than

the global maximum over durationT , e.g., the local peaks in durationT . The following development

is based on modeling the global extreme. Section3.5will show how an estimate of the 50-year load

is found using local peaks instead.

The 50-year load,l50, is then commonly defined, as mentioned earlier, as a specificfractile of

LT , i.e., a maximum value with a prescribed probability of exceedance:

P [LT > l50] =
T

50
T ≤ 1year (3.3)
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Here,P [·] denotes the probability that the bracketed statement occurs. For example, withT=1 year

Equation3.3states that the annual maximum load,L1 year, exceedsl50 with probability 1/50=0.02.

Significantly, because of the small probabilities involved, the analysis is relatively insensitive to

the precise choice ofT . Specifically, Equation3.3 will return virtually the samel50 value for all

T < 1 year; e.g., by seeking the monthly maximum with exceedance probability .02/12, the daily

maximum with exceedance probability .02/365, and so forth. Therefore, in practice, one typically

reducesT to a duration during which the load process can be consideredstationary. For wind

applications, seasonal, synoptic, and diurnal variations in the wind statistics make monthly, weekly,

daily, or hourly values different from annual values. These conditions result in a selection of a

reference time period during which the underlying environmental processes (here, the wind speed

and turbulence intensity) can be considered to remain in a statistically steady-state condition. This

reference time period is less than one hour and may commonly be taken asT=10 minutes.

More formally we can obtain an estimate of the 50-year load from the long-term distribution of

the extreme loads in an arbitrary 10-minutes,FL10 min, assuming independence between 10-minute

observations and considering the annual long-term distribution of the extreme load,FL1 year(l), by

FL1 year(l) = {FL10 min(l)}N (3.4)

= {1−GL10 min(l)}N (3.5)

whereN is the number of 10-minute segments in 1-year andGX(x) is the complimentary cumula-

tive distribution function,GX(x) = 1−FX(x). Taking the Taylor series expansion of the right-hand

side of Equation3.5yields,

FL1 year(l) ≈ 1−NGL10 min(l) +
N(N − 1)

2!
(GL10 min(l))

2 − · · · (3.6)

GL1 year(l) ≈ NGL10 min(l)−
N(N − 1)

2!
(GL10 min(l))

2 + · · · (3.7)

For small values ofGL1 year / 0.1, a first-order approximation may be obtained by ignoring the

higher order terms,

FL1 year(l) ≈ 1−NGL10 min(l) (3.8)

1− FL1 year(l) ≈ NGL10 min(l) (3.9)

GL1 year(l)) ≈ NGL10 min(l) (3.10)

Considering these assumptions above, an estimate of the 50-year load can be obtained from the
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long-term distribution of extreme loads for an arbitrary 10-minutes by,

GL1 year(l50)) =
1
50

= 0.02 = NGL10 min(l) (3.11)

GL10 min(l50) =
1

50N
(3.12)

for which Equations3.12or 3.3yield the probability level associated withl50 as

P [L10 min > l50] =
10

50× 365× 24× 60
= 3.8× 10−7 (3.13)

Similarly, for the probability level associated with the 1-year maximum,l1 year, Equations3.12and

3.3yield:

P [L10 min > l1 year] =
10

1× 365× 24× 60
= 1.9× 10−5 (3.14)

By reducingT from 50 years (or 1 year) to 10 minutes, we gain the important advantage that the

wind speed process remains in a steady state, characterized byV , the mean speed during that 10

minute duration. We may then perform a set of steady-state simulations at various mean wind

speeds,V , calculate the conditional exceedance probability, and weight their results byfV (v), the

long-term probability density ofV at the site of interest, yielding:

P [L10 min > l] =
∫

all v
P [L10 min > l | v ]fV (v)dv (3.15)

Note that Equation3.15separates the calculation ofl50 into the need to provide two separate terms,

which respectively describe the turbine (independent of the site) and the wind conditions at the site:

Turbine-specific term: P [L10 min > l | v ] denotes the probability that a 10-minute maximum

load exceeds a given levell, given a prescribed mean wind speedV = v. This is commonly

known as theshort-termproblem.

Site-specific term: The remaining term on the right side of Equation3.15, fV (v)dv, defines the

fraction of time the wind speed at the site lies betweenv andv + dv. In the wind turbine

community it is common to choose a Rayleigh probability density form forfV (v), with mean

dependent on site conditions. In general, this wind speed distribution may be found from site-

specific data, or specified for design purposes by wind turbine standards (e.g., wind turbine

classesI–IV [23]).

In summary, the 50-year load is calculated by first solving the short-term problem—that is,

estimatingP [L10 min > l | v ] across a range ofl for various mean speedsv. These results are
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combined withfV (v) through Equation3.15, andl50 found as thel value returning the required

probability level in Equation3.13.

Note also that Equation3.15 is readily modified if the wind process is instead characterized

by another parameter such as turbulence intensityI—replacingV by I—or by a two-dimensional

integration if bothV and I are deemed to significantly help explain the observed variations in

loading. In this case Equation3.15would become

P [L10 min > l] =
∫∫

P [L10 min > l | v, i ]fI|V (i|v)fV (v)didv (3.16)

Where now the turbine specific problem is conditioned on bothV andI and the long-term probabil-

ity density of turbulence intensity is conditional onV , denoted by,fI|V (i|v). It should be noted that

bothV andI usually refer to a specific height above the ground; e.g., the hub height. Also note, that

additional parameters—e.g., those which characterize the vertical wind speed profile—may also

be included to better describe the wind climate, and hence better separate the turbine-specific and

site-specific terms.

Two challenges remain. First, to estimate the probability distribution of the maximum load,

e.g., the 10-minute maximum,L10 min, given the environmental parameters. This was discussed in

Chapter2 and by others in the literature [38, 47, 50]. Second, solving Equation3.16, the long-term

integration problem. The latter is the focus of this chapter. Also, a discussion is presented on the

significance of the environmental variables to describe the long-run variations in the loading. The

work of Ronold et al. [51] has addressed a similar question assessing the probability of failure of

a wind turbine rotor blade subjected to flap-wise bending during operating wind conditions, over

the turbine’s lifetime of 20-years. In this work, a random process model was used to model the

short-term flap-wise loads, and the long-term integration was solved using an iterative first-order

reliability analysis approach. The results were later used to develop appropriate partial safety fac-

tors to be applied to the characteristic load and material strength values for design of the turbine.

In this chapter we address both edge and flap bending loads in both operating and parked turbine

conditions; here the short-term loads are modeled using random peak models and the long-term

integration is performed using numerical methods. Also, note that the paper by Fitzwater and Win-

terstein [38] explores the efficacy of random process models and random peak models to retain

sufficient information about the load process to permit accurate estimates of extreme behavior.

In what follows in this chapter we step through the process from initial simulation runs to a

final estimate of,P [L10 min > l], the marginal distribution ofL10 min. Later in Sections3.4and3.5,

options are discussed for simplifying Equation3.16considering the variability in the conditional

loads and the environmental variables.
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3.3 Data Set

The data set used in this analysis was for the Atlantic Orient CorporationAOC 15/50 turbine as

described in Section1.4.2The data set consisted of multiple 10-minute simulations of Gaussian

wind fields and corresponding in- and out-of-plane blade root bending moments on theAOC 15/50

horizontal axis wind turbine. The wind input processes are described by the hub height wind speed.

The turbine has a rotor diameter of 15m, a fixed rotor speed of about 60RPM, and a rated wind

speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25 meters [22]. In this

chapter, flap and edge bending terms refer to out-of-plane and in-plane bending, respectively.

One hundred 10-minute simulations have been performed for various choices of wind speed

and turbulence class with different random seed values. The simulations were carried out using

YAWDYN , an aerodynamics and dynamics analysis code for wind turbines [20]. Target 10-minute

mean wind speeds, in the operating regime of the turbine were chosen from 10m/s to 24m/s in 2m/s

increments. Simulations were run at each wind speed considering both classA and classB IEC

turbulence classes [23]. Also, pseudo-parked conditions (turbine slowly idling) were run for both

turbulence classes, with target 10-min mean wind speeds of 24, 30, 40, and 50m/s. The original

data set only contained time histories corresponding to the 50m/s environmental condition. The

remaining pseudo-parked conditions were later added to the data set. A plot of observed turbulence

intensity versus observed mean 10-minute wind speed, calculated from the simulation data, for

all 2,400 10-minute time histories is shown in Figure3.1. It may appear from Figure3.1 that

there is significantly more scatter in the observed turbulence intensity than in the observed 10-

minute mean wind speed. The coefficient of variation of the observed 10-minute mean wind speed

is approximately 0.1-0.2%, while the coefficient of variation of the observed turbulence intensity

is also small at approximately 2-3%. Also, as seen in Figure3.1, a bias is present between the

observed turbulence intensity calculated from the time histories, (at the hub height of the turbine)

and target values of turbulence intensity for a given wind speed, as calculated from theIEC code

equations [23]. Based on this result, the observed values for turbulence intensity were used for all

subsequent analysis.

An additional comment is required concerning the pseudo-parked conditions. As stated earlier

the original data set only contained time histories corresponding to 50m/s wind conditions. This

corresponds to approximately the 50-year wind speed. Running a pseudo-parked condition came out

of a constraint of theYAWDYN program, which can not simulate blade load responses for a parked

turbine, so simulations were run with the turbine very slowly idling, one rotation in ten minutes.

This seemed to produce acceptable results for the 50m/s high wind speed case. Later, it became

apparent that just the one parked condition was not sufficient to describe the behavior of the parked

turbine, so additional environmental conditions were also considered, specifically the 24m/s, 30m/s,
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Figure 3.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

and 40m/s conditions (for both turbulence classes). For these lower wind speeds and specifically the

in-plane (i.e., edge) bending (the out-of-plane, flap, bending response was not effected) the variation

in the response due to the input simulated wind field was much smaller compared to the gravity cycle

introduced by the slowly idling turbine. Presumably, the variation of the response due to the wind

field for a parked turbine would be very closely approximated by the simulation where the turbine

was slowly idling. The gravity cycle would not occur if the turbine was parked, however. A filtering

technique was used to remove the gravity cycle in the edge bending response time histories for the

pseudo-parked conditions. The details of how this filtering was performed on the edge bending time

histories is presented in AppendixA. Figure3.2shows a typical edge bending time history for the

24m/s ClassA wind condition before and after filtering. In Figure3.2(a)one can clearly see the

gravity cycle induced by the slowly idling turbine. These gravity cycles, if included, would have

artifically inflated the magnitude of the observed global maximum for the edge bending response of

the parked turbine.
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(a) Unfiltered 24m/s parked turbine, blade root edge bending response time history

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600

Fi
lte

re
d 

bl
ad

e 
ro

ot
 e

dg
e 

be
nd

in
g 

re
sp

on
se

, k
N

-m

Time, seconds(s)

(b) Filtered 24m/s parked turbine, blade root edge bending response time history

Figure 3.2:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 24m/s turbulence classA wind environment.
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3.4 Long-Term Analysis Based on Modeling Global Extremes

In this section we will step through the process of obtaining an estimate of the marginal probability

distribution of the long-term load. We first relate the statistical moments of the global peak data to

the environmental variables. A Gumbel distribution of the global peaks can then be obtained for

each specific set of values of the environmental variables by the method of moments. Finally, an

estimate of the marginal distribution of the long-term load may be obtained by summing the condi-

tional short-term load distributions over all environmental conditions. Each conditional short-term

load distribution is weighted by the probability of the associated environmental condition occurring.

3.4.1 Short-Term Analysis

In this section we are interested in estimating the conditional probability distribution ofLT , in

timeT , given the environmental parameters. Many models, over a number of different time scales,

have been discussed in previous work [38]. The simplest of these models is the Global Extreme

model or Gumbel model, which seeks to model,Z, the “global” (largest) extreme over duration

T . The advantage here is that we work directly with the extreme of interestL10 min. Also, since

we are choosing to model the global extreme directly, we immediately have the desired probability,

P [L10 min > l] (=P [Z > z]), that the maximum valueL10 min is greater than anyl. The drawback

is that we discard all time history data below these global maxima. Alternatively, as was discussed

in Chapter2, one could model all the random local peaks. We saw in Chapter2 that compared with

statistics of the global extreme, modeling the local peaks to estimate the expected extreme event

provided unbiased results with lower variability.

Here we demonstrate how one can use a Gumbel distribution to model the global (10-minute)

extreme events,Z, given values of the environmental variables. Then, based on this short-term

model, proceed through a methodology to obtain estimates of the long-term marginal probability

distribution ofL10 min. Later in section3.5, we demonstrate how a quadratic Weibull distribution

can be used to model instead the local peaks,Y , given values of the environmental variables. Then,

based on this alternate short-term model, we apply the methodology presented here to obtain esti-

mates of the long-term marginal probability distribution ofL10 min. It will be shown, similar to the

results found in Chapter2, that compared with the estimate of the long-term distribution ofL10 min

based on short-term Gumbel model, the estimate of the long-term marginal distribution ofL10 min

based on a short-term quadratic Weibull model is unbiased.
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Fitting Distributions to Data

The FITS routine [52, 53] for fitting probabilistic models to data was used to fit a Gumbel model

to the observed 10-minute maxima for each pair of environmental conditions: 10-minute mean

wind speed,V , and turbulence intensity,I. FITS calculates the central moments from the observed

data and then estimates the best model fit of the user-specified distribution type by the method of

moments [24, 29]. The FITS routine contains distribution types that preserve up to the first three

moments of the observed data. For purposes of the present discussion the first two moments of the

observed 10-minute maxima are defined as:

µZ = E[Z] (3.17)

σ2
Z = E[(Z − µZ)2] (3.18)

whereE[·] is the expectation operator. The first central moment is the mean,µZ , a measure of

central tendency of the data. The second moment is the variance,σ2
Z , a measure of the spread in the

data.2 Shown in Figures3.3and3.4are the mean and standard deviation of the 10-minute extreme

flap (out-of-plane) and edge (in-plane) response bending moments, based on 100 simulations for

each pair of nominal wind speed and turbulence intensity values. The wind turbine is operating for

V < 24m/s, otherwise the turbine is parked. Parking the turbine will reduce the magnitude of the

flap and edge loads.

Comparisons of the fitted Gumbel distributions to the observed response maxima for all simu-

lated wind speeds in turbulence classA are shown in Figures3.5and3.6for blade root flap and edge

bending respectively. In these figures the data and fitted models are plotted on a distorted “Gumbel”

scale, which plots the transformed cumulative distribution function(CDF) -ln(-ln(FZ(z))) rather than

the standardCDF, FZ(z). The results should appear as a straight line if the data follow a Gumbel

probability distribution model. For clarity the right-hand axis has the corresponding standardCDF

probability values. All 100 data values for a given wind speed shown in the figure share the same

turbulence class and, therefore, the same nominal turbulence intensity. However, each individual

realization will have a different turbulence intensity due to its finite length. Similar results were

found for the simulated wind speeds in turbulence classB. Flap bending response data and Gumbel

model fit are shown in Figures3.5(a)and3.5(b) whereas Figures3.6(a)and3.6(b) contain edge

bending response data.

2A more detailed discussion of expectation and moments of random variables may be found in Section1.5.1.
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Figure 3.3:Mean and standard deviation of 10-minute maximum blade root flap bending responses
for given 10-minute mean wind speeds. The wind turbine is operating forV 5 24m/s,
otherwise the turbine is parked.
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Figure 3.4:Mean and standard deviation of 10-minute maximum blade root edge bending responses
for given 10-minute mean wind speeds. The wind turbine is operating forV 5 24m/s,
otherwise the turbine is parked.
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Figure 3.5:Gumbel fit to observed blade root flap bending data for operating and parked wind
speeds, turbulence classA.
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Figure 3.6:Gumbel fit to observed blade root edge bending data for operating and parked wind
speeds, turbulence classA.
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Regression

We have established that we can obtain a short-term Gumbel extreme load distribution for the tur-

bine from the first two central moments. Therefore it is sufficient to know the moments over all

environmental conditions to completely define the long-term distribution of extreme loading events.

Furthermore, regressing the moments over the two environmental variables, 10-minute mean wind

speed and turbulence intensity, would give us this relationship between these moments, and there-

fore the short-term load distribution, and the environmental variables. Also, the regression analysis

can assist in understanding the dependence between the environmental variables and the loading as

well as the sensitivity of the loading to the environmental variables. Here we relate the statistics

which describe the observed wind input process to the statistics of the observed responses of both

blade root edge and flap bending. Turbulence classA and classB are considered together. The

concept is to develop a functional relationship between the turbine response statistics and the entire

environmental space, not a specific class environment. We should note that there is some uncertainty

associated with our regression results as we generally do not have observations for all of the points

in the environmental space (wind speed and turbulence intensity). This uncertainty is not addressed

in this discussion of the long-term analysis but is included in discussion presented in Chapter6 [38].

There are two distinct general loading conditions for the turbine, one when the turbine is oper-

ating and the other while the turbine is parked. Separate regression analyzes were performed under

each of these conditions. During 10-minute mean wind speeds below 24m/s the turbine is assumed

to be operating. This is not strictly true as there is some minimum speed (cut-in) below which the

turbine is parked. For 10-minute mean wind speeds above 24m/s the turbine is assumed to be parked.

So, one regression analysis considers the operating loads on the turbine for the regime of operating

wind speeds and the other analysis considers parked loads on the turbine during parked wind speed

conditions (V > 24mps). Based on the observed behavior of the turbine the statistical moments of

the response (both blade root flap and edge bending) were assumed to be related to the environmen-

tal parameters following the power law function proposed by Veers and Winterstein [54], for both

regimes.

µj = aj

(
V

Vref

)bj
(

I

Iref

)cj

j = 1, 2 (3.19)

For instances where a turbine response of interest exhibited a multi-model behavior, i.e. with more

than one peak as a function of wind speed, other model forms would be more appropriate. In

Equation3.19, µ1 represents the mean andµ2 represents the standard deviation.Vref andIref are

the reference 10-minute mean wind speed and turbulence intensities respectively. These reference

values are calculated from the data as the geometric means of 10-minute mean wind speed and the

turbulence. Although the precise choice ofVref andIref is of little importance, the choice should
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Blade Root Flap Bending
Regression of Statistics of 10-Minute Maximum onV and I

Mean of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 25.6643 0.7928 0.7129 0.9682
V > 24m/s 37.3040 2.6079 0.6042 0.9985

Standard Deviation of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 2.7760 0.8838 0.4424 0.9322
V > 24m/s 3.9338 2.9099 1.4484 0.8745

Table 3.1:Regression coefficients used in Equation3.19to fit statical moments of blade root flap
bending loads as functions of the mean wind speed,V , and turbulence intensity,I.

Blade Root Edge Loading
Regression of Statistics of 10-Minute Maximum onV and I

Mean of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 8.610 0.3231 0.2084 0.9924
V > 24m/s 7.2275 4.1052 0.7718 0.9965

Standard Deviation of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 0.3048 1.9198 1.1430 0.9265
V > 24m/s 1.4120 3.5661 1.2761 0.8948

Table 3.2:Regression coefficients used in Equation3.19to fit statistical moments of blade root edge
bending loads as functions of the mean wind speed,V , and turbulence intensity,I.

be used consistently throughout an analysis. The geometric means have been used here so that

the leading regression coefficient (a) will be statistically independent from the other regression

coefficients (b andc) in Equation3.19. TheVref andIref values for the operating conditions are

16.474m/s and 0.1528, respectively. The correspondingVref andIref values for the parked conditions

are 34.861m/s and 0.1318, respectively. The calculated regression coefficients andR2 statistics are

shown in Tables3.1 and3.2 for flap and edge bending conditions, respectively.R2 statistics near

unity indicate that a large percentage of the variability in the data is explained by the regression

model. LowR2 statistics indicate that other influences not contained in the regression model may

affecting the loads.

Finally, graphical regression results are shown in Figures3.7 and 3.8 for blade root flap and
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edge bending respectively. Regression results for the mean and standard deviation of the maximum

10-minute flap bending moment versus 10-minute mean wind speed are shown in Figures3.7(a)and

3.7(b). Corresponding results for edge bending are shown in Figures3.8(a)and3.8(b). In all plots,

the turbulence intensity has been set equal to,Iref, the reference value.

3.4.2 Long-term Analysis

In the previous sections we have defined the conditional probability distribution model for the 10-

minute maxima and how this model can be represented by the moments of the data. Further, we have

just shown, through regression analysis, how these moments may be related to the environmental

variables. In this section we demonstrate how we can combine the short-term, turbine-specific

portion of Equation3.16with the long-run distribution of the environmental variables.

The distribution of 10-minute mean wind speed,V , and the conditional distribution of turbu-

lence intensity are taken from the analysis by Manuel,et al.[50] of the MOUNTURB program data

at the Lavrio, Greece test site. The 10-minute mean wind speed distribution is assumed to follow a

Rayleigh probability distribution with mean3 µV =10m/s:

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(3.20)

α =
2µV√

π

The conditional probability distribution of turbulence intensity given 10-minute mean wind speed

is assumed to follow a Gaussian distribution

fI|V (i|v) =
1√

2πσI|V
exp

[
−1

2

(
i− µI|V

σI|V

)2
]

(3.21)

with mean given by,

µI|V = 2.4486v−0.9971 (3.22)

and a fixed standard deviation of 0.025. In order to implement Equation3.16the ranges of values of

the environmental variables are discretized into evenly spaced intervals. A range of 1m/s to 100m/s

was considered for the 10-minute mean wind speed in intervals of 0.5m/s. Similarly, a range of

approximately six standard deviations of the conditional turbulence intensity was considered, and

divided into 100 evenly spaced intervals. For each pair of values of the environmental variables the

corresponding short-term load distribution is generated from Equation3.16. The load distributions

3µV is also referred to as the annual average 10-minute mean wind speed.
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Figure 3.7:Regression of the moments of 10-minute maximum on the 10-minute mean wind speed
and turbulence intensity for blade root flap bending.
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are summed together; each weighted by the probability of the respective environmental conditions,

i.e., probability of the pair of values of the environmental variables occurring. The summation is

performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case to develop the long-term distribution the appropriate regression

model is used for each wind speed value. For wind speeds below 24m/s the regression relating

operating loads is used and, correspondingly, for wind speeds above 24m/s the regression relating

parked loads is used. This results in a combination of the operating and parked only long-term dis-

tributions as shown in Figure3.9. Also shown in the figure are the long-term distributions of the load

if the turbine is either parked or operating in all wind speeds. The probability levels associated with

the one-year and 50-year mean return period (MRP prob. level) are also shown, note Equations3.13

and3.14. In all of the preceeding cases it was assumed there was 100% availability of the turbine

during all winds speeds. It would require only minor modification to the procedures developed here

to include the condition when the turbine was available for only a portion of the time for a given

wind environment. Using the full distribution for each of the random variables, estimates for the

one-year flap and edge bending load are 49.1kN-m and 11.8kN-m respectively. Correspondingly,

estimates for the 50-year flap and edge bending load are 59.7kN-m and 13.7kN-m respectively.

3.4.3 Simplifying the Long-term Analysis

In this section, a methodology for simplifying the calculations required for solving Equation3.16

is presented. The full distributions of some of the random variables are replaced with appropri-

ate deterministic fractiles, thereby reducing the number of numerical integrations required to be

performed. It is appropriate to consider this methodology for those random variables which have

only a small contribution to the overall variability in our estimate of the long-term extreme load

distribution. Here a qualitative analysis is employed to determine the degree to which each of the

variables in Equation3.16contributes to the long-term extreme load distribution. Further, based on

this analysis we present how an appropriate deterministic fractile of, for example, the short-term

load distribution, the conditional distribution of turbulence intensity or both, may be used, instead

of their full distributions.

For clarity we first consider the case, as expressed in Equation3.15, where the wind input pro-

cess is characterized by only one parameter, the 10-minute mean wind speed,V , and the short-term

load is presumed to be deterministic compared with the variability in the long-term distribution of

the environmental variable. In this case an important simplification arises if the mean loadµL(V )
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Figure 3.9:Long-term distributions of 10-minute extreme blade root bending moment,L10 min, con-
sidering three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine
parked over all wind speeds, 3) turbine operating below cutout wind speed and parked
above cutout wind speed; for both: (a) flap and (b) edge bending.
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grows steadily withV , and the conditional load variabilityσL(V ) is small compared with the vari-

ability in V . Then we may estimate the 50-year load,l50, as simplyµL(V50), i.e., the mean load in

50-year wind conditions. This is essentially the current design load check for parked turbines (IEC

load case 6.1 [23]). Formally, this will be exact in thedeterministicload limit, i.e., asσL(V ) → 0.

More generally it will be somewhat unconservative. In offshore structure design, for example, this

unconservatism is noted and commonly adjusted by: 1) inflating the environmental variable (here,

the wind speed—to a somewhat higher return period); or 2) inflating the fractile (fromp=.5 to

p=.80–.90) at which the load is evaluated. These inflation procedures are basically empirical, and

have been calibrated with respect to long-term probability analysis (as in Equation3.16) across

many cases [55, 56].

We investigate such simplifications further in the remainder of this section. Figure3.10shows

the long-term distribution of the 10-minute flap and edge loads for three cases that consider, in

turn, the short-term load variable and each of the environmental variables deterministically. Only

one variable is considered deterministic in each analysis. The other variables are assumed random

and to follow the distributions defined previously. For example, in considering the 10-minute mean

wind speed deterministic, i.e.σV → 0, the mean value of the turbulence intensity as a function of

wind speed is evaluated at the annual average wind speed (i.e., the mean value of the distribution

of the 10-minute mean wind speed),µI|V (V ) → µI|V (µV ), and the associated standard deviation

of the conditional distribution of turbulence intensity is also evaluated at the mean value of the 10-

minute mean wind speedσI|V (V ) → σI|V (µV ). Similarly, the parameters of the short-term load

distribution are evaluated considering the mean value of the 10-minute mean wind speed. From

this we obtain the mean of the short-term load distribution as,µL|I,V (I, V ) → µL|I,V (I, µV ) and

the corresponding standard deviation as,σL|I,V (I, V ) → σL|I,V (I, µV ). The integration over the

wind speed is thus avoided. It follows from this discussion how this procedure may be used when

considering the other variables, short-term load and turbulence intensity, deterministically. These

three analyzes give a qualitative understanding of how the terms in Equation3.16contribute to the

variability in the long-term load distribution. From this analysis, as shown in Figure3.10, one would

have expected the largest drop in our estimate of the 50-year load, to occur when we considered the

variability in the wind speed to approach zero. Whereas, reducing the variability in the short-term

load or turbulence intensity would not reduce our estimate of the 50-year load as drastically. This

is what has been found in other industries such as the fields of offshore engineering and earthquake

engineering. This does not appear to be the case here, however. Qualitatively, one can conclude

that, less of the variability in the long-term load distribution is explained by the randomness in the

wind speed and turbulence intensity, than by the variability in the short-term load, for the structure,

site data, and distribution models used here.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
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Figure 3.10:Long-term distributions of 10-minute extreme blade root bending momentL10 min, con-
sidering load, turbulence intensity, and wind speed deterministically for both: (a) flap
and (b) edge bending.
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Following the methodology previously presented, we consider using a higher fractile of the

turbulence intensity, or wind speed distributions, where we may be able to recover the associated

contribution to the long-term load variability, and still achieve the reduced computational effort

in calculating an estimate of the marginal distribution ofL10 min. Note that in implementing this

methodology to reduce the complexity in obtaining an estimate of the marginal distribution of

L10 min we resign ourselves to being unable to match the shape of the marginal distribution ofL10 min

if we had considered all three of the variables random. Our focus here is matching the fractiles of

the distributions only at the probability levels of interest, i.e., the probability levels associated with

the one-year and 50-year return periods. Figure3.11shows the result of considering the turbulence

intensity deterministic, but using the 84% fractile of the distribution rather than the mean value.

Using the 84% fractile of the turbulence intensity distribution results in an estimate of the one-year

flap load of 50.1kN-m, an error of 2.4% and an estimate for the one-year edge load of 11.9kN-m, an

error of 1.0% with respect to the estimate using the entire distribution for the turbulence intensity.

Similarly, considering the 50-year loads, the estimate for blade root flap bending is 60.2kN-m, an

error of 0.8%, and the estimate for blade root edge bending is 13.8kN-m, an error of 0.7% with

respect to the estimates using the entire distribution for turbulence intensity.

If we continue and consider the 84% fractile, as shown in Figure3.12(a), rather than the mean

value for the distribution of the 10-minute mean wind speed (i.e., the annual average mean wind

speed) our estimates for the one-year and 50-year blade root flap bending load are 50.6kN-m,and

59.2kN-m respectively and associated errors of 3.05% and 0.8% for the one-year and 50-year load

respectively. Considering the blade root edge bending shown in Figure3.12(b)the deterministic

fractile level needs to increase to 90% to recover an estimate of the one-year load of 11.9kN-m

with an error of 1.2%. The fractile of the wind speed distribution must increase further to 95%

to recover an estimate of the 50-year blade root edge bending load of 13.8kN-m with an error of

0.7%. If the 95% fractile was used to estimate the annual blade root edge bending load the estimate

would be approximately 6% high compared with the estimate based on using the full distributions

of turbulence intensity and wind speed.

This analysis, using prescribed fractiles of the distributions of the three variables, could be done

based on the assumption that the short-term load contributed the least to the overall variability in

the estimate of the long-term distribution, i.e., as we would have expected based on the experience

of other industries. In this case Figure3.13(a)shows the results of considering the short-term load

deterministic, but using the 97.5% fractile of the distribution rather than the mean value. Using

the 97.5% fractile of the load distribution results in estimates of the one-year and 50-year blade

root flap bending load of 48.5kN-m and 60.5kN-m respectively with associated errors of 1.3% for

both. Correspondingly the estimates of the one-year and 50-year blade root edge bending loads are
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
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Figure 3.11:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the turbulence intensity at prescribed deterministic levels compared with
the full distribution solution; for both: (a) flap and (b) edge bending.
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(a)Long-term distribution of extreme blade root flap bending moment for and arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
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Figure 3.12:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the turbulence intensity at the 84% fractile and 10-minute mean wind
speed at prescribed deterministic levels compared with the full distribution solution.
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12kN-m and 16.4kN-m respectively with associated errors of 1.5% and 19.9% for the one-year and

50-year loads respectively.

If we continue and consider the 95% fractile, rather than the mean value for the turbulence

intensity distribution, as shown in Figure3.14 the estimates for the one-year and 50-year blade

root flap bending loads are 49.8kN-m and 69.3kN-m respectively with associated errors of 0.8%

and 16.3% for the one-year and 50-year loads respectively. Correspondingly, the estimates for the

one-year and 50-year blade root edge bending loads are 12kN-m and 20.3kN-m respectively with

associated errors of 1.7% and 48% for the one-year and 50-year load respectively. It should be

noted that using the same fractile level for both flap and edge loading conditions results in tending

to over-estimate the 50-year blade root edge bending load, in some cases considerably.

Taking both the short-term load and turbulence intensity as deterministic fractiles of the under-

lying distributions would simplify Equation3.16to a single fold integration problem over only the

distribution of annual wind speed. The results of this integration are shown in Figure3.14. In this

case, additionally, we can eliminate the remaining integration by using the complementary cumula-

tive distribution function of the annual wind speed distribution and then evaluate the expression at

the wind speed associated with the return period of interest.

3.4.4 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-

bility distribution of the long-term load. This was accomplished by modeling the global peaks by a

Gumbel distribution for the conditional short-term load. The statistical moments of the global peak

data were related to the environmental variables by a power-law functional form. The parameters

of the functional form were obtained through regression analysis. Using the method of moments, a

Gumbel distribution could be obtained for each specific set of values of the environmental variables.

Finally, an estimate of the marginal distribution of the long-term load was obtained by summing the

conditional short-term load distributions over all environmental conditions. Each conditional short-

term load distribution was weighted by the probability of the associated environmental condition

occurring. We found from this analysis that the estimate of the one-year and 50-year blade root

flap bending loads were 49.1 kN-m and 59.7 kN-m respectively. Correspondingly the one-year and

50-year blade root edge bending loads were 11.8 kN-m and 13.7 kN-m, respectively.

We then under took a qualitative, yet systematic, analysis to determine which of the three

variables—conditional short-term load, conditional turbulence, or mean wind speed—contributed

the most to the variability in the distribution of the long-term load. Contrary to what we may have

expected, we found that at least for theAOC 15/50 turbine, site data, and distribution models used

here the conditional short-term distribution of the loads contributed the most to the variability in
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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Figure 3.13:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the short-term load at prescribed deterministic levels compared with the
full distribution solution.
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Figure 3.14:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the short-term load at the 90% fractile and turbulence intensity at pre-
scribed deterministic levels compared with the full distribution solution.
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the distribution of the long-term load, with mean wind speed and turbulence following in ranked

order. We found that by treating the environmental variables deterministic, and considering fractiles

higher than the mean, much of their contribution to the variability in the distribution of the long-

term load could be recovered. Specifically, considering the 84% fractile of the distribution of the

mean wind speed and turbulence, our estimates of the one-year and 50-year blade root flap bending

loads are 3.05% and 0.8% high respectively over our estimates employing the full distributions. For

blade root edge bending, considering the 95% fractile of the mean wind speed distribution and the

84% fractile of the conditional distribution of turbulence our estimates of the one-year and 50-year

root edge bending loads are 6% and 0.7% high. The next sections presents a similar analysis, only

this time the short-term loads are based on modeling the random peaks with a quadratic Weibull

distribution.

3.5 Long-Term Analysis Based on Modeling Local Peaks

In this section, similar to Section3.4, we will step through the process of obtaining an estimate

of the marginal probability distribution of the long-term load. In this case, however, we will use a

quadratic Weibull distribution of local random peaks for our definition of the short-term load. The

general procedure is very much the same as that presented in the previous section. An estimate

of the marginal distribution of the long-term load, is finally obtained by summing the conditional

short-term load distributions over all environmental conditions. Each conditional short-term load

distribution is weighted by the probability of the associated environmental condition occurring.

3.5.1 Short-Term Analysis

The previous section demonstrated how one may obtain an estimate of the marginal long-term dis-

tribution of L10 min from a short-term conditional loads model fit toZ, the global extreme over the

duration of a 10-minute response time history. In this section, an estimate of the marginal long-term

distribution ofL10 min is found following a similar procedure. In this case, however, the short-term

conditional loads model is fit to,Y , the random local peaks of a 10-minute response time history,

see Section1.5.5. As discussed in the previous section, when we choose to base the short-term

conditional loads model on the global extreme events we immediately have the desired probability

of interestP [L10 min < l|V, I](= P [Z < z|V, I]). The drawback is that all time history data be-

low these global maxima is discarded. If one instead models all the random peaks, here denoted
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Y1, Y2, . . ., the corresponding probabilityP [L10 min < l|V, I] can be estimated as

P [L10 min < l|V, I] = P [Y1 < l|V, I] ∩ P [Y2 < l|V, I] ∩ P [Y3 < l|V, I] ∩ . . .

. . . ∩ P [YNT
< l|V, I] = {P [Yi < l|V, I]}NT (3.23)

in which NT is the number of peaks,Yi values, in the 10-minute response time history. Equa-

tion 3.23holds assuming that the number of peaks,NT , is deterministic and that their levels are

mutually independent and identically distributed. None of these assumptions are strictly correct,

but the approximation generally becomes more accurate in the upper tail of the load probability

distribution [30]. Based on the results of Chapter2 a quadratic Weibull model was fit to the local

peaks. The remainder of this section steps through a procedure of fitting a quadratic Weibull model

to the observed local peak data, and relating the required short-term model parameters to the envi-

ronmental variables. Then, based on this definition of the short-term model, we proceed to solve

Equation3.16and obtain an estimate of the one-year and 50-year blade root flap and edge bending

loads. This is similar to the procedure presented in Section3.4.

Fitting Distributions to Data

Peaks of the response time histories were found based on the definition provided in Chapter2, the

largest value of the time history between successive up-crossings of its mean level. The process

mean level and number of peaks were calculated for all blade root flap and edge bending response

time histories. For each pair of environmental variables (e.g.,V =10m/s andI=classA), the 100

observations of process mean or number of peaks were pooled together and the mean of these pooled

observations was reported. The analysis conducted in Chapter2 found that for operating conditions

considering only the peaks in the blade root edge bending data above a prescribed threshold greater

than the mean level could provide a better fit of the model to the data. A 4.75kN-m threshold was

imposed on the edge bending response data only for operating conditions. Statistics, other than

the process mean that describe the blade root edge bending response from operating conditions are

based only on the peaks above this threshold. This threshold is discussed in more detail below.

Figures3.15 and3.16 show the process mean and number of peaks in 10-minute response time

history, respectively for both blade root flap and edge bending. These data are based on pooled

observations and plotted versus 10-minute mean wind speed, for both turbulence classes.

Again, theFITS routine [52, 53] for fitting probabilistic models to data was used to fit a quadratic

Weibull model to the observed local peaks for each pair of environmental conditions: 10-minute

mean wind speed,V , and turbulence intensity,I. The quadratic Weibull model is a three parameter

model. Thus, we can use the first three statistical moments of the data to fit the model. The first two
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(a) Pooled process mean of 10-minute blade root flap bending response
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(b) Pooled process mean of 10-minute blade root edge bending response

Figure 3.15:Process mean of 10-minute blade root flap and edge bending response, based on 100
pooled observations for each 10-minute mean wind speed and turbulence class. The
wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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(a)Expected number of local peaks in 10-minute blade root flap bending response
time history.
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(b) Expected number of local peaks in 10-minute blade root edge bending response
time history.

Figure 3.16:Expected number of local peaks in 10-minute blade root flap and edge bending re-
sponses time histories, based on 100 pooled observations for each 10-minute mean
wind speed and turbulence class. The wind turbine is operating forV 5 24m/s, other-
wise the turbine is parked.
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statistical moments, mean (µY ) and variance (σ2
Y ), were defined in Section3.4, and are repeated

here. We will use the coefficient of skewness,γ3Y , a measure of asymmetry of the distribution, as a

proxy for the third statistical moment. For purposes of the present discussion these statistics of the

observed local peaks are defined as:4

µY = E[Y ] (3.24)

σ2
Y = E[(Y − µY )2] (3.25)

γ3Y =
E[(Y − µY )3]

σ3
Y

(3.26)

Shown in Figures3.17, 3.18, and3.19are the observed first three central moments of the local

peaks for both blade root flap and edge bending. These data are based on 100 pooled observations

for each pair of 10-minute mean wind speed and turbulence class.

Comparison of the fitted quadratic Weibull distributions to observed blade root flap bending

local peaks are presented in Figure3.20. Representative blade root flap bending time histories are

used, considering an operating turbine condition (V =18m/s, turbulence classA) in Figure3.20(a)

and a parked turbine condition (V =40m/s, turbulence class A) in Figure3.20(b). In these figures,

the data and fitted models are plotted on a distorted “Weibull” scale, which, rather than plotting

FY (y) versusy, plots -ln[1-FY (y)] versusy. The results, when viewed on a log-log scale, should

appear as a straight line if the data follow a standard Weibull probability distribution model.5 For

clarity the right-hand axis has the correspondingFY (y) values. Similar results were found for local

blade root flap bending peaks in other wind environments (10-minute wind speed and turbulence

class).

For blade root edge bending, comparison of the fitted quadratic Weibull distribution to the ob-

served local peaks are shown in Figures3.21and3.22for turbine operating (V =18m/s, turbulence

classA) and parked (V =40m/sec, turbulence classA) conditions, respectively. The data and models

are plotted on the distorted Weibull scale as presented above. In Figure3.21(a)one can see that

a relatively poor fit results if we consider all the local blade root edge bending peaks from an op-

erating turbine condition. We saw in Chapter2, that the distribution of local edge bending peaks

tends to have more than one mode induced by the gravity loading on the in-plane direction of the

blade. The solution to achieve a better fit of the model to the data was to consider only the peaks

above a threshold higher than the process mean level. For the analysis here, the threshold level was

based on the “deterministic” gravity cycle. The amplitude of the gravity cycle for this turbine is

approximately 9.5kN-m, which remains constant across the operating wind speeds analyzed here

4A more detailed discussion of expectation and moments of random variables may be found in Section1.5.1.
5This scale, however, does not emphasize the largey, low P [Y > y] of interest.
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(a)Pooled statistics of the mean of the local peaks in 10-minute blade root flap bending
response time history.
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(b) Pooled statistics of the mean of the local peaks, in 10-minute blade root edge bend-
ing response time history.

Figure 3.17:Pooled statistics of the mean of the local peaks in 10-minute blade root flap and edge
bending responses time histories for given 10-minute mean wind speeds. The wind
turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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(a)Pooled statistics of the standard deviation of the local peaks in 10-minute blade
root flap bending response time history.
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(b) Pooled statistics of the standard deviation of the local peaks in 10-minute blade
root edge bending response time history.

Figure 3.18:Pooled statistics of the standard deviation of the local peaks in 10-minute blade root
flap and edge bending responses time histories for given 10-minute mean wind speeds.
The wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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(a)Pooled statistics of the coefficient of skewness of the local peaks in 10-minute
blade root flap bending response time history.
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(b) Pooled statistics of the coefficient of skewness of the local peaks in 10-minute
blade root edge bending response time history.

Figure 3.19:Pooled statistics of the coefficient of skewness of the local peaks in 10-minute blade
root flap and edge bending responses time histories for given 10-minute mean wind
speeds. The wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Figure 3.20:Quadratic Weibull model fit to observed blade root flap bending data for operating
(18m/s) and parked (40m/s) wind speeds, turbulence classA.
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(10m/s-24m/s). In this analysis we are particularly interested in modeling the loads toward the up-

per tail of the distribution, therefore, we would be interested in the loads that generally occur above

the positive extreme of the gravity cycle. If we assume that the gravity cycle is centered about the

process mean level, the threshold that should be used is half the gravity cycle amplitude, 4.75kN-m.

Figure3.21(b)shows qualitatively an improved fit of the quadratic Weibull model to only the data

above the threshold. No additional threshold or shift in the data was imposed on the local blade root

edge bending peaks for the parked turbine conditions.

Regression

When obtaining a long-term estimate of the 50-year load based on a short-term distribution which

models the local peaks, two parameters and three statistical moments are required. In Section3.4

where the short-term distribution modeled the global peaks, only the relationships between two

statistical moments and the environmental variables were required. We saw from the discussion that

it was sufficient to know the statistical moments over all the environmental conditions to completely

define the extreme loading on the turbine. Here we need the relationship between the environment

and two other parameters in addition to the statistical moments required to fit the probabilistic

model. These two additional parameters in this case are: the number of local peaks and the process

mean. The number of peaks is required as part of Equation3.23to calculateP [L10 min < l|V, I], and

the process mean which must be added back to the estimate of the extreme load since the magnitude

of the peaks was referenced to the process mean level. Therefore, instead of only having to perform

two regression analyzes for a given response of interest (flap or edge bending), five analyzes are

required: process mean, number of peaks, mean of the peaks, standard deviation of the peaks, and

skewness of the peaks.

As discussed earlier there are two distinct general loading conditions for the turbine, one when

the turbine is operating and the other while the turbine is parked. Separate regression analysis were

performed under each of these conditions. During 10-minute mean wind speeds below 24m/s the

turbine is assumed to be operating. For 10-minute mean wind speeds above 24m/s the turbine is

assumed to be parked. Based on the observed behavior of the turbine, the moments were assumed

to be related to the environmental parameters following the power law function proposed by Veers

and Winterstein [54], for both regimes.

µj = aj

(
V

Vref

)bj
(

I

Iref

)cj

j = 1, 5 (3.27)

The same values ofVref andIref defined in Section3.4 were used for this analysis. TheVref
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Figure 3.21:Quadratic Weibull model fit to shifted and un-shifted observed blade root edge bending
data for operating wind speed equal to 18m/s, turbulence classA.
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Figure 3.22:Quadratic Weibull model fit to observed blade root edge bending data for parked wind
speed equal to 40m/s, turbulence classA.

andIref values for the operating conditions are 16.474m/s and 0.1528, respectively, and the corre-

sponding values for the parked conditions are 34.861m/s and 0.1318, respectively. The calculated

regression coefficients andR2 statistics are shown in Tables3.3 and3.4 for both blade root flap

and edge bending conditions respectively.R2 statistics near unity indicate that a large percentage

of the variability in the data is explained by the regression model. LowR2 statistics indicate that

other influences not contained in the regression model may be affecting the loads. In performing the

regression analysis it was determined that the applied functional model, Equation3.27, did not have

enough flexibility to sufficiently model the observed behavior of the mean and standard deviation

of the local blade root flap bending peaks. The values of the mean and standard deviation of the

peaks flatten out with higher wind speeds above 17m/s as compared with the behavior below 17m/s

as seen in Figures3.17and3.18. Therefore a separate model was fit to each of these regions, one

below 17m/s and the other above 17m/s, for both the mean and standard deviation of local blade

root flap bending peaks.

Finally, graphical regression results are shown in Figures3.23-3.27. Each figure contains re-

gression results for both blade root flap and edge bending conditions considering: process mean,

Figure3.23; number of peaks, Figure3.24; mean of local peaks, Figure3.25; standard deviation

of local peaks, Figure3.26; and skewness of local peaks, Figure3.27. In all plots, the turbulence

intensity has been set equal to the reference value.
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Blade Root Flap Loading
Regression of Statistics of Random Peaks onV and I

Mean of 10-Minute Response Process
a (kN-m) b c R2

V 5 24m/s 3.0222 1.5196 -0.34972 0.95403
V > 24m/s 13.7604 1.8789 -0.07334 0.99857

Expected Number of Random Peaks
a (kN-m) b c R2

V 5 24m/s 800 0.17633 -0.15389 0.71442
V > 24m/s 1700 2.1388 -1.1969 0.98712

Mean of Random Peaks
a (kN-m) b c R2

V 5 17m/s 4.1829 0.96324 0.89617 0.98543
17 < V 5 24m/s 4.5654 0.32441 1.1762 0.97070
V > 24m/s 4.0829 3.8365 0.65347 0.99099

Standard Deviation of Random Peaks
a (kN-m) b c R2

V 5 17m/s 3.7006 0.98592 0.86905 0.98240
17 < V 5 24m/s 4.1124 0.29532 1.1558 0.98421
V > 24m/s 5.2258 3.3196 1.0597 0.98509

Coefficient of Skewness of Random Peaks
a (kN-m) b c R2

V 5 24m/s 1.2744 -0.062344 -0.099467 0.090513
V > 24m/s 1.7110 -1.2292 0.39315 0.96017

Table 3.3:Regression coefficients used in Equation3.27 to fit flap load moments as functions of
the mean wind speed,V , and turbulence intensity,I. The wind turbine is operating for
V 5 24m/s, otherwise the turbine is parked.
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Blade Root Edge Loading
Regression of Statistics of Random Peaks onV and I

Mean of 10-Minute Response Process
a (kN-m) b c R2

V 5 24m/s 2.4063 0.33942 -0.084286 0.95275
V > 24m/s 0.7327 1.7925 -0.076185 0.99598

Expected Number of Random Peaks
a (kN-m) b c R2

V 5 24m/s 105 0.44453 2.3182 0.33768
V > 24m/s 2928 0.67170 -1.1348 0.89983

Mean of Random Peaks
a (kN-m) b c R2

V 5 24m/s 0.2701 0.85215 0.11290 0.92184
V > 24m/s 0.8037 4.3166 0.49033 0.99802

Standard Deviation of Random Peaks
a (kN-m) b c R2

V 5 24m/s 0.2703 1.1572 1.0688 0.95583
V > 24m/s 0.8243 4.4614 0.81591 0.99690

Coefficient of Skewness of Random Peaks
a (kN-m) b c R2

V 5 24m/s 1.7616 0.70937 0.092212 0.85589
V > 24m/s 1.9341 -0.077955 0.41886 0.048842

Table 3.4:Regression coefficients used in Equation3.27to fit edge load moments as functions of
the mean wind speed,V , and turbulence intensity,I. The wind turbine is operating for
V 5 24m/s, otherwise the turbine is parked.
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(a)Regression of the process mean of 10-minute blade root flap bending response on
the 10-minute mean wind speed and turbulence intensity.
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(b) Regression of the process mean of 10-minute blade root edge bending response on
the 10-minute mean wind speed and turbulence intensity.

Figure 3.23:Regression of the process mean on the 10-minute mean wind speed and turbulence
intensity for blade root flap and edge bending.



CHAPTER 3. LONG-TERM EXTREMES 105

500

1000

1500

2000

2500

3000

3500

4000

5 10 15 20 25 30 35 40 45 50 55

N
um

be
r 

of
 p

ea
ks

 o
ve

r 
m

ea
n 

le
ve

l i
n 

10
-m

in
ut

e 
pr

oc
es

s

10-minute mean wind speed, m/s

class A
class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(a)Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root flap bending.
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(b) Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root edge bending.

Figure 3.24:Regression of the expected number of local peaks on 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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(a)Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root flap bending.
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(b) Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root edge bending.

Figure 3.25:Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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(a)Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.
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(b) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure 3.26:Regression of the standard deviation of the local peaks on the 10-minute mean wind
speed and turbulence intensity for blade root flap and edge bending.
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(a)Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.
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(b) Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure 3.27:Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity for blade root flap and edge bending.
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3.5.2 Long-term Analysis

In the previous sections we have defined the short-term probability distribution model for the lo-

cal peaks and how this model can be represented by the moments of the data. Further, we have

shown, through regression analysis, how these moments and associated parameters may be related

to the environmental variables. In this section we demonstrate how we can combine the short-term,

turbine-specific portion of Equation3.16with the long-run distribution of the environmental vari-

ables

The same distribution of 10-minute mean wind speed and the conditional distribution of tur-

bulence intensity presented in Section3.4 are used again here, for this analysis. The ranges of

values of the environmental variables are discretized into evenly spaced intervals. For each pair

of values of the environmental variables the corresponding short-term local peak distribution is

generated. Through Equation3.23, an estimate of the distribution of short-term extreme events,

P [L10 min < l|V, I], is obtained. The process mean, and any required additional threshold, are re-

introduced. Then, as per Equation3.16, the short-term extreme load distribution values are summed

together; each weighted by the probability of the respective environmental conditions, i.e., the pair

of values of the environmental variables occurring. The summation is performed over the entire

range of environmental variables.

As stated earlier, there are two loading conditions for the turbine: operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case, to develop the long-term distribution, the appropriate regression

model is used for each wind speed value. This results in a combination of the operating and parked

only long-term distributions as shown in Figure3.28. Also shown in the figure are the long-term

distributions of the load if the turbine is either parked or operating in all wind speeds. The proba-

bility levels associated with the one-year and 50-year mean return period (MRP prob. level) are also

shown (note Equations3.13and3.14). In all the preceeding cases it was assumed there was 100%

availability of the turbine during all wind speeds. Using the full distribution for each of the ran-

dom variables, estimates for the one-year blade root flap and edge bending loads are 51.3kN-m and

11.7kN-m, respectively. Corresponding estimates for the 50-year blade root flap and edge bending

loads are 60.8kN-m and 13.6kN-m, respectively
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
trary 10 minutes.

Figure 3.28:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering three turbine conditions: 1) turbine operating over all wind speeds, 2)
turbine parked over all wind speeds, 3) turbine operating below cutout wind speed and
parked above cutout wind speed; for both (a) flap and (b) edge bending.
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3.5.3 Simplifying the Long-term Analysis

In this section we present a methodology for simplifying the calculations required for solving Equa-

tion 3.16by replacing the full distributions of some of the random variables with appropriate de-

terministic fractiles. As seen previously in Section3.4.3, it is appropriate to consider this method-

ology for those random variables which have only a small contribution to the overall variability in

our estimate of the long-term extreme load distribution. Here, a qualitative analysis is employed to

determine the degree to which each of the variables in Equation3.16contributes to the long-term

extreme load distribution. Based on this analysis, deterministic fractiles, greater than the mean level,

are used to reduce the complexity in solving equation3.16.

Figure3.29shows the long-term distribution of the 10-minute flap and edge loads considering

the short-term load variable and each of the environmental variables deterministically. Only one

variable is considered deterministic in each analysis. The other variables are assumed random and

follow the distributions defined previously. This analysis gives a qualitative understanding on how

the terms in Equation3.16contribute to the variability in the long-term load distribution. From this

analysis, one finds that the largest drop in our estimate of the 50-year load, occurs when we set

the short-term load variability to zero. Whereas, reducing the variability in the turbulence intensity

or wind speed does not reduce our estimate of the 50-year load as drastically. This similar result

was found in the analysis presented in Section3.4. Changing from basing the short-term model

on the local peaks versus the global extreme does not seem to change the relative significance

of the variability contributed by the short-term load variable. Qualitatively, one can conclude that

compared to the short-term load, less of the variability in the long-term load distribution is explained

by the randomness in the wind speed and turbulence intensity, at least for the structure, site data,

and distribution models used here.

Following the methodology previously presented we consider using a higher fractile of the tur-

bulence intensity, or wind speed distributions where we may be able to recover the associated con-

tribution to the long-term load variability, and still reduce the computational effort in calculating

the marginal distribution ofL10 min. Figure3.30shows that by considering the 90% fractile of the

turbulence intensity distribution, rather than the mean value, nearly all of the variability contributed

by the turbulence intensity can be recovered. Tables3.5and 3.6contain estimates of the one-year

and 50-year loads and their associated error, considering the estimates based on the full random

models as the “true” result.

If we continue and consider an inflated fractile, rather than the mean value, for the wind speed

distribution, the 90% fractile covers the one-year and 50-year load for blade root flap bending and

the one-year blade root edge bending load. The fractile must be increased to 95% to cover the

variability contributed by the wind speed distribution for the 50-year blade root edge bending load.
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(a)Long-term distribution of blade root flap bending moment for an arbitrary 10 min-
utes.
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10
minutes.

Figure 3.29:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering load, turbulence intensity, and wind speed deterministically for both blade
root (a) flap and (b) edge bending.
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This is shown in Figure3.31and Tables3.5and 3.6.

This analysis, using prescribed fractiles of the distributions of the three variables, could be done

based on the assumption that the short-term load contributed the least to the overall variability in the

estimate of the long-term distribution. This is as we would have expected based on the experience

of other industries. In this case Figure3.32(a)shows the results for flap bending, considering the

short-term load deterministic, but using the fractile associated with the mean increased by seven

standard deviations of the distribution rather than just its mean value. The estimates obtained from

using this fractile of the load distribution is shown in Table3.5 along with the associated error.

Correspondingly, the estimates of the one-year and 50-year blade root edge bending loads are shown

in Figure3.32(b)and the numerical results are found in Table3.6.

Again, if we continue and consider the 84% fractile for the turbulence intensity distribution this

covers the estimates for the 50-year blade root flap and edge bending loads, as seen in Figure3.33.

The fractile must be increased to approximately 99% in order to cover the variability contributed by

the turbulence for the one-year blade root flap and edge bending loads. Again, numerical results for

the estimates mentioned above are presented in Tables3.5and3.6.

Taking both the short-term load and turbulence intensity as deterministic fractiles of the under-

lying distributions would simplify Equation3.16to a single fold integration problem over only the

distribution of annual wind speed. The results of this integration are shown in Figure3.33. In this

case, additionally, we can eliminate the remaining integration by using the complementary cumula-

tive distribution function of the annual wind speed distribution and then evaluate the expression at

the wind speed associated with the return period of interest.

3.5.4 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate

of the marginal probability distribution of the long-term load. The short-term load was based on a

quadratic Weibull model of local random peaks, however. The general methodology remained the

same. The statistical moments were related to the environmental variables through regression anal-

ysis. Using the method of moments, the distribution of the short-term loads was obtained for each

specific set of values of the environmental variables. Finally, an estimate of the marginal distribution

of the long-term load was obtained by summing the conditional short-term load distributions (each

weighted by the probability of the values of the environmental variables occurring) over all environ-

mental conditions. We found from this analysis that the estimate of the one-year and 50-year blade

root flap bending loads were 51.3 kN-m and 60.8 kN-m respectively. Correspondingly the one-year

and 50-year blade root edge bending loads were 11.7 kN-m and 13.6 kN-m, respectively.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure 3.30:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the turbulence intensity at prescribed deterministic fractiles compared with
the full distribution solution.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
trary 10 minutes.

Figure 3.31:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the turbulence intensity at the 90% fractile and 10-minute mean wind
speed at prescribed deterministic levels compared with the full distribution solution.
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Estimates of 1-Year and 50-Year Blade Root Flap Bending Load

Full Random Model
1-year Load 50-year Load
51.3kN-m 60.8kN-m

Deterministic Turbulence Intensity
Fractile 1-year Load % Error 50-year Load % Error

90% 51.1kN-m -0.4% 60.9kN-m 0.2%

Deterministic Turbulence Intensity(90%) and Wind Velocity
Fractile 1-year Load % Error 50-year Load % Error

84% 53.3kN-m 4.0% 60.1kN-m 1.2%

Deterministic Short-Term Load
Fractile 1-year Load % Error 50-year Load % Error

µY + 7σY 54.7kN-m 6.6% 60.9kN-m 0.2%

Deterministic Short-Term Load(µY + 7σY ) and Turbulence Intensity
Fractile 1-year Load % Error 50-year Load % Error

84% 43.5kN-m -15.2% 63.0kN-m 2.0%
99% 53.0kN-m 3.3% 79.0kN-m 29.9%

Table 3.5:Estimates of one-year and 50-year blade root flap bending loads, considering determin-
istic fractiles of conditional short-term load, turbulence intensity, and wind speed.
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Estimates of 1-Year and 50-Year Blade Root Edge Bending Load

Full Random Model
1-year Load 50-year Load
11.7kN-m 13.6kN-m

Deterministic Turbulence Intensity
Fractile 1-year Load % Error 50-year Load % Error

90% 11.9kN-m 1.7% 14.4kN-m 6.0%

Deterministic Turbulence Intensity(90%) and Wind Velocity
Fractile 1-year Load % Error 50-year Load % Error

90% 11.8kN-m 0.9% 12.6kN-m -7.4%
95% 12.4kN-m 5.9% 13.5kN-m -0.7%

Deterministic Short-Term Load
Fractile 1-year Load % Error 50-year Load % Error

µY + 7σY 11.5kN-m -1.7% 12.8kN-m -5.9%

Deterministic Short-Term Load(µY + 7σY ) and Turbulence Intensity
Fractile 1-year Load % Error 50-year Load % Error

84% 11.1kN-m -5.1% 13.9kN-m 2.2%
99% 12.0kN-m 2.6% 17.4kN-m 27.9%

Table 3.6:Estimates of one-year and 50-year blade root edge bending loads, considering determin-
istic fractiles of conditional short-term load, turbulence intensity, and wind speed.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure 3.32:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the load term at prescribed deterministic levels compared with the full
distribution solution.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure 3.33:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the short-term load atµY +7σY level and turbulence intensity at prescribed
deterministic fractiles compared with the full distribution solution.



CHAPTER 3. LONG-TERM EXTREMES 120

Again, a qualitative analysis was conducted to determine which of the three variables, con-

ditional short-term load, conditional turbulence, or mean wind speed, contributed the most to the

variability in the distribution of the long-term load. We found, similar to the previous section,

that at least for theAOC 15/50 turbine, site data, and distribution models used here the conditional

short-term distribution of the loads contributed the most to the variability in the distribution of the

long-term load, with mean wind speed and turbulence following in ranked order. We treated the

environmental variables deterministic, considered fractiles higher than the mean, and were again

able to recover much of the variability in the distribution of the long-term load, i.e., compared with

using their full distributions. Specifically, considering the 84% fractile of the distribution of the

mean wind speed and 90% fractile of the distribution of turbulence, our estimates of the one-year

and 50-year blade root flap bending loads are 4.0% and 1.2% high respectively over our estimates

employing the full distributions. For blade root edge bending, considering the 95% fractile of the

mean wind speed distribution and the 90% fractile of the conditional distribution of turbulence our

estimates of the one-year and 50-year root edge bending loads are 5.9% high and 0.7% low. The

next section presents a discussion of the comparison of the results between basing the short-term

loads on the distribution of global peaks and, on the other hand, basing the short-term loads on the

distribution of local random peaks.
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Comparison of Long-Term Estimates
Based on Short-Term Gumbel and Quadratic Weibull Models

Blade Root Flap Bending
Gumbel Model Quadratic Weibull Model Percent Difference

1-year Bending Load 49.1kN-m 51.6kN-m 4.2%
50-year Bending Load 59.7kN-m 60.8kN-m 1.8%

Blade Root Edge Bending
Gumbel Model Quadratic Weibull Model Percent Difference

1-year Bending Load 11.8kN-m 11.7kN-m 1.1%
50-year Bending Load 13.7kN-m 13.6kN-m 0.9%

Table 3.7:Comparison of long-term estimates of one-year and 50-year bending loads based on using
Gumbel distribution fit to observed global maximum for the short-term load model versus
fitting a quadratic Weibull distribution to the local peaks.

3.6 Comparison of Long-Term Estimates Based on Different Short-

Term Models

In Section3.4 we saw how one could obtain an estimate of the long-term distribution of extreme

events based on modeling the 10-minute maximum event by a Gumbel distribution. Later, in Sec-

tion 3.5we saw how a similar estimate of the long-term distribution may be obtained by basing the

short-term model on the quadratic Weibull distribution of local peaks. The question that arises, and

follows on from the work presented in Chapter2, is: if we consider the predictions based on the

Gumbel model to be “true”, are the estimates based on the alternative Weibull model unbiased? It

was shown in Chapter2 that the estimator of the mean value of the 10-minute extreme based on

modeling the local peaks was unbiased and had lower standard error when compared to the esti-

mator of the mean value of the 10-minute extreme based on the raw observations of the 10-minute

extreme. Figure3.34shows the estimates of the long-term distribution of the 10-minute loads based

on a short-term loads modeling the 10-minute extreme (Gumbel) or local peaks (Weibull). The esti-

mates of the one-year and 50-year blade root flap and edge bending loads are presented in Table3.7

along with the associated percent difference between the two estimates.

The data presented in Figure3.34and Table3.7 show that the estimate based on modeling the

local peaks is generally unbiased for both flap and edge bending compared with the estimate based

on modeling the raw conditional 10-minute extremes. Therefore, we can take advantage of the more

efficient estimate based on modeling random peaks, to either sample less or reduce the width of the

confidence bands on the parameters. This will be discussed further in Chapter6.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10-minutes.
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10-
minutes.

Figure 3.34:Comparison of estimates of the long-term distribution of 10-minute extreme blade
root bending moment,L10 min based short-term Gumbel model for 10-minute extreme
events or a short-term Weibull model for local peaks.
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3.7 Conclusions

In this chapter we have stepped through the process of calculating the probability distribution of

L10 min by two different methods. Starting from initial simulated time histories, we fit distribution

models to the observed extremes and then to the local peaks. In both cases we related the moments,

which define the distribution model parameters, to the environmental variables through regression

analysis. Finally, the short-term load distributions were weighted by the probability of the associated

environmental conditions occurring and summed over all environmental conditions to estimate the

long-term distribution. We then discussed simplifying the two-fold integration problem down to a

single-fold integration by using deterministic fractiles of the short-term load, turbulence intensity,

and wind speed distributions. It was shown that this methodology captures a significant portion

of the contribution to the long-term load variability of these variables at the probability levels of

interest. Also, the estimates based on modeling the local peaks was unbiased compared with the

estimates based on modeling the observed extremes.

Note, that the fractiles, obtained from this analysis, apply to this data and moreover to the

assumptions made in choosing the associated distribution models. Different fractiles may apply for

other data under different assumptions. This analysis is shown here for illustration and discussion

purposes. Universal fractiles, if deemed appropriate, should be chosen judiciously and with great

care in choosing distribution models.

Another approach, for simplifying Equation3.16, not explored in this chapter, employs the

approximate methods underlying first-order reliability analysis. In this method, contours of the crit-

ical combination of wind speed and turbulence intensity are found for prescribed reliability levels.

It then becomes a straightforward task to obtain an estimate of the 50-year load by (1) identify-

ing an appropriate percentile of the short-term load, and (2) identifying the maximum response

along the prescribed contour, e.g. 50-year contour. Under the assumptions of first-order reliability

analysis, the maximum response along the contour is associated with prescribed reliability level of

interest [57]. This approach is the subject of Chapter4.



Chapter 4

Estimation of Extreme Load Events

Using Environmental Contours1

This chapter presents and explores the application of the environmental contour method to wind

turbines. Contours promise to provide both practical reliability estimation and valuable information

about the combination of joint environmental variable values, e.g. wind speed and turbulence, most

critical to each specific wind turbine. We present the background of the development of environ-

mental contours as applied to wind energy systems, and apply this theory, in three examples, to

develop contours based either (1) on design code description of environmental conditions, or (2) on

measured field data which describes the site environment. From these contours, and a functional

description of the short-term response of the turbine, implicit first-order reliability method estimates

are made for the turbine response. These estimates are then compared with results obtained from

numerical integration of the short-term response of the turbine over the joint distribution of wind

speed and turbulence. We find that the environmental contour method provides reasonable estimates

of the expected extreme load, compared with the full integration method.

4.1 Introduction

Wind turbine blades are typically designed to survive the entire operating lifetime of the system.

Certification standards [23] reflect this approach when the design extreme wind speed is selected to

be the 50-year maximum. If the reasonable assumption that the turbine can be parked before the

worst case wind speed is encountered, the design condition is relatively easy to deal with; assume

1A portion of this chapter was previously published in the proceedings of the American Society of Mechanical Engi-
neering’s22nd Wind Energy Symposium [58]

124
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a stationary blade immersed in a uniform flow with a velocity equal to the 50-year maximum wind

speed at the blade height.

Some studies have implied that the simple quasi-static maximum wind condition may not gen-

erate the maximum load. Madsen, et al. [21] suggested parked loads that include turbulence could

exceed the uniform gust approach. In Chapter3 we saw it is even possible that operating loads

in much lower wind speeds can generate the highest loads in some cases. The reason that lower

wind speeds can generate higher loads is twofold. First, turbulence in the inflow causes the highest

load in any 10-minute sample to have higher variability. Second, when the variability in loads is

combined with the greater frequency of occurrence of lower wind speeds, the extrapolation to 50

years can produce a higher design load. Add to this the fact that turbulence levels at any site are not

constant, but span a range of values described by the joint probability distribution of wind speed and

turbulence [23]. The designer is therefore left with the much more difficult proposition of sweeping

the entire environmental space of wind speed and turbulence for the worst-case loading.

In Chapter3 we evaluated various models of the variation in extreme loads from extensive

aeroelastic simulations. We considered the entire design space of the joint distribution of wind

speed and turbulence, fitting distribution models to the variation of extreme short-term loads at each

combination of values of the environmental variables. Integrating the short-term distribution of ex-

tremes over the long-term joint probability distribution of wind speed and turbulence generates the

long-term distribution of extreme loads. The one-year and 50-year extremes are found by picking

off the once-per-year and once-per-50-year probability levels from the long-term distribution. Thus

the response of the turbine and the environment of the turbine are evaluated separately and only

combined in the final step. We saw in Chapter3 that this method provides an accurate method of

extrapolating to the long-term extreme from short-term simulations, although it is quite computa-

tionally expensive.

This chapter presents a method for reducing the space over which combinations of wind speed

and turbulence must be evaluated from the plane to a curved line. We show that the joint distribution

of mean wind speed and turbulence can be used to find a locus, or contour, of points describing in

effect the once in one-year or 50-year combinations of mean and turbulence experienced in a 10-

minute interval. This locus is found by using the theory of structural reliability and an approach

called First-Order Reliability Method [7, 8, 12]. The contour has the property that all the points

share the same associated reliability level. The contour is searched to find the point where the

specific combination of values of the environmental variables engender the maximum response of

the turbine. The location of this point depends on the nature of the individual turbine’s sensitivity

to wind speed and turbulence. Thus, again, the problem is split into the environmental part, now

described by a contour instead of a joint probability density, and a turbine part that describes the
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response due to specific combinations of wind-speed and turbulence.

The environmental contour concept is demonstrated here by first showing how the currentIEC

standard joint distribution of wind speed and turbulence can be transformed into contours of one-

year and 50-year extreme combinations. This is repeated for a joint distribution derived from field

measurements. Then the turbine response levels are defined using a complete mapping of the short-

term (10-minute) extremes over the entire space of mean wind speed and turbulence combinations.

In this chapter, we will ignore the variability of the short-term extremes. We will see later how we

have considered the short-term response as random (see Figure1.8) for the purpose of determin-

ing the short-term mean extreme response, but we ignored the variability of the short-term extreme

response, i.e., we considered the short-term extreme response deterministic at its mean level. The

complete mapping of the response is generated to clearly illustrate where the maximum response

intersects with the contours. The intersection of the largest response with the contour defines the

design load, or design point. However, in future applications the more efficient approach of only

evaluating the response levels along the contour, searching for the location of the highest response,

is necessary. Thus, the problem is simplified over the need to evaluate the turbine response every-

where. Results from this approach are compared with results using the long-term distribution as in

Chapter3.

4.2 Estimating the Long-term Expected Response

We are interested in finding an estimate of the capacity that should be designed into the structural

system of a wind turbine. This capacity may be defined in terms of the extreme response of the

turbine due to a loading environment over a period of time. More specifically, a capacity associated

with a prescribed mean return period of the expected extreme response— e.g., 50-year mean return

period. This can be written as

p50 years= P [L > lcap] (4.1)

Where,p50 years, is the probability associated with the 50-year mean return period,L, is the extreme

response, andlcap is the structural load capacity of the turbine. Our interest is in finding an estimate

of lcapsuch that the prescribed probability level, e.g.,p50 years, is satisfied. We know that the response

is a function of the loading environment. Therefore we may construct a function,h, which relates

the relative characteristic random variables of the environment—e.g., mean wind speed,V , and

turbulence,I, to the observed response.

L = h(V, I) (4.2)
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With this relationship given above, Equation4.1may be written as

p50 years= P [h(V, I) > lcap] (4.3)

Furthermore, we may construct a limit state function,g, such that

P [g ≤ 0] = P [h(V, I) > lcap] (4.4)

In this context, the expression for the limit state function which satisfies Equation4.4is given below

as

g = lcap− h(V, I) (4.5)

The First-Order Reliability Method (FORM), described in AppendixD, can be used to solve for

the probability that the limit state function is less than or equal to zero.FORM is an approximate

method. The limit state function is approximated by a straight line tangent to the limit state surface

at the point on the surface closest to the origin of standard normal space. Therefore, the smoothness

of the limit state function can have an affect on the efficacy of the method to provide an accurate

approximation. Using trial and error we can find an estimate oflcap such thatP [g ≤ 0] is equal to

the probability associated with the prescribed mean return period. Iteratively solving for an estimate

of lcap in this way can be tedious.

The forward-FORM problem discussed above, seeks to findpf = P [g ≤ 0]. In our problem we

are looking for an estimate oflcap with a prescribedpf . Therefore it would be more efficient if the

process could be inverted. Winterstein, et al. [59] describes this process. Instead of transforming

the random variables and limit state function from the basic space into the standard normal space

and solving forpf , with inverse-FORM, one starts with a prescribed reliability index,β = Φ−1(1−
pf ), which describes a hyper-sphere inn-dimensional standard normal space. The hyper-sphere

is then transformed to basic space. The resulting contour in basic space has the property that all

the points on the contour share the same associated reliability as defined in standard normal space.

The contour in basic space can then be searched for the maximum response. This is the maximum

response associated with the prescribed reliability level. Using the method of inverse-FORM to

develop environmental contours has been applied previously in other engineering fields including:

offshore engineering [60, 61] and earthquake engineering [62].

For our problem, an estimate oflcap can be obtained by searching the contour in basic space

for the maximum value ofh(V, I). For example: searching the locus of points,C, associated with

p50 years, we can obtain an estimate of the 50-year load,L50, as:

L50 = max
V,T∈C

[lcap] = max
V,T∈C

[h(V, I)] (4.6)
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This process of using inverse-FORM to develop environmental contours in the basic space will be

demonstrated in examples, which follow this discussion. In each example, estimates of the one-year

and 50-year extreme flap and edge bending loads on a horizontal axis wind turbine will be obtained.

These estimates will be compared with estimates obtained through the full-integration method.

4.3 Overview of Examples

The remainder of this chapter will present three examples which apply inverse-FORM, as discussed

in the previous sections, to obtain estimates of the one-year and 50-year blade root flap and edge

bending loads considering two site environments and both stall-regulated and pitch-regulated tur-

bines. For all the examples presented here, the description of the short-term extreme response of the

turbine is based on modeling the global peaks by a Gumbel distribution. Also, in all the examples

we consider the turbine in both operating and parked conditions. We have seen in previous chapters

that there is a discontinuity in the response at the cut-out wind speed, when the turbine transitions

from operating to parked conditions. This discontinuity in the limit state function will test the ability

of FORM to provide a reasonably accurate approximation.

The first two examples demonstrate how estimates of the one-year and 50-year extreme blade

root flap and edge bending loads on a stall-regulatedAOC 15/50 turbine (see Section1.4.2) may

be obtained using environmental contours. The environment in the first example is based on the

IEC classIA wind environment with turbulence variable defined as the standard deviation of the

10-minute wind process. The short-term response of theAOC 15/50 machine developed in Ap-

pendixC.3is used with the constructed environmental contour to obtain an estimate of the one-year

and 50-year blade root bending loads.

In the second example, the environment is based on an analysis of wind data from the Lavrio,

Greece, test site. The description of the environment given for this site was defined in terms of the

mean and coefficient of variation of the 10-minute wind process. Therefore, in the first example

turbulence is defined in terms of standard deviation and in the second example turbulence is defined

in terms of coefficient of variation. This is done to demonstrate the approach with both sets of

variables commonly used to describe the wind environment. The reader should note that the same

notation in the examples is used for turbulence, regardless of which definition is used, as either is

valid.

The third example again uses the description of the environment from the Lavrio test site. In this

case, however, the short-term response of theAOC 15/50 machine, in the regime of operating wind

speeds, is modified to simulate the typical non-monotonic response of a pitch-regulated machine.

This contributes a slope discontinuity in the limit state function, which tests the ability ofFORM
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to provide a reasonable approximation, with a second discontinuity. The response for parked wind

speeds was not modified and, in this example, represents an unfeathered blade condition. Note

in this example we only consider obtaining estimates of the one-year and 50-year blade root flap

bending load.

In all of the examples, the estimates obtained from the environmental contour method are com-

pared with estimates obtained from integrating the short-term extreme response over the long-term

distribution of the environmental variables.

4.4 Example 1 —IEC Model with Stall-Regulated Turbine

In this example anAOC 15/50, stall-regulated, turbine is assumed to operate in anIEC classIA

environment. The turbulence variable is defined in terms of the standard deviation of the 10-minute

wind process.

4.4.1 Description of Environment

The description of the environmental variables, in this example, is based on the criteria given in the

IEC wind energy safety code for a classIA environment [23]. Specifically, the annual distribution

of the 10-minute mean wind speed,V , is given by the Rayleigh distribution shown below, with

µV =10m/s.

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(4.7)

α =
2µV√

π

The standard deviation of the 10-minute wind process is taken as the measure of wind turbu-

lence, denoted byI. The conditional distribution of turbulence is assumed to follow the lognormal

distribution shown below.

fI|V (i|v) =
1√
2πζi

exp

[
−1

2

(
ln(i)− λ

ζ

)2
]

(4.8)

The parameters of the lognormal distribution,λ andζ, are defined as:

ζ =
√

ln(δ2
I|V + 1) (4.9)

λ = ln(µI|V )− 1
2
ζ2 (4.10)
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Figure 4.1:Joint probability density function based on wind classIA, µV =10m/s,I15=0.18,a=2

with, δI|V , the conditional coefficient of variation given as:

δI|V =
σI|V
µI|V

(4.11)

The functions of conditional mean,µI|V , and standard deviation,σI|V , of the turbulence are given

by theIEC wind energy safety code. For turbulence class A,I15=0.18 anda=2.

µI|V =
I15(15m/s+ av)

(a + 1)
− 2m/sI15

σI|V = 2m/sI15

The joint probability distribution of the environmental variables is then obtained by multiplying

together Equations4.7and4.8.

fV,I(v, i) = fI|V (i|v)fV (v) (4.12)

The resulting joint probability density function for classIA is shown in Figure4.1.
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4.4.2 Constructing the Environmental Contour

We seek to find a contour in the physical space of wind speed and turbulence such that all the points

on the contour have the same level of reliability. We start in standard normal space,U1,2, where,

because of symmetry, the locus of constant reliability is a circle with radius,β (see Figure4.2).

Transforming this circle from standard normal space to the physical space will produce the contour

we seek in terms of the physical variables. The equations to transform the circle, in standard normal

space, into the space described by the random variables for wind speed and turbulence are given as

follows.

Transformation of U1 to wind speed,V .

TheU1 coordinates of a circle in standard normal space are transformed to the physical space where

the wind speed,V , follows a Rayleigh distribution, by first equating the probability values ofu1

andv, in terms of the cumulative distribution functions (CDF) and then solving forv in terms ofu1.

Φ(u1) = FV (v)

Φ(u1) = 1− exp
[
−

( v

α

)2
]

− exp
[
−

( v

α

)2
]

= Φ(u1)− 1

( v

α

)2
= − ln (1− Φ(u1))

v = α
√
− ln (1− Φ(u1)) (4.13)

Transformation of U2 givenV to conditional turbulence, I.

After having transformed the first standard normal variable to basic space, the second random vari-

able may be transformed. The derivation of the equation for transforming the second coordinate,

U2, of the circle in standard normal space to the basic space where the conditional turbulence,I,

follows a lognormal distribution is shown below. Again, theCDFs are first equated, and then in this
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case,i is found in terms ofu2 and the wind speed dependent termsλ andζ.

Φ(u2) = FI|V (i, v)

Φ(u2) = Φ
(

ln(i)− λ

ζ

)

u2 =
ln(i)− λ

ζ

ln(i) = u2ζ + λ

i = exp (u2ζ + λ) (4.14)

4.4.3 Transform circle to contour

In order to calculate the probability levels associated with the one-year and 50-year mean return

periods, we assume the statistics of the wind process remain in a steady state condition over a

duration of 10-minutes. The probability levels associated with the return periods of interest are then

based on the number of 10-minute segments occurring in the prescribed time interval. We saw in

Chapter3 (Section3.2) that the probability levels associated with the one-year and 50-year loads

are:

p1 year=
10

1× 365× 24× 60
= 1.9× 10−5 (4.15)

p50 years=
10

50× 365× 24× 60
= 3.8× 10−7 (4.16)

The radius,β, of the circle in standard normal space is equal to the standard normal fractile

associated with a prescribed probability level. In our case, the two values ofβ corresponding to our

return periods of interest are:

β1 year= Φ−1(1− p1 year) = 4.1190

β50 years= Φ−1(1− p50 year) = 4.9451

Figure4.3 shows the environmental contours associated with one-year and 50-year return periods.

The contours were developed by first finding the coordinates of a circle with a prescribed radius,β,

in standard normal space (i.e.,u2
1 + u2

2 = β2, see Figure4.2) and then transforming the circle from

the standard normal space into basic space using Equations4.13and4.14. For example, we may

consider the point (u1=0, u2=β50 years) on the circle in standard normal space, where wind speed is

at its median level, and the conditional turbulence is at its 50-year level. This transforms into the
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point,

v = α
√
− ln(1− Φ(0))

= α
√
− ln(0.5)

= 9.3944m/s

whereα=11.28m/s (see Equation4.7). Next we find the corresponding value ofi at this point. With

β50 years=4.9451,

i = exp (4.9451ζ + λ)

whereζ andλ are given by Equations4.9and4.10with parametersI15=0.18 anda=2.

µI|V =
0.18(15m/s+ 2(9.3944m/s))

(2m/s+ 1)
− 2m/s(0.18)

= 1.6673m/s

and

σI|V = 2m/s(0.18) = 0.36m/s

implying

δI|V =
0.36m/s

1.6673m/s
= 0.2159

so

ζ =
√

ln((0.2159)2 + 1) = 0.2135

λ = ln(1.6673)− 1
2
(0.2135)2 = 0.4884

hence

i = exp (4.9451(0.2135) + 0.4884) = 4.6834m/s

So the point (0,4.9451) on the circle with radiusβ=4.9451 in the (u1, u2) plane maps to the point

(9.3944m/s, 4.6834m/s) in the(v, i) plane. Clearly this transformation is easily programmed to

provide the entire contour in basic space(v, i) corresponding to the circle(u1, u2) in standard

normal space.

We have developed a set of contours of the environmental variables that are related to prescribed

return periods. The contours describe a locus of points each of which represent a point on a circle

in standard normal space such that the probability of lying in a region outside a tangent line drawn

through this point, in standard normal space, is equal to the probability level associated with the
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u2

u1

standard normal space

β
(u1=0, u2=β)

Figure 4.2:Circle in 2-D standard normal space defined byβ2 = u2
1 + u2

2.

prescribed return period. Note that the contours are dependent only on information that describes

the environment and a prescribed reliability level.

To make use of the contour to estimate extreme events we need a description of the short-term

response of the turbine—i.e., the response given a set of values of the environmental variables. In

Chapter3 we saw how we might obtain a description of the short-term response of the turbine. An

estimate of the long-term extreme load can then be obtained by searching the contour for the max-

imum response. This estimate can be compared with an estimate obtained by integrating the short-

term conditional response over the long-term distribution of the environmental parameters[49].

4.4.4 Describing the Short-Term Response

In the first two examples, we are interested in estimating the long-term extreme load on anAOC

15/50 horizontal axis wind turbine. The turbine, described in Chapter1 (page18), has a rotor

diameter of 15m and a nominal rotor speed of 60RPM at the rated wind speed of 12m/s. It is a

three-bladed, fixed pitch turbine with a hub height of 25 meters [22]. The data set used to develop

the description of the short-term response of the turbine is described in detail in Chapter3 (page66)

and consisted of multiple 10-minute simulations of Gaussian wind fields and corresponding blade

root bending moments. The wind input processes is described by the hub height wind speed.

AppendixC.3 presents a discussion on the development of the short-term extreme response of

theAOC 15/50 turbine considering modeling the global peaks by a Gumbel distribution and defining

the environmental variables in terms of the mean and standard deviation of the 10-minute wind

process. In general, the methodology of the analysis consists of two steps. First, we compute the

statistics of the response of interest, here the 10-minute extreme. Second, these statistics are related

to the environmental variables. The functional form of the mean or expected short-term response
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Figure 4.3:Environmental contour based onIEC IA wind class, one-year and 50-year return periods.

from AppendixC.3 is given as [54]:

µ = a

(
V

Vref

)b (
I

Iref

)c

(4.17)

WhereVref andIref are the reference 10-minute mean wind speed and reference turbulence values

respectively. In the remainder of this analysis, however, we treat the short-term extreme response as

deterministic using the mean level conditioned on wind speed and turbulence. Therefore, the mean

response givenV andI becomesthe response. We will come back to this point, in a later section,

and discuss how the variability of the conditional short-term extreme response may be accounted

for in obtaining an estimate of the long-term response. The coefficientsa, b, andc were found using

regression analysis.2 The results of the regression analysis for the expected 10-minute extreme

flap and edge bending loads are presented in Table4.1. The reference wind speed and reference

turbulence used in the regression analysis are given in Table4.2. Also, with some wind turbines,

e.g., pitch regulated machines, the response in the operating regime may not be monotonic with

wind speed. This issue is addressed in the final example presented in this chapter.

2There are two load regimes for the turbine: one as a fixed structure when the turbine is parked, the other while the
turbine is operating. Separate regression analyzes were conducted for each of these load regimes. The two functional
forms that describe the turbine response are discontinuous at the maximum operating wind speed, see FiguresC.2 and
C.3.
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Regression of the Mean of
10-Minute Maximum on V and I

Blade root flap bending
a (kN-m) b c R2

V 5 24m/s 25.669 0.6090 0.0460 0.9233
V > 24m/s 40.181 2.5137 0.0184 0.9979

Blade root edge bending
a (kN-m) b c R2

V 5 24m/s 8.6107 0.2693 0.0135 0.9718
V > 24m/s 7.2485 3.9850 0.0138 0.9960

Table 4.1:Regression coefficients used in Equation4.17to fit mean of the extreme 10-minute flap
and edge bending loads as functions of the mean wind speed,V , and turbulence intensity,
I.

Reference Wind Speed and Turbulence

Vref (m/s) Tref (m/s)
V 5 24m/s 16.474 2.5176
V > 24m/s 34.861 4.6074

Table 4.2:Reference wind speed and turbulence values used in Equation4.17
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4.4.5 Environmental Contours vs. Full Integration Method

Applying Environmental Contours

Figure 4.4 shows the 10-minute maximum blade root flap and edge bending iso-response lines

plotted with the environmental contour from Figure4.3. The response lines are calculated based

on the regression models for the 10-minute extremes. This is done by fixing the value of the mean

extreme response and plotting theV versusI contour associated with this value, and then repeating

for various values of the mean extreme response. These contours are shown for the purpose of

pedagogy and illustrating the respective response surfaces. In practice, it is only necessary to search

the contour to find the maximum response. The maximum response corresponds to the response

with the prescribed return period, as shown by theF’s in Figure4.4. Searching for the maximum

response along the one-year mean return period contour results in an estimate of 47.4kN-m, for the

blade root flap-bending load and 9.7kN-m, for the edge-bending load. Correspondingly, estimates

of 69.9kN-m and 17.4kN-m were found for the flap and edge bending loads associated with the

50-year mean return period. Note that in three of the four cases the extreme is caused by the parked

condition.

Figure4.5 shows a plot of the value of the turbine response as a function ofθ around the one-

year and 50-year contour. The largest response is our estimate of the one-year or 50-year load

respectively. Note that there may be local maxima, or instances where the global maximum is not

that much larger than other peak response values along the contour. In these cases we may have

a condition where multiple design points exist, where two or more sets of environmental variables

yield similar load response on the turbine. AppendixD discusses how these multiple design points

may affect ourFORM estimates. It is clear from Figure4.5(a), considering blade root flap bend-

ing moment, only one maximum exists for both the one-year and 50-year contours. In Figure4.5(b)

considering the one-year contour, however, it is not clear that we should necessarily discount the en-

vironmental condition atθ ≈ 0rad in favor of the actual global maximum shown atθ ≈ 1rad. In this

example, a study of the shape of the limit state function in standard normal space, see AppendixD,

shows that a reasonable approximation is achieved if we only consider the global maximum, little

probability mass is excluded if we do not consider the set of environmental conditions atθ = 0.

Full Integration Method

An alternative to the contour method shown above is to obtain an estimate of the one-year and 50-

year loads from integrating the short-term response over the entire range of values of the environ-

mental variables. Specifically, Equation4.18shows how an estimate of the long-term distribution of

the 10-minute extreme load,L, can be obtained from integrating the distribution of the conditional
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Figure 4.4:Environmental contour with blade root flap and edge bending iso-response curves. The
F’s represent the maximum response with the prescribed return period.
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Figure 4.5:Extreme response as a function of angle,θ, in radians around circle in standard nor-
mal space for one-year and 50-year reliability levels. TheF’s represent the maximum
extreme response.
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short-term response over the joint probability density function of the environmental variables: wind

speedV , and turbulenceI.

P [L > l] =
∫∫

all v, i
P [L > l|V, I]fV,I(v, i) dvdi (4.18)

In implementing Equation4.18the range of values of the environmental variables is discretized into

evenly spaced intervals. For each pair of values of the environmental variables the corresponding

distribution of the conditional short-term response is obtained. The conditional short-term response

distributions are summed together; each weighted by the probability of the respective environmental

variables, i.e., pair of values of the environmental variables occurring. The summation is performed

over the entire range of environmental variables.

In this approach the three variables in Equation4.18, conditional short-term response, condi-

tional turbulence, and mean wind speed are considered random. In the examples presented in this

chapter, however, the conditional short-term response is considered to be deterministic. We have

shown in Chapter3 that treating the short-term response deterministic but using a higher fractile,

larger than the mean, may be used to recover the variability introduced when considering the short-

term response random. We use the mean level here for simplicity and illustrative purposes; of

course, other fractile levels could be used. (Note, to compare the results of the two methods, envi-

ronmental contour and full integration,3 the same fractile for the short-term response must be used

for each analysis.) Figure4.6shows the long-term distributions of blade root flap and edge bending

loads, considering the short-term response deterministic at its mean level, employing Equation4.18

and the joint probability density function defined in Equation4.12and shown in Figure4.1. Esti-

mates of the one-year and 50-year load are the fractiles associated with the prescribed probability

levelsp1 year andp50 yearsand for blade root flap-bending are found to be equal to 47.4kN-m and

69.9kN-m, respectively. The estimates of the one-year and 50-year edge bending loads are 9.7kN-

m and 17.4kN-m, respectively.

Comparison of Results

In this first example both methods return virtually the same estimates for the one-year and 50-year

blade root flap and edge bending loads on theAOC 15/50 turbine installed at a hypothetical site with

conditions similar to those described by theIEC class IA environment.

3What we refer to here as the full integration method only integrates over mean wind speed and turbulence, while
fixing the short-term extreme at the mean value.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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Figure 4.6:Long-term distributions of 10-minute extreme blade root bending moment,L10 min, con-
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(b) edge bending. considered deterministic.
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4.5 Example 2 — Field Data Model with Stall-Regulated Turbine

In this example anAOC 15/50, stall-regulated, turbine is assumed to operate at a test site in Lavrio,

Greece. The turbulence variable is defined in terms of the coefficient of variation of the 10-minute

wind process.

4.5.1 Description of Environment

In this second example, recorded field data is used to build a probabilistic description of the re-

lationship between mean wind speed and turbulence. The distribution of mean wind speeds was

assumed to be the same as in the first example, a Rayleigh distribution with mean,µV =10m/s. The

data collected at a test site in Lavrio, Greece, was used to fit a rough estimate of the conditional

distribution of turbulence. The analysis of the data was conducted by Manuel, et al. [50]. In this

analysis the mean wind speed and turbulence are the environmental variables considered. Note that

in this case the turbulence was alternatively defined as the coefficient of variation of the 10-minute

wind process. (In the previous example the turbulence was defined as the standard deviation of the

10-minute wind process.) The resulting probabilistic description of these environmental variables,

presented in [50], is used here. (Note that there was no attempt to match the model at the low

wind speed end of the spectrum.) The conditional distribution of turbulence is given by the normal

distribution shown below.

fI|V (i|v) =
1√

2πσI|V
exp

[
−1

2

(
i− µI|V

σI|V

)2
]

(4.19)

The functions of conditional mean and standard deviation of turbulence intensity given wind speed

are shown in Equations4.20and4.21, respectively.

µI|V = 2.4486v−0.9971 (4.20)

σI|V = 0.025 (4.21)

The joint probability density function of the environmental variables for the Lavrio test site is ob-

tained by applying Equation4.12. A plot of the resulting joint probability density function is shown

in Figure4.7. In comparing Figure4.7, in this example, with Figure4.1 in Example 1, the reader

is reminded that in Figure4.7, and the analysis in this second example, turbulence is defined as the

coefficient of variation of the 10-minute wind process. Also note that theIEC class IA environment

is intended to encompass a large variety of site conditions and is therefore generally more severe

and conservative when compared to most specific sites.
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Figure 4.7:Joint probability density function for Lavrio, Greece site.

4.5.2 Constructing the Environmental Contour

In this case, the 10-minute mean wind speed follows the same probability distribution as presented

in the first example. Therefore, the same transformation equation, to transform theU1 coordinate

of a circle in standard normal space to mean wind speed,V , in physical space applies and the

derivation is not repeated here.

The equation for transforming the second coordinate,U2, of a circle in standard normal space to

physical space where the conditional turbulence,I, follows a normal distribution is shown below.

i = u2σI|V + µI|V (4.22)

Note the transformation is found by equating the probability levels and then solving for,i, in terms

of u2, andµI|V , σI|V , the conditional mean and standard deviation of turbulence.

4.5.3 Description of Short-Term Response

The description for the short-term response of theAOC 15/50 turbine in this example is taken from

Chapter3. Note that except for the different definition of turbulence, the previous description of

the short-term response of the turbine could have been used. The short-term description of the

turbine can be used with any set of environmental contours, provided that environmental variables
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Figure 4.8:Environmental contour: Lavrio, Greece site.

are defined in a consistent manner.

The power law model in Equation4.17was used to relate the extreme response to the environ-

mental variables. The results of the regression analysis in each load regime are shown in Table4.3.

The reference wind speed and reference turbulence used in the regression analysis are given in

Table4.4.

4.5.4 Environmental Contour vs. Full Integration Method

Figure4.9 shows the 10-minute maximum iso-response lines plotted with the environmental con-

tour from Figure4.8. The response lines are calculated based on the regression model given in

Equation4.17and the coefficients in Table4.3 for the 10-minute extreme. A grid of pairs of en-

vironmental variables are evaluated and plotted as iso-response lines. Searching for the maximum

response along the one-year return period contour results in an estimate of 40.2kN-m, for the one-

year flap-bending load. Similarly, an estimate of 49.3kN-m was found for the 50-year flap-bending

load. Correspondingly, estimates of the one-year and 50-year blade root edge bending loads are

10.2kN-m and 11.8kN-m, respectively.

Figure4.10shows a plot of the value of the turbine response as a function ofθ around the one-

year and 50-year contour. The largest response is our estimate of the one-year and 50-year load,

respectively. In the cases presented in this figure, it is clear that there are no local maximums close
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Regression of the Mean of
10-Minute Maximum on V and I

Blade root flap bending
a (kN-m) b c R2

V 5 24m/s 25.664 0.7928 0.7129 0.9682
V > 24m/s 37.304 2.6079 0.0604 0.9985

Blade root edge bending
a (kN-m) b c R2

V 5 24m/s 8.6100 0.3231 0.2084 0.9924
V > 24m/s 7.2275 4.1052 0.7718 0.9965

Table 4.3:Regression coefficients used in Equation4.17to fit mean flap and edge bending loads as
a functions of the mean wind speed,V , and turbulence intensity,I.

Reference Wind Speed and Turbulence

Vref (m/s) Tref (%)
V 5 24m/s 16.474 15.28
V > 24m/s 34.861 13.18

Table 4.4:Reference wind speed and turbulence values used in Equation4.17
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in value to the global maximum as we saw in the first example. Regardless, the limit state functions,

plotted in standard normal space, are shown in AppendixD.

Figure4.11 shows the long-term distribution of flap-bending loads employing Equation4.18

and the joint probability density function defined by Equation4.12 and shown in Figure4.7. In

this example, the conditional short-term loads are considered to be deterministic at their mean

level. Estimates of the one-year and 50-year flap-bending load are 37.8kN-m and 48.1kN-m, re-

spectively. Corresponding estimates of the one-year and 50-year edge-bending loads are 10.0kN-m

and 11.4kN-m respectively

In this example, the percent difference between the flap-bending load estimates obtained from

the full integration method as compared with the environmental contour method is 6.0% and 2.4%

for the one-year and 50-year extreme load, respectively. Similar results were found for edge-bending

loads, i.e., 1.6% and 3.3% for the one-year and 50-year extreme loads, respectively. These estimates

of the extreme loads apply to theAOC 15/50 machine, if it where installed at the Lavrio, Greece,

test site. These results are lower than those predicited for the turbine if operating at aIEC class IA

site. As mentioned earlier, theIEC class IA environment is intended to represent a wide range of

site charateristics and is therefore more conservative when compared to most specific sites. If we

contend that theIEC class IA environment is more conservative than the environment at the Lavrio,

Greece, site, then we would expect to see lower estimates of extreme events at the Lavrio site than

would be predicted from theIEC class IA environment. Indeed this is the result we find here.

4.6 Example 3 — Field Data Model with Pitch-Regulated Turbine

In this final example, we investigate a source of concern—if the contour method would give reason-

able results, if in the operating regime the response of the turbine were not monotonic with wind

speed. This behavior would be generally characteristic of a pitch-regulated turbine. To pursue this

question we again consider the environmental description given in the previous example (Lavrio,

Greece—turbulence defined as the coefficient of variation of the 10-minute wind process), and a

hypothetical horizontal axis wind turbine with the flap-bending response behavior shown in Fig-

ure4.12. This response behavior is based on the analysis of theAOC 15/50 turbine conducted in the

previous example. However, the operating response has been modified by the author solely for the

purposes of this illustration, by dividing it into two sections. The first section, below a 10-minute

mean wind speed of 16.5m/s, the response increases with wind speed. The second section, above

a wind speed of 16.5m/s, the response decreases with increasing wind speed. Both sections of the

operating regime follow the power law model given in Equation4.17and the requisite coefficients
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(a) Blade root flap bending
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(b) Blade root edge bending

Figure 4.9:Environmental contour with flap and edge bending iso-response curves. TheF’s repre-
sent the maximum response with the prescribed return period.
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Figure 4.10:Extreme response as a function of angle,θ, in radians around circle in standard normal
space for one-year and 50-year reliability levels. TheF’s represent the maximum
extreme response.
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Figure 4.11:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the short-term extreme load deterministic at mean level, for both: (a) flap
and (b) edge bending. considered deterministic.
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Flap Loading

Regression on Mean of 10-minute maximum
a (kN-m) b c

V 5 16.5m/s 25.664 0.7928 0.7129
16.5 < V 5 24 25.664 -0.7928 0.7129
V > 24m/s 37.304 2.6079 0.0604

Table 4.5:Regression coefficients used in Equation4.17for flap load as a function of the mean wind
speed,V , and turbulence intensity,T .
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Figure 4.12:Constructed flap load response versus mean wind speed.

are shown in Table4.5. The reference wind speed and reference turbulence used are given in Ta-

ble 4.4. Note, that for the first section of the operating response (below 16.5m/s) the behavior of

the turbine is the same as presented in Example 2. We have simply forced the behavior of the

turbine above 16.5m/s to exhibit a non-monotonic behavior by prescribing the values of the power

law model coefficients. The response in the parked wind speed regime has not been modified and

represents an unfeathered blade condition. In this example, two discontinuities exist. The first dis-

continuity is in the operating regime of the turbine; a slope discontinuity occurs at 16.5m/s for the

10-minute mean wind speed. The second discontinuity occurs at the maximum operating 10-minute

mean wind speed (24m/s), where the response of the turbine switches from the operating regime to

parked regime.
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4.6.1 Comparing Environmental Contour and Full Integration

Figure4.13shows the 10-minute maximum iso-response lines plotted with the Lavrio test site envi-

ronmental contour from Figure4.8. The response lines are calculated based on the model given in

Equation4.17and the coefficients in Table4.5 for the 10-minute extreme. Searching for the max-

imum response along the one-year return period contour, results in an estimate of 38.2kN-m, for

the one-year flap-bending load. Similarly, an estimate of 49.2kN-m was found for the 50-year flap-

bending load. We can see a significant change in the iso-response lines, compared with Figure4.9,

as a result of the non-monotonic description of the response of the turbine. We would expect higher

extreme loads near a 10-minute mean wind speed of 16.5m/s and the iso-response lines reflect this.

In the previous example we observed that the maximum response of the one-year extreme load oc-

curred at the highest operating wind speed. For the description of the response used here, we would

expect to see the maximum response along the one-year return period contour to occur closer to the

16.5m/s wind speed rather than at 24m/s, the highest operating wind speed, since in this section the

extreme load is decreasing with wind speed. We find that from the contour analysis the maximum

response does occur at a much lower wind speed; just below 16.5m/s, see Figure4.13. The 50-year

extreme load is still driven by higher wind speeds. We would expect this outcome as we have only

slightly modified the operating regime model and the description of the environment has stayed the

same.

Figure 4.14 shows a plot of the value of the turbine response as a function ofθ around the

one-year and 50-year contour. The largest response is our estimates of the one-year and 50-year

load, respectively. In this figure we can see how the response changes as we traverse the contour.

From Figure4.13we may anticipate, for the one-year contour, that we may have multiple design

points. Figure4.14confirms this suggestion. The sets of environmental variables corresponding

to θ = 0.5π andθ = 1.5π produce a similar load response on the turbine. A study of the shape

of the limit state function plotted in standard normal space (see AppendixD) shows that under the

assumptions of form analysis, similar results would be obtained if either point were used. How-

ever, a more accurate approximation may be obtained if a more complicated method of implement-

ing second-order methods and system analysis were employed. A further discussion is presented

in AppendixD. Figure4.15 shows the long-term distribution of flap bending loads employing

Equation4.18and the joint probability density function defined by Equation4.12and shown in Fig-

ure4.7. In this example the conditional short-term loads are considered to be deterministic at their

mean level. Estimates of the one-year and 50-year flap-bending load are 33.8kN-m and 48.1kN-m,

respectively.

In this example, the percent difference between the flap bending load estimate obtained from the

full integration method as compared with the environmental contour method is 13.0% and 2.2% for
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Figure 4.13:Environmental contour with flap bending iso-response curves. TheF’s represent the
maximum response with the prescribed return period.
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Figure 4.15:Long-term distribution of 10-minute extreme blade root flap bending moment,L10 min,
considering the short-term extreme load deterministic at mean level.

the one-year and 50-year extreme load, respectively. These results confirm the estimates obtained

from the contour method for our hypothetical pitch-regulated turbine subjected to the description of

the environmental conditions at the Lavrio, Greece, test site. We might attribute the larger difference

in the estimates of the one-year load between the two methods as a result of the added slope discon-

tinuity. These discontinuities present a major test to theFORM methodology. One of the underlying

assumptions inFORM analysis is that the limit state function is generally smooth.

4.7 Including the Third Random Variable

In the previous examples the environmental contours were based on the two environmental random

variables. The short-term extreme loads were considered deterministic. We know, however, that the

short-term loads have an associated variability.

If we considered the short-term extreme response of the first example random, modeled by a

Gumbel distribution, for example, as shown in AppendixC.3 and use the full-integration method,

then the estimates of the one-year and 50-year flap-bending loads are 52.4kN-m and 74.3kN-m,

respectively. This is a difference of 9.5% and 5.9% for the one-year and 50-year loads compared

with the estimates considering the short-term extreme loads deterministic and integrating. Similarly,

considering the edge bending loads, the estimates of the one-year and 50-year loads, considering



CHAPTER 4. ENVIRONMENTAL CONTOURS 154

the short-term loads modeled by a Gumbel distribution, are 12.26kN-m and 19.3kN-m, respectively.

This is a difference of 20.9% and 9.8% for the one-year and 50-year loads, respectively.

For the second example, if we consider the short-term extreme response random, also modeled

by a Gumbel distribution (this is the analysis presented in Chapter3), then the estimates of the one-

year and 50-year flap-bending loads are 49.1kN-m and 59.7kN-m, respectively. This is a difference

of 23.0% and 19.4%. Similarly, considering the edge bending loads, the estimates of the one-year

and 50-year loads considering the short-term loads modeled by a Gumbel distribution are 11.8kN-

m and 13.7kN-m, respectively. This is a difference of 15.3% and 16.8% for the one-year and

50-year loads, respectively. Again, these comparisons are based on implementing the integration

method to demonstrate the difference between considering the short-term extremes deterministic or

random. These results are summarized in Table4.6. This topic was discussed in detail in Chapter3.

Therefore, from these comparisons we can see that the appropriate choice of the fractile of the short-

term response used in the contour analysis is not a trivial matter. There are several ways to include

or recover the variability of the short-term response in the contour method presented earlier. We

will discuss briefly a few of them here.

We might consider using inflated fractiles, similar to the work discussed in Chapter3(Fitzwater

and Cornell [49]) or omission factors (see Winterstein, et al. [59]). In these approaches, the 2-

D environmental contours are “inflated” to account for variability in the short-term load. How

much the contours, based on expected extreme loads, would have to be inflated, may be based

on the variability of the short-term response, which of course may differ between turbine designs.

Universal fractiles would need to be chosen judiciously.

Another approach would be to consider constructing a 3-D contour including the randomness

of the load variable directly. After having constructed transformation equations, a contour in 3-

D space, wind speed, conditional turbulence, and conditional short-term response, could be con-

structed. It would then be a more involved matter to search the 3-D contour for the maximum

response.

It should be noted, however, that implementing any of the methods above re-couples the prob-

lem between the wind turbine machine and the site. The contour developed would be specific to

a particular site and wind turbine. The 2-D environmental contours presented in this paper are de-

pendent only on the site conditions, and therefore any consistently defined description of short-term

wind turbine response could be used. The 3-D contours developed would be applicable only to the

specific turbine used in the analysis. A new analysis would have to be conducted to obtain a 3-D

contour for a different wind turbine at the same site. The question of how to deal with the variability

associated with a third variable (or more) continues to be a topic of ongoing research.



CHAPTER 4. ENVIRONMENTAL CONTOURS 155

Comparison of One-Year and 50-Year Blade Root Flap and Edge Bending Loads
Considering Conditional Short-Term Load Alternatively Random and Deterministic

Example 1—IEC Model with Stall-Regulated Turbine
1-Year Load(kN-m) 50-year Load(kN-m)

Random Deterministic % Diff. Random Deterministic % Diff.
Flap 52.4 47.4 -9.5% 74.3 69.9 -5.9%
Edge 12.3 9.7 -20.9% 19.3 17.4 -9.8%

Example 2—Field Data Model with Stall-Regulated Turbine
1-Year Load(kN-m) 50-year Load(kN-m)

Random Deterministic % Diff. Random Deterministic % Diff.
Flap 49.1 37.8 -23.0% 59.7 48.1 -19.4%
Edge 11.8 10.0 -15.3% 13.7 11.4 -16.8%

Table 4.6:Comparison of one-year and 50-year blade root flap and edge bending loads, considering
conditional short-term load alternatively either random, modeled by a Gumbel distribu-
tion, or deterministic.

4.8 Conclusion

In this chapter we have presented a brief discussion of the theory of first-order reliability analysis

and how through inverse-FORM, contours of design environmental conditions can be constructed.

These theories were applied in three different examples. The first two examples demonstrated

how estimates of the one-year and 50-year extreme blade bending loads on anAOC 15/50 turbine

might be obtained using environmental contours. The description of the environment was differ-

ent in each of these examples. The environment in the first example was based on anIEC class

IA wind environment. In the second example the environment was based on an analysis of field

collected data at the Lavrio, Greece, test site. In both examples, the estimates obtained from the

environmental contour method were compared with estimates obtained from integrating the short-

term extreme loads over the long-term distribution of the environmental variables. In general, the

estimates differed by only about 5%. We mentioned earlier thatFORM is an approximate method,

and the non-linear nature of the limit state function can have an effect on the efficacy of the method

to provide an accurate approximation. We have seen in the examples considered here, even with

the presence of a discontinuity in the limit state function at the cut-out wind speed,FORM pro-

vides a reasonable approximation. This is, of course, not true in general, and our result is based

on the turbine, site data, and distribution models seen here. In general terms, we may expect this

result, however, if it can be shown that the discontinuity in the limit state function is sufficiently far

away from the design point so as not to affect the gradient calculations. The reader is referred to
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AppendixD for a further discussion.

The third example again used the description of the environment from the Lavrio test site. In

this case, however, the short-term response was developed to simulate the typical non-monotonic

response of a pitch-regulated machine. This contributed a slope discontinuity in the limit state

function. Again estimates of the one-year and 50-year extreme flap-bending loads were obtained

from both methods. The estimates of the one-year load differed by about 13% while the estimates

of the 50-year load differed by about 2% between the two methods. Including the additional slope

discontinuity did not greatly affect the efficacy ofFORM to provide an acceptable approximation, at

least for the turbine, site data, and distribution models used in this analysis.

We have demonstrated that the environmental contour method provides estimates of extreme

response similar to those obtained by the integration method. One advantage of using environ-

mental contours is that the contours themselves are developed only based on data relating to the

environment and a reliability criterion for the turbine. Therefore, the contours immediately give

some insight into the critical combinations of environmental variables and may lead to a reduction

in the required number of environmental conditions explored in the design process. In particular,

instead of interrogating the entire space of combinations of environmental conditions for the critical

response of the turbine, the contour identifies the critical environmental conditions. We only need

to search the points along the contour to find the critical response of the turbine, for a prescribed

reliability level. This can be a great benefit when running expensive computer simulations–we only

need to run simulations at environmental conditions on the contour. A carefully constructed search

algorithm, to interrogate the environmental contour, may lead to additional reduction in the number

of environmental conditions considered in the quest to find the critical response of the turbine.



Chapter 5

Estimation of Fatigue Distributions

International standards for wind turbine certification depend on finding long-term fatigue load prob-

ability distributions that are consistent with respect to the state of knowledge for a given system.

Statistical moment-based models of loads for fatigue applications are described and demonstrated

here using flap and edge blade-bending data from a commercial turbine. Distributions of rain-flow-

counted range data are characterized by a limited number of their statistical moments. Beyond the

convenient two-moment (Weibull) model, a few higher-moment models are considered. These in-

clude: (1) a “quadratic Weibull” model, which uses a quadratic distortion of the original Weibull

model to preserve the first three moments of the data; and (2) a “damage-based” Weibull model,

which seeks to fit a two-moment model not to the stress ranges themselves, but to a power-law

transformation of these that directly reflects “damage” (e.g., based on typical material fatigue prop-

erties). The damage-based model is shown to follow the upper tail of the observed data, while the

three-moment model also gives a good tail-fit if the non-damaging low-amplitude ranges are first

excluded.

5.1 Introduction

The capital cost of new product development has driven the industry toward a sophisticated reliance

on numerical simulation and analysis. Fatigue loads are required to be estimated using extreme

turbulence levels—intended to envelop the worst measured turbulence levels from around the world.

Standards (e.g.,IEC [23]) therefore specify analysis at conditions that are easily simulated, but may

never be measured on a prototype in the field. Loads must be extrapolated from site conditions to

design standard conditions.

Parametric, moment-based models have the ability to describe the reliance of the turbine on the

157
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specified turbulence levels by determining the relationship between the governing parameters (mo-

ments) of the turbine response and the wind environment (average wind speed,V , and turbulence

intensity,I). The fatigue response is characterized by the rain-flow counted load rangesR in the

response time history. A minimal number of central moments of the rain-flow ranges can be used

to characterize the distribution of ranges at a given set of inflow conditions. Remaining questions

include (1) how many moments are sufficient to predict fatigue damage, which is nonlinearly re-

lated to load range amplitude, and (2) how can “higher-moment” models (i.e., including moments

of higher than second order) be conveniently constructed?

Here, we present two such higher-moment models: a quadratic Weibull model based on three

moments, and a “damage-based” Weibull model based on even higher moments, which are propor-

tional to fatigue damage. The quadratic Weibull model has been previously introduced and applied

to other cases of fatigue loads (e.g., Lange [63]; Veers and Winterstein [54]; Ronold et al. [46]) and

we saw how this model could be applied to extreme loads in Chapters2 and3 (also see Fitzwater

and Winterstein [38]). In contrast, the damage-based Weibull model is new, suggested here as an

alternative that confers certain advantages in some fatigue applications. We demonstrate the use of

these models by studying two orthogonal blade-root bending moments: “flap” (out of the plane of

blade rotation) and “edge” (in the plane of rotation). The challenges in these cases for the random

vibration analyst include the harmonic content of the loads from the rotational motion of the blades,

as well as other less easily described nonlinear effects.

The fatigue-load spectra are calculated by splitting the problem into “short-term” and “long-

term” aspects. The short-term distribution of load ranges is characterized by operation of the tur-

bine in short (10-minute) quasi-stationary wind conditions (constant average wind speed,V , and

turbulence intensity,I). The short-term distribution of load ranges is tied to the relevant statistical

moments of the ranges - which, in turn, are related by regression to the input average wind speed and

turbulence intensity. Thus, the short-term distribution of ranges may be predicted for any combina-

tion of wind conditions. The long-term distribution of ranges is then easily obtained by integrating

over the joint annual distribution of input conditions.

The approach described above is conducted considering two alternatives for modeling the short-

term load. In Section5.4, an estimate of the long-term distribution of fatigue loads is obtained where

the short-term fatigue ranges are modeled by a quadratic Weibull distribution. Alternatively, in Sec-

tion 5.5, an estimate of the long-term distribution of fatigue loads is obtained where the short-term

fatigue ranges are modeled by a damage-based Weibull model. In addition to obtaining estimates of

the long-term distribution of fatigue stress ranges, we estimate a measure of the expected damage

for different material fatigue exponent values.
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5.2 Data Set

The data set used in this analysis is for the Atlantic Orient CorporationAOC 15/50 turbine, described

in Chapter1 (page18). The turbine has a rotor diameter of 15m, a fixed rotor speed of about 60RPM,

and a rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25

meters [22]. The data set is described in detail in Chapter3 (page66) and consisted of multiple

10-minute simulations of Gaussian wind fields and corresponding blade root bending moments.

The wind input processes is described by the hub height wind speed. The blade root flap and edge

bending moment response time histories were assumed to be repeating and were rain-flow counted

using the simplified rain-flow counting for repeating histories method given inASTM standard E-

1049.

5.3 Probability Models for Fatigue Loads

Similar to the analysis performed in the previous chapters, we assume here that the stress response

of the wind turbine remains stationary within each 10-minute duration event. To predict fatigue

damage in such an event, it is common to assume that a single stress range,R, produces damage

D ∝ Rbf . More formally, the basic relation between fatigue stress ranges and the number of cycles

to failure,N , is given by Basquin’s Relation [64]:

R = σ′f (N)B (5.1)

Where,σ′f , is the fatigue strength coefficient, andB is the fatigue strength exponent. The damage

per cycle is defined as one over,N .

D =
1
N

(5.2)

Solving Equation5.1 for N and relating to Equation5.2, we have a relation for the damage based

on the stress range.

D =

(
R

σ′f

)bf

→ D ∝ Rbf (5.3)

where,bf = − 1
B

If R, the stress range, is taken as a random variable, andσ′f andbf are deterministic coefficients,

then the damage,D, will also be a random variable. The expected damage from an arbitrary cycle,
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k, may be found by taking the expectation of Equation5.3.

E[Dk] =
∞∑

i=1

di P [D = di]

=
∞∑

i=1

(
ri

σ′f

)bf

P [R = ri]

=

(
1
σ′f

)bf ∞∑

i=1

(ri)bf P [R = ri]

=

(
1
σ′f

)bf

E[Rbf ]

E[Dk] ∝ E[Rbf ] (5.4)

The important conclusion is that we should be interested in some higher moment ofR (bf , being

greater than one for the materials of interest). We will refer back to this in the next sections, which

describe three probability models used for estimating the distribution of fatigue ranges. This result

will also be used in a later analysis to estimate the expected total damage in an arbitrary 10 minutes

or over longer durations.

5.3.1 The Standard Weibull Model

A conventional approach is to model an arbitrary stress range,R, as a random variable,W = R,

with Weibull probability distribution function:

P [W > w] = exp
[
−(w/αW )βW

]
(5.5)

The corresponding statistical moments ofW are given by

E[Wm] = αm
W (m/βW )! (5.6)

where(·)! denotes the factorial function. In practice, one estimates the first two statistical moments

from the data, and uses Equation5.6with m = 1 and 2 to infer the parameter values ofαW andβW .

The mean damage per cycle,E[D] ∝ E[Rbf ] (Equation5.4), is also found directly from Equation5.6

for arbitrarym = bf .

There are two main benefits of this Weibull model. First, it requires relatively little data; specif-

ically, data sufficient only for accurate prediction of the first two moments of the stress ranges.

Second, the closed-form moment results facilitate both the parameter fitting ofαW andβW from
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the data, and the consistent estimation ofE[D] from αW andβW . To illustrate the fit of the standard

Weibull model to data, Figure5.1shows range results for a turbine operating in wind conditions: 10-

minute mean wind speed,V = 24m/s and turbulence classA. This data is taken from one of the 100

simulated samples for the turbine operating in these environmental conditions. The data are plotted

on a Weibull scale for the flap data in Figure5.1(a)and for the edge loads in Figure5.1(b). These

plots transform the vertical scale by plotting not the cumulative distributionFR(r) = P [R < r] but

rather− ln[1 − FR(r)], so that the Weibull distribution will appear as a straight line on a log-log

plot. Figure5.2shows range results for a parked turbine. The data were taken from one of the 100

simulated samples with wind conditions:V = 50m/s turbulence class A, and the turbine parked.

The flap loads are shown in Figure5.2(a)and the edge loads are shown in Figure5.2(b).

The simple two-moment characterization of the Weibull model is also its potential drawback.

Typicalbf values for metals may range from 3 to 8, with lower values more typical for welded steels

and higher values for aluminum. Asbf increases,E[D] ∝ E[Rbf ] becomes increasingly sensitive to

the details of the stress range distribution in its upper tail. Any deviation from the Weibull model in

this upper region can lead to erroneous damage predictions. Composites often show still higherbf

values—e.g.,bf = 10 or higher—and hence give still larger potential for the two-moment Weibull

model to err. We describe here two models that seek to address these potential modeling errors

through the use of higher-order statistical moments.

5.3.2 The Quadratic Weibull Model

The quadratic Weibull model again starts with a Weibull variableW , whose parametersαW and

βW are chosen to preserve the first two range moments. A quadratic perturbation term is then added

to better model the actual range,R:

R = R0 + κ[W + εW 2] (5.7)

The coefficientε is chosen here so that the skewness (third normalized moment) of the range

data is preserved. The remaining parameters,κ andR0, are finally chosen to preserve the variance

and mean ofR respectively. (Note that Equation5.7 is applied directly only when the skewness of

R is found to exceed that of the Weibull variableW . In this case, the quadratic termεW 2 serves

to enhance the skewness, from that of the Weibull variable to that of the observed ranges. If the

skewness ofR is instead found to be less than that ofW , the roles ofR andW in Equation5.7

are interchanged.) Additional technical details can be found in Lange [63, 65] and Manuel, et

al. [52, 53]. Other applications of this model to fatigue loads can be found in Ronold, et al. [46] and

Manuel, et al. [50]. We saw how this model could be applied to extreme loads in Chapters2 and3;
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(b) Blade root edge bending.

Figure 5.1:Standard Weibull model fit to blade root flap and edge bending moment fatigue ranges
for AOC 15/50 turbine operating in an environment with a 10-minute mean wind speed
of 24m/s and turbulence classA.
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(b) Blade root edge bending.

Figure 5.2:Standard Weibull model fit to blade root flap and edge bending moment fatigue ranges
for AOC 15/50 turbine parked in an environment with a 10-minute mean wind speed of
50m/s and turbulence classA.
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also see Fitzwater and Winterstein [38].

Thus, the resulting quadratic Weibull distribution ofR preserves the first three statistical mo-

ments of the data. Its distribution function appears as a quadratic curve when plotted on Weibull

probability scale. To illustrate, quadratic Weibull models are fit to the same data, relating to the

operating turbine, as presented for the standard Weibull model previously. The data are plotted on a

Weibull scale for the flap data in Figure5.3(a)and for the edge loads in Figure5.3(b).

Figures5.3(a)and5.3(b)show attempts to fit the entire flap and edge data with quadratic Weibull

models. As seen in Figure5.3(a), and especially Figure5.3(b), the data have a kinked appearance

which the smooth probability distribution, in spite of its quadratic distortion, has difficulty matching.

Closer examination of the data reveals that the kink is due to a large number of cycles at relatively

low amplitudes. By truncating the loads at a lower-bound threshold, however, the kink in the data

can be eliminated without significantly reducing the implied damage. In the edge case, there are

a great number of cycles of smaller amplitude than the dominant gravity load at about 8-9kN-m

(8.5kN-m was used as the filtering threshold). The flap loads have a less distinctive kink at around

10 kN-m. Figures5.4(a)and5.4(b) are similar to Figures5.3(a)and5.3(b), but include only a

subset of the data by removing all ranges beneath a lower-bound thresholdRth, and modeling the

shifted variableR−Rth with our (positively valued) quadratic Weibull model. Clearly, the fit of the

quadratic Weibull models are improved dramatically. It has also been shown (Manuel et al [50]) that

the damage omitted through using a threshold can be negligible, which is consistent with findings

that have long been available in the fatigue literature (e.g., Nelson and Fuchs [66]). A quadratic

Weibull model fit to fatigue loads on a parked turbine for 10-minute mean wind speed of 50m/s is

shown in Figure5.5. The fit of the model to the data seems reasonable and no additional shifting

and truncating of the data were performed.

In summary, the quadratic Weibull model offers the ability to match the first three moments

of the data set. The resulting quadratic behavior of its distribution function, on Weibull scale, can

yield a good fit to stress range data (e.g., the edge data in Figure5.4(b)). In other cases, a simpler

linear/Weibull model may suffice (e.g., the flap data in Figure5.4(a)). The main drawbacks of the

quadratic Weibull model are that (1) simple closed-form moment results are no longer available

so that parameter estimation must be performed numerically; and (2) the analyst may need to first

impose a lower-bound threshold to exclude uninteresting, small-amplitude ranges. Neither of these

problems is insurmountable; indeed, numerical algorithms are available to facilitate the use of these

higher-moment models (e.g., Manuel et al, [52, 53]). However, next we explore an alternative, the

“damage-based” Weibull model that is somewhat simpler to implement.
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(b) Blade root edge bending.

Figure 5.3:Quadratic Weibull model fit to blade root flap and edge bending moment fatigue ranges
for AOC 15/50 turbine operating in an environment with a 10-minute mean wind speed
of 24m/s and turbulence classA.
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Figure 5.4:Shifted quadratic Weibull model fit to blade root flap and edge bending moment fatigue
ranges forAOC 15/50 turbine operating in an environment with a 10-minute mean wind
speed of 24m/s and turbulence classA.



CHAPTER 5. LONG-TERM FATIGUE DISTRIBUTIONS 167

0.01

0.1

1

10

1 10 100
0.01

0.1

0.5

.9

.99

.999

.99999

T
ra

ns
fo

rm
ed

 C
D

F
 -

ln
(1

-F
R

(r
))

F R
(r

)

Bending moment range, kN-m

Data
Fit

(a) Blade root flap bending.

0.1

1

10

1 10 100
0.1

0.5

.9

.99

.999

.99999

T
ra

ns
fo

rm
ed

 C
D

F
 -

ln
(1

-F
R

(r
))

F R
(r

)

Bending moment range, kN-m

Data
Fit

(b) Blade root edge bending.

Figure 5.5:Quadratic Weibull model fit to blade root flap and edge bending moment fatigue ranges
for AOC 15/50 turbine parked in an environment with a 10-minute mean wind speed of
50m/s and turbulence classA.
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5.3.3 The Damage-Based Weibull Model

As noted earlier, the damage per cycle is commonly related toRbf , the bth
f power of the stress

rangeR. Because typicalbf values far exceed unity, standard second-moment Weibull fits may

not accurately predict the higher momentE[Rbf ] that drives damage accumulation. Our proposed

damage-based Weibull model notes that ifR follows a Weibull distribution, then the power-law

transformationRz, wherez is an arbitrary power on the ranges, also follows a (modified) Weibull

distribution. We therefore use a second-moment Weibull fit not of the rangeR, but rather an associ-

ated variable

W = Rz (5.8)

By choosingz = bf/2, and matching the second moment of the resulting distribution ofW , the

damage potential of the range distribution for a given material (wherebf is the slope of the S-N

curve) is preserved. For example, withz = 3, this Weibull fit will preserve bothE[R3] andE[R6],
which are typical for some welded steels (bf = 3) and aluminums (bf = 6), respectively. For

wind turbine applications, even higher moments are of interest because fiberglass composite blades

possessbf values equal to 8, 10, or even higher.

In practice, the damage-based Weibull model is fit by (1) transforming the range dataR through

Equation5.8, (2) using a standard second-moment fit for the Weibull parametersαW and βW ;

and (3) plotting the resulting distribution function,FW (w), versus notw but ratherr = w1/z.

The benefits of this model are that (1) it requires only a standard second-moment Weibull fitting

procedure easily implemented without specialized algorithms; and (2) it explicitly ensures accurate

distribution modeling in the range most relevant for damage prediction, i.e., in the upper tail of the

stress range distribution. (A similar upper tail fit model could be used to predict ultimate loads as

well, although in this case there is no physical motivation for a particular choice ofbf = 2z value.)

Figures5.6and5.7repeat the Weibull scale distribution plots of all data for an operating turbine

condition considering both flap and edge loads, respectively, for one 10-minute sample. Also shown

on these figures are three damage-based Weibull predictions which utilize the parameter choices

z = 3, 4, and 5. (A choice ofz = 5 may be most appropriate for wind turbine blades, preserving

the bf = 10th moment which may govern damage of these composite components.) Similarly,

Figures5.8 and5.9 show the damage-based Weibull model fit (z = 3, 4, 5) to fatigue range data

for a parked turbine condition considering flap and edge loads, respectively. As may be expected,

these models provide accurate load distribution estimates in the upper tail of interest. (Increasingz

values leads to enhanced emphasis on the upper tail.) Note again the advantages of these models, by

permitting tail-fitting in an automated, physically-based way. They also avoid the need to impose a

lower-bound load threshold; all ranges may be included, and the original cycle rate preserved. Of
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course, the damage-based Weibull model, because it emphasizes upper-tail behavior, will provide a

poor estimate of low-fractile loads, but these loads have little or no effect on damage prediction.

5.4 Long-Term Analysis Based on Modeling Fatigue Ranges

with Quadratic Weibull Model

5.4.1 Short-term Analysis

To review, the load models proposed here estimate the probability distribution of load ranges,R, by

preserving a limited set of statistical moments,µi = E[Ri]. The relevant moments here are model-

dependent:µ1 andµ2 are used for the standard Weibull model,µ1 throughµ3 for the quadratic

Weibull model, andµz andµ2z for the damage-based Weibull model (z on the order of 3-5,bf =
6− 10). The moments of the fatigue ranges were calculated for all blade root flap and edge bending

response time histories. For each pair of environmental variables (e.g.,V =10m/s andI=classA)

the 100 observations of the moments, e.g., mean, or variance, etc., were pooled together and the

mean of these pooled observations was reported. We saw in Chapter3, that the statistical moments

of the global or local peaks could be related to the environmental variables through regression

analysis. The same can be done here to relate the statistical moments,µn, of the fatigue ranges to

the environmental variables: mean wind speed,V , and turbulence intensity,I, through the power-

law relation we have seen before [54]:

µi = ai

(
V

Vref

)bi
(

I

Iref

)ci

(5.9)

Hence, for these parametric load models, the wind turbine characteristics are reflected solely

through the moment relations in Equation5.9. For example, with the quadratic Weibull model we

require the 9 coefficientsai, bi, ci (i = 1, 2, 3) that govern the first three moments of the ranges.

For clarity, we organize these coefficients here into a vector, denotedθ:

θ = [a1, b1, c1, a2, b2, c2, a3, b3, c3] (5.10)

The other (standard or damage-based) Weibull models require only two moments, and hence 6

coefficients in the vectorθ. Linear regression analysis, applied to the logarithm of Equation5.9,

yields point estimates of these coefficients. To demonstrate typical results, we pursue the quadratic

Weibull model here; the alternative damage-based Weibull model will be discussed in Section5.5.

There are two distinct general loading conditions for the turbine, one when the turbine is operating
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(a) All blade root flap bending fatigue ranges.
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(b) Upper tail of blade root flap bending fatigue ranges.

Figure 5.6:Damage-based Weibull model fit to blade root flap bending fatigue ranges for anAOC

15/50 turbine operating in an environment with a 10-minute mean wind speed of 24m/s
and turbulence classA, for z = 3, 4, 5.
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(a) All blade root edge bending fatigue ranges.
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(b) Upper tail of blade root edge bending fatigue ranges.

Figure 5.7:Damage-based Weibull model fit to blade root edge bending fatigue ranges for anAOC

15/50 turbine operating in an environment with a10-minute mean wind speed of 24m/s
and turbulence classA, for z = 3, 4, 5.
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(a) All blade root flap bending fatigue ranges.
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Figure 5.8:Damage-based Weibull model fit to blade root flap bending fatigue ranges for anAOC

15/50 turbine parked in an environment with a 10-minute mean wind speed of 50m/s
and turbulence classA, for z = 3, 4, 5.
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(a) All blade root edge bending fatigue ranges.

1

10

10 100

.9

.99

.999

.99999

T
ra

ns
fo

rm
ed

 C
D

F
 -

ln
(1

-F
R

(R
))

F R
(r

)

Bending moment range, kN-m

Data
Untransformed fit

3rd power fit
4th power fit
5th power fit

(b) Upper tail of blade root edge bending fatigue ranges.

Figure 5.9:Damage-based Weibull model fit to blade root edge bending fatigue ranges for anAOC

15/50 turbine parked in an environment with a 10-minute mean wind speed of 50m/s
and turbulence classA, for z = 3, 4, 5.
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Reference Wind Speed and Turbulence

Vref (m/s) Iref (%)
V 5 24m/s 16.474 15.28
V > 24m/s 34.861 13.18

Table 5.1:Reference wind speed and turbulence values used in Equation5.9

(i.e., 10-minute mean wind speeds≤ 24m/s) and the other while the turbine is parked (i.e., 10-

minute mean wind speeds> 24m/s). Separate regression analyzes were performed under each

of these conditions. The reference wind speed and reference turbulence used in the regression

analysis are given in Table5.1. The calculated regression coefficients andR2 statistics are shown

in Tables5.2and5.3for blade root flap and edge bending fatigue ranges, respectively.R2 statistics

near unity indicate that a large percentage of the variability in the data is explained by the regression

model. LowR2 statistics indicate that other influences not contained in the regression model may

be affecting the loads. We may note that theR2 statistic for the regression analysis of the coefficient

of skewness are low in a few instances (i.e., skewness–parked edge bending), implying the data

exhibit variability which the model is unable to explain. In performing the regression analysis it

was determined that the proposed functional model, Equation5.9, did not have enough flexibility to

sufficiently model the observed behavior of the mean and standard deviation of the blade root flap

bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten

out with higher wind speeds above 17m/s as compared with the behavior below 17m/s. Therefore,

a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for

both the mean and standard deviation of blade root flap bending fatigue ranges. A similar result was

found in Chapter3 when we considered modeling the local peaks with a quadratic Weibull model,

see Figures3.25and3.26.

Finally, graphical regression results are shown in Figures5.10-5.12. Each figure contains both

blade root flap and edge bending conditions considering: mean of fatigue ranges, Figure5.10;

standard deviation of fatigue ranges, Figure5.11; and coefficient of skewness of fatigue ranges,

Figure5.12. In all plots, the turbulence intensity has been set equal to the reference value.

5.4.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by a

quadratic Weibull model. We saw how this model can be represented by the moments of the data.

Further, we have just shown through regression analysis, how these statistical moments may be

related to the environmental variables.
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Blade Root Flap Bending
Regression of Statistics of Fatigue Ranges onV and I

Mean of Fatigue Ranges
a (kN-m) b c R2

V 5 17m/s 6.3777 1.2545 0.9231 0.9742
17 < V 5 24m/s 7.4424 0.2782 1.3015 0.9850
V > 24m/s 4.4473 4.4517 0.0512 0.9948

Standard Deviation of Fatigue Ranges
a (kN-m) b c R2

V 5 17m/s 5.6064 1.1212 0.9078 0.9889
17 < V 5 24m/s 6.5411 0.3492 1.2073 0.9843
V > 24m/s 4.6646 4.2613 0.6871 0.9922

Coefficient of Skewness of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 1.3941 0.1551 0.0398 0.4886
V > 24m/s 2.3150 -1.325 0.7810 0.9404

Table 5.2:Regression coefficients used in Equation5.9to fit flap bending moment fatigue ranges as
functions of the mean wind speed,V , and turbulence intensity,I. The turbine is operating
for V 5 24m/s, otherwise the turbine is parked.
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Figure 5.10:Mean fatigue range of 10-minute blade root flap and edge bending response, based on
100 pooled observations for each 10-minute mean wind speed and turbulence class.
The wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.



CHAPTER 5. LONG-TERM FATIGUE DISTRIBUTIONS 177

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50 55

St
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

fa
tig

ue
 r

an
ge

s,
 k

N
-m

 
 O

pe
ra

tin
g 

ra
ng

es
 s

hi
ft

ed
, 1

0 
kN

-m
 

 P
ar

ke
d 

ra
ng

es
 u

n-
sh

if
te

d

10-minute mean wind speed, m/s

class A
class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(a)Pooled statistics of the standard deviation of the fatigue ranges in 10-minute blade
root flap bending response time history.

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45 50 55

St
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

fa
tig

ue
 r

an
ge

s,
 k

N
-m

 
 O

pe
ra

tin
g 

ra
ng

es
 s

hi
ft

ed
, 1

0 
kN

-m
 

 P
ar

ke
d 

ra
ng

es
 u

n-
sh

if
te

d

10-minute mean wind speed, m/s

class A
class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(b) Pooled statistics of the standard deviation of the fatigue ranges in 10-minute blade
root edge bending response time history

Figure 5.11:Standard deviation of fatigue ranges for 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise
the turbine is parked.
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Figure 5.12:Coefficient of skewness of fatigue ranges for 10-minute blade root flap and edge bend-
ing response time histories, based on 100 pooled observations for each 10-minute mean
wind speed and turbulence class. The wind turbine is operating forV 5 24m/s, other-
wise the turbine is parked.
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Blade Root Edge Bending
Regression of Statistics of Fatigue Ranges onV and I

Mean of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 0.5971 0.6772 0.9331 0.9572
V > 24m/s 1.0970 4.6834 -0.1105 0.9955

Standard Deviation of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 0.5194 0.6798 1.1092 0.9814
V > 24m/s 1.1338 4.6159 0.4885 0.9937

Coefficient of Skewness of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 1.8741 0.0762 0.2110 0.0232
V > 24m/s 1.9540 -0.4800 0.8844 0.2430

Table 5.3:Regression coefficients used in Equation5.9 to fit edge bending moment fatigue ranges
as functions of the mean wind speed,V , and turbulence intensity,I. The turbine is
operating forV 5 24m/s, otherwise the turbine is parked.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period, is found

in much the same way we found the long-term distribution of extreme events in Chapter3. To

review, in Chapter3 we saw how the turbine specific conditional probability distribution model of

the 10-minute extreme load could be combined with the long-term distribution of the environmental

variables, through Equation3.16, to obtain an estimate of the long-term distribution of the extreme

load. Equation3.16 is an application of the Law of Total Probability. We can apply, with little

modification, the same methodology here. In this case, Equation3.16can be written as:

FR(r) =
∫

FR(r|v, i) fV,I(v, i) dvdi (5.11)

Where,FR|V,I(r|v, i), is the short-term conditional distribution of fatigue ranges, andfV,I(v, i),
the joint density function of the environmental variables. Equation5.11 is also an application of

the Law of Total Probability. Where the conditional probability distribution of the fatigue ranges,

given a set of values of the environmental variables, is weighted by the probability of those values

occurring and then summed over the domain of the environmental variables.

We will again assume that theAOC 15/50 turbine is installed at a site with environmental con-

ditions similar to the Lavrio, Greece, test site, described in Chapter3 (page77). The long-term
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distribution of the 10-minute mean wind speed is assumed to follow a Rayleigh distribution with

mean,µV = 10m/s. The conditional distribution of turbulence is given by a Gaussian distribution

with conditional mean,µI|V = 2.4486v−0.9971 and constant standard deviation,σI|V = 0.025. A

plot of the joint density function of the environmental variables is shown in Figure4.7(Chapter4).1

The ranges of values of the environmental variables are discretized into evenly spaced intervals.

For each pair of values of the environmental variables, the corresponding short-term distribution

of fatigue ranges is generated, and any required threshold (shift) is reintroduced. Then, per Equa-

tion 5.11, the short-term conditional fatigue range distributions are summed together, each weighted

by the probability of the respective environmental condition, i.e., pair of values of the environmental

variables. The summation is performed over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case, to develop the long-term distribution, the appropriate regression

model is used for each wind speed value. For wind speeds below 24m/s the regression relating

operating loads is used and, correspondingly, for wind speeds above 24m/s the regression relating

parked loads is used. This results in a combination of the operating and parked long-term distribu-

tions of fatigue ranges as shown in Figure5.13. It was assumed that there was 100% availability of

the turbine during all wind speeds. Considering the blade root flap bending direction, we see in Fig-

ure5.13(a)that the blade root flap bending moment fatigue ranges are dominated by the operating

conditions. In Figure5.13(b), we see that parking the turbine avoids increased probability of large

blade root edge bending moments.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, another inter-

esting question is how we might obtain an estimate of the fatigue damage in an arbitrary 10-minute

interval. The expected fatigue damage from an arbitrary cycle, given values of the environmental

variables, was given in Equation5.4. We may then estimate the expected total damage by first

calculating the expected damage in 10 minutes given values of the environmental variables as:

E[D10 min|v, i] = E[N0(v, i)]E[D|v, i] (5.12)

WhereE[N0(v, i)], is the expected number of cycles as a function of wind speed and turbulence,

andE[D|v, i], is given by Equation5.4. It is generally assumed thatE[N0(v, i)] andE[D|v, i] are at

least uncorrelated, if not independent [7]. We again turn to our regression model for a relationship

between the expected number of cycles and the environmental variables. The same power law

1A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Chapters3 and4.
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Figure 5.13:Long-term distributions of blade root fatigue bending moment ranges,R, considering
three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine parked
over all wind speeds, 3) turbine operating below cutout wind speed and parked above
cutout wind speed; for both: blade root (a) flap and (b) edge bending.
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functional form, Equation5.9, was used.

E[N0(v, i)] = a

(
V

Vref

)b (
I

Iref

)c

(5.13)

The calculated regression coefficients andR2 statistics are shown in Table5.4for blade root flap and

edge bending fatigue ranges. Graphical regression results are shown in Figure5.14. Furthermore,

the expected total damage in an arbitrary 10 minutes may be obtained by again applying the Law of

Total Probability; weighting the results of Equation5.12by the probability of the values of the pair

of environmental variables occurring and integrating over the environmental space.

E[D10 min] =
∫∫

V,I
E[N0(v, i)]E[D|v, i]fV,I(v, i)dvdi (5.14)

It is a simple matter to calculate the expected total damage at longer time intervals, e.g., a year,

by multiplying the result of Equation5.14by the number of 10 minute periods in the desired time

interval.

We showed earlier thatE[D] ∝ E[Rbf ]. A similar relation can be written as:

E[D10 min] ∝
∫∫

V,I
E[N0(v, i)]E[Rbf |v, i]fv,i(v, i)dvdi = DM10 (5.15)

In Equation5.15we substitutedE[Rbf |v, i] for E[D|v, i]. DM10 denotes the “damage measure in

10-minutes” and is used as a proxy for the expected total fatigue damage in an arbitrary 10 minutes.

This is not an actual estimate of the expected total fatigue damage, but it is proportional to it so

that higher values ofDM10 are associated with larger fatigue damage estimates and vise versa. The

estimates of the damage measure,DM10, for blade root flap and edge bending consideringbf values

from 1 to 10 are presented in Table5.5. The values in this table will be used to compare with results

from modeling the short-term fatigue ranges with a damage-based Weibull model in the next section

instead of the quadratic Weibull model used here.

We may also consider the portion of the expected damage contributed at different environmen-

tal conditions. Figure5.15presents the plot of damage density for both blade root flap and edge

bending moments. Here, we only consider the 10-minute wind speed as the environmental variable

of interest. The damage density is defined as the contribution to the expected total damage for a

given wind speed. Since our analysis was conducted considering both the 10-minute wind speed

and turbulence intensity, the values given in the figure reflect summing together all the contributions

to DM10 from different turbulence intensities for a constant wind speed. We can see clearly from

the figure that most of the damage occurs while the turbine is operating, i.e., for wind speeds below
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Regression of the Number of Fatigue Ranges
on V and I

Blade Root Flap Bending
a (kN-m) b c R2

V 5 24m/s 0.5971 0.6772 0.9331 0.9572
V > 24m/s 1.0970 4.6834 -0.1105 0.9955

Blade Root Edge Bending
a (kN-m) b c R2

V 5 24m/s 0.5194 0.6798 1.1092 0.9814
V > 24m/s 1.1338 4.6159 0.4885 0.9937

Table 5.4:Regression coefficients used in Equation5.9to fit the expected number of fatigue ranges,
E[N0(v, i)], for blade root flap and edge bending, as functions of the mean wind speed,
V , and turbulence intensity,I.

Estimate of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10.

bf Flap Bending Edge Bending
1 3.490e+3 3.783e+3
2 6.381e+4 3.481e+4
3 1.349e+6 3.244e+5
4 3.281e+7 3.053e+6
5 9.134e+8 2.908e+7
6 2.884e+10 2.819e+8
7 1.024e+12 2.802e+09
8 4.054e+13 2.906e+10
9 1.776e+15 3.257e+11
10 8.569e+16 4.223e+12

Table 5.5:Estimate of damage measure,DM10, for fatigue exponent values,bf = 1, . . . , 10, con-
sidering blade root flap and edge bending fatigue loads.
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(a)Expected number of fatigue ranges in 10-minute blade root flap bending time his-
tory.
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(b) Expected number of fatigue ranges in 10-minute blade root edge bending time
history.

Figure 5.14:Expected number of fatigue ranges,E[N0(v, i)], in 10-minute blade root flap and edge
bending response time histories, based on 100 pooled observations for each 10-minute
mean wind speed and turbulence class. The wind turbine is operating forV 5 24m/s,
otherwise the turbine is parked.
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24m/s. Also, we see from Figure5.15that as the value of the fatigue exponent,bf , increases, we

are relatively more sensitive to higher wind speeds while the turbine is parked.

5.4.3 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-

bility distribution of the long-term distribution of fatigue loads. This was accomplished by modeling

the short-term distribution of fatigue ranges by a quadratic Weibull model. The statistical moments

of the fatigue range data were related to the environmental variables by a power-law functional form.

The parameters of the functional form were obtained through regression analysis. Using the method

of moments, a quadratic Weibull distribution could be obtained for each specific set of values of the

environmental variables. Finally, an estimate of the marginal distribution of the long-term fatigue

loads was obtained by summing the conditional short-term load distributions over all environmental

conditions. Each conditional short-term load distribution was weighted by the probability of the

associated environmental condition occurring. The next section presents a similar analysis, only

this time the short-term fatigue ranges are modeled with a damage-based Weibull distribution.

5.5 Long-Term Analysis Based on Modeling Fatigue Ranges with the

Damage-Based Weibull Model

5.5.1 Short-Term Analysis

In the last section we considered modeling the distribution of fatigue ranges using the quadratic

Weibull model. Here, in contrast, we consider modeling the distribution of the fatigue ranges using

our proposed damage-based Weibull model. To review, the load models discussed here estimate the

probability distribution of load ranges by preserving a limited set of statistical moments,µi = E[Ri].
The relevant moments here are model-dependent:µ1 throughµ3 for the quadratic Weibull model,

andµz andµ2z for the damage-based Weibull model (z on the order of 3-5,bf=6-10). In particular,

in this section we will look at damage-based Weibull models in three cases, forz values equal to

3, 4, and 5. In the first case for example, wherez = 3, this corresponds to fatigue exponent values

equal to 3 and 6. The model is tuned to fit the third and sixth moment of the data. Similarly,

for z = 4 (bf=4 and 8), the model is tuned to fit the fourth and eighth moment of the data, and

for z = 5 (bf=5 and 10), the fifth and tenth moment. Separate regression analysis and long-term

integration will be conducted for each of these cases. In some instances the results of only the first

transformation,z = 3, will be presented as we find similar results for the other transformations.

In the previous section the statistical moments of the data were related to the environmental
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Figure 5.15:Damage density for blade root flap and edge bending.
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variables by the power-law model given in Equation5.9; the same functional form and methodology

are followed here, again. In this case, however, the vectorθ, contains only six elements instead

of nine, which we had when we considered the quadratic Weibull model which matched the first

three moments. The damage-based model matches only two moments, albeit the two moments

that are matched are typically of higher order. Linear regression analysis applied to the logarithm

of Equation5.9 was used to obtain estimates of the coefficients. The reference wind speed and

reference turbulence used in the regression analysis are given in Table5.1. The calculated regression

coefficients andR2 statistics are shown in Tables5.6 and5.7 for blade root flap and edge bending

transformed,z = 3, fatigue ranges, respectively. Similar results are shown in Tables5.8 and5.9

for z = 4 transformed fatigue ranges and Tables5.10 and 5.11 for z = 5 transformed fatigue

ranges. R2 statistics near unity indicate that a large percentage of the variability in the data is

explained by the regression model. LowR2 statistics indicate that other influences not contained

in the regression model may be affecting the loads. In performing the regression analysis, it was

again determined that the applied functional model, Equation5.9, did not have enough flexibility to

sufficiently model the observed behavior of the mean and standard deviation of the blade root flap

bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten

out with higher wind speeds above 17m/s as compared with the behavior below 17m/s. Therefore,

a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for

both the mean and standard deviation of blade root flap bending fatigue ranges. We saw a similar

result in Section5.4when we fit the quadratic Weibull model to the fatigue ranges.

Finally, graphical regression results for the case where the fatigue ranges are transformed for

z = 3, are shown in Figures5.16and5.17. Each figure contains regression results for both blade

root flap and edge bending conditions considering the mean of the fatigue ranges, Figure5.16, and

standard deviation of the fatigue ranges, Figure5.17. In all plots, the turbulence intensity has been

set equal to the reference value. Similar results were found for the other transformation cases and,

in the interest of brevity, these additional plots are not presented.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 910.14 3.7443 2.2384 0.93414
17 < V 5 24m/s 1354.7 0.7145 2.9149 0.9899
V > 24m/s 661.22 12.498 2.0233 0.9950

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 3647.1 3.3155 2.2479 0.9638
17 < V 5 24m/s 5425.1 1.0043 2.7920 0.9686
V > 24m/s 3358.3 10.688 2.8186 0.9944

Table 5.6:Regression coefficients used in Equation5.9 to fit transformed (z = 3) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 673.44 -0.0361 -0.0251 0.1926
V > 24m/s 9.2980 13.599 1.1361 0.9949

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 191.39 1.220 1.5619 0.9842
V > 24m/s 46.567 13.011 1.4599 0.9867

Table 5.7:Regression coefficients used in Equation5.9 to fit transformed (z = 3) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=4

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 20167 4.7638 2.9951 0.9454
17 < V 5 24m/s 34234 1.0877 3.8399 0.9847
V > 24m/s 15041 15.723 3.2836 0.9948

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 115610 4.2740 2.9899 0.9731
17 < V 5 24m/s 197600 1.5268 3.6015 0.9519
V > 24m/s 122030 13.3432 3.9646 0.9940

Table 5.8:Regression coefficients used in Equation5.9 to fit transformed (z = 4) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=4

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 6041.45 0.0094 0.03198 0.0097
V > 24m/s 50.0689 17.307 0.86779 0.9911

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 2183.3 1.1139 1.5163 0.9894
V > 24m/s 511.42 17.033 0.7763 0.9878

Table 5.9:Regression coefficients used in Equation5.9 to fit transformed (z = 4) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 514011 5.7290 3.740 0.9548
17 < V 5 24m/s 995500 1.5177 4.7144 0.9770
V > 24m/s 435827 18.582 4.4772 0.9939

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 4008800 5.2460 3.7288 0.9787
17 < V 5 24m/s 7920800 2.1053 4.3682 0.9382
V > 24m/s 4916000 16.139 5.1216 0.9930

Table 5.10:Regression coefficients used in Equation5.9 to fit transformed (z = 5) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 54502.4 0.0628 0.1017 0.2822
V > 24m/s 380.13 20.360 -1.1755 0.9886

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 24785 1.1121 1.5806 0.9904
V > 24m/s 6813.8 20.790 -0.9950 0.9883

Table 5.11:Regression coefficients used in Equation5.9 to fit transformed (z = 5) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.



CHAPTER 5. LONG-TERM FATIGUE DISTRIBUTIONS 191

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55

M
ea

n 
of

 th
e 

tr
an

sf
or

m
ed

 (
z=

3)
 f

at
ig

ue
 r

an
ge

s

10-minute mean wind speed, m/s

class A
class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(a)Pooled statistics of the mean of transformed (z = 3) fatigue ranges in 10-minute
blade root flap bending response time history.
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(b) Pooled statistics of the mean of transformed (z = 3) fatigue ranges in 10-minute
blade root edge bending response time history

Figure 5.16:Mean of transformed (z = 3) fatigue ranges for 10-minute blade root flap and edge
bending response, based on 100 pooled observations for each 10-minute wind speed
and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise the
turbine is parked.
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(a)Pooled statistics of the standard deviation of transformed (z = 3) fatigue ranges in
10-minute blade root flap bending response time history.
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Figure 5.17:Standard deviation of transformed (z = 3) fatigue ranges for 10-minute blade root flap
and edge bending response time histories, based on 100 pooled observations for each
10-minute mean wind speed and turbulence class. The wind turbine is operating for
V 5 24m/s, otherwise the turbine is parked.
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5.5.2 Long-Term Analysis

For the discussion here, we defined the conditional probability distribution of fatigue ranges by a

damage-based Weibull model. We saw how this model can be represented by the moments of the

data. Further, we have just shown through regression analysis how these statistical moments may

be related to the environmental variables.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period, is found in

the same way as implemented in Section5.4. We will again assume that theAOC 15/50 turbine is

installed at a site with environmental conditions similar to the Lavrio, Greece, test site described in

Chapter3 (page77). The long-term distribution of the 10-minute mean wind speed is assumed to

follow a Rayleigh distribution with mean,µV = 10m/s. The conditional distribution of turbulence

is given by a Gaussian distribution with conditional mean,µI|V = 2.4486v−0.9971 and constant

standard deviation,σI|V = 0.025. A plot of the joint density function of the environmental variables

is shown in Figure4.7(Chapter4).2

The ranges of the values of the environmental variables are discretized into evenly spaced in-

tervals. For each pair of values of the environmental variables the corresponding short-term distri-

bution of fatigue ranges is generated. Then, per Equation5.11, the short-term conditional fatigue

range distributions are summed together, each weighted by the probability of the respective envi-

ronmental condition, i.e., pair of values of the environmental variables, occurring. The summation

is performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. To develop the long-term distribution of the fatigue ranges, the appropriate

regression model is used for each wind speed value. Figure5.13shows three long-term distributions

of fatigue ranges. Each distribution is based on a different transformation of the fatigue ranges

(z = 3, 4, 5). For the most part, all of the distributions appear very similar, only at low probability

levels (below10−8) do the distributions, for either blade root flap or edge bending fatigue ranges,

show a significant difference.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in

the previous section that we may obtain an estimate of the fatigue damage in an arbitrary 10-minute

interval. We again turn to our regression model for a relationship between the expected number of

cycles and the environmental variables.3 The same power-law functional form, Equation5.9, was

2A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Chapters3 and4.
3When we transform the fatigue ranges, withz = 3, 4, 5, only the magnitude of the fatigue ranges is transformed,

the number of fatigue ranges stays the same. Therefore, the expected number of fatigue ranges stays the same regardless
of the transformation. The results of the regression analysis presented here is valid for any value ofz used for the
transformation.
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(a)Long-term distribution of blade root flap bending fatigue ranges for an arbitrary 10
minutes.
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(b) Long-term distribution of blade root edge bending fatigue ranges for an arbitrary
10 minutes.

Figure 5.18:Long-term distributions of blade root fatigue bending moment ranges,R, considering
three fatigue range transformations,z = 3, 4 and 5; for (a) flap and (b) edge bending.
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Regression of the number of Fatigue Ranges
on V and I

Blade Root Flap Bending
a (kN-m) b c R2

V 5 24m/s 1764.1 -0.0977 0.03662 0.3734
V > 24m/s 5024.1 0.2823 -0.3971 0.9623

Blade Root Edge Bending
a (kN-m) b c R2

V 5 24m/s 670.69 0.1326 0.1307 0.7836
V > 24m/s 5474.2 0.1793 -0.2630 0.9634

Table 5.12:Regression coefficients used in Equation5.9 to fit the expected number of fatigue
ranges, for blade root flap and edge bending, as functions of the mean wind speed and
turbulence intensity. The turbine is operating forV 5 24m/s, otherwise the turbine is
parked.

used. The calculated regression coefficients andR2 statistics are shown in Table5.12 for blade

root flap and edge bending fatigue ranges. Graphical regression results are shown in Figure5.19.

Applying Equation5.15, we can obtain estimates of the damage measure for blade root flap and

edge bending consideringbf values corresponding toz and2z for z = 3, 4, 5; these estimates are

presented in Table5.13. We may also consider the portion of the expected damage contributed at dif-

ferent environmental conditions. Figure5.20presents the plot of damage density for both blade root

flap and edge bending moments. We can see from Figure5.20(a), which shows damage densities

for flap bending fatigue ranges and different values ofbf , that asbf increases the damage measure

is more sensitive to higher wind speeds. This trend is also seen in Figure5.20(b), considering edge

bending fatigue ranges, although forbf = 10 the accumulated damage is much more sensitive to

fatigue ranges resulting from high wind speeds when the turbine is parked. We might expect this

behavior where the material is much more sensitive to loads above the kink in Figure5.18(b).

5.5.3 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate

of the marginal probability distribution of the long-term distribution of fatigue ranges. The short-

term fatigue loads were modeled using the damage-based Weibull model, however. The general

methodology remained the same. In this case however, the statistical moments were obtained after

having first transformed the fatigue ranges, e.g.,z = 3, 4, 5. By performing this transformation

when we employed the method of moments to obtain estimates of the distribution parameters, our
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(a)Expected number of fatigue ranges in 10-minute blade root flap bending time his-
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(b) Expected number of fatigue ranges in 10-minute blade root edge bending time
history.

Figure 5.19:Expected number of fatigue ranges in 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise
the turbine is parked.
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(b) Blade root edge bending moment.

Figure 5.20:Damage density for blade root flap and edge bending.
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Estimate of Damage Measure,DM10,
for fatigue exponent values,bf = 1, . . . , 10.

bf Flap Edge
z = 3 3 7.909e+4 4.445e+5

6 9.482e+9 3.416e+8
z = 4 4 1.487e+7 3.939e+6

8 8.705e+12 3.512e+10
z = 5 5 3.574e+8 3.654e+7

10 1.006e+16 4.142e+12

Table 5.13:Estimate of damage measure,DM10, for fatigue exponent values,bf = 1, . . . , 10, con-
sidering blade root flap and edge bending loads.

model was fit to thezth and2zth moments of the untransformed data. Forz = 3, this amounts to

fitting the standard Weibull model to the third and sixth statistical moment where we suspect a ma-

terial with fatigue exponentbf = 3-6 would be most sensitive to these higher fatigue ranges. The

statistical moments of the transformed fatigue ranges were related to the environmental variables

through regression analysis. Finally, an estimate of the marginal distribution of the long-term load

was obtained by summing the conditional short-term load distributions (each weighted by the prob-

ability of the values of the environmental variables occurring) over all environmental conditions.

We considered three transformation cases,z = 3, 4, and 5. We found that the marginal long-term

distributions of the fatigue ranges for an arbitrary 10-minute interval were very similar, and only

exhibit significant difference at low probability levels.

5.6 Comparison of Long-Term Estimates Based on Different Short-

Term Models

In Section5.4, we saw how one could obtain an estimate of the long-term distribution of fatigue

ranges based on the short-term distribution of fatigue ranges model by a quadratic Weibull model.

Later, in Section5.5, we saw how a similar estimate of the long-term distribution may be obtained

by modeling the short-term distribution of fatigue ranges by a damage-based Weibull model. We

have explored two alternative models for describing the short-term fatigue ranges.

Figure5.21shows the estimates of the long-term distribution of fatigue loads based on modeling

the short-term fatigue ranges by quadratic or damage-based Weibull models. In this case, using

the quadratic Weibull distribution to model the short-term fatigue ranges generates a long-term

distribution with higher fatigues loads compared with the the long-term distribution of fatigue loads
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Comparison of Estimates of Damage Measure,DM10,
Blade Root Flap Bending

Damage- Percent Difference
bf Q. W. Based z = 3 z = 4 z = 5
3 1.349e+6 7.909e+4 -94%
4 3.281e+7 1.487e+7 -54%
5 9.134e+8 3.574e+8 -61%
6 2.9e+10 9.482e+9 -67%
8 4.1e+13 8.7e+12 -78%
10 8.6e+16 1.0e+16 -88%

Table 5.14:Comparison of damage measure,DM10, estimates for blade root flap bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3, 4, 5 (z = bf/2).

considering the damage-based model. This is the case for both blade root flap and edge bending

loads. In the blade root flap bending case, the difference in the distributions is fairly uniform. In the

blade root edge bending case the quadratic Weibull model does not exhibit a strong influence from

the parked turbine fatigue loads, as the damage-based models do at low probability levels.

Tables5.14 and5.15 compare estimates of damage measures,DM10, obtained from our two

model definitions. We saw above that the quadratic Weibull produced higher loads for the long-term

distribution for both blade root flap and edge bending loads. It would follow that we would expect

to see higher damage measures. In fact, this is the case for flap loads—the damage-based Weibull

models do estimate lower damage measures compared with the estimates from the quadratic Weibull

model. In the edge bending case, however, even though the quadratic Weibull model does estimate

higher fatigue loads, significantly higher fatigue loads at low probability levels, the damage measure

estimates are just slightly lower than those estimated from the damage-based Weibull model. Even

though the quadratic Weibull model predicts some higher fatigue loads, they are at extremely low

probability levels and therefore occur only rarely and their contribution to the fatigue damage is

limited.

We can alternatively compare our estimates of the fatigue damage measure from each of the

proposed models to an empirical estimate of the fatigue damage measure. The empirical estimate of

the fatigue damage measure is obtained by using the raw rainflow counted range data directly from

a representative time history for a given set of values of the environmental variables. The fatigue

damage measure is weighted by the probability of the values of the environmental variables. The

data set examined here contained 24 different values of the environmental variables, considering the

turbine during both operating and parked conditions. The weighted fatigue damage measures were
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(a) Blade root flap bending.
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(b) Blade root edge bending.

Figure 5.21:Comparison of estimates of the long-term distribution of fatigue ranges based on
quadratic or damage-based Weibull models for short-term distribution of fatigue ranges
for (a) flap and (b) edge bending.
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Comparison of Estimates of Damage Measure,DM10,
Blade Root Edge Bending

Damage- Percent Difference
bf Q. W. Based z = 3 z = 4 z = 5
3 3.244e+5 4.445e+5 +37%
4 3.053e+6 3.939e+6 +29%
5 2.908e+7 3.654e+7 +26%
6 2.819e+8 3.416e+8 +21%
8 2.9e+10 3.5e+10 +21%
10 4.2e+12 4.1e+12 -1.2%

Table 5.15:Comparison of damage measure,DM10, estimates for blade root edge bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3, 4, 5 (z = bf/2).

summed across this range of the environmental variables.

Tables5.16and5.17show the fatigue damage measure for different values of the fatigue ex-

ponent,bf , based on the empirical model and compared to the estimates obtained based on the

quadratic Weibull and damage based models. In general, compared to the empirical model, the

estimates of the fatigue damage measure for the flap bending direction, both the quadratic Weibull

and damage-based models under-predict the fatigue damage measure for all fatigue exponents that

we considered. We found slightly different results for the edge bending direction. In this case, the

damage-based model still under-predicted the fatigue damage measure for all fatigue exponents that

we considered. The quadratic based model under-predicted the fatigue damage measure for fatigue

exponent values below seven,bf < 7 and over-predicted for values greater than seven,bf > 7. In

this particular case, neither of the models does a very good job of estimating the fatigue damage

measure compared with the empirical model. However, it should be noted that since the damage-

based models are exact at matching the empirical damage at the moments for which they are fit it is

really the regression model that is being tested. Additional research would be required to evaluate

the general efficacy of these models and regression techniques to predict fatigue damage.

5.7 Conclusions

Parametric, moment-based, statistical models have been introduced to model rain-flow-counted fa-

tigue ranges. Two “higher-moment” models (including third and/or higher moments) have been

presented: (1) a quadratic Weibull model, which uses a quadratic distortion of the original Weibull

model to preserve the first three moments of the data; and (2) a “damage-based” Weibull model,
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Comparison of Estimates of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10, Flap Bending

Empirical Quadratic Weibull Damage-based Weibull
bf DM10 DM10 % DM10 %

diff. diff.
1 6.612e+3 3.490e+3 -47.2% - -
2 8.620e+4 6.381e+4 -26.0% - -
3 2.105e+6 1.349e+6 -35.9% 7.909e+4 -96.2%
4 8.629e+7 3.281e+7 -62.0% 1.487e+7 -82.8%
5 5.232e+9 9.134e+8 -82.5% 3.574e+8 -93.2%
6 4.044e+11 2.884e+10 -92.8% 9.482e+9 -97.6%
7 3.493e+13 1.024e+12 -97.1% - -
8 3.308e+15 4.054e+13 -99.0% 8.705E+12 -99.7%
9 3.327e+17 1.776e+15 -99.5% - -
10 3.506e+19 8.569e+16 -99.8% 1.006e+16 -99.9%

Table 5.16:Comparison of estimates of blade root flap bending fatigue damage measure,DM10, for
fatigue exponent values,bf = 1, . . . , 10, considering empirical, quadratic Weibull, and
damage based models.

Comparison of Estimates of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10, Edge Bending

Empirical Quadratic Weibull Damage-based Weibull
bf DM10 DM10 % DM10 %

diff. diff.
1 5.622e+3 3.783e+3 -32.7% - -
2 4.938e+4 3.481e+4 -29.5% - -
3 4.367e+5 3.244e+5 -25.7% 4.445e+5 -96.2%
4 3.881e+6 3.053e+6 -21.3% 3.939e+6 -82.8%
5 3.467e+7 2.908e+7 -16.3% 3.654e+7 -93.2%
6 3.115e+8 2.819e+8 -9.5% 3.416e+8 -97.6%
7 2.815e+9 2.802e+9 -0.5% - -
8 2.564e+10 2.906e+10 13.4% 3.512E+10 -99.7%
9 2.363e+11 3.257e+11 37.8% - -
10 2.261e+12 4.223e+12 86.8% 4.142e+12 -99.9%

Table 5.17:Comparison of estimates of blade root edge bending fatigue damage measure,DM10,
for fatigue exponent values,bf = 1, . . . , 10, considering empirical, quadratic Weibull,
and damage based models.
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which seeks a two-moment Weibull fit, not to the fatigue ranges themselves but to power trans-

formations that directly relate to “damage” (i.e., based on material properties defining S-N curve

slope,bf ). Both models have their advantages. Compared with fatigue load data, the damage-

based Weibull model is found to follow the tails of the observed data (as seen, for example, in

Figure5.6-5.9). It also requires no special numerical algorithms to estimate its parameters. In con-

trast, the quadratic Weibull does require such algorithms, and its accurate modeling of distribution

tails can require the analyst to impose a lower-bound threshold on the load ranges to be modeled

(see Figure5.3versus Figure5.4). The potential benefit of the quadratic Weibull model includes its

reliance only on moments through third order. The damage-based model requires moments of order

z = bf/2, where typicalz values may range from 3 to 5 reflecting material propertiesbf = 6− 10.

Hence, to the degree it remains accurate, the quadratic Weibull model can be fit more accurately

from limited data.



Chapter 6

Uncertainty in Estimation of Extreme

Loads

In the previous chapters we have presented a methodology for obtaining estimates of fatigue and

extreme load distributions. In these chapters we acknowledge the natural randomness of the three

constituent variables—conditional short-term load, wind speed, and turbulence—by fitting or as-

signing probability models to these variables. In applying these relations, however, we assumed

that all the parameters of the probability models were known, i.e., the parameter values were deter-

ministic. In this chapter we consider examining some of the sources of uncertainty in our analysis.

In particular we consider how to include these sources of uncertainty and how these uncertainties

influence our estimate of extreme loads.

Usually, the goal in doing an analysis of the epistemic uncertainty in an engineering design

problem is to understand which variables contribute the most to the overall uncertainty. Those

candidate variables are then the target of additional analysis to reduce their attendant uncertainty,

and thereby increase the certainty, or confidence, in the final design. In the context of this discussion

we should be interested in understanding the contribution each variable makes to the uncertainty in

our prediction of the one-year load or 50-year load, for example. With this in mind, we look to

address three areas of epistemic uncertainty, (1) The epistemic uncertainty in our estimates of the

model parameters which define the long-term distributions of the environmental variables. (2) The

epistemic uncertainty in our estimates of the regression coefficients which relate statistics of the

short-term response of the turbine to the environmental variables. And finally, (3) quantifying our

model uncertainty, how does our predictive model compare with observations of the response of the

turbine in the field.

204
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6.1 Introduction

In the previous discussions we have concerned ourselves with presenting a methodology for ob-

taining an estimate of the 1-year and 50-year extreme load in Chapters3 and 4, or an estimate

of the long-term distribution of fatigue loads in Chapter5. In these discussions we acknowledge

the natural randomness of the three constituent variables—conditional short-term load, wind speed,

and turbulence—by fitting or assigning probability models to these variables. We showed how the

natural randomness of these variables may be combined and contribute to the variability of the long-

term distribution of fatigue or extreme loads. This was accomplished by applying the Law of Total

Probability as shown in the equation below considering extreme loads,

P [L10 min > l] =
∫∫

P [L10 min > l | v, i ]fI|V (i|v)fV (v)didv (6.1)

where,L10 min, is the maximum response in 10-minutes,V , and,I, are the 10-minute mean wind

speed and turbulence, respectively. A similar equation, applying the Law of Total Probability was

used for estimating the long-term distribution of fatigue loads. In applying these relations, however,

we assumed that all the parameters of the probability models were known, i.e., the parameter values

were deterministic. In this chapter we consider examining some of the sources of uncertainty in our

analysis. In particular, we will consider how we might include these sources of uncertainty and to

what degree these uncertainties influence our estimate of extreme loads.1

6.1.1 Types of Uncertainty

In this section we present a short discussion on the types of uncertainty in estimation of long-term

distribution of extreme loads. These types of uncertainty are generally common to many types of

predictive models, e.g., extreme wave height models for off-shore structures, ground-motion models

for earthquake engineering, weather forecasting, etc.

Aleatory uncertainty The uncertainty that is associated with the nature of physical models is re-

ferred to asaleatoryuncertainty. Other names for the aleatory uncertainty include “stochas-

tic” or “random” uncertainty. Even under the condition of “prefect information”, i.e., the

model of the physical phenomenon is validated and the values of the parameters of the model

are known, these aleatory uncertainties still remain. Formally, the portion of the uncertainty

in our prediction of the outcome of an event which is irreducible and attributed to the natural

randomness of the event is the aleatory uncertainty. Given a model, one can not reduce the

1A similar discussion could be presented for fatigue loads.
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aleatory uncertainty by the collection of additional information. It may be possible, however,

to better quantify the aleatory uncertainty by using additional data.

Epistemic uncertainty The uncertainties that arise from our lack of knowledge concerning the

validity of the chosen models or the values of the parameters are referred to asepistemic

uncertainty, as distinct from randomness (or aleatory). Sometimes, in the literature, these

are referred to simply as “uncertainties”. Formally, the epistemic uncertainty is the portion

of uncertainty in our prediction of the outcome of an event which is related to our state, or

accumulation, of knowledge of the event under observation. In other words, the epistemic

uncertainty is that portion of the uncertainty in our prediction which can be reduced by con-

tinued diligent study and observation of more realizations of the process under examination.

These definitions may be more clearly explained through the following example. Let us assume

that we observe the outcome of an event—the roll of a die. We do not know if the die is fair, and

further we don’t know the number of sides on the die. At this point we have only one outcome, and

little way of quantifying the uncertainty—aleatory or epistemic—of our prediction of the outcome

of the next roll of the die. After sufficient observations, we may ascertain all possible outcomes of

rolling the die, and construct a probability model of the likelihood of each of these possible out-

comes. With each roll, our knowledge about the possible outcomes of the event, and their relative

likelihoods (i.e., long-term frequencies or next roll probabilities), has increased and our epistemic

uncertainty was decreased. Which one of the possible outcomes will occur with any given roll is

the irreducible aleatory uncertainty. The probability model we constructed quantifies the aleatory

uncertainty. We will be able to refine the probability model, and better quantify our aleatory uncer-

tainty by continuing to observe the outcomes of the event, but it is by definition irreducible. Which

possible outcome occurs with any given future roll of the die is still unknown. Some sources, or

types, of epistemic uncertainty include modeling and parametric uncertainty.

Modeling Uncertainty Represents the differences between the actual physical process that man-

ifests the event and the simplified models used to predict the event. Here we may consider

the physical processes that generate extreme blade bending loads on a wind turbine com-

pared with the simple models used to predict these extreme events. Probabilistic models, e.g.,

the shape (or name) of the distribution, are also subject to such uncertainty. The modeling

uncertainty can be estimated by comparing model predictions with actual, observed events.

Parameter Uncertainty Is the uncertainty associated with the estimated values of model param-

eters. These may include parameters in both the mechanical (deterministic) models (e.g.,

the blade load predictions) and the random process models (e.g., the wind speed probability
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distribution model). The parametric uncertainty is quantified by observing the variation in

parameters inferred from collected data.

6.1.2 Motivation

Usually the goal in doing an analysis of the epistemic uncertainty in an engineering design problem

is to understand which variables contribute the most to the overall uncertainty. Those candidate

variables are then the target of additional analysis to reduce their attendant uncertainty, and thereby

increase the certainty, or confidence, in the final design. In the context of this discussion we should

be interested in understanding the contribution each variable makes to the uncertainty in our pre-

diction of the one-year load, or 50-year load for example. Up to now we have only considered the

aleatory uncertainty, as described by the probability distributions for the variables: short-term load,

10-minute mean wind speed and turbulence. In Chapter3 we undertook a qualitative analysis to see

how the “randomness” (as we called it in Chapter3), or “aleatory uncertainty” contributed to the

variability in our estimate of the long-term distribution of extreme loads. Here, we seek to under-

stand how including some of the sources of epistemic uncertainty contribute to the uncertainty in

our estimate of the long-term distribution of extreme events.

We saw in Chapter3 that the calculations involved in developing a prediction of the long-term

distribution of extreme loads involved separating the problem into two parts: the short-term condi-

tional distribution of the response of the turbine given prescribed environmental conditions, and the

long-term distribution of the environmental variables. In the context of theIEC code, however, the

parameters of these long-term distributions are legislated [23]. The resulting epistemic uncertainty

is zero as the parameters are presumed known, and the aleatory uncertainty is prescribed as a result

of the prescribed distributions.

The currentIEC code breaks down the environmental conditions into four wind classes (wind

classesI-IV), and two turbulence classes (classesA andB) [23]. For the wind classes, the long-

term distribution of the 10-minute mean wind speed,V , is prescribed to follow a Rayleigh model.

For each wind class a different annual average 10-minute mean wind speed,µV is prescribed, with

classI and classIV assigned the highest and lowest values ofµV , respectively. The long-term

distribution of turbulence, conditional on wind speed, is assumed to follow either a Gaussian or

lognormal model. Turbulence classA is associated with higher turbulence whereas turbulence class

B is associated with lower turbulence values. Therefore, wind classIA is intended to encompass a

large variety of site conditions and is therefore generally more severe and conservative than most

specific sites. ClassIVB is at the other end of the range of wind classes and describes a more benign

wind environment than classIA.
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Considering these prescribed distributions with known parameters effectively reduces the epis-

temic uncertainty in the environmental variables to zero. It becomes straightforward for the engineer

to design and test the wind turbine to specific wind and turbulence class, as specified by theIEC code.

A certifying agency reviews the design process and testing results and, hopefully, approves the tur-

bine for use in the same wind and turbulence class for which it was intended. It is the intention of the

code that wind turbines designed to higher wind classes, e.g., classIA, are more robust considering

more severe environmental conditions, compared with the lower wind classes, e.g., classIVB. It is a

matter then of economics to fit the right turbine to a specific set of site conditions. Generally, more

robust turbines, turbines designed to aIA wind class, are more expensive since they are expected

to operate in a more severe environment. Therefore, it would not necessarily be most efficient to

install a classIA turbine in a benign wind environment. It is necessary then to estimate the model

parameters of the environmental variables based on environmental data collected at the site. The

question then becomes how good are our estimates of the model parameters for mean wind speed

and turbulence. How well does the site fit the description of the four classes listed in the code? We

can ask the question from another perspective. How good are our estimates of the model parame-

ters for mean wind speed and turbulence and how does the epistemic uncertainty in our estimates

of these parameters, from limited data, affect our estimate of the long-term distribution of extreme

loads? This issue will be discussed in Section6.3

The epistemic uncertainty associated with the short-term loads may be of more interest to the

design engineer. We will consider two sources of epistemic uncertainty of the short-term loads,

(1) parameter uncertainty, and (2) modeling uncertainty. In Chapter3 we saw how the short-term

distribution of extreme loads could be based on modeling either the global or local peaks. In either

case the parameters of the model were fit to the data using the method of moments. The observed

moments of the data were related to the environmental variables through regression analysis. There

are several sources of epistemic uncertainty in the parameters. First, the statistical moments of the

observed responses are based on limited data. Second, the moments are related to the environmental

variables through regression analysis. This raises the question, “how well does the regression model

fit the data?” These questions are considered in Section6.4.1. Modeling uncertainty is considered in

Section6.4.3, where the short-term loads based on our mechanical model are compared with actual

recorded data. We estimate the variability of the bias of the predictive model to the observed field

data and show how we may include this uncertainty and its effect on the variability of long-term

distribution of extreme events.
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6.2 Data Set

The data set used in this analysis is for the Atlantic Orient CorporationAOC 15/50 turbine, described

in Chapter1 (page18). The turbine has a rotor diameter of 15m, a fixed nominal rotor speed of about

60 RPM, and a rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height

of 25 meters [22]. The data set is described in detail in Chapter3 (page66) and consisted of multiple

10-minute simulations of Gaussian wind fields and corresponding blade root bending moments. The

wind input processes is described by the hub height wind speed. For the analysis presented in this

chapter only the blade root flap bending loads are used.

In the discussions that follow we will assume that theAOC 15/50 turbine is installed at a site with

environmental conditions similar to the Lavrio, Greece, test site described in Chapter3 (page77).

The long-term distribution of the 10-minute mean wind speed is assumed to follow a Rayleigh

distribution with mean,µV = 10m/s. The conditional distribution of turbulence is given by a Gaus-

sian distribution with conditional mean,µI|V = 2.4486v−0.9971 and constant standard deviation,

σI|V = 0.025. A plot of the joint density function of the environmental variables is shown in

Figure4.7(Chapter4).2

6.3 Uncertainty in Long-Term Environmental Distributions

We have seen in previous chapters how the natural randomness, or aleatory uncertainty, of the long-

term distribution of the environmental variables may be described by prescribing probability models

with knownparameters, i.e., the parameters are considered known constants with no associated

uncertainty. Further, we saw how an estimate of the long-term distribution of extreme loads may be

obtained by combining the aleatory uncertainty of the short-term extreme response with the aleatory

uncertainty of the environmental variables. This was accomplished through an application of the

Law of Total Probability, as described in Chapter3. This section presents a discussion on how we

might first consider quantifying the influence of uncertainty in the parameters of the distributions

of the environmental variables. The uncertainty in our estimates of the parameter values arise from

having limited data, i.e., limited observations or realizations of the environmental variables. Our

lack of knowledge, associated with limited observations, about the values of the parameters is a

source of epistemic uncertainty.

To aid in our discussion let us consider the description of the environment at the Lavrio, Greece,

test site as first presented in Chapter3. The aspects critical to our discussion are reviewed here.

The long-term distribution of the 10-minute mean wind speed,V , is assumed to follow a Rayleigh

2A more detailed definition of the environmental variables for the Lavrio, Greece site is given in Chapters3 and4.
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distribution shown below,

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(6.2)

α =
2µV√

π

This is a single parameter distribution. The standard deviation,σV , is given by

σV = µV

√
4
π
− 1 = 0.523µV (6.3)

The coefficient of variation of the 10-minute wind process is taken as the measure of wind turbu-

lence, denoted byI. The conditional distribution of turbulence is assumed to follow a Gaussian

distribution shown below,

fI|V (i|v) =
1√

2πσI|V
exp

[
−1

2

(
i− µI|V

σI|V

)2
]

(6.4)

At this point we have three parameters to estimate: the annual average 10-minute mean wind

speed,3 µV , the conditional mean turbulence,µI|V , and standard deviation,σI|V . We may consider

a campaign to collect wind process data at the site of interest for installing the wind turbine. We

saw in Chapter1 how we may obtain unbiased estimates of statistical moments, e.g., our parameters

of interest, from sample data. In addition, we showed how we might obtain an estimate of the

uncertainty in the estimate of the mean. Formally, the standard error of estimation of the mean of a

random variable,X is given by,

seµ̂X
=

σ̂X√
n

(6.5)

Where,µ̂X , andσ̂X are our estimates of the mean and standard deviation ofX from sample data

andn is the number of observations ofX in our sample. With respect to the standard error of

estimation, or epistemic uncertainty in our estimate of the annual average 10-minute mean wind

speed we can write,

seµ̂V
=

σ̂V√
n

(6.6)

We might conclude from Equation6.6 that in order to reduce the epistemic uncertainty inµ̂V , our

estimate ofµV , we need only to increase the value ofn, i.e., collect a large amount of data. Taken

out of context, one might consider 1000 data points a large amount of data, even 100 data points

3The annual average 10-minute mean wind speed is defined as the mean of a set of measured 10-minute mean wind
speed data of sufficient size and duration to serve as an estimate of the expected value of the quantity. The averaging time
interval shall be a hole number of years to average out non-stationary behavior effects such as seasonality
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could be considered a large amount. In the current context, or frame of reference, 1000 observations

of the 10-minute mean wind speed may represent about a week of independent observations of the

10-minute mean wind speed. Note, Equation6.6requires that the observations be independent.

We discussed in Chapter1 that for wind applications, seasonal, synoptic, and diurnal variations

in the wind process make monthly, weekly, daily, or hourly values different from annual values.

That is to say that our estimate of the annual average 10-minute mean wind speed taken over just a

few months, e.g., 3-months, may be biased due to seasonal conditions. If our parameter estimates

are,µ̂V =10m/s and̂σV = 5.23m/s, from about 3-months of data, we can obtain the standard error of

estimation of̂µV as,

seµ̂V
=

σ̂V√
n

=
5.23m/s√
10, 000

= 5.23× 10−2 (6.7)

which may mislead us to think we have about 0.52% error4 in our estimate of the annual average

10-minute mean wind speed. In reality, our estimate may be biased due to seasonal conditions. The

next 3-months of data may result in a significantly different estimate ofµV with a presumably very

similar estimate of the standard error of estimation. In this situation, data must be collected over a

much longer period of time, a period which accounts for these longer time interval changes. There-

fore, we see that additional analysis must be undertaken to more accurately quantify the uncertainty

associated with our estimates of the distribution parameters. If we assume that we are interested

in obtaining a better estimate of this uncertainty, then we would also be interested in how this un-

certainty may affect our estimate of the long-term distribution of extreme loads. In the analysis

presented in this section, we will assume that we can reasonably quantify our uncertainty in our

estimates of the distribution parameters of the environmental variables.

In the remainder of this discussion we will consider the effect of including the epistemic uncer-

tainty in our estimate of some of the parameters of the distributions of the environmental variables.

In particular, we will consider the effect of the epistemic uncertainty in the annual average 10-

minute mean wind speed,µV , on our estimate of the long-term distribution of extreme loads. A

separate analysis will consider assessing the effect of epistemic uncertainty in the conditional mean

4The error discussed about is found as:

CovµV =
σµV

µV
=

seµ̂V

10
= 0.52%
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turbulence,µI|V , on our estimate of the long-term distribution of extreme loads.5 Finally, we con-

sider the effect of including the epistemic uncertainty in our estimates of both,µV andµI|V . At this

level we can compare qualitatively the sensitivity of our estimate of the long-term distribution of

the extreme load to the epistemic uncertainty associated withµV andµI|V . For each of these sce-

narios we will assume that the functions for conditional mean turbulence, and standard deviation,

σI|V given 10-minute mean wind speed previously presented for the Lavrio, Greece, site still apply.

These relations are summarized below and discussed in more detail in Chapters3 and4.

µI|V = 2.4486v−0.9971 (6.8)

σI|V = 0.025 (6.9)

The analyzes presented below consider theAOC 15/50 turbine installed at a site with environ-

mental conditions similar to those present at the Lavrio, Greece, test site. We will present analysis

for the blade root flap bending direction only. The methodology discussed here is equally applicable

to the blade root edge bending direction. The short-term blade root flap bending extreme response

of the AOC 15/50 turbine based on modeling global peaks was presented and discussed in Chap-

ter 3; these results are used in this analysis below but are not re-presented or reviewed. The reader

is encouraged to refer to Chapter3 for the details of the development of this model.

6.3.1 Estimating the Long-Term Distribution of Extreme Loads Considering Uncer-
tain Parameters of the Distributions of Environmental Variables

Uncertain Annual Average 10-Minute Mean Wind Speed

This section considers estimating the long-term distribution of extreme blade root flap bending loads

including the epistemic uncertainty associated with the parameter of the Rayleigh distribution of 10-

minute mean wind speed, the annual average 10-minute mean wind speed. We will consider three

cases. In each of the three cases, we will assume that we have ample information to quantify the

uncertainty in our estimate of,µV . The level of epistemic uncertainty associated with our estimate

of µV , we denote byδµV , the coefficient of variation of,µV . If we µV is known with no attendant

uncertainty thenδµV =0. We consider three cases whereδµV = 5%, 10%, and 20%.

5Note that because the Rayleigh distribution is a single parameter distribution we need not also deal with the uncer-
tainty in σV . The contribution made by the epistemic uncertainty in the conditional standard deviation of turbulence to
variability of the long-term distribution of the extreme loads is not considered in this analysis. The epistemic uncertainty
in our estimate of the conditional standard deviation of turbulence is considered to be sufficiently small compared with
that of the mean, and therefore the standard deviation is considered to be a known constant with no attendant uncertainty
or bias. This may or may not be a reasonable assumption. The uncertainty in this parameter could be introduced by the
same method illustrated here for the means.
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The analysis used Monte Carlo simulation. For each case, the distribution ofµV was as-

sumed to be Gaussian withE[µV ] = 10m/s (note in the long-term analysis presented in Chapter3,

µV = 10m/s), and the coefficient of variation equal toδµV = 5%, 10%, or 20%. Five hundred

simulations were performed for each case. For each simulation a different realization ofµV was

obtained. This parameter defines the Rayleigh model for the long-term distribution of 10-minute

mean wind speed. Each simulation then has a different long-term distribution of the 10-minute mean

wind speed as defined by its particular realization ofµV . The Gaussian model for the conditional

distribution of turbulence was defined based on Equations6.8and6.9. An estimate of the long-term

distribution of extreme blade root flap bending loads is obtained from Equation3.16. The values of

the environmental variables are discretized into evenly spaced intervals. For each pair of values of

the environmental variables, the corresponding short-term load distribution is generated. The short-

term load distributions are summed together, each weighted by the probability of the respective

environmental conditions, i.e., pair of values of the environmental variables (V andI) occurring.

The summation is performed over the entire range of environmental variables. Following this pro-

cess for each realization ofµV results in 500 estimates of the long-term distribution of extreme blade

root flap bending moments for an arbitrary 10-minute period. The median (250th ranked) and mean

estimates of the long-term distribution of extreme blade root flap bending moments for an arbitrary

10-minute interval considering three levels of uncertainty inµV (i.e., δµV = 5%, 10% and 20%)

are shown in Figure6.1(a). The median estimate is found by sorting the probability of exceedance

values associated with the 500 long-term distributions for a given bending moment and selecting

the250th highest value. Similarly, the mean estimate is found by calculating the mean probability

of exceedance value over the 500 long-term distributions for a given bending moment.

The probability distribution function that results from the above analysis is for an arbitrary 10-

minute period. We defined in Chapter3 the 50-year load as the valuel such that, an estimate of

the 50-year load is associated with a 0.02 probability of exceedance of the distribution of annual

extreme loads.

1− 1/50 = 0.98 = FL1 year(l) = (FL10 min(l))
N (6.10)

WhereFL1 year(l) is the distribution of the annual extreme load,FL10 min(l) is the distribution of the

10-minute extreme load, andN is the number of 10-minute segments in one year,N = 365 ×
24 × 6 = 52, 560. Further, we saw in Chapter3 that if we assume that the 10-minute segments

were independent and if the value ofFL1 year is close to one, an estimate of the 50-year load could

be obtained simply from the distribution of 10-minute extreme loads. The estimate was obtained by

considering the appropriate probability level, i.e., the probability level associated with the 50-year
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mean return period; more formally,

(50years×N)GL10 min(l) = 1 (6.11)

GL10 min(l) =
1

50N
=

1
50× 52, 560

= 3.805× 10−7 (6.12)

whereN is the number of 10-minute segments in 1-year andGX(x) is the complimentary cumula-

tive distribution function,GX(x) = 1−FX(x). In this case, where the annual average wind speed,

µV , is itself assumed to be a random variable, our assumption of independence above is no longer

valid, however. Further we are interested in all values ofG from 1 to 0. The distribution ofL10 min

is conditional on the realization of the annual average wind speed. Once we have an estimate ofµV ,

it does not change from one 10-minute period to the next, but rather it is fixed with respect to time.

This is an important point, asµV is not independent from 10-minute to 10-minute period, we can no

longer perform the analysis on the basis of anarbitrary 10-minute segment as we did in Chapter3.

In this case we must obtain our estimate of the 50-year load as the probability level associated with

the 50-year return period from the annual distribution of extreme loads. However, given a value

for µV (i.e., instance or realization in the Monte Carlo simulation), we can assume independence

and obtain an estimate of the annual long-term distribution of the extreme load,FL1 year(l), from the

long-term distribution of the extreme load in an arbitrary 10-minutes,FL10 min by

FL1 year(l) = {FL10 min(l)}N (6.13)

= {1−GL10 min(l)}N (6.14)

Figure 6.1(b) shows the median and mean estimates of the long-term distribution of annual

extreme blade root flap bending loads. The probability level associated with the 50-year mean

return period is1
50 = 0.02 = 2%. The median estimate of the 50-year blade root flap bending load

is 59.7kN-m for all three levels of uncertainty inµV , δµV = 5%, 10% and 20% andE[µV ] = 10m/s.

We could obtain an estimate of the 50-year load by considering the load associated with a mean

annual exeedance probability of 2%. In this case, our estimate of the 50-year load is 60.1kN-m for

δµV =5% level, 62.3kN-m forδµV =10% level, and 78.0kN-m forδµV =20% level. Again, at all levels

E[µV ] = 10m/s. If we consider 20% uncertainty in our estimate ofµV , then the load with a mean

annual exceedance probability of 2% is 30.7% higher than if we consideredµV deterministic. On

the other hand, if the epistemic uncertainty is reduced to about 5%, the load with a mean annual

exceedance probability of 2% is about 0.7% higher than consideringµV deterministic. These results

are summarized in Table6.1.
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Also shown in Figure6.1(b)are the 95% upper confidence estimates of the long-term distribu-

tion of annual extreme blade root flap bending loads. An upper confidence level, specifically the

95% upper confidence level, is found by sorting the probability of exceedance values associated

with the 500 long-term distributions for a given bending moment and selecting the475th highest

value. Our 95% upper confidence limit estimates of the 50-year blade root flap bending load con-

sidering uncertainµV with δµV = 5%, 10% and 20%, are 62.5kN-m, 70.2kN-m, and 93.5kN-m,

respectively. If we consider 20% epistemic uncertainty inµV , our high confidence estimate of the

50-year load increases by 56.6%. On the other hand, if the epistemic uncertainty is reduced to about

5%, our 95% upper confidence limit estimate of the 50-year load increases but only by about 5%.

Uncertain Conditional Mean Turbulence

In the previous section we saw how we may obtain median and mean estimates of the long-term

distribution of annual extreme blade root flap bending load including epistemic uncertainty in our

estimate of the annual average 10-minute mean wind speed. Here, we consider a similar question:

what is the effect on our estimate of the 50-year blade root flap bending load if we consider epistemic

uncertainty in our estimate of the conditional mean turbulence?

Equation6.8gave the relation for the mean turbulence given 10-minute mean wind speed. Now

we consider the condition where the mean turbulence is uncertain

µI|V = 2.4486v−0.9971 + εµI|V (6.15)

WereεµI|V is an error term, withE[εµI|V ] = 0 andVar[εµI|V ] such that, for three separate cases, the

coefficient of variation of the conditional mean turbulence, denote byδµI|V , is equal to 5%, 10%,

and 20%.

A similar Monte Carlo simulation analysis was conducted to determine the long-term distribu-

tion of extreme blade root flap bending loads In this case, however, we returned to considering the

annual average 10-minute mean wind speed deterministic,µV = 10m/s. The conditional mean tur-

bulence,µI|V , was assumed to follow a Gaussian distribution withE[µI|V ] = 2.4486v−0.9971, and

the coefficient of variationδµI|V = 5%, 10%, or 20%. Five hundred simulations were performed

for each case.

In each case, the values of the 10-minute mean wind speed were discretized into evenly spaced

intervals. For each value of 10-minute mean wind speed, five hundred simulations of conditional

mean turbulence were obtained. The conditional standard deviation of turbulence was consider

deterministic and given in Equation6.9. In this manner, 500 observations were obtained for the

conditional mean turbulence for each increment of 10-minute mean wind speed. The error terms,
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(a)Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes.
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.1:Median, mean, and 95% upper confidence level estimates of the long-term distribution
of extreme blade root flap bending moment, considering the parameter of the Rayleigh
distribution of 10-minute mean wind speed uncertain. Three conditions are presented,
δµV = 5%, 10% and 20%. Also shown, for comparison, is the long-term distribution
with all parameter values considered deterministic,δµV = 0.
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εµI|V , were assumed to be perfectly correlated from one increment ofV to the next. An alternative

approach would have been to use a (common) multiplicative error; this approach was not employed.

The two parameters, conditional mean and standard deviation define a Gaussian model for the dis-

tribution of conditional turbulence. The values of the conditional turbulence were discretized into

evenly spaced intervals.

An estimate of the long-term distribution of extreme blade root flap bending loads is obtained

from Equation3.16. For each pair of values of the environmental variables the corresponding short-

term load distribution is generated. Again, here the short-term load distribution is based on modeling

the global peaks as discussed in Chapter3. The short-term load distributions are summed together

each weighted by the probability of the respective environmental conditions, i.e., pair of values

of the environmental variables occurring. The summation is performed over the entire range of

environmental variables. This results in 500 estimates of the long-term distribution of extreme

blade root flap bending moments for an arbitrary 10-minute period. The median and mean estimate

of the long-term distributions of blade root flap bending moment for an arbitrary 10-minute interval

are shown in Figure6.2(a), considering the three cases whereδµV = 5%, 10% and 20%.

Figure6.2(b) shows the mean and median estimates of the long-term distributions of annual

extreme blade root flap bending loads. Our median estimate of the 50-year blade root flap bending

load is 59.7kN-m considering uncertainµI|V with δµI|V = 5%, 10% and 20%. This is the same

value we obtained for our estimate of the 50-year load when we consideredµI|V deterministic, as

given in Equation6.8. Taking our estimate of the 50-year load as the load associated with a mean

annual exceedance probability of 2% results in estimates of 59.9kN-m forδµI|V = 5%, 60.7kN-m

for δµI|V = 10%, and 63.5kN-m forδµI|V = 20%. If we consider 20% epistemic uncertainty in our

estimate ofµI|V , then the load with a mean annual exceedance probability of 2% is 6.4% higher

than if we consideredµI|V deterministic. On the other hand, if the epistemic uncertainty is reduced

to about 5%, the load with a mean annual exceedance probability of 2% is about 0.3% higher than

consideringµV deterministic. These results are summarized in Table6.1.

Also shown in Figure6.2(b)are the 95% upper confidence estimates of the long-term distribu-

tion of annual extreme blade root flap bending loads. Our 95% upper confidence limit estimates

of the 50-year blade root flap bending load considering uncertainµI|V with δµI|V = 5%, 10% and

20%, are 61.7kN-m, 63.7kN-m, and 67.7kN-m, respectively. If we consider 20% epistemic uncer-

tainty in our estimate ofµI|V , our 95% confidence limit estimate of the 50-year load is 13.4% higher

than our estimate if we considered the parameter deterministic. On the other hand, if the epistemic

uncertainty is reduced to about 5%, our 95% upper confidence limit estimate of the 50-year load is

about 3.3% higher.
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(a)Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes.
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.2:Median, mean, and 95% upper confidence level estimates of the long-term distribu-
tions of extreme blade root flap bending moment, considering the mean of the Gaus-
sian distribution of conditional turbulence uncertain. Three conditions are presented,
δµI |V = 5%, 10% and 20%. Also shown, for comparison, is the long-term distribution
with all parameter values considered deterministic.
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Uncertain Annual Average 10-minute Mean Wind Speed and Conditional Mean Turbulence

In the case considered here the analysis consists of nesting the uncertain conditional mean analysis

within the uncertain annual average 10-minute mean wind speed analysis. Again, three cases were

considered whereδµV = δµI|V = 5%, 10%, and 20%. The epistemic uncertainty in the conditional

mean turbulence is considered to be independent of the epistemic uncertainty in the annual average

10-minute mean wind speed.

The Monte Carlo simulation results in multiple realizations of the long-term distribution of

extreme blade root flap bending loads. The median and mean long-term distributions for an arbitrary

10-minute interval in Figure6.3(a), considering the three cases whereδµV = δµI|V = 5%, 10% and

20%.

Figure6.3(b)shows the median and mean estimate of the long-term distribution of annual ex-

treme blade root flap bending loads. Our median estimate of the 50-year blade root flap bending

load is 59.7 kN-m for all three conditions of uncertainµV andµI|V (δµV = δµI|V = 5%, 10%,

and 20%), which is the same estimate we obtained when we consideredµV andµV |I deterministic,

i.e., δµV = δµI|V = 0. Taking our estimate of the 50-year load as the load associated with a mean

annual exceedance probability of 2% results in estimates of 60.2kN-m forδµI|V = 5%, 62.7kN-m

for δµI|V = 10%, and 81.9kN-m forδµI|V = 20%. If we consider 20% epistemic uncertainty in our

estimate ofµV andµI|V , then the load with a mean annual exceedance probability of 2% is 37.2%

higher than if we considered the parameters deterministic. On the other hand, if the epistemic un-

certainty is reduced to about 5%, then the load with a mean annual exceedance probability of 2% is

about 0.8% higher. These results are summarized in Table6.1.

Also shown in Figure6.3(b) are the 95% upper confidence limit estimates of the long-term

distribution of annual extreme blade root flap bending loads. Our 95% upper confidence limit

estimates of the 50-year blade root flap bending load considering uncertainµV andµI|V with δµV =
δµI|V = 5%, 10% and 20%, are 63.1kN-m, 70.2kN-m, and 93.5kN-m, respectively. If we consider

20% epistemic uncertainty in our estimate of the parameters then our upper confidence estimate of

the 50-year load increases by 56.6% over our estimate if we considered the parameters deterministic.

On the other hand if the epistemic uncertainty is reduced to about 5%, our 95% upper confidence

limit estimate of the 50-year load increases by only about 5.5%.
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(a)Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes.
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(b) Median, mean, and 95% upper confidence level estimates of the long-term distri-
bution of annual extreme blade root flap bending moment.

Figure 6.3:Median, mean, and 95% upper confidence level estimates of the long-term distribu-
tions of extreme blade root flap bending moment, considering both the parameter of
the Rayleigh distribution of 10-minute mean wind speed and the mean of the Gaus-
sian distribution of conditional turbulence uncertain. Three conditions are presented,
δµV = δµI |V = 5%, 10% and 20%. Also shown, for comparison, is the long-term
distribution with all parameter values considered deterministic.
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Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Long-term Environmental Variable Distribution Parameters

Parameters deterministic, 50-year load = 59.7kN-m

Estimate
Median % with mean % 95% %

Wind speed δµV estimate diff. annual exceed diff. confidence diff.
(kN-m) Prob = 2% estimate (kN-m)

(kN-m)
5% 59.7 0% 60.1 0.7% 62.5 4.8%
10% 59.7 0% 62.3 4.4% 68.2 14.2%
20% 59.7 0% 78.0 30.7% 87.1 46%

Turbulence δµI|V
5% 59.7 0% 59.9 0.3% 61.7 3.3%
10% 59.7 0% 60.7 1.7% 63.7 6.7%
20% 59.7 0% 63.5 6.4% 67.7 13.4%

Wind speed & δµV =
turbulence δµI|V

5% 59.7 0% 60.2 0.8% 63.0 5.5%
10% 59.7 0% 62.7 5.0% 70.2 17.5%
20% 59.7 0% 81.9 37.2% 93.5 56.6%

Table 6.1:Comparison of estimates of 50-year blade root flap bending moment, including uncer-
tainty long-term environmental variable distribution parameters, with considering all pa-
rameters deterministic.
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6.3.2 Summary

In the previous three sections we have considered three general conditions—each assessing the

effect on including epistemic uncertainty in the distribution parameters on our estimate of the 50-

year load. Table6.1 summarizes the results from these previous sections. In the first section we

considered including the epistemic uncertainty in our estimate of the annual average 10-minute

mean wind speed. In the second section we considered including the epistemic uncertainty in our

estimate of the conditional mean turbulence. We found that for the turbine, site data, and probability

models considered here including the epistemic uncertainty in the conditional mean turbulence did

not increase our estimate of the 50-year blade root flap bending load, defined as the load associated

with a annual exceedance probability of 2%, as much as including the the epistemic uncertainty

in the annual average 10-minute mean wind speed. Further analysis, which included considering

the epistemic uncertainty associated with both model parameters, did not show a significant further

increase in this estimate of the 50-year blade root flap bending load, about a 5% percent increase for

the case with 20% coefficient of variation, over only considering epistemic uncertainty associated

with the annual average 10-minute mean wind speed.

6.4 Uncertainty in short-term load distribution

6.4.1 Uncertain regression coefficients

The methodology presented in Chapter3 for predicting the long-term extreme response, involved

fitting a probability model to the observed responses for a given set of realizations of the environ-

mental variables by the method of moments. The statistical moments of the responses were related

to the realizations of the environmental variables by regression analysis. Then, finally, the condi-

tional distributions of the responses are weighted by the probability of the respective realizations of

the environmental variables occurring, and summed over the domain of the environmental variables.

In the context of understanding the sources of epistemic uncertainty in the short-term loads

distribution, let us again consider the analysis of constructing the short-term loads model of extreme

loads based on modeling global peaks,Z, with a Gumbel distribution as shown in Equation6.16.

We are interested in the uncertainty in our estimates of the parameters of the model,α̂ andû. But

we saw in Chapter3 that we can relate the parameters of the Gumbel model to the the first two

statistical moments of the observed 10-minute maximum response, i.e., global peaks,Z, defined in
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Chapter1 by the method of moments,

FZ(z) = exp (− exp (−α̂(z − û))) (6.16)

α̂ =
π√
6σ̂2

Z

û = µ̂Z − γEuler

α̂

γEuler = 0.577

Whereµ̂Z andσ̂2
Z are the estimates of the mean and variance of the 10-minute maximum response,

respectively. So we can turn our attention to the uncertainty in the estimates of the statistical mo-

mentsµ̂Z and σ̂2
Z . We saw in Chapter1 that the standard error of our estimate of the mean is,

seµ̂Z
=

σ̂Z√
n

(6.17)

Wheren, is the number of observations for a given pair of values of the environmental variables,

(v, i). Similarly, we may assume that the standard error of the estimate of the variance is also

inversely proportional to the number of observations such that,

se
σ̂2

Z

∝ σ̂2
Z

n
(6.18)

This is only one portion of the uncertainty in our estimates of the statistical moments, however.

In the process of computing the long-term response we relate the statistical moments of the response

to the environmental variables through regression analysis (see AppendixB). Specifically, we have

used the power law function proposed by Veers and Winterstein [54]

µ̂j = aj

(
V

Vref

)bj
(

I

Iref

)cj

j = 1, 2 (6.19)

Whereµ1 = µZ andµ2 = σ2
Z . The uncertainty in our estimates of the regression coefficients

is related to the epistemic uncertainty in the statistical moments used in the regression analysis

as seen in Equation6.19. Two methods for estimating the epistemic uncertainty in the regression

coefficients are presented here. First, we consider having a large number of samples of the response

for a given set of values of the environmental variables. In this case the bootstrap method [48] is used

to estimate the uncertainty. Second, we could use the principals of regression analysis to estimate

the uncertainty in the regression coefficients. This approach, however, assumes that the covariance

matrix of the regression coefficients is known with certainty. In general, we must consider that the
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covariance matrix is also unknown—we only have an estimate of it. This is the benefit of the first

method. In general, the application of the bootstrap method as described below does not requirea

priori knowledge, or assumption, of the covariance matrix. It works directly with the data—as we

will see. It does, however, require a large amount of data. If only a few samples have been collected

for each set of values of the environmental variables (e.g. 10-20 samples) the second method would

be an appropriate alternative to provide an estimate of the uncertainty. It is important to realize that

this second method will discount some sources of uncertainty, i.e., because it prescribes a known

covariance matrix.

6.4.2 Using Bootstrap Method to Estimate Uncertainty in Regression Coefficients

In this analysis, a bootstrap [48] methodology is employed to estimate the uncertainty associated

with the regression coefficients. Let us first consider the condition where we are interested in es-

timating the uncertainty in the regression coefficients based on only 10 mechanical-math-model

simulations for each set of values of the environmental variables from which to estimate the mean

and standard deviation of the 10-minute maximum response. In this case, our estimates of the

statistics of the 10-minute maximum response given a set of values of the environmental variables

are based on only these 10 response time histories. The reader should recall that in Chapter3 the

estimates of these statistics were based on 100 time histories.

To estimate the epistemic uncertainty associated with these estimates based on only 10 response

time histories the following methodology is employed. 10 response time histories are selected at

random with replacement from the set of 100 original response time histories, for each set of values

of the environmental variables as described in Chapter3. Then we obtain the statistics of the 10-

minute extreme response from thisbootstrap sample. This process is performed for each set of the

values of the environmental variables. Based on this data and following the procedure developed

in Chapter3, we obtain an estimate of the distribution ofL10 min, the long-term distribution of the

extreme 10-minute flap bending load. This process of selecting 10 time histories with replacement

and then obtaining an estimate of the distribution ofL10 min is performed 1000 times. At the end, we

have 1000 estimates of the distribution ofL10 min. The median (500th ranked) and mean estimates

of the long-term distribution of blade root flap bending moments for an arbitrary 10-minute interval

considering 10, 20, 50 and 100 mechanical-math-model simulations are shown in Figure6.4. The

median estimate is found by sorting the probability of exceedance values associated with 1000 long-

term distributions for a given bending moment and selecting the500th highest value. Similarly, the

mean estimate is found by calculating the mean probability of exceedance value over the 1000

long-term distributions for a given bending moment.

Figure6.5shows the median and mean estimates of the long-term distribution of annual extreme
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blade root flap bending loads using 10, 20, 50, and 100 mechanical-math-model simulations upon

which to base the estimates of the statistics of the 10-minute extreme response, and thereby affect the

uncertainty in the estimates of the regression coefficients. The reader is reminded that our estimate

of the 50-year load in Chapter3, where we assumed the regression coefficients were known, was

59.7kN-m. From Figure6.5(a), using the bootstrap method to obtain an estimate of the uncertainty

in the regression coefficients, our median estimate of the 50-year load ranges from 107.2kN-m

(if based on 10 mechanical-math-model simulations for each set of values of the environmental

variables) to 60.4kN-m (if based on all 100 simulations). Considering an estimate of the 50-year

load given as the load with a mean annual probability of exceedance of 2% is only 1.1% higher

(60.4kN-m) than our estimate from Chapter3. Similarly, the load with a mean annual probability of

exceedance of 2% based on 50 simulations is 206kN-m, 245% higher. Estimates of the 50-year load

defined as the load with a mean annual probability of exceedance of 2% are significantly higher if

only 10 or 20 simulations are used, on the order of 6,000 kN-m, or more.

Also shown in Figure6.5are the 95% upper confidence limit estimates of the long-term distri-

bution of annual extreme blade root flap bending loads. The 95% upper confidence level is found by

sorting the probability of exceedance values associated with 1000 long-term distributions for a given

bending moment and selecting the950th highest value. Our 95% upper confidence limit estimate

of the 50-year load considering all 100 simulations is 11.4% higher (66.5kN-m) than our estimate

from Chapter3. Similarly, our 95% upper confidence limit estimate of the 50-year load based on

50 simulations is 270kN-m, 352% higher. Our upper confidence level estimates of the 50-year load

are significantly higher if only 10 or 20 simulations are used, on the order of 9,500kN-m, or more.

These results are summarized in Table6.2. Note that the results based on only a few simulations

are far beyond the range of realistic design loads, and further illustrates the effect of higher levels

of epistemic uncertainty.

Uncertain Regression Coefficients with Known Covariance

In this section we consider using the principals of regression analysis to estimate the uncertainty in

the regression coefficients. The variance in the regression coefficients is related to the variance of

the residuals. The variance of the residuals is discussed below. We may consider the general form

of the regression problem,6

Y = Xβ + ε (6.20)

Where,Y is the vector of predicted values,X is the matrix of predictor variables (parameters),β,

is the vector of regression coefficients, andε is the vector of residuals. Here the elements of the

6Additional discussion on regression analysis is presented in AppendixB. See also Weisburg [67] and Rice [24]
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Figure 6.4:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes, considering regression coefficients uncer-
tain. The bootstrap method was used to estimate uncertainty in regression coefficients.

Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Regression Coefficients—Bootstrap Method

Regression coefficients deterministic, 50-year load = 59.7kN-m

Estimate 95%
Number of Median with mean confidence
time history estimate % annual exceed. % estimate %
simulations (kN-m) diff. prob. = 2% diff. (kN-m) diff

(kN-m)
10 107 79.5% 224,000 375,000% 1.35× 106 NA
20 64.5 8.1% 6,345 10,500% 9,515 15,000%
50 61.0 2.2% 206 245% 270 352%
100 60.4 1.1% 65.9 10.4% 66.5 11.4%

Table 6.2:Comparison of estimates of 50-year blade root flap bending moment, considering un-
certain regression coefficients. The bootstrap method was used to estimate uncertainty.
Estimates of the 50-year blade root flap bending moment are compared with results ob-
tained with regression coefficients considered deterministic.
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(a)Median estimates of the long-term distribution of annual extreme blade root flap
bending moment.
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Figure 6.5:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment, considering regression coefficients uncertain. The bootstrap method
was used to estimate uncertainty in regression coefficients.
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vector of regression coefficients are:ln(a), b, andc. An estimate forβ can be found by,

β̂ = (XTX)−1XY (6.21)

From Weisburg [67], if E[ε] = 0 andVar[ε] = σ2In, thenβ̂ is unbiased,E[β̂] = β, and

Var(β̂) = Σ�� = σ2(XTX)−1 (6.22)

whereΣ�� denotes the covariance matrix of the regression coefficients, and an estimate ofσ2 can

be found from,

σ̂2 =
RSS

n′ − p
(6.23)

with n′ equal to the number of pairs of values of the environmental variables,(V, I)j , (j=1,. . . ,n′),
p is the number of parameters in the regression analysis, i.e.,p=3, and the sum of squared residuals

(RSS) is

RSS = ε̂T ε̂ = (Y −Xβ̂)T (Y −Xβ̂) (6.24)

so

V̂ar(β̂) = σ̂2(XTX)−1 (6.25)

We may consider this error the model fit error, i.e., the uncertainty associated with the lack of fit of

the functional form of the model to the data.

The total model error, includes model fit error but also uncertainty in our estimates of the statis-

tics of the response, i.e., mean and standard deviation of the 10-minute maximum response. If

we were to know that the functional form of the model was correct, then, given enough observa-

tions of the response at different environmental conditions, i.e., pairs ofV andI, the model error

would approach zero. The total model error in this case would only depend on the number of ob-

servations/simulations per environmental conditions. In this case, we could potentially drive the

uncertainty to zero, purely by continuing to collect data, across both multiple observations of the

response for a given specific set of environmental conditions and also across a range of different en-

vironmental conditions. If on the other hand the functional form does not contain enough flexibility

to fit to the data, or the data actually follows some other functional form, then the model fit error is

irreducible beyond some point, even as we continue to collect data. Data collected for the response

at additional different environmental conditions will not reduce this error because the functional

form is not “correct”. Multiple observations of the response for a given environmental condition

will reduce the standard error of the statistics and reduce the total error. However, in the limit with

enough observations the total model error will only reduce to equal the model fit error.
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Figure6.6 shows mean and median estimates of the long-term distribution of extreme blade

root flap bending loads for arbitrary 10 minutes, where the statistics of the maximum response are

based on an increasing number of mechanical-math-model simulations. For each condition, the re-

quired number of mechanical-math-model simulations are selected at random from the pre-existing

data set where 100 mechanical-math-model simulations were performed at each set of values on

the environmental variables. The pooled statistics of the maximum response are calculated and a

regression analysis performed. From the regression analysis, the covariance matrix of the regres-

sion coefficients is obtained. We assume the residuals of the regression analysis follow a Gaussian

distribution and therefore our estimates of the regression coefficients also follow a Gaussian distri-

bution. The covariance matrix of the regression coefficients is used to determine the uncertainty in

the regression coefficients for the Monte Carlo analysis.

One thousand simulations of a Monte Carlo analysis were conducted where the regression co-

efficients are considered uncertain. The error terms of the regression coefficients are calculated as

follows: U is the matrix of uncorrelated standard normal error terms,L is the resulting lower tri-

angular matrix of a Cholesky decomposition ofΣ��. The matrix of correlated normal error terms,

Uc is found by

Uc = LULT (6.26)

for each set of error terms is added to the expected regression coefficients and the moments cal-

culated for each. The standard process of calculating the estimate of the long-term distribution of

extreme flap bending loads follows from this point. At the end of the Monte Carlo simulation 1000

estimates of the long-term distribution of extreme loads are obtained. Figure6.7shows the median

and mean estimates of the long-term distribution of annual extreme blade root flap bending loads

using 10, 20, 50, and 100 mechanical-math model simulations upon which to base the estimates of

the statistics of the 10-minute extreme response. From Figure6.7(a), all our median estimates of the

50-year load are in a narrow range from a minimum of 57.3kN-m for the case when 50 mechanical-

math-model simulations for each set of values of the environmental variables are used, to 64.1kN-m

if based on only 10 simulations. It is important to point out here that the estimates obtained here are

specific to the set of data randomly selected for our sample of 10, 20, or 50. If a different sample

of similar size were chosen, with different expected value of the regression coefficients, different

median values would result. This is why we observe a lower estimate when only 20 simulations are

used instead of 50—another set of 20 simulations may result in a estimate higher than the estimate

obtained from the 50 simulations used here. (Note, the bootstrap method, discussed above, inher-

ently includes this additional uncertainty). An estimate of the 50-year load given as the load with a

mean annual probability of exceedance of 2%, using all 100 simulations, is 0.9% higher (60.3kN-m)

than our estimate from Chapter3. Similarly, the load with a mean annual probability of exceedance
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Figure 6.6:Median and mean estimates of the long-term distribution of extreme blade root flap
bending moment for an arbitrary 10-minutes, considering regression coefficients uncer-
tain with fixed covariance matrix.

of 2% based on 10 simulations is 907.5kN-m, 1420% higher. These results are summarized in Ta-

ble 6.3. The width of the distance between median and mean annual probability of exceedance (at

the 2% level) estimates calculated assuming a known covariance is smaller compared with the width

between median and mean annual probability of exceedance (at the 2% level) estimates based on

using the bootstrap method for all of the different number of mechanical-math model simulations

analyzed here. Therefore, we may conclude that there is some uncertainty that is not accounted

for by considering the covariance matrix of the regression coefficients fixed. Although, when the

number of simulations included in the analysis becomes large (e.g., 100) we observed only a small

difference in the estimates obtained from the two methods.
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Figure 6.7:Median and mean estimates of the annual long-term distributions of extreme blade root
flap bending moment, considering regression coefficients uncertain. Regression coeffi-
cients considered uncertain with fixed covariance matrix.
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Estimation of 50-year Blade Root Flap Bending Moment
Including Uncertain Regression Coefficients with Known Covariance

Regression coefficients deterministic, 50-year load = 59.7kN-m

Estimate 95%
Number of Median with mean confidence
time history estimate % annual exceed. % estimate %
simulations (kN-m) diff. prob. = 2% diff. (kN-m) diff

(kN-m)
10 64.1 7.4% 908 1,420% 693 1,061%
20 58.7 -1.7% 128 114% 140 135%
50 57.3 -4.1% 133 123% 98.7 65%
100 60.3 0.9% 65.5 9.7% 65.7 10%

Table 6.3:Comparison of estimates of 50-year blade root flap bending moment, considering uncer-
tain regression coefficients with known covariance. Estimates of the 50-year blade root
flap bending moment are compared with results obtained with regression coefficients
considered deterministic.
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6.4.3 Model Uncertainty

In the previous section we discussed epistemic uncertainty with respect to the regression coeffi-

cients. Here, we discuss the uncertainty associated with our estimate of the 10-minute maximum

response from simulated mechanical-model-based data versus observed field data.

The National Renewable Energy Laboratory collected field data on anAOC 15/50 turbine in-

stalled at the National Wind Technology Center test site in Boulder, Colorado. They recorded 152

10-minute time histories at different sets of values of 10-minute mean wind speed and turbulence

were recorded during November and December, 1999.7 This included both time histories of the

wind process and time histories of the response blade root flap and edge bending moments. Only

the blade root flap bending moment data is used in the analysis considered here. Of the 152 time

histories, two of the time histories were removed from the data set because erroneous data had

been recorded.Figure6.8shows plots of the statistics of the environmental conditions for each time

history of the wind process. The coefficient of variation of the 10-minute wind process versus 10-

minute mean wind speed is shown in Figure6.8(a). The standard deviation of the 10-minute wind

process versus 10-minute mean wind speed is shown in Figure6.8(b).

The observed 10-minute maximum blade root bending moment is plotted versus 10-minute

mean wind speed in Figure6.9(a). For each set of environmental conditions shown in Figure6.8(a)

one simulated response was generated using theYAWDYN [20] aerodynamics and dynamics model

first presented in Chapter3. This is the same mechanical model and analysis code that was used

to generate the simulation data used to develop the description of the short-term load models in

Chapter3 and later used for the fatigue analysis in Chapter5. Figure6.9(b)shows the 10-minute

maximum blade root flap bending load from simulation versus the 10-minute mean wind speed for

the same set of values of the environmental variables. Each simulated or observed response, for

a given set of environmental conditions, represents one draw from an unknown population of re-

sponses. We know that if we ran a second simulation at the same set of environmental variables

we would get a different estimate of the 10-minute maximum blade root flap bending load. We

saw this in Chapter3 where we ran 100 simulations for the same set of values of the environmental

variables. In one case in Chapter3 we fit a Gumbel model to the distribution of the 100 realizations

of the 10-minute maximum response. In this case, we acknowledge that we have some irreducible

uncertainty, i.e., randomness in the 10-minute maximum response. This is aleatory uncertainty. The

epistemic uncertainty results in our lack of knowledge in estimating the Gumbel model parameters

which define the model. In this analysis we are interested in concentrating on the epistemic uncer-

tainty. Taking only the one draw, i.e., on observation from the population of either simulated data

or observed data for a given set of environmental conditions, allows us to consider the epistemic

7This data was provided by Rick Santos of the National Renewable Energy Laboratory
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Regression of the Observed 10-minute Maximum on
Predicted 10-minute Maximum

Blade root flap bending
β̂ σ̂εm R2

1.3569 kN-m 37.675 (kN-m)2 .44204

Table 6.4:Numerical results of regression of the observed 10-minute maximum blade root flap
bending moment on the predicted 10-minute maximum blade root flap bending moment
from simulation. (Figure6.10)

uncertainty on a individual draw basis without the additional complication of considering any irre-

ducible uncertainty. In some respect, with only the one draw, all of the uncertainty is epistemic, or

based on our lack of knowledge.

We may ask at this point if any bias exists between our prediction of the maximum 10-minute

blade root flap bending load compared with the observed response based on individual draws from

each population, as discussed above. Figure6.10shows observed versus predicted 10-minute max-

imum blade root flap bending moment. A simple linear regression analysis with zero intercept, i.e.,

Lobs = βLpred+ εm (6.27)

was used to determine the bias factor,β, between the predicted response,Lpred, and the observed

response,Lobs. Whereεm is a random error term withE[εm] = 0 and Var[εm] = σ2
εm

. The

regression results are shown in Table6.4. From the regression analysis we find that the bias factor,

i.e, slope of the regression line, is about 1.36. (Note that if there had been no bias,β would equal

one.) Our observations, from field data, are about 36% higher on average than what was predicted

from the mechanical-math-model. The standard deviation of the residuals,σεm , is 6.14kN-m.

Additionally, we may consider a measure of error that is based on the ratio of observed response

to predicted response. Where the ratio is greater than one are instances where the analysis based on

the mechanical model under-predicted the response. Conversely, where the ratio is less than one the

mechanical model over-predicts the response. Figure6.11shows the ratio of observed to predicted

10-minute maximum blade root flap bending moment versus 10-minute mean wind speed. We find

that most of the ratios are greater than one and would indicate that our model under-predicted the

response of the turbine. This is consistent with the results found from the regression analysis.

We may obtain a mean estimate of the long-term distribution of extreme blade root flap bending

loads including model uncertainty by inflating our estimates of the mean and standard deviation

of the short-term extreme loads model developed from the mechanical-math-model data presented
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in Chapter3 to reflect the model error as described by Equation6.27and Table6.4. In Chapter3

the short-term extreme load distribution was based on modeling the global peaks from simulated

data. We showed in the analysis in this chapter that the predicted flap loads were on average biased

by about 1.36 and the standard deviation of the model error residuals was 6.14kN-m. To correct

for the bias we include a multiplicative term to the results we obtain from the regression analysis

that relates the mean 10-minute maximum response to the environmental variables. We can write

Equation3.19from Chapter3 considering the mean 10-minute maximum blade root flap bending

load and including the bias correction factor,β̂ as

µZ = 25.66kN-m

(
V

Vref

)0.7928 (
I

Iref

)0.7129

× β̂ (6.28)

Where β̂ = 1.36 We can include the uncertainty associated with regression analysis, i.e., ran-

domness associated with the prediction error by adding the variance of the residuals,σ2
εm

, to the

variance predicted by our model in Chapter3. In this case, we can write Equation3.19considering

the standard deviation of the 10-minute maximum, blade root flap bending load and including the

uncertainty,σ2
εm

, in our prediction error as

σZ =

√√√√
(

8.61kN-m

(
V

Vref

)0.3231 (
I

Iref

)0.2084
)2

+ σ2
εm

(6.29)

Whereσ2
εm

= 37.675(kN-m)2. Figure6.12shows the expected estimate of the long-term distribu-

tion of maximum blade root flap bending loads for an arbitrary year. Our estimate of the 50-year

blade root flap bending load, defined as the load with a mean annual exceedance probability of 2%,

considering uncertainty in our prediction from the mechanical model, is 107kN-m. An estimate

of the 50-year load of 59.7kN-m was obtained if we considered our mechanical-math-model to be

correct. Including a correction for the model error and the uncertainty associated with the model

error, our estimate of the 50-year load increases by 79.2%. 36% is due to the bias—the rest is due

to “model error”.
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6.5 Conclusions

In this chapter we have discussed some of the sources on epistemic uncertainty in our analysis of

estimating the long-term distribution of extreme blade root flap bending loads. We considered the

effect of including the epistemic uncertainty associated with estimates of the long-term distribution

parameters of the environmental variables. Including the uncertainty associated with the annual

average 10-minute mean wind speed, the parameter for the Rayleigh model of long-term 10-minute

mean wind speed had a greater contribution to the estimate of the long-term distribution of extreme

flap bending loads, than did including the epistemic uncertainty associated with the conditional

mean turbulence parameter, for the same level of parametric uncertainty of 20%. Including 20%

epistemic uncertainty in our estimate of the annual average 10-minute mean wind speed, our esti-

mate of the 50-year load, based on a mean annual exceedance probability of 2%, was 30.7% higher

than if we assumed the annual average 10-minute mean wind speed to be known. On the other hand,

including the 20% epistemic uncertainty in the conditional mean turbulence parameter our estimate

of the 50-year load, again based on a mean annual exceedance probability of 2%, was only 6.4%

higher than if we assumed this parameter was known. This shows that in this analysis the long-term

distribution of the extreme response is more sensitive to epistemic uncertainty in the annual aver-

age 10-minute mean wind speed. It is critical to consider both the uncertainty and the sensitivity

of the analysis to the uncertainty. Even though we have the same uncertainty in both parameters,

annual average 10-minute mean wind speed and conditional mean turbulence, the analysis is more

sensitive to changes in the annual average 10-minute mean wind speed. Given the choice, it would

be a better use of resources to collect data to reduce the epistemic uncertainty in the estimate of the

annual average 10-minute mean wind speed than the conditional mean turbulence if they have the

same level of uncertainty, because the analysis is more sensitive to changes in the former.

We considered two approaches for estimating the uncertainty associated with the regression

coefficients from limited data: (1) bootstrap method and (2) variance of coefficients through regres-

sion analysis. In the first approach, the bootstrap method was used to estimate the uncertainty in

the regression coefficients. In the bootstrap method, a few time-histories at a time were randomly

selected from the database. Then, based on thisbootstrap sample, we obtained an estimate of the

long-term distribution of the 10-minute extreme flap bending loads. This was repeated several times

in order to obtain median and mean estimates of the long-term distribution of extreme blade root

flap bending loads. We found that, in this case, if we considered 100 simulations at each set of

values of the environmental conditions our estimate of the 50-year load, based on a mean annual

exceedance probability of 2%, was 65.9kN-m about 10% higher than if we assumed the regression

coefficients were known. If we considered only 50 simulations at each set of values of the envi-

ronmental conditions our estimate of the 50-year load, again based on a mean annual exceedance
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probability of 2%, increased to 206kN-m, about 3 times greater increase than if we used twice as

many simulations.

The second approach utilized the assumptions in regression analysis to obtain a estimate of the

variance of the regression coefficients. This approach may be useful if only a few (i.e. less than

20) simulations were run at each set of values of the environmental variables. In implementing this

method, however, we assume that the covariance matrix of the regression coefficients remains fixed,

or known. This eliminates one potential source of additional epistemic uncertainty. Monte Carlo

simulation was used to randomly select sets of regression coefficients from jointly correlated Gaus-

sian distributions. These distributions were defined by the mean vector of regression coefficients and

the associated covariance matrix. One hundred mechanical-math-model simulations at each set of

values of the environmental conditions resulted in an estimate of the 50-year load, based on a mean

annual exceedance probability of 2%, of 65.5kN-m, about 10% higher than if the regression coeffi-

cients were known. If we considered only 50 simulations at each set of values of the environmental

conditions, our estimate of the 50-year load, again based on a mean annual exceedance probability

of 2%, increased to 133kN-m, about 2 times more than if we used twice as many simulations. The

width of the distance between median and mean annual probability of exceedance (at the 2% level)

estimates calculated assuming a known covariance is smaller compared with the width between

median and mean annual probability of exceedance (at the 2% level) estimates based on using the

bootstrap method for all numbers of mechanical-math-model simulations analyzed here. For exam-

ple, the width of the distance between median and mean annual probability of exceedance estimates

for 50 mechanical-math-model simulations using the bootstrap method is 145kN-m. Whereas, the

distance between these estimates for the same number of simulations but assuming a known covari-

ance matrix is 75.7kN-m. Therefore, we may conclude that there is some uncertainty that is not

accounted for by considering the covariance matrix of the regression coefficients fixed. Although,

when the number of simulations included in the analysis becomes large (e.g., 100), we observed

only a small difference in the estimates obtained from the two methods.

Keeping the results of the long-term analysis in mind, the analysis considering the model uncer-

tainty showed that there was enough bias, and variability in the bias, that if included would inflate

our estimate of the 50-year load by 79.2%. Just from these simple analyzes we can determine the

most effective areas to assign resources to reduce the epistemic uncertainty and then more accurately

estimate the 50-year load.
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Summary and Conclusions

The purpose of this work has been to provide a probabilistic based approach to estimate fatigue

and extreme load distributions on wind turbines. We started our discussion by looking at how we

might model the short-term extreme response conditional on variables which describe the wind

environment acting on the turbine. These models were then used to build estimates of the long-

term distributions of extreme load events, i.e., extreme blade bending moment, from which we

were able to estimate the one-year and 50-year loads. Subsequent to this work, we considered

alternative methods to simplify the intensive calculations to obtain these estimates and also how we

might quantify the associated uncertainty due to limited data in these estimates. Quantifying the

epistemic uncertainty, and qualitatively understanding the sensitivity to the sources of uncertainty,

provide a guideline to effectively target resources for further study and analysis. Additionally, we

showed how the methodology developed for estimating long-term distributions of extreme loads

could be applied to obtain estimates of the long-term distribution of fatigue ranges and estimates

of fatigue damage. The next few sections reflect on each of these points in more detail and present

suggestions for further research in several areas on the topic of fatigue and extreme load estimation

for wind turbines.

7.1 Modeling Short-Term Extremes

We started with considering the appropriate choice of short-term extreme load models (i.e., process

model, local peak model, or global peak model). Chapter2 demonstrated the use of both random

process and random peak models to predict short-term extreme wind turbine loads. In particular,

we studied the efficacy of 3-moment random peak models, i.e., quadratic Weibull, and 3- and 4-

moment random process Hermite models. We found that for a parked wind turbine experiencing

50-year winds, all models were nearly unbiased, and achieved a significant reduction, e.g., about

242



CHAPTER 7. SUMMARY AND CONCLUSIONS 243

50%, in our epistemic uncertainty in estimating the mean 10-minute maximum load, compared

with the statistics of theraw data. i.e., maximum event from 10-minute response time history of

blade root flap or edge bending moment. On the other hand, for rotating blades during operation,

at lower wind speeds, the random process models showed a notable bias. In contrast, the random

peak models remained consistently accurate, and displayed consistently lower epistemic uncertainty

in all cases. This suggested that rather than model the entire 10-minute time history, we could

model a set of its local peaks and retain enough information about the rotating nature of the load

process to permit obtaining accurate estimates of extreme behavior. Having found an accurate way

of estimating the short-term extreme loads given prescribed environmental conditions, we needed a

way to combine these short-term loads to estimate the marginal distribution of the extreme loads.

7.2 Estimating Long-Term Extreme Events

7.2.1 Integration Method

In Chapter3 we presented a methodology for obtaining an estimate of the marginal distribution

of the extreme loads by applying the Law of Total Probability. Starting from initial simulated

response time histories of theAOC 15/50 turbine, we fit distribution models to first the observed

10-minute extremes and then later to the set of local peaks in a 10-minute response time history. In

both cases the statistical moments that define the distribution model parameters were related to the

environmental variables—which describe the wind processes—through regression analysis. Finally,

an estimate of the long-term distribution of extreme blade root flap and edge bending moments

were obtained by integrating the conditional short-term blade root bending moment distributions

over the long-term distribution of the environmental variables. We found that the estimate of the

long-term distributions of extreme blade root flap and edge bending moments based on modeling

the local peaks were unbiased compared with the estimates of the long-term distributions of bending

moments based on modeling the observed 10-minute extremes. Solving the two-fold integration is

computationally intense, however. We discussed one method for mitigating this issue that simplified

the two-fold integration problem down to a single-fold integration by using deterministic fractiles

of the short-term load, turbulence intensity, and wind speed distributions. We showed that this

methodology captured a significant portion of the contribution that these variables made to the

variability of the long-term extreme bending moment distributions.

We should note that the fractiles obtained from the analysis presented in Chapter3 apply to

the data considered (turbine response and site description) in this analysis and moreover to the

assumptions made in choosing the associated distribution models. Different fractiles may apply for

other turbine response data under different assumptions. In particular, basing our expectations on
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the results of similar analysis in other fields, i.e., off-shore structures, and earthquake engineering,

we would have expected that the randomness in the short-term loads was less important than the

randomness associated with the environmental variables. We found that, in general, this was not

the case for the data used in our analysis. It would be beneficial to validate these results by looking

at other stall-regulated turbines using different mechanical-math-model simulation techniques, and

different site conditions. It would be of interest to determine if the results found here were typical

of the conditions of wind turbine behavior, or for some reason pathological in this case.

7.2.2 Environmental Contour Method

Chapter4 presented an alternate approximate approach for estimating the one-year and 50-year

extreme turbine blade bending moment load. This approach essentially employed the approximate

methods underlying first-order reliability analysis orFORM. In this method, contours of the critical

combination of wind speed and turbulence intensity are found for a prescribed acceptable reliability

level. It then becomes a straightforward task of (1) identifying an appropriate percentile of the

short-term load, and (2) identifying the maximum response along the prescribed contour. Under

the assumptions ofFORM analysis, the maximum response along the contour is associated with

prescribed reliability level of interest. These theories were applied in three different examples where

the short-term extreme loads were considered deterministic at the mean level.

The first two examples demonstrated how estimates of the one-year and 50-year extreme blade

bending loads on anAOC 15/50 turbine might be obtained using environmental contours, consider-

ing two different site environments. In both cases operating and parked loads on the turbine were

considered. This introduced a discontinuity in the limit state function. One of the key assumptions

in FORM analysis is that the limit state function is generally smooth. The reliability is approxi-

mated based on a straight line tangent to the limit state function at the point of highest probability

density along the limit state function. If large discontinuities exist in the limit state function, then

potentially significant areas of probability density may not be accounted for properly. The fact that

this discontinuity is present is a challenge to the effectiveness ofFORM to provide a reasonable ap-

proximation. In both examples the estimates obtained from the environmental contour method were

reasonable (e.g., 0-6% difference) compared with estimates obtained from integrating the determin-

istic short-term extreme loads over the long-term distribution of the environmental variables. Even

in the presence of the discontinuity in the limit state function at the cut-out wind speed, we found

that FORM still provided a reasonable approximation (e.g., 2-13% difference), compared with the

results from integration.

In the third example, the short-term response was developed to simulate the typical non-monotonic
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response of a pitch-regulated machine. This contributed a slope discontinuity in the limit state func-

tion, in addition to the discontinuity at the cut-out wind speed. Again, estimates of the one-year and

50-year extreme flap-bending loads were obtained from both methods. We found that including the

additional slope discontinuity did not greatly affect the efficacy ofFORM to provide an acceptable

approximation, at least for the turbine, site data, and distribution models used in this example.

We demonstrated that the environmental contour method provides reasonable estimates of ex-

treme response similar to those obtained by the integration method. One advantage of using the

two-dimensional environmental contours, presented in Chapter4, is that the contours themselves

are developed based only on data relating to the environment and a reliability criterion for the tur-

bine. Therefore, the contours immediately give some insight into the critical combinations of envi-

ronmental variables and may lead to a reduction in the required number of environmental conditions

explored in the design process. In particular, instead of interrogating the entire space of combina-

tions of environmental conditions for the critical response of the turbine, the contour identifies the

critical environmental conditions. We only need to search the points along the contour to find the

critical response of the turbine, for a prescribed reliability level. This can be a great benefit when

running expensive computer simulations—we only need to run simulations at environmental con-

ditions on the contour. A carefully constructed search algorithm, to interrogate the environmental

contour, may lead to additional reduction in the number of environmental conditions considered in

the quest to find the critical response of the turbine.

We might ask, “which fractile of the short-term extreme response should be used”? In the

analysis presented in Chapter4, we used the mean value of the short-term extreme response. We

saw, however, in Chapter3 that considering the short-term extreme response deterministic at its

mean level and integrating over the long-term distribution of the environmental variables resulted

in an estimate of the one-year and 50-year loads that was at times significantly lower, i.e., about

5%-25%, than had we included the randomness of the short-term extreme response. There may be

some concern about how we account for the variability of the short-term extreme response in the

environmental contour method. Some approaches to this problem were discussed in Chapter4. It is

important to point out that applying any of these methods discussed in Chapter4 would re-couple the

short-term turbine specific portion of the problem with the long-term environment specific portion

of the problem. There is a parallel, however, with the discussion of simplifying the long-term

integration problem presented in Chapter3. Here we showed that considering the short-term loads

deterministic, but at a higher fractile above the mean, we could recover the randomness that the

short-term extreme load distribution contributed to the variability of the long-term distribution of

extreme loads. This same fractile concept could potentially be used for the environmental contour

method. In that case, if a universal fractile could be found that would cover a sufficiently large
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number of stall-regulated turbines the fact that the problem has effectively been re-coupled may be

mitigated. The reader should note that it is anticipated that a different fractile might be required for

pitch-regulated turbines, because the nature of the loading is different.

7.3 Modeling Fatigue Ranges and Damage

These first chapters addressed estimating the long-term distribution of extreme loads. The method

developed in Chapter3 was then applied to estimating the long-term distribution of fatigue load

distributions in Chapter5. Parametric, moment-based, statistical models were introduced to model

short-term rain-flow-counted fatigue ranges. Two “higher-moment” models (including third and/or

higher moments) have been presented: (1) a quadratic Weibull model, which uses a quadratic dis-

tortion of the original Weibull model to preserve the first three moments of the data; and (2) a

“damage-based” Weibull model, which seeks a two-moment Weibull fit, not to the fatigue ranges

themselves but to power transformations that directly relate to “damage”. Both models have their

advantages. Compared with fatigue load data, the “damage-based” Weibull model was found to

follow the tails of the observed data. It also requires no special numerical algorithms to estimate its

parameters. In contrast, the quadratic Weibull does require such algorithms, and its accurate model-

ing of distribution tails can require the analyst to impose a lower-bound threshold on the load ranges

to be modeled. The potential benefit of the quadratic Weibull model includes its reliance only on

moments through third order. This may also be its draw back as the third moment may not be high

enough to fit the model to upper tail of the distribution where we anticipate the loads will contribute

the most to the accumulated fatigue damage. The damage-based model requires moments of higher

order—typically three to five—which reflect material fatigue exponent values of six to ten.

From the analysis, we found that the two models gave two different estimates of the expected

damage for the same value of the fatigue exponent. We stated that the quadratic Weibull model was

fit to the first three moments of the data. Although the third moment affects the fit of the model in

the tail of the data, the fit is still primarily influenced by the body of the data. To the degree that we

believe that a majority of the fatigue damage will be caused by loads in the upper tail, this model,

being fit to the body of data with some influence to the tail of the data, may not fit very well to the

extreme tail of the data. Conversely, the damage-based model is fit to the higher moments than the

third moment, is less influenced by the body of the data, and is tuned to the behavior of the extreme

tail. Although, as we have mentioned, this is where we anticipate the loads to contribute the most to

the fatigue damage, some damage should be expected from the body of the data. The damage-based

model may not fit to this data very well. It may be overly influenced by the extreme tail of the data,

and either over- or under-predict the loads in the body of the data.



CHAPTER 7. SUMMARY AND CONCLUSIONS 247

Another point is that when implementing the quadratic Weibull model, either for modeling

short-term fatigue ranges or short-term local peaks, a threshold was applied and the data was trun-

cated and shifted to improve the fit of the model to the data. In these cases, the purpose of imposing

the threshold was to remove a second population of either fatigue ranges or local peaks. In either

case, where to impose the threshold is a difficult question. In our work here, the thresholds were

based on qualitative examination of the data. It would be extremely helpful to establish some guide-

lines to help the engineer implement a reasonable threshold value—trading off the benefits of the

goodness of the fit of the model to the data with the amount of data retained. Also, in general, assess-

ing the goodness of fit of the model to the data, has been a qualitative evaluation. If the processes

laid out in the previous chapters are to be implemented in an automatic way, we need to establish

some quantitative evaluation of the goodness of fit of the model to the data. Poorly fit models to the

observed or simulated data will only lead to erroneous estimates of the design loads.

7.4 Quantifying Epistemic Uncertainty

Finally, having established a methodology for estimating the long-term distribution of fatigue and

extreme loads, we considered some of the possible sources of uncertainty in the analysis and showed

how, at least at a first pass, the epistemic uncertainty may be incorporated into the analysis and it

may affect our estimate of the 50-year load. We considered the effect of including the epistemic

uncertainty associated with estimates of the long-term distribution parameters of the environmental

variables. The analysis showed that the long-term distribution of the extreme response is more

sensitive to epistemic uncertainty in the annual average 10-minute mean wind speed. It is critical

to consider both the uncertainty and the sensitivity of the system to the uncertainty. If we have the

same uncertainty in both parameters, annual average 10-minute mean wind speed and conditional

mean turbulence, the system considered in Chapter6 was more sensitive to changes in the annual

average 10-minute mean wind speed. Given the choice, for this system, it would be a better use of

resources to collect additional data to reduce the epistemic uncertainty in the estimate of the annual

average 10-minute mean wind speed than the conditional mean turbulence if they have the same

level of uncertainty.

Keeping the results of the long-term analysis in mind, we considered how we might incorporate

some of the sources of uncertainty in the short-term conditional loads. Two sources of epistemic

uncertainty were considered: (1) uncertainty associated with the regression coefficients and (2)

model uncertainty. In the latter, we were concerned with how we might quantify the uncertainty

associated with differences between the results from our mechanical model of the turbine compared

with actual data from the turbine collected in the field.
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We considered two approaches for estimating the uncertainty associated with the regression

coefficients from limited data: (1) bootstrap method and (2) variance of coefficients through re-

gression analysis. In the first approach—the bootstrap method—a few time-histories at a time were

randomly selected from the database and then based on thisbootstrap samplewe obtained an esti-

mate of the long-term distribution of the 10-minute extreme flap bending loads. This was repeated

several times in order to obtain mean and median estimates of the the long-term distribution. The

second approach utilized the assumptions in regression analysis to obtain an estimate of the vari-

ance of the regression coefficients. This approach may be useful if only an few (e.g. less than 20)

simulations were run at each set of values of the environmental variables. In implementing this

method, however, we assume that the covariance matrix of the regression coefficients remains fixed

or known. Monte Carlo simulation was used to select sets of regression coefficients from jointly

correlated Gaussian distributions. Their distributions were defined by the mean vector of regression

coefficients and the associated covariance matrix. We observed that the width of the distance be-

tween the median estimate and the estimate obtained by considering the load with a mean annual

exceedance probability of 2%, calculated assuming a known covariance, is smaller compared with

the width between these estimates if obtained based on using the bootstrap method. Therefore, we

may conclude that there is some uncertainty that is not accounted for by considering the covariance

matrix of the regression coefficients fixed. Although, when the number of simulations included in

the analysis becomes large (e.g., 100) we observed only a small difference in the estimates obtained

from the two methods.

The analysis considering the model uncertainty showed that there was enough bias and variabil-

ity in our estimate that if included, would inflate our estimate of the 50-year load by 80%. About

half of this increase (36%) was due to the bias and the rest was due to case to case variability in

model error. Just from these simple analyzes we can determine the most effective areas to assign

resources to reduce the epistemic uncertainty and then more accurately estimate the 50-year load on

wind turbines.
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Appendix A

Filtered Time Histories

In Chapter3 we noted that the time histories for blade root edge bending response of the parked

turbine were filtered. This appendix briefly presents the methodology used in filtering these time

histories.

The simulations of the load response of a pseudo-parkedAOC 15/50 turbine at different wind

speeds were run usingYAWDYN . Running a pseudo-parked condition came out of a constraint of the

YAWDYN program, which can not simulate blade load responses for a parked turbine. Therefore, the

simulations were run with the turbine very slowly idling, one rotation in ten minutes. Presumably,

the variation of the response due to the wind field for a parked turbine would be very closely approx-

imated by the simulation where the turbine was slowly idling. This seemed to produce acceptable

results for the 50m/s high wind speed case. For the lower wind speeds, specifically the in-plane,

edge, bending response (the out-of-plane, flap, bending response was not effected), the variation in

the response due to the input simulated wind field was much smaller compared to the gravity cycle

introduced by the slowly idling turbine, see FiguresA.1(a), A.2(a), andA.2(a). This gravity cycle

would not occur if the turbine was parked, however.

In order to remove the erroneous gravity cycle from these parked turbine response time histories,

a Discrete Fast Fourier Transform (DFFT) was applied to the edge-bending response time histories.

By applying theDFFT to the time history we are able to determine the frequency content of the time

history as well as the power associated with the various frequencies. In the frequency domain then it

was simple to establish the once per 10 minute cycle (i.e. 1.67e-3 Hz) and set the power associated

with this frequency to zero, effectively removing this frequency from the spectrum. An inverse-

DFFT was applied to the modified frequency spectrum to recover a revised time history without the

offending gravity cycle. This process was applied to all the edge bending response time histories

for the three parked turbine conditions with 10-minute mean wind speeds of 24, 30, and 40m/s.

FiguresA.1, A.2, andA.3 show example unfiltered and filtered time histories.
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(a) Unfiltered 24m/s parked turbine, blade root edge bending response time history
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(b) Filtered 24m/s parked turbine, blade root edge bending response time history

Figure A.1:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 24m/s turbulence classA wind environment.
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(a) Unfiltered 30m/s parked turbine, blade root edge bending response time history
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Figure A.2:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 30m/s turbulence classA wind environment.
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Figure A.3:Unfiltered and filtered time histories of blade root edge bending response for the parked
turbine condition in a 40m/s turbulence classA wind environment.



Appendix B

Regression Analysis

B.1 Introduction

This appendix presents a summary of the concepts of linear regression analysis. Additional infor-

mation on the topics presented here can be found in Rice [24] and Weisberg [67].

Regression analysis is concerned with the prediction of a variableY based on information pro-

vided by a set of other variablesX1, X2, . . . , Xm. The case where the relationship betweenY and

X is linear is calledlinear regression. This relationship can be written as,

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε (B.1)

Where theX ’s are calledindependentor predictor variables and are not random. Theβ’s are

called regression parameters or regression coefficients, andε is random error term.Y is called the

dependentvariable orresponseand is random as a result ofε.

The case where there is only one predictor variable, i.e.,Y = β0 + β1X1 + ε, is calledsimple

linear regression. On the other hand, the case where there are multiple predictor variables is called

multiple regression. Our interest here, in this discussion, lies with multiple regression. Before we

continue further, one point should be made about theX ’s, the “independent” variables. This name

can be somewhat misleading, as theX ’s may be related to each other. Therefore, it is possible to

model relationships that have non-linear terms inX. For example we may consider the relationship

Y = β0+β1X+β2X
2+ε, which may be modeled in a linear regression context by settingX1 = X

andX2 = X2. In other words, the important point is that the linear regression model is linear with

respect to theβ’s, the parameters, but not necessarily in theX ’s.

260
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B.2 Multiple Linear Regression—Matrix Formulation

We will use matrix notation to ease the discussion of multiple regression. In general, vectors and

matrices will be denoted by boldface letters such as:X, e, β, etc. Elements of vectors and matrices

are denoted as:xi,j , ej , andβj .

The values of theβ’s and the statistics ofε are not known, but can be estimated from a sample of

observations ofY and the correspondingX ’s. For theith, (i = 1, . . . , n) observation, EquationB.1

can be written written as,

yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi (B.2)

whereyi is theith observation ofY , Xij is theith observation of thejth, (j = 1, . . . , p) independent

variable, andεi is theith observation ofε.

EquationB.2 can be written in terms of matrices as,




y1

y2

...

yn




=




1 x1 1 x1 2 . . . x1 p

1 x2 1 x2 2 . . . x1 p

...
...

...

1 xn 1 xn 2 . . . xn p







β0

β1

...

βp




+




ε1

ε2
...

εn




(B.3)

defining

Y =




y1

y2

...

yn




; X =




1 x1 1 x1 2 . . . x1 p

1 x2 1 x2 2 . . . x1 p

...
...

...

1 xn 1 xn 2 . . . xn p




; β =




β0

β1

...

βp




; ε =




ε1

ε2
...

εn




(B.4)

EquationB.3 can be written as,

Y = Xβ + ε (B.5)

If we consider the condition where we assumeE[εi] = 0, andVar[εi] = σ2 with Cov[εi, εj ] = 0
which implies,

E[ε] = 0 (B.6)

and

Var[ε] = E[εεT ] = σ2I (B.7)

whereεT denotes the transpose ofε, andI is the identity matrix. From EquationsB.6 andB.7 the
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expected value ofY can be found by,

E[Y] = E[Xβ + ε]

= Xβ + E[ε]

= Xβ (B.8)

B.3 Least Squares Estimation ofβ

One common method for obtaining an estimate for the regression coefficientsβ0, β1, β2, . . . , βp is

the least squares method, which minimizes the the sum of the squares of the residuals. We will

denote the vector of residuals bye and is defined as,

e = Y −Xβ̂ (B.9)

Whereβ̂ is our estimate of the vector of regression coefficients. Therefore, and estimate ofβ may

be found by minimizingRSS the residual sum of squares, or the sum of the squares of the elements

of e, more formally:

RSS = eTe

= (Y −Xβ̂)T (Y −Xβ̂)

= YTY −YTXβ̂ −YXT β̂
T

+ β̂
T
XTXβ̂ (B.10)

However, the termYTXβ̂ is a scalar and can be replaced by its transpose. Substituting into Equa-

tion B.10yields,

RSS = YTY − 2β̂
T
XY + β̂

T
XTXβ̂ (B.11)

We want to minimize the residual sum of squares,RSS, so we differentiateRRS, EquationB.11

above with respect tôβ which yields,

∂RSS

∂β̂
= −2XT + 2XTXβ̂ (B.12)

Setting EquationB.12equal to zero gives,

XTXβ̂ = XTY (B.13)
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which yields the least square estimate ofβ as

β̂ = (XTX)−1XTY (B.14)

B.4 Expected Value and Variance of̂β

Taking the expectation of both sides of EquationB.14yields:

E[β̂] = E[(XTX)−1XTY]

= (XTX)−1XT E[Y]

= (XTX)−1XTXβ

= β (B.15)

BecauseE[β̂] = β, in EquationB.15, β̂, as defined in EquationB.14 is said to be an unbiased

estimator.

Taking the variance of both sides of EquationB.14yields:

Var[β̂] = Σ�̂ = Var[(XTX)−1XTY]

= (XTX)−1XTΣYX(XTX)−1 (B.16)

where under the assumptions given in EquationsB.6 andB.7 ΣY can be obtained as,

ΣY = E[(Y − E[Y])(Y − E[Y])T ]

= E[(Y −Xβ)(Y −Xβ)T ]

= E[εεT ]

= σ2I (B.17)

Substituting EquationB.17into EquationB.16yields:

Σ�̂ = (XTX)−1XT σ2IX(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1 (B.18)
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Weisburg [67] states that an estimate ofσ2 can be obtained as,

σ̂2 =
RSS

n− p′
(B.19)

weren is the number of observations inY and therefore also the number of observations ine, and

p′ = p+1, the number of predictor variables,p, plus the intercept. We may obtain an estimate of the

covariance matrix of the regression coefficients by substituting our estimate ofσ2 into EquationB.18

which yields,

V̂ar(β̂) = Σ̂�̂ = σ̂2(XTX)−1 (B.20)

B.5 Coefficient of Determination,R2

The coefficient of determination is a statistic which gives a measure of the proportion of the vari-

ability of Y explained by the regression onX. The coefficient of determination is defined as,

R2 = 1− Var[e]
Var[Y]

= 1− s2
e

s2
Y

(B.21)

wheres2
e is the sample variance of the residuals ands2

Y is the sample variance of the response.



Appendix C

Estimation of Long-Term Extremes with

IEC Environment

C.1 Introduction

In this appendix we consider a similar analysis of the estimation of the long-term distribution of

extreme loads to that presented in Chapter5 with two major differences. First, in the analysis that

will be presented here the turbulence intensity is defined as the standard deviation of the 10-minute

wind process rather than the coefficient of variation of the wind process. Second, the long-term

description of the environment is derived from theIEC design code [23]. In particular we consider

a site that conforms to the classIA standard.

C.2 Data Set

The data set used in this analysis is for the Atlantic Orient CorporationAOC 15/50 turbine, described

in Chapter1 (page18). The turbine has a rotor diameter of 15m and a nominal rotor speed of 60RPM

at the rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub height of 25

meters [22]. The data set is described in detail in Chapter3 (page66) and consisted of multiple 10-

minute simulations of Gaussian wind fields and corresponding blade root bending moments. The

wind input processes is described by the hub-height wind speed. A plot of observed turbulence

intensity, standard deviation of the hub-height wind process, versus observed 10-minute mean wind

speed, calculated from the simulation data, for all 10-minute time histories is shown in FigureC.1.

265
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Figure C.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

C.3 Long-Term Analysis Based on Modeling Global Extremes

C.3.1 Short-Term Analysis

In this section we consider estimating the long-term distribution of extremes based on modeling the

global peaks. The short-term conditional distribution of global peaks is modeled using the Gumbel

model. To review, the load models discussed in Chapter3 and considered again here, estimate the

probability distribution of short-term extreme load ranges by preserving a limited set of statistical

moments:µi = E[Zi] (i = 1, 2) for the Gumbel model of global peaks, orµi = E[Y i] (i =
1, 3) for the quadratic Weibull model of local peaks. In particular, in this section we will look at

estimating the long-term distribution of extreme loads based on modeling the global peaks by a

Gumbel model. This model is fit to the first two moments of the data. Separate regression analysis

and long-term integration will be conducted. Later in SectionC.4 we will consider estimating the

long-term distribution of extreme loads by modeling the local peaks with a quartic Weibull model.

Chapter3 showed how the statistical moments of the data could be related to the environmental

variables: mean wind speed,V , and turbulence intensity,I, through the power-law relation we have
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seen before [54]:

µi = ai

(
V

Vref

)bi
(

I

Iref

)ci

(C.1)

Where,Vref is the reference 10-minute mean wind speed, andIref is the reference turbulence inten-

sity.1 This functional form and methodology are followed here again with some modification. In this

case, with the definitions chosen for the environmental variables, mean and standard deviation of the

10-minute wind process, for 10-minute mean wind speed and turbulence intensity respectively, the

variables are highly correlated,ρ = 0.9911. In order to avoid problems with the regression analysis

due to highly correlated predictor variables a constrained regression analysis was performed. For

constrained regression analysis, a simple linear regression of the statistics of the extreme load is

performed on the first predictor variable, the 10-minute mean wind speed. The residuals are then in

turn regressed on the second predictor variable, turbulence intensity. The issue with highly corre-

lated predictor variables is that they tend to explain the same variability in the data. Following the

procedure above, we prescribe the 10-minute mean wind speed to be the more important predictor

variable and through the simple linear regression remove the variability explained by the 10-minute

mean wind speed first. The second predictor variable is left to explain the variability which is left

over, that portion of the variability it can explain that did not overlap (i.e. correlate) with the first

predictor variable, which with highly correlated variables is generally very little. As a result the

second predictor variable will play a less significant role than the first predictor variable.

The constrained linear regression analysis described above, applied to the logarithm of Equa-

tion C.1, yields point estimates of the coefficients. To demonstrate typical results, we pursue mod-

eling the global extremes by a Gumbel model here; the alternate approach based on modeling the

local peaks by a quadratic Weibull model in SectionC.4. TheVref andIref values for the operating

conditions are 16.474m/s and 2.518m/s respectively. The correspondingVref andIref values for the

parked conditions are 34.861m/s and 4.607m/s respectively. The calculated regression coefficients

andR2 statistics are shown in TablesC.1andC.2for flap and edge bending conditions respectively.

R2 statistics near unity indicate that a large percentage of the variability in the data is explained by

the regression model. LowR2 statistics indicate that other influences not contained in the regression

model may be affecting the loads.

Finally, graphical regression results are shown in FiguresC.2 and C.3 for blade root flap and

edge bending respectively. Regression results for the mean and standard deviation of the maximum

10-minute flap bending moment versus 10-minute mean wind speed are shown in FiguresC.2(a)

andC.2(b). Corresponding results for edge bending are shown in FiguresC.3(a)andC.3(b). In all

plots the turbulence intensity has been set equal to,Iref, the reference value.

1Recall that the turbulence intensity in this analysis is defined as the standard deviation of the 10-minute wind process,
rather than the coefficient of variation as considered at times in previous chapters.
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Blade Root Flap Bending
Regression of Statistics of 10-Minute Maximum onV and I

Mean of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 25.6694 0.6090 0.0460 0.9233
V > 24m/s 40.1812 2.5137 0.01839 0.9979

Standard Deviation of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 2.7765 0.7698 0.0287 0.9214
V > 24m/s 3.955 2.6841 0.0259 0.8713

Table C.1:Regression coefficients used in EquationC.1 to fit statical moments of blade root flap
bending loads as functions of the mean wind speed,V , and turbulence intensity,I.

Blade Root Edge Loading
Regression of Statistics of 10-Minute Maximum onV and I

Mean of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 8.6107 0.2693 0.0135 0.9718
V > 24m/s 7.2485 3.9850 0.0138 0.99602

Standard Deviation of 10-Minute Maximum
a (kN-m) b c R2

V 5 24m/s 0.3049 1.6252 0.0739 0.9105
V > 24m/s 1.4264 3.3673 0.0232 0.8932

Table C.2:Regression coefficients used in EquationC.1to fit statistical moments of blade root edge
bending loads as functions of the mean wind speed,V , and turbulence intensity,I.



APPENDIX C. LONG-TERM EXTREMES—IEC ENVIRONMENT 269

10

20

30

40

50

60

70

80

90

100

110

5 10 15 20 25 30 35 40 45 50 55

M
ea

n 
of

 1
0-

m
in

ut
e 

m
ax

im
um

 r
es

po
ns

e,
 k

N
-m

10-minute mean wind speed, m/s

Class A
Class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(a)Regression of the mean of 10-minute maxima on the 10-minute mean wind speed
and turbulence intensity.

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25 30 35 40 45 50 55

St
an

da
rd

 d
ev

ia
tio

n
 o

f 
10

-m
in

ut
e 

m
ax

im
um

 r
es

po
ns

e,
 k

N
-m

10-minute mean wind speed, m/s

Class A
Class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(b) Regression of the standard deviation of 10-minute maxima on the 10-minute mean
wind speed and turbulence intensity.
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and turbulence intensity for blade root flap bending.
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C.3.2 Long-term Analysis

For the discussion here, we defined the conditional short-term probability distribution of global

peaks by a Gumbel model. Further, the moments of the global peaks have been related to the

environmental variables through regression analysis.

The long-term distribution of extreme loads, in an arbitrary 10-minute period, is found in the

same way as described in Section3.4.2; by performing the integration below,

FL(l) =
∫∫

FL|V,I(l|v, i)fV,I(v, i)dvdi (C.2)

Where,FL|V,I(l|v, i), is the short-term conditional distribution of extreme loads, andfV,I(v, i), the

joint density function of the environmental variables.

We will assume that theAOC 15/50 turbine is installed at a site with environmental conditions

conforming to aIEC classIA site. The description of the environmental variables is based on the

criteria given in theIEC wind energy safety code for a classIA environment [23]. Specifically, the

annual distribution of the 10-minute mean wind speed,V , is given by the Rayleigh distribution

shown below, withµV =10m/s.

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(C.3)

α =
2µV√

π

The standard deviation of the 10-minute wind process is taken as the measure of wind turbulence

intensity. The conditional distribution of turbulence intensity is assumed to follow the lognormal

distribution shown below.

fI|V (i|v) =
1√
2πζi

exp

[
−1

2

(
ln(i)− λ

ζ

)2
]

(C.4)

The parameters of the lognormal distribution,λ andζ, are defined as:

ζ =
√

ln(δ2
I|V + 1) (C.5)

λ = ln(µI|V )− 1
2
ζ2 (C.6)
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with, δI|V , the conditional coefficient of variation given as:

δI|V =
σI|V
µI|V

(C.7)

The functions of conditional mean,µI|V , and standard deviation,σI|V , of the turbulence are given

by theIEC wind energy safety code [23]. For turbulence class A,I15=0.18 anda=2.

µI|V =
I15(15m/s+ av)

(a + 1)
− 2m/sI15 (C.8)

σI|V = 2m/sI15 (C.9)

A plot of the joint density function of the environmental variables is shown in Figure4.1(Chapter4).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.

For each pair of values of the environmental variables the corresponding short-term distribution of

the extreme load is generated. Then, per EquationC.2, the short-term conditional fatigue range

distributions are summed together each weighted by the probability of the respective environmental

condition, i.e., pair of values of the environmental variables occurring. The summation is performed

over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case to develop the long-term distribution the appropriate regression

model is used for each wind speed value. This results in a combination of the operating and parked

only long-term distributions as shown in FigureC.4. Also shown in the figure are the long-term

distributions of the load if the turbine is either parked or operating in all wind speeds. The prob-

ability levels associated with the one-year and 50-year mean return period (MRP prob. level) are

also shown (note Equations3.13and3.14). In all of the preceeding cases it was assumed there was

100% availability of the turbine during all winds speeds. It would require only minor modification

to the procedures developed here to include the condition when the turbine was available for only

a portion of the time for a given wind environment. Using the full distribution for each of the ran-

dom variables, estimates for the one-year flap and edge bending load are 52.4kN-m and 12.3kN-m

respectively. Correspondingly estimates for the 50-year flap and edge bending load are 74.3kN-m

and 19.3kN-m respectively.
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Figure C.4:Long-term distributions of 10-minute extreme blade root bending moment,L10 min, con-
sidering three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine
parked over all wind speeds, 3) turbine operating below cutout wind speed and parked
above cutout wind speed; for both: (a) flap and (b) edge bending.
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C.3.3 Simplifying the Long-term Analysis

In this section a methodology for simplifying the calculations required for solving EquationC.2

is presented. The full distributions of some of the random variables are replaced with appropri-

ate deterministic fractiles, thereby reducing the number of numerical integrations required to be

performed. It is appropriate to consider this methodology for those random variables which have

only a small contribution to the overall variability in our estimate of the long-term extreme load

distribution. Here a qualitative analysis is employed to determine the degree to which each of the

variables in EquationC.2 contributes to the long-term extreme load distribution. Further based on

this analysis we present how an appropriate deterministic fractile of, for example, the short-term

load distribution, the conditional distribution of turbulence intensity or both, may be used, instead

of their full distributions.

We investigate such simplifications further in the remainder of this section. FigureC.5 shows

the long-term distribution of the 10-minute flap and edge loads for three cases that consider, in turn,

the short-term load variable and each of the environmental variables deterministically. Only one

variable is considered deterministic in each analysis, the other variables are assumed random and to

follow the distributions defined previously. These three analyzes give a qualitative understanding of

how the terms in EquationC.2contribute to the variability in the long-term load distribution. From

this analysis one finds that the considering the turbulence intensity deterministic does not affect the

results at all. This is not completely unexpected and is a result of the constrained regression. We

saw from the regression analysis that very little of the variability in the data, which was not already

explained by the wind speed, was explained by the turbulence intensity. Therefore, we should not

expect the turbulence to play much of a role in the long-term distribution of the extreme response.

The largest drop in our estimate of the 50-year load did occur, however, when we set the wind

speed variability to zero. Whereas reducing the variability in the short-term load did not reduce

our estimate of the 50-year load as drastically. Qualitatively, one can conclude that, less of the

variability in the long-term load distribution is explained by the randomness in the short-term load,

than by the variability in wind speed, for the structure, site data, and distribution models used here.

From this analysis, we may consider using prescribed fractiles of the distribution of the short-

term load. In this case, FigureC.6(a)shows the results of considering the short-term load determin-

istic, but using the 86% fractile of the distribution rather than the mean value. Using the 86% fractile

of the load distribution results in estimates of the one-year and 50-year blade root flap bending load

of 52.1kN-m and 76.9kN-m respectively with associated errors of 0.5% and 3.5%, respectively. In

FigureC.6(b) we see that using the 74% fractile of the short-term load distribution results in an

estimate of the 50-year blade root edge bending load of 18.8kN-m with an associated error of 2.5%.

The fractile must be increased to the 90% fractile of the short-term load distribution to obtain an
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure C.5:Long-term distributions of 10-minute extreme blade root bending momentL10 min, con-
sidering load, turbulence intensity, and wind speed deterministically for both: (a) flap
and (b) edge bending.
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estimate of the one-year blade root edge bending load of 11.8kN-m with an associated error of 4.1%.

Considering the short-term load deterministic simplifies EquationC.2to a single fold integration

problem over only the distribution of annual wind speed. The results of this integration are shown

in FigureC.6. In this case, additionally, we can eliminate the remaining integration by using the

complementary cumulative distribution function of the annual wind speed distribution and then

evaluate the expression at the wind speed associated with the return period of interest.

C.3.4 Summary

In this section, we obtained an estimate of the marginal probability distribution of the long-term

load. This was accomplished by modeling the global peaks by a Gumbel distribution for the con-

ditional short-term load. The statistical moments of the global peak data were related to the envi-

ronmental variables by a power-law functional form. The parameters of the functional form were

obtained through regression analysis. Using the method of moments, a Gumbel distribution could

be obtained for each specific set of values of the environmental variables. Finally, an estimate of

the marginal distribution of the long-term load was obtained by summing the conditional short-term

load distributions over all environmental conditions. Each conditional short-term load distribution

was weighted by the probability of the associated environmental condition occurring. We found

from this analysis that the estimate of the one-year and 50-year blade root flap bending loads were

52.1kN-m and 74.3kN-m respectively. Correspondingly, the one-year and 50-year blade root edge

bending loads were 12.3kN-m and 19.3kN-m, respectively.

We then under took a qualitative, yet systematic, analysis to determine which of the three

variables—conditional short-term load, conditional turbulence, or mean wind speed—contributed

the most to the variability in the distribution of the long-term load. We found that at least for the

AOC 15/50 turbine, site data, and distribution models used here the wind speed distribution of the

loads contributed the most to the variability in the distribution of the long-term load, with the con-

ditional short-term load contributing less. The turbulence intensity variable was essentially tuned

out by the constrained regression analysis. We found that by treating the conditional short-term

load deterministic, and considering fractiles higher than the mean, much of the contribution to the

variability in the distribution of the long-term load could be recovered. Specifically, considering

the 86% fractile of the distribution of the conditional short-term load, our estimates of the one-year

and 50-year blade root flap bending loads are 0.5% and 3.5% high respectively, over our estimates

employing the full distributions. For blade root edge bending, considering the 74% fractile of the

conditional short-term load distribution, our estimate of the 50-year root edge bending load is 2.5%

low. We needed to consider the 90% fractile of the conditional short-term load distribution for an

estimate of the one-year root edge bending load that was 4.1% low. The next sections presents a
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure C.6:Long-term distributions of 10-minute extreme blade root bending moment,L10 min, con-
sidering the short-term load at prescribed deterministic levels compared with the full
distribution solution.
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similar analysis, only this time the short-term loads are based on modeling the random peaks with a

quadratic Weibull distribution.

C.4 Long-Term Analysis Based on Modeling Local Peaks

C.4.1 Short-Term Analysis

In the previous section, we obtained an estimate of the marginal long-term distribution ofL10 min

from a short-term conditional loads model fit toZ, the global extreme over the duration of a 10-

minute response time history. In this section an estimate of the marginal long-term distribution of

L10 min is found following a similar procedure. In this case, however, a quadratic Weibull model for

the short-term conditional load is fit to,Y , the random local peaks of a 10-minute response time

history, see Section1.5.5.

Peaks of the response time histories where found based on the definition provided in Chapter2,

the largest value of the time history between successive up-crossings of its mean level. The process

mean level and number of peaks were calculated for all blade root flap and edge bending response

time histories. For each pair of environmental variables (e.g.,V =10m/s andI=classA) the 100

observations of process mean or number of peaks were pooled together and the mean of these pooled

observations was reported. A 4.75kN-m threshold was imposed on the edge bending response data

for operating conditions only, to provide a better fit of the quadratic Weibull to data. Statistics other

than the process mean that describe the blade root edge bending response from operating conditions

are based only on the peaks above this threshold.

In the previous section the statistical moments of the data were related to the environmental

variables by the power-law model given in EquationC.1, the same methodology is used again, here.

When obtaining a long-term estimate of the 50-year load based on a short-term distribution which

models the local peaks, two parameters and three statistical moments are required. In SectionC.3,

where the short-term distribution modeled the global peaks, only the relationships between two

statistical moments and the environmental variables were required. In this case, we need the rela-

tionship between the environment and two other parameters in addition to the statistical moments

required to fit the probabilistic model. These two additional parameters in this case are: the number

of local peaks and the process mean.

The same values ofVref andIref defined in SectionC.3 were used for this analysis. TheVref

andIref values for the operating conditions are 16.474m/s and 2.518m/s, respectively and the corre-

sponding values for the parked conditions are 34.861m/s and 4.607m/s, respectively. The calculated

regression coefficients andR2 statistics, calculated from constrained regression analysis, are shown
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in TablesC.3andC.4 for both blade root flap and edge bending conditions, respectively.R2 statis-

tics near unity indicate that a large percentage of the variability in the data is explained by the

regression model. LowR2 statistics indicate that other influences not contained in the regression

model may be affecting the loads. In performing the regression analysis it was determined that the

applied functional model, EquationC.1, did not have enough flexibility to sufficiently model the ob-

served behavior of the mean and standard deviation of the local blade root flap bending peaks. The

values of the mean and standard deviation of the peaks flatten out with higher wind speeds above

17m/s as compared with the behavior below 17m/s as seen in FiguresC.9 andC.10. Therefore a

separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for

both the mean and standard deviation of local blade root flap bending peaks.

Finally, graphical regression results are shown in FiguresC.7-C.11. Each figure contains re-

gression results for both blade root flap and edge bending conditions considering: process mean,

FigureC.7; number of peaks, FigureC.8; mean of local peaks, FigureC.9; standard deviation of

local peaks, FigureC.10; and skewness of local peaks, FigureC.11. In all plots, the turbulence

intensity has been set equal to the reference value.

C.4.2 Long-term Analysis

For the discussion here, we defined the conditional short-term probability distribution of local peaks

by a quadratic Weibull model. Further, the moments of the local peaks and parameters have been

related to the environmental variables through regression analysis.

The long-term distribution of extreme loads, in an arbitrary 10-minute period is found in the

same way as described in SectionC.3.2. We will again assume that theAOC 15/50 turbine is

installed at a site with environmental conditions conforming to aIEC classIA site, described in

SectionC.3.2. The long-term distribution of the 10-minute mean wind speed is assumed to follow

a Rayleigh distribution with mean,µV = 10m/s. The conditional distribution of turbulence is given

by a lognormal distribution with conditional mean and standard deviation given by EquationsC.8

andC.9, respectively. A plot of the joint density function of the environmental variables is shown

in Figure4.1(Chapter4).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.

For each pair of values of the environmental variables the corresponding short-term local peak dis-

tribution is generated. Through Equation3.23, an estimate of the distribution of short-term extreme

events,P [L10 min < l|V, I], is obtained. The process mean and any required additional threshold

are re-introduced. Then as per EquationC.2 the short-term extreme load distribution values are

summed together each weighted by the probability of the respective environmental conditions, i.e.,

the pair of values of the environmental variables occurring. The summation is performed over the
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Blade Root Flap Loading
Regression of Statistics of Random Peaks onV and I

Mean of 10-Minute Response Process
a (kN-m) b c R2

V 5 24m/s 3.0234 1.6105 -0.0022 0.95250
V > 24m/s 13.7605 1.8909 -0.0013 0.99855

Expected Number of Random Peaks
a (kN-m) b c R2

V 5 24m/s 800 0.2163 -0.0095 0.70233
V > 24m/s 1700 2.3252 -0.0212 0.98381

Mean of Random Peaks
a (kN-m) b c R2

V 5 17m/s 3.950 0.7021 0.1877 0.84633
17 < V 5 24m/s 4.6571 0.0850 0.2609 0.26266
V > 24m/s 4.0833 3.7348 0.0118 0.99099

Standard Deviation of Random Peaks
a (kN-m) b c R2

V 5 17m/s 3.500 0.7327 0.18203 0.85968
17 < V 5 24m/s 4.1934 0.0600 0.2548 0.25144
V > 24m/s 3.8721 3.1545 0.0191 0.98368

Coefficient of Skewness of Random Peaks
a (kN-m) b c R2

V 5 24m/s 1.2745 -0.0365 -0.0071 0.07286
V > 24m/s 215.3 -1.2905 0.0039 0.95904

Table C.3:Regression coefficients used in EquationC.1to fit flap load moments as functions of the
mean wind speed,V , and turbulence intensity,I.
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Blade Root Edge Loading
Regression of Statistics of Random Peaks onV and I

Mean of 10-Minute Response Process
a (kN-m) b c R2

V 5 24m/s 2.4066 0.3613 -0.0053 0.95099
V > 24m/s 0.7327 1.8043 -0.0013 0.99596

Expected Number of Random Peaks
a (kN-m) b c R2

V 5 24m/s 104 -0.1581 0.1445 0.05724
V > 24m/s 2927 0.8485 -0.0201 0.87987

Mean of Random Peaks
a (kN-m) b c R2

V 5 24m/s 0.2697 0.5587 0.0734 0.81101
V > 24m/s 0.8038 4.2402 0.0087 0.99785

Standard Deviation of Random Peaks
a (kN-m) b c R2

V 5 24m/s 0.2699 0.8794 0.0708 0.91066
V > 24m/s 0.8244 4.3343 0.014649 0.99645

Coefficient of Skewness of Random Peaks
a (kN-m) b c R2

V 5 24m/s 1.7613 0.68540 0.0077871 0.85539
V > 24m/s 1.9343 -0.0143 0.0077 0.04407

Table C.4:Regression coefficients used in EquationC.1 to fit edge load moments as functions of
the mean wind speed,V , and turbulence intensity,I.
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(a)Regression of the process mean of 10-minute blade root flap bending response on
the 10-minute mean wind speed and turbulence intensity.
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(b) Regression of the process mean of 10-minute blade root edge bending response on
the 10-minute mean wind speed and turbulence intensity.

Figure C.7:Regression of the process mean on the 10-minute mean wind speed and turbulence
intensity for blade root flap and edge bending.
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(a)Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root flap bending.
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(b) Regression of the expected number of local peaks on 10-minute mean wind speed
and turbulence intensity, blade root edge bending.

Figure C.8:Regression of the expected number of local peaks on 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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(a)Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root flap bending.

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40 45 50 55

M
ea

n 
of

 th
e 

pe
ak

s
 a

bo
ve

 1
0-

m
in

ut
e 

m
ea

n 
pr

oc
es

s 
le

ve
l, 

kN
-m

10-minute mean wind speed, m/s

Class A
Class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(b) Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity, blade root edge bending.

Figure C.9:Regression of the mean of the local peaks on the 10-minute mean wind speed and
turbulence intensity for blade root flap and edge bending.
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(a)Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40 45 50 55

St
an

da
rd

 d
ev

ia
tio

n 
of

 p
ea

ks
 a

bo
ve

 1
0-

m
in

ut
e 

m
ea

n 
pr

oc
es

s 
le

ve
l, 

kN
-m

10-minute mean wind speed, m/s

Class A
Class B

Operating wind speeds; I=Iref
Parked wind speeds; I=Iref

(b) Regression of the standard deviation of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure C.10:Regression of the standard deviation of the local peaks on the 10-minute mean wind
speed and turbulence intensity for blade root flap and edge bending.
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(a)Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root flap bending.
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(b) Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity, blade root edge bending.

Figure C.11:Regression of the coefficient of skewness of the local peaks on the 10-minute mean
wind speed and turbulence intensity for blade root flap and edge bending.
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entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case to develop the long-term distribution the appropriate regression

model is used for each wind speed value. This results in a combination of the operating and parked

only long-term distributions as shown in FigureC.12. Also shown in the figure are the long-term

distributions of the load if the turbine is either parked or operating in all wind speeds. The prob-

ability levels associated with the one-year and 50-year mean return period (MRP prob. level), are

shown (note Equations3.13 and3.14). In all of the preceeding cases it was assumed there was

100% availability of the turbine during all winds speeds. It would require only minor modification

to the procedures developed here to include the condition when the turbine was available for only

a portion of the time for a given wind environment. Using the full distribution for each of the ran-

dom variables, estimates for the one-year blade root flap and edge bending loads are 51.9kN-m and

12.0kN-m, respectively. Corresponding estimates for the 50-year blade root flap and edge bending

loads are 76.7kN-m and 20.0kN-m, respectively

C.4.3 Simplifying the Long-term Analysis

In this section, we consider simplifying the calculations required for solving Equation3.16, by

replacing the full distributions of some of the random variables with appropriate deterministic frac-

tiles. As seen previously, SectionC.3.3 it is appropriate to consider this methodology for those

random variables which have only a small contribution to the overall variability in our estimate of

the long-term extreme load distribution. Here, a qualitative analysis is employed to determine the

degree to which each of the variables in EquationC.2 contributes to the long-term extreme load

distribution.

FigureC.13shows the long-term distribution of the 10-minute flap and edge loads considering

the short-term load variable and each of the environmental variables deterministically. Only one

variable is considered deterministic in each analysis, the other variables are assumed random and

follow the distributions defined previously. This analysis gives a qualitative understanding on how

the terms in EquationC.2contribute to the variability in the long-term load distribution. From this

analysis one finds that the largest drop in our estimate of the 50-year load to occur when we set

the short-term load variability to zero. Whereas, reducing the variability in the wind speed does

not reduce our estimate of the 50-year load as drastically. We found the opposite result in the

analysis presented in SectionC.3. The turbulence intensity variable was essentially tuned out by

the constrained regression analysis. Qualitatively one can conclude that compared to the short-term

load less of the variability in the long-term load distribution is explained by the randomness in the
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
trary 10 minutes.

Figure C.12:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering three turbine conditions: 1) turbine operating over all wind speeds, 2)
turbine parked over all wind speeds, 3) turbine operating below cutout wind speed and
parked above cutout wind speed; for both blade root (a) flap and (b) edge bending.
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wind speed, at least for the structure, site data, and distribution models used here.

Following the methodology previously presented, we consider using a higher fractile of the wind

speed distribution where we may be able to recover the associated contribution to the long-term

load variability, and still reduce the computational effort in calculating the marginal distribution of

L10 min. FigureC.14shows that even by considering the 99% fractile of the wind speed distribution

we are unable to recover the variability contributed by the the wind speed, for flap bending. If we

consider edge bending using the 95% fractile of the wind speed distribution, rather than the mean

value, we are able to recover a reasonable estimate, of about 11.8kN-m, for the one-year load. This

is 1.6% different compared to the result from the full random model. Again, however, even with the

99% fractile of the wind speed distribution we are unable to recover a reasonable estimate of the

50-year edge bending load.

FigureC.15(a)shows the results for flap bending considering, alternatively, the short-term load

deterministic, but using the fractile associated with the mean increased by six standard deviations of

the distribution rather than just its mean value. The estimates of the one-year and 50-year loads are

49.8kN-m and 77.1kN-m, respectively. These estimates have associated errors of 4.1% and 0.6%

compared with the results of the full random model. Correspondingly, FigureC.15(b)shows the

results for blade root edge bending if we consider the fractile associated with the mean increased by

8 standard deviations. Our estimates of the one-year and 50-year blade root edge bending loads are

10.7kN-m and 20.3kN-m, respectively. These estimates have associated errors of 11.0% and 2.0%

compared with the results of the full random model.

C.4.4 Summary

Similar to the previous section, here we obtained an estimate of the marginal probability distribution

of the long-term load. The short-term load was based on a quadratic Weibull model of local random

peaks, however. The general methodology remained the same. The statistical moments were related

to the environmental variables through regression analysis. Using the method of moments, the dis-

tribution of the short-term loads was obtained for each specific set of values of the environmental

variables. Finally, an estimate of the marginal distribution of the long-term load was obtained by

summing the conditional short-term load distributions (each weighted by the probability of the val-

ues of the environmental variables occurring) over all environmental conditions. We found from this

analysis that the estimate of the one-year and 50-year blade root flap bending loads were 51.9kN-m

and 76.7kN-m, respectively. Correspondingly, the one-year and 50-year blade root edge bending

loads were 12.0kN-m and 20.0kN-m, respectively.

Again, a qualitative analysis was conducted to determine which of the three variables—conditional
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(a)Long-term distribution of blade root flap bending moment for an arbitrary 10 min-
utes.
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10
minutes.

Figure C.13:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering load, turbulence intensity, and wind speed deterministically for both blade
root (a) flap and (b) edge bending.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for an arbitrary
10 minutes.

Figure C.14:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the 10-minute mean wind speed at prescribed deterministic fractiles com-
pared with the full distribution solution.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10 minutes.
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(b) Long-term distribution of extreme blade root edge bending moment for and arbi-
trary 10 minutes.

Figure C.15:Long-term distributions of 10-minute extreme blade root bending moment,L10 min,
considering the conditional short-term extreme load at prescribed deterministic levels
compared with the full distribution solution.
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short-term load, conditional turbulence, or mean wind speed—contributed the most to the variabil-

ity in the distribution of the long-term load. We found that at least for theAOC 15/50 turbine, site

data, and distribution models used here the conditional short-term model of the loads contributed

the most to the variability in the distribution of the long-term load, with the mean wind speed con-

tributing less. We treated the wind speed distribution deterministic, considering fractiles higher than

the mean, and were unable to recover much of the variability in the distribution of the long-term

load. Considering the short-term load distribution deterministic, we found using the fractile asso-

ciated with mean increased by six standard deviations for the blade root flap bending load that our

estimates of the one-year and 50-year loads were 4.1% and 0.6% high, respectively. Correspond-

ingly, for the blade root edge bending loads if we considered the fractile associated with the mean

increase by 8 standard deviations for the short-term blade root edge bending loads our estimate of

the one-year load was low by about 11% and high by about 2.0% for the 50-year load.

C.5 Comparison of Long-Term Estimates Based on Different Short-

Term Models

In SectionC.3, we obtained an estimate of the long-term distribution of extreme events based on

modeling the 10-minute maximum event by a Gumbel distribution. Later, in SectionC.4 we ob-

tained a similar estimate of the long-term distribution based on modeling the short-term local peaks

with a quadratic Weibull distribution. FigureC.16 shows a comparison of the estimates of the

long-term distribution of the 10-minute loads based on a short-term loads modeling the 10-minute

extreme (Gumbel) or local peaks (Weibull). The estimates of the one-year and 50-year blade root

flap and edge bending loads are presented in TableC.5along with the associated percent difference

between the two estimates.

The data presented in the figure and the corresponding table show that the estimate based on

modeling the local peaks is generally unbiased for both blade root flap and edge bending compared

with the estimate based on modeling the raw conditional 10-minute extremes.
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(a)Long-term distribution of extreme blade root flap bending moment for an arbitrary
10-minutes.
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(b) Long-term distribution of blade root edge bending moment for an arbitrary 10-
minutes.

Figure C.16:Comparison of estimates of the long-term distribution of 10-minute extreme blade
root bending moment,L10 min based short-term Gumbel model for 10-minute extreme
events or a short-term Weibull model for local peaks.



APPENDIX C. LONG-TERM EXTREMES—IEC ENVIRONMENT 295

Comparison of Long-Term Estimates
Based on Short-Term Gumbel and Quadratic Weibull Models

Blade Root Flap Bending
Gumbel Model Quadratic Weibull Model Percent Difference

1-year Bending Load 52.4kN-m 51.9kN-m 1.0%
50-year Bending Load 74.3kN-m 76.7kN-m 3.2%

Blade Root Edge Bending
Gumbel Model Quadratic Weibull Model Percent Difference

1-year Bending Load 12.3kN-m 12.0kN-m 2.4%
50-year Bending Load 19.3kN-m 20.0kN-m 3.6%

Table C.5:Comparison of long-term estimates of one-year and 50-year bending loads based on
using Gumbel distribution fit to observed extreme events for the short-term load model
versus fitting a quadratic Weibull distribution to the local peaks for the short-term load
model.



Appendix D

First Order-Reliability Method

D.1 Introduction

The purpose of this appendix is to provide the reader with a short discussion of the first-order

reliability method (FORM). The reader is encouraged to consider the references in the text for

further detailed discussion of the topics presented.

D.2 Background

The objective of reliability analysis is to provide an assessment of the performance of a structure or

other engineering system, while taking into account the randomness of the design critical variables

and uncertainties associated with limited data. The performance is evaluated based on a set of

criteria orlimit states, which define acceptable behavior. In general, if the response of the structure

violates a limit state the performance is unacceptable, and often referred to as “failure”.

Here we letX = {X1, . . . , Xn} denote the vector of random variables which influence the

performance of the structure. From this vector we can formulate a limit state function,g(X), such

thatg(X)=0 defines a boundary in theX space between the safe and failure states of the structure.

We furthermore defineg(X) ≤ 0 as the failure region andg(X) > 0 as the safe region. The

probability of failure can then be obtained by solving then-fold integral below.

pf =
∫

g(x)≤0
fX(x) dx (D.1)

One major problem associated with evaluating EquationD.1 is that only in special cases does there

exist an analytical solution. Additionally, evaluation of the multifold integral numerically can be

intensive. However, approximate methods that provide good estimates of the probability of failure

296
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do exist, e.g. first-order reliability method.

D.3 First-Order Reliability Method ( FORM )

As noted above, one major obstacle in reliability assessment is the evaluation of EquationD.1. Here

we are interested in presenting a brief discussion of the theory underlying the first-order reliability

method. For a more detailed discussion the reader is referred to the work of Madsen, et al. [7] or

Melchers [8].

The first-order reliability method takes advantage of two special properties of the standard mul-

tivariate normal distribution: total radial symmetry of the joint probability density function about the

origin, and that the probability density function decays exponentially in both the radial and tangen-

tial directions. We will come back to the important role these properties play later in this discussion.

In order to take advantage of these properties, the basic random variables,X, must be transformed

into a set of standard normal variates,U = {U1, . . . , Un}, with a joint probability density function

given by

φU(u) =
1

(2π)n/2
exp

(
−1

2
uTu

)
(D.2)

The transformation can be written asu = u(x), e.g., Equation4.14showsu2 as a function ofi. Note

that if one or more of thexi’s are non-normal then the transformation is nonlinear. It is sufficient

for this discussion to acknowledge that the transformation takes place. Methods for conducting

the transformation are given in Madsen, et al. [7] and Melchers [8]. Note also that the limit state

function in standard normal space,G(u), must also be transformed, i.e.,G(u) = g(x(u)). Where

x(u) is the inverse ofu(x); e.g., in Equation4.14we seei as a function ofu2. These transformation

processes are illustrated in FigureD.1.

In the original space the probability of failure was given by EquationD.1. After the transforma-

tion to standard normal space the probability of failure can be written as

pf =
∫

G(u)≤0
φU(u) du (D.3)

In general, EquationD.3 is as difficult to solve as EquationD.1. The standard normal space has

two properties that enable us to obtain an accurate estimate of EquationD.3. These two properties

as mentioned earlier are (1) the radial symmetry ofφU(u), and (2) the exponential decay ofφU(u)
in the radial and tangential directions. As a result of these properties, the point,u∗, on the limit

state function,G(U), closest to the origin has the highest probability density among all the points

in the failure space. It is common to refer to this point as the failure point or design point. The

design point is found using a constrained optimization algorithm [12, 68]. Due to the exponential
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Figure D.1:Transformation of basic random variables to standard normal space.

decay of the probability density when the probability of failure is small, most of the contribution

to EquationD.3 comes from the region very close to the design point. Therefore, this suggests

that a good approximation to EquationD.3 can be obtained by replacing the limit state surface by

a tangent line at the design point and computing the probability content of the region beyond the

tangent line as shown in FigureD.2. The distance,β, from the origin to the design point is given as:

β = αTu∗ (D.4)

whereα is the unit normal vector to the tangent line. A first-order (FORM) estimate of EquationD.3

is given as[12]

pf ≈ Φ(−β) (D.5)

It is important to note that whileu∗ is the most likely failure point in the standard normal space,

x∗ = x(u∗), is not necessarily the most likely failure point in the original space. For most problems,

however,x∗ is close to the most likely failure point in the original space. The error associated with a

FORM estimate ofpf depends on how curved the limit state function is in the standard normal space.

This curvature may arise from the fact that the limit state function is non-linear in the original space

to begin with, or may be due to the non-linear transformation of non-normal variables to the standard

normal space. Experience has shown that for most structural engineering problems the accuracy is

sufficient [69]. Note that the method (curiously) works better in the tails (i.e. whenβ is large). For

β = 0, the exponential decay is not in effect.
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Figure D.2:Probability content behind first-order approximation of limit state function at design
point,u∗.

D.4 Affect of Multiple Design Points onFORM Estimate

In Chapter4 we discussed the occasion of multiple design points. In this section we present a brief

discussion on the effect of these multiple design points on ourFORM estimates.

FigureD.3 shows a plot of the limit state function in standard normal space for the first example

shown in Chapter4, for both blade root flap and edge bending moment. For FigureD.3(a), blade

root flap bending, it is clear that there is only one design point. FigureD.3(b), blade root edge

bending shows that there are two points that may be design points. The question is, “how do we

account for the probability mass associated with the second design point”?

The starting premise for implementing the environmental contour method discussed in Chap-

ter 4, was that the locus of points associated with the sameβ value, i.e., reliability level, formed a

circle in standard normal space. More formally, the probability content outside a line drawn tangent

to any point on the surface of the circle is constant. The issue here is that with multiple design

points, other design points may not be included in the area outside the line drawn tangent to the cir-

cle at the most probable design point (i.e., design point closest to the origin). The further these other

design points are from theFORM estimate the less accurate theFORM estimate becomes in estimat-

ing the reliability. In general, a system reliability analysis is required to accurately account for the

probability mass associated with multiple design posts, see Melcher [8] and Madsen, et al. [7]. We

will not discuss system reliability here but the reader is encouraged to consult the listed references.

Instead we will take a qualitative look at the location of the design point and the shape of the limit
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state function in standard normal space, for the three examples presented in Chapter4 to determine

if the FORM estimate misses a significant portion of the probability mass associated with additional

design points.

The implication is that if multiple design points exist and contribute additional probability mass

not already included in theFORM estimate the estimate may be inaccurate and unconservative. In

our examples in Chapter4 we have inherently assumed that there will be only one design point.

This is evident in the fact that theβ value is directly related the number of 10-minute segments in a

prescribed return period, and thisβ value defines the radius of the circle in standard normal space.

If multiple design points occurred, and for example a second design point contributed probability

mass not included in theFORM estimate for the most probable point, then a simple tangent at the

most probable point would not be sufficient. In this case, two tangent lines would be appropriate and

the probability mass that overlapped in the two regions would need to be discounted so that it was

not accounted for twice, i.e., system reliability analysis. If system reliability analysis is required to

account for the added probability mass associated with multiple design points, an iterative method

may be required to find the appropriate scaled circle in standard normal space associated with the

reliability, taking into account the contribution for all relevant design points.

Turning our attention to FigureD.3(b) the shape of the limit state function at the design point

with theFORM estimate shown indicates that very little probability mass is encompassed by the limit

state function. If this was the only design point then theFORM estimate would significantly over

estimate the probability mass. In this case, however, a second design point exists which includes a

large probability mass, to which ourFORM estimate would give a good approximation. Note that

both the limit state function and ourFORM estimate are straight lines. So in this case one might argue

that we have offsetting errors. OurFORM estimate is drawn at a point where the limit state function

contains very little probability mass, but we have another potential design point not contained in the

FORM estimate which does define a comparable probability mass.

FiguresD.4 andD.5 show a plot of the design points and limit state functions for Examples 2

and 3 of Chapter4 considering both blade root flap and edge bending. In FigureD.4, for Example

2, the second design point is not included with theFORM estimate at the most probable point.

Although, the amount of probability mass not included with theFORM estimate appears to be small.

We would expect that our estimate would be reasonable if only a small portion of probability mass

was excluded, and the results shown in Chapter4 confirm this assumption. It should be noted that if

we underestimated the probability mass we would expect our estimate of the one-year load, based

on theFORM estimate, to be slightly higher than indicated by the integration. This is because the

circle based on only one tangent line would be larger than the circle associated with the probability

content rescaled to account for probability mass associated with two tangent lines. This is also
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Figure D.3:Plot of limit state functions in standard normal space for Example 1—IEC Model with
Stall-Regulated Turbine, from Chapter4, for (a) flap and (b) edge bending.
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confirmed by the results shown in Chapter4, our estimate based onFORM analysis is slightly larger

than the estimate based on integration. FigureD.5, for Example 3, shows that a second design point

is not included in theFORM estimate at the most probable point, and in this case a more significant

portion of probability mass is neglected. Qualitatively, it seems that it may be advantageous in this

case to conduct a system reliability analysis to account for the additional probability mass. This

would potentially reduce the 13% difference in our estimates of the 1-year load based onFORM and

integration methods.
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Figure D.4:Plot of limit state functions in standard normal space for Example 2—Field Data Model
with Stall-Regulated Turbine, from Chapter4, for (a) flap and (b) edge bending.
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Figure D.5:Plot of limit state functions in standard normal space for Example 3—IEC Model with
Pitch-Regulated Turbine, from Chapter4, for blade root flap bending.



Appendix E

Environmental Contours Based on

Propsed Changes to IEC 61400-1

E.1 Introduction

The IEC technical committee responsible for revising the international standard of safety require-

ments for wind turbine generator systems (IEC 61400-1) [23] has proposed several changes to the

existing code. In particular, the technical committee has proposed three wind classes (I-III) instead

of the current four wind classes, as well as three turbulence classes (A,B,C) instead of the current

two turbulence classes. We present a brief discussion of developing environmental contours for

these new wind turbine generator system classes. In particular, in the last section of this appendix

we show how the environmental contours can be normalized with respect to turbulence class. The

reader should note that in this analysis we have assumed that the turbulence intensity is well de-

scribed by a lognormal distribution.

E.2 Definition of Environmental Random Variables

E.2.1 Wind Speed

The annual distribution of the 10 minute mean wind speed,V , is given by a Rayleigh distribution

defined as:

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(E.1)

α =
2µV√

π

305
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WhereµV is shown in TableE.1for wind speed classesI-III.

Wind Speed Class Vref m/s µV m/s

I 50 10
II 42.5 8.5
III 37.5 7.5

Table E.1:Mean value of annual distribution of 10-minute mean wind speed, for wind classesI-III.

E.2.2 Turbulence Intensity

The standard deviation of the 10-minute wind process is taken as the measure of turbulence, denoted

by I. The conditional distribution of turbulence is assumed to follow the lognormal distribution

shown below.

fI|V (i|v) =
1√
2πζi

exp

[
−1

2

(
ln(i)− λ

ζ

)2
]

(E.2)

The parameters of the lognormal distribution,λ andζ, are defined as:

ζ =
√

ln(δ2
I|V + 1)

λ = ln(µI|V )− 1
2
ζ2

with, δI|V , the conditional coefficient of variation given as:

δI|V =
σI|V
µI|V

The functions of conditional mean,µI|V , and standard deviation,σI|V , of the turbulence are given

by the equations below

µI|V = Iref(0.75v + c) (E.3)

σI|V = 1.44Iref (E.4)

The parametersIref andc are found in TableE.2for turbulence classesA throughC.
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Turbulence Class Iref c (m/s)

A 0.16 3.8
B 0.14 3.8
C 0.12 3.8

Table E.2:ParametersIref andc for annual conditional distribution of turbulence, for Turbulence
classesA-C.

E.2.3 Joint Probability Density Function of Environmental Variables

The joint probability density function of the environmental variables is obtained by multiplying

together EquationsE.1andE.2.

fV,I(v, i) = fI|V (i|v)fV (v) (E.5)

The resulting joint probability density function for classIA is shown in FigureE.1.
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Figure E.1:Joint probability density function for wind classIA, µV =10m/s,Iref=0.16,c=3.8



APPENDIX E. ENVIRONMENTAL CONTOURS—IEC 61400-1 308

E.3 Transformation Equations

The equations to transform a circle in standard normal space,U1,2, into the basic space described

by the random variables for wind speed,V , and turbulence,I, are given below.

E.3.1 Transformation of U1 to basic space, wind speed,V

The U1 coordinates of a circle in standard normal space are transformed to the basic space where

the wind speed,V , follows a Rayleigh distribution, by first equating the probability values ofu1

andv, in terms of the cumulative distribution functions (CDF) and then solving ofv in terms ofu1.

Φ(u1) = FV (v)

Φ(u1) = 1− exp
[
−

( v

α

)2
]

− exp
[
−

( v

α

)2
]

= Φ(u1)− 1

( v

α

)2
= − ln (1− Φ(u1))

v = α
√
− ln (1− Φ(u1)) (E.6)

E.3.2 Transformation of U2, givenV , to basic space, turbulence,I

After having transformed the first standard normal variable to basic space, the second random vari-

able may be transformed. The derivation of the equation for transforming the second coordinate,

U2, of the circle in standard normal space where (conditional onV ) the turbulence,I, follows a

lognormal distribution is shown below. Again, theCDFs are first equated, and then in this casei is

found in terms ofu2 and the wind speed dependent termsλ andζ.

Φ(u2) = FI|V (i, v)

Φ(u2) = Φ
(

ln(i)− λ

ζ

)

u2 =
ln(i)− λ

ζ

ln(i) = u2ζ + λ

i = exp (u2ζ + λ) (E.7)
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E.4 Plot of Environmental Contours for Wind ClassesIA-IIIC

FiguresE.2 throughE.10are plots of environmental contours, as discussed in Chapter4, for wind

classesI-III and turbulence classesA throughC, corresponding to 1-year and 50-year return periods.
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Figure E.2:Environmental contour, wind classIA, 1-year and 50-year return periods.
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Figure E.3:Environmental contour, wind classIIA, 1-year and 50-year return periods.
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Figure E.4:Environmental contour, wind classIIIA, 1-year and 50-year return periods.
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Figure E.5:Environmental contour, wind classIB, 1-year and 50-year return periods.
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Figure E.6:Environmental contour, wind classIIB, 1-year and 50-year return periods.
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Figure E.7:Environmental contour, wind classIIIB, 1-year and 50-year return periods.
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Figure E.8:Environmental contour, wind classIC, 1-year and 50-year return periods.
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Figure E.9:Environmental contour, wind classIIC, 1-year and 50-year return periods.
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Figure E.10:Environmental contour, wind classIIIC, 1-year and 50-year return periods.



APPENDIX E. ENVIRONMENTAL CONTOURS—IEC 61400-1 314

E.5 Normalized Contours

In this section, we consider normalizing the turbulence variable, such that one contour can repre-

sent the three classes of turbulence initially introduced in TableE.2. The normalized turbulence

is obtained by dividing EquationsE.3 andE.4 by the conditional standard deviation of turbulence

(EquationE.4). As shown in the equations below.

The conditional mean normalized turbulence is given as,

µI|V =
Iref(0.75v + c)

1.44Iref
=

0.75v + c

1.44
(E.8)

The conditional standard deviation of normalized turbulence is given as,

σI|V =
1.44Iref

1.44Iref
= 1 (E.9)

These normalized equations are used in EquationE.2 The general form of the transformation

equations presented earlier, however, remain unchanged. The normalized contours are shown in

FiguresE.11andE.12for 1-year and 50-year return periods, respectively.
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Figure E.11:Environmental contour with normalized turbulence intensity, wind classesI-III, 1-year
return period.
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Figure E.12:Environmental contour with normalized turbulence intensity, wind classesI-III,50-year
return period.



Appendix F

Estimation of Fatigue Distributions with

IEC Environment

F.1 Introduction

In this appendix, we consider a similar analysis of the estimation of fatigue load distributions and

fatigue damage to that presented in Chapter5 with two major differences. First, in the analysis that

will be presented here the turbulence intensity is defined as the standard deviation of the 10-minute

wind process rather than the coefficient of variation of the wind process. Second, the long-term

description of the environment is derived from theIEC design code [23], in particular we consider a

site that conforms to the classIA standard.

F.2 Data Set

The data set used in this analysis is for the Atlantic Orient CorporationAOC 15/50 turbine, described

in Chapter1 (page18). The turbine has a rotor diameter of 15m and a nominal rotor speed of

60 RPM at the rated wind speed of 12m/s. It is a three-bladed, fixed pitch turbine with a hub

height of 25 meters [22]. The data set is described in detail in Chapter3 (page66) and consisted

of multiple 10-minute simulations of Gaussian wind fields and corresponding blade root bending

moments. The wind input processes is described by the hub height wind speed. A plot of observed

turbulence intensity versus observed mean 10-minute wind speed, calculated from the simulation

data, for all 10-minute time histories is shown in FigureF.1. The blade root flap and edge bending

moment response time histories were assumed to be repeating and were rain-flow counted using the

simplified rain-flow counting for repeating histories method given inASTM standard E-1049.

316
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Figure F.1:10-minute mean wind speed and turbulence intensity for 2400 10-minute Gaussian wind
input processes.

F.3 Long-Term Analysis Based on Modeling Fatigue Ranges

with Quadratic Weibull Model

F.3.1 Short-term Analysis

In this section, we consider modeling the distribution of fatigue ranges using the quadratic Weibull

model. This model is fit to the first three moments of the data. To review, the load models, discussed

in Chapter5 and considered again here, estimate the probability distribution of load ranges by

preserving a limited set of statistical moments,µi = E[Ri]. The relevant moments are model-

dependent:µ1 throughµ3 for the quadratic Weibull model, andµz andµ2z for the damage-based

Weibull model (z on the order of3−5, fatigue exponent,bf equal to2z = 6−10). The moments of

the fatigue ranges were calculated for all blade root flap and edge bending response time histories.

For each pair of environmental variables (e.g.,V =10m/s andI=classA) the 100 observations of the

moments, e.g., mean, variance, etc., were pooled together and the mean of these pooled observations

was reported.

Chapter5 showed how the statistical moments of the data could be related to the environmental

variables: mean wind speed,V , and turbulence intensity,I, through the power-law relation we have
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seen before [54]:

µi = ai

(
V

Vref

)bi
(

I

Iref

)ci

(F.1)

Where,Vref is the reference 10-minute mean wind speed, andIref is the reference turbulence inten-

sity.1 This functional form and methodology are followed here again with some modification. In this

case, with the definitions chosen for the environmental variables, mean and standard deviation of the

10-minute wind process, for 10-minute mean wind speed and turbulence intensity respectively, the

variables are highly correlated,ρ = 0.9911. In order to avoid problems with the regression analysis

due to highly correlated predictor variables a constrained regression analysis was performed. For

constrained regression analysis, a simple linear regression of the statistics of the fatigue ranges is

performed on the first predictor variable, the 10-minute mean wind speed. The residuals are then in

turn regressed on the second predictor variable, turbulence intensity. The issue with highly corre-

lated predictor variables is that they tend to explain the same variability in the data. Following the

procedure above, we prescribe the 10-minute mean wind speed to be the more important predictor

variable and through the simple linear regression remove the variability explained by the 10-minute

mean wind speed first. The second predictor variable is left to explain the variability which is left

over, that portion of the variability it can explain that did not overlap (i.e. correlate) with the first

predictor variable, which with highly correlated variables is generally very little. As a result the

second predictor variable will play a less significant role than the first predictor variable.

The constrained linear regression analysis described above, applied to the logarithm of Equa-

tion F.1, yields point estimates of the coefficients. To demonstrate typical results, we pursue the

quadratic Weibull model here; the alternative damage-based Weibull model will be discussed in

SectionF.4. There are two distinct general loading conditions for the turbine, one when the turbine

is operating (i.e., 10-minute mean wind speed≤ 24m/s) and the other while the turbine is parked

(i.e., 10-minute mean wind speed> 24m/s). Separate regression analysis were performed under

each of these conditions. The reference wind speed and reference turbulence used in the regression

analysis are given in TableF.1. The calculated regression coefficients andR2 statistics are shown

in TablesF.2andF.3for blade root flap and edge bending fatigue ranges, respectively.R2 statistics

near unity indicate that a large percentage of the variability in the data is explained by the regression

model. LowR2 statistics indicate that other influences not contained in the regression model may

be affecting the loads. We may note that theR2 statistic for the regression analysis of the coeffi-

cient of skewness are low in a many cases, the data exhibit variability which the model is unable

to explain. In performing the regression analysis it was determined that the proposed functional

model, EquationF.1, did not have enough flexibility to sufficiently model the observed behavior of

1Recall that the turbulence intensity in this analysis is defined as the standard deviation of the 10-minute wind process,
rather than the coefficient of variation as considered at times in previous chapters.
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Reference Wind Speed and Turbulence

Vref (m/s) Iref (m/s)
V 5 24m/s 16.474 2.518
V > 24m/s 34.803 4.607

Table F.1:Reference wind speed and turbulence values used in EquationF.1

the mean and standard deviation of the blade root flap bending fatigue ranges. The values of the

mean and standard deviation of the fatigue ranges flatten out with higher wind speeds above 17m/s

as compared with the behavior below 17m/s. Therefore a separate model was fit to each of these

regions, one below 17m/s and the other above 17m/s, for both the mean and standard deviation of

blade root flap bending fatigue ranges. A similar result was found in Chapter3 when we considered

modeling the local peaks with a quadratic Weibull model, see Figures3.25and3.26.

Finally, graphical regression results are shown in FiguresF.2-F.4. Each figure contains both

blade root flap and edge bending conditions considering: mean of fatigue ranges, FigureF.2; stan-

dard deviation of fatigue ranges, FigureF.3; and coefficient of skewness of fatigue ranges, Fig-

ureF.4. In all plots, the turbulence intensity has been set equal to the reference value.
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Blade Root Flap Bending
Regression of Statistics of Fatigue Ranges onV and I

Mean of Fatigue Ranges
a (kN-m) b c R2

V 5 17m/s 6.0105 0.9855 0.1933 0.8935
17 < V 5 24m/s 7.6080 0.0133 0.2868 0.2387
V > 24m/s 4.4478 4.4437 0.0010 0.9948

Standard Deviation of Fatigue Ranges
a (kN-m) b c R2

V 5 17m/s 5.2900 0.8567 0.1902 0.8871
17 < V 5 24m/s 6.6759 0.1034 0.2630 0.2678
V > 24m/s 4.6655 4.1542 0.0124 0.9918

Coefficient of Skewness of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 1.3940 0.1447 0.0003 0.4873
V > 24m/s 2.3154 -1.4468 0.0140 0.9369

Table F.2:Regression coefficients used in Equation5.9to fit flap bending moment fatigue ranges as
functions of the mean wind speed,V , and turbulence intensity,I. The turbine is operating
for V 5 24m/s, otherwise the turbine is parked.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 321

Blade Root Edge Bending
Regression of Statistics of Fatigue Ranges onV and I

Mean of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 0.5963 0.4346 0.0598 0.8292
V > 24m/s 1.0970 4.7006 -0.0019 0.9954

Standard Deviation of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 0.5186 0.3915 0.0711 0.7747
V > 24m/s 1.1339 4.5399 0.0089 0.9936

Coefficient of Skewness of Fatigue Ranges
a (kN-m) b c R2

V 5 24m/s 1.8736 0.0213 0.0138 0.0064
V > 24m/s 1.9544 -0.6177 0.0161 0.2369

Table F.3:Regression coefficients used in Equation5.9to fit edge bending moment fatigue ranges as
functions of the mean wind speed,V , and turbulence intensity,I. The turbine is operating
for V 5 24m/s, otherwise the turbine is parked.
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(a)Pooled statistics of the mean of the fatigue ranges in 10-minute blade root flap
bending response time history.
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Figure F.2:Mean fatigue range of 10-minute blade root flap and edge bending response, based on
100 pooled observations for each 10-minute mean wind speed and turbulence class. The
wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Figure F.3:Standard deviation of fatigue ranges for 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise the
turbine is parked.
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(a)Pooled statistics of the coefficient of skewness of the fatigue ranges in 10-minute
blade root flap bending response time history.
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Figure F.4:Coefficient of skewness of fatigue ranges for 10-minute blade root and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise the
turbine is parked.
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F.3.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by

a quadratic Weibull model. Further, the moments of the fatigue ranges have been related to the

environmental variables through regression analysis.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period is found in

the same way as described in Section5.4; by performing the integration below,

FR(r) =
∫

FR|V,I(r|v, i) fV,I(v, i) dvdi (F.2)

Where,FR|V,I(r|v, i), is the short-term conditional distribution of fatigue ranges, andfV,I(v, i), the

joint density function of the environmental variables.

We will assume that theAOC 15/50 turbine is installed at a site with environmental conditions

conforming to aIEC class IA site. The description of the environmental variables is based on the

criteria given in theIEC wind energy safety code for a classIA environment [23]. Specifically, the

annual distribution of the 10-minute mean wind speed,V , is given by the Rayleigh distribution

shown below, withµV =10m/s.

fV (v) =
2v

α2
exp

[
−

( v

α

)2
]

(F.3)

α =
2µV√

π

The standard deviation of the 10-minute wind process is taken as the measure of wind turbulence

intensity. The conditional distribution of turbulence intensity is assumed to follow the lognormal

distribution shown below.

fI|V (i|v) =
1√
2πζi

exp

[
−1

2

(
ln(i)− λ

ζ

)2
]

(F.4)

The parameters of the lognormal distribution,λ andζ, are defined as:

ζ =
√

ln(δ2
I|V + 1) (F.5)

λ = ln(µI|V )− 1
2
ζ2 (F.6)
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with, δI|V , the conditional coefficient of variation given as:

δI|V =
σI|V
µI|V

(F.7)

The functions of conditional mean,µI|V , and standard deviation,σI|V , of the turbulence are given

by theIEC wind energy safety code. For turbulence class A,I15=0.18 anda=2.

µI|V =
I15(15m/s+ av)

(a + 1)
− 2m/sI15 (F.8)

σI|V = 2m/sI15 (F.9)

A plot of the joint density function of the environmental variables is shown in Figure4.1(Chapter4).

The ranges of values of the environmental variables are discretized into evenly spaced intervals.

For each pair of values of the environmental variables the corresponding short-term distribution

of fatigue ranges is generated, and any required threshold (shift) is reintroduced. Then, per Equa-

tion F.2, the short-term conditional fatigue range distributions are summed together, each weighted

by the probability of the respective environmental condition, i.e., pair of values of the environmental

variables. The summation is performed over the entire domain of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. In this case, to develop the long-term distribution of fatigue ranges, the ap-

propriate regression model is used for each wind speed value. This results in a combination of the

operating and parked only long-term distributions as shown in FigureF.5. Also shown in the fig-

ure are the long-term distribution of the fatigue ranges if the turbine is parked or operating in all

wind speeds. We see in FigureF.5(a)that the blade root flap bending moment fatigue ranges are

dominated by the operating conditions. In Figure5.13(b)we see that the blade root edge bending

moment fatigue ranges are also dominated by the operating conditions expect at very low probabil-

ity levels were the parked condition dominates. This is similar to what was seen with the extreme

load problem addressed in Chapter3 and AppendixC

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in

Chapter5 how we may obtain and estimate of the fatigue damage in an arbitrary 10-minute interval

from,

E[D10 min] ∝
∫∫

V,I
E[N0(v, i)]E[Rbf |v, i]fV,I(v, i)dvdi = DM10 (F.10)

WhereE[N0(v, i)], is the expected number of cycles as a function of wind speed and turbulence,

andE[Rbf |v, i], is thebth
f conditional moment of the fatigue ranges.DM10 denotes the “damage
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Figure F.5:Long-term distributions of blade root fatigue bending moment ranges,R, considering
three turbine conditions: 1) turbine operating over all wind speeds, 2) turbine parked
over all wind speeds, 3) turbine operating below cutout wind speed and parked above
cutout wind speed; for both: blade root (a) flap and (b) edge bending.
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Regression of the Number of Fatigue Ranges
on V and I

Blade Root Flap Bending
a (kN-m) b c R2

V 5 24m/s 268 0.9776 0.0593 0.7219
V > 24m/s 5178 0.3440 -0.0070 0.9462

Blade Root Edge Bending
a (kN-m) b c R2

V 5 24m/s 455 0.0502 -0.0080 0.5686
V > 24m/s 5476 0.0203 -0.0047 0.9965

Table F.4:Regression coefficients used in Equation5.9to fit the expected number of fatigue ranges,
for blade root flap and edge bending, as functions of the mean wind speed,V , and turbu-
lence intensity,I.

measure in 10-minutes” and is used as a proxy for the expected total fatigue damage in an arbitrary

10 minutes. This is not an actual estimate of the expected total fatigue damage, but it is proportional

to it so that higher values ofDM10 are associated with larger fatigue damage estimates and vise

versa. The expected number of cycles is related to the environmental variables through regression

analysis. The same power-law functional form, EquationF.1, was used. The calculated regression

coefficients andR2 statistics are shown in TableF.4 for blade root flap and edge bending fatigue

ranges. Graphical regression results are shown in FigureF.6. Applying EquationF.10then we can

obtain estimates of the damage measure,DM10 for blade root flap and edge bending consideringbf

values from 1 to 10 are presented in TableF.5. The values in this table will be used to compare with

results from modeling the short-term fatigue ranges with a damage-based Weibull model in the next

section instead of the quadratic Weibull model used here.

We may also consider the portion of the expected damage contributed at different environmental

conditions. FigureF.7presents a plot of damage density for both blade root flap and edge bending

moments. Here, we only consider the 10-minute wind speed as the environmental variable of inter-

est. The damage density is defined as the contribution to the expected total damage for a given wind

speed. Since our analysis was conducted considering both the 10-minute wind speed and turbulence

intensity, the values given in the figure reflect summing together all the contributions of different

turbulence intensities for a constant wind speed. We can see clearly from the figure that most of the

damage occurs while the turbine is operating, i.e., for wind speeds below 24m/s when the turbine is

assumed to be operating. Also we see from FigureF.7 that as the value of the fatigue exponent,bf ,

increases we are relatively more sensitive to higher wind speeds, while the turbine is parked.
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(a)Expected number of fatigue ranges in 10-minute blade root flap bending time his-
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(b) Expected number of fatigue ranges in 10-minute blade root edge bending time
history.

Figure F.6:Expected number of fatigue ranges in 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise the
turbine is parked.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 330

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35 40 45 50

D
am

ag
e 

de
ns

ity

10-minute mean wind speed, m/s

bf=3
bf=6
bf=9

(a) Blade root flap bending moment.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35 40 45 50

D
am

ag
e 

de
ns

ity

10-minute mean wind speed, m/s

bf=3
bf=6
bf=9

(b) Blade root edge bending moment.

Figure F.7:Damage density for blade root flap and edge bending.
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Estimate of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10.

bf Flap Bending Edge Bending
1 2.321e+3 3.929e+3
2 3.713e+4 3.505e+4
3 6.835e+5 3.146e+5
4 1.447e+7 2.833e+6
5 3.540e+8 2.557e+7
6 9.961e+9 2.316e+8
7 3.193e+11 2.140e+09
8 1.152e+13 1.920e+10
9 4.634e+14 1.459e+11
10 2.080e+16 1.623e+12

Table F.5:Estimate of damage measure,DM10, for fatigue exponent values,bf = 1, . . . , 10, con-
sidering blade root flap and edge bending fatigue loads.

F.3.3 Summary

In this section we have stepped through the process of obtaining an estimate of the marginal proba-

bility distribution of the long-term distribution of fatigue loads. This was accomplished by modeling

the short-term distribution of fatigue ranges by a quadratic Weibull model. The statistical moments

of the fatigue range data were related to the environmental variables by a power-law functional

form. The parameters of the functional form were obtained through regression analysis. Using the

method of moments, a quadratic Weibull distribution was obtained for each specific set of values

of the environmental variables. Finally, an estimate of the marginal distribution of the long-term

fatigue loads was obtained by summing the conditional short-term load distributions over all envi-

ronmental conditions. Each conditional short-term load distribution was weighted by the probability

of the associated environmental condition occurring. The next section presents a similar analysis,

only this time the short-term fatigue ranges are modeled with a damage-based Weibull distribution.
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F.4 Long-Term Analysis Based on Modeling Fatigue Ranges with the

Damage-Based Weibull Model

F.4.1 Short-Term Analysis

In the last section we considered modeling the distribution of fatigue ranges using the quadratic

Weibull model. Here, in contrast, we consider modeling the distribution of the fatigue ranges using

our proposed damage-based Weibull model as defined in Chapter5. To review, the load models

discussed here estimate the probability distribution of load ranges by preserving a limited set of

statistical moments,µi = E[Ri]. The relevant moments here are model-dependent:µ1 throughµ3

for the quadratic Weibull model, andµz andµ2z for the damage-based Weibull model (z on the

order of 3-5,bf = 6 − 10). In particular in this section we will look at damage-based Weibull

models in three cases, forz values equal to 3, 4, and 5. In the first case for example wherez = 3
this corresponds to fatigue exponent values equal to 3 and 6. The model is tuned to fit the third and

sixth moment of the data. Similarly, forz = 4 (bf=4 and 8) the model is tuned to fit the fourth

and eighth moment of the data, and forz = 5 (bf=5 and 10), the fifth and tenth moment. Separate

regression analysis and long-term integration will be conducted for each of these cases. In some

instances the results of only the first transformation,z = 3, will be presented as we find similar

results for the other transformations.

In the previous section the statistical moments of the data were related to the environmental

variables by the power-law model given in EquationF.1; the same functional form and method-

ology are followed here, again. The damage-based model matches only two moments, albeit the

two moments that are matched are typically of higher order. Constrained linear regression analysis,

applied to the logarithm of EquationF.1, was used to obtain estimates of the coefficients. Recall

constrained regression analysis was implemented due to the high correlation between the environ-

mental variables, i.e., the predictor variables for the regression analysis. The reference wind speed

and reference turbulence used in the regression analysis are given in TableF.1. The calculated re-

gression coefficients andR2 statistics are shown in TablesF.6 andF.7 for blade root flap and edge

bending transformed,z = 3, fatigue ranges, respectively. Similar results are shown in TablesF.8

andF.9 for z = 4 transformed fatigue ranges and TablesF.10andF.11for z = 5 transformed fa-

tigue ranges.R2 statistics near unity indicate that a large percentage of the variability in the data

is explained by the regression model. LowR2 statistics indicate that other influences not contained

in the regression model may be affecting the loads. In performing the regression analysis it was

again determined that the applied functional model, EquationF.1, did not have enough flexibility to

sufficiently model the observed behavior of the mean and standard deviation of the blade root flap

bending fatigue ranges. The values of the mean and standard deviation of the fatigue ranges flatten
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out with higher wind speeds above 17m/s, as compared with the behavior below 17m/s. Therefore

a separate model was fit to each of these regions, one below 17m/s and the other above 17m/s, for

both the mean and standard deviation of blade root flap bending fatigue ranges. We saw a similar

result in Section5.4when we fit the quadratic Weibull model to the fatigue ranges.

Finally, graphical regression results for the case where the fatigue ranges are transformed for

z = 3, are shown in FiguresF.8 andF.9. Each figure contains regression results for both blade

root flap and edge bending conditions considering the mean of the fatigue ranges, FigureF.8 and

standard deviation of the fatigue ranges, FigureF.9. In all plots the turbulence intensity has been set

equal to the reference value. Similar results were found for the other transformation cases and, in

the interest of brevity, these additional plots are not presented.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 788 3.0914 4.689 0.8859
17 < V 5 24m/s 1471 -0.0146 0.6942 0.2636
V > 24m/s 662 12.183 0.0364 0.9947

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 3156 2.6597 4.7121 0.8975
17 < V 5 24m/s 5869 0.3059 0.6649 0.2781
V > 24m/s 3361 10.249 0.0526 0.9934

Table F.6:Regression coefficients used in EquationF.1 to fit transformed (z = 3) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=3

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 673 -0.0296 -0.0017 0.1878
V > 24m/s 9.3 13.422 0.0207 0.9948

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 105 0.8172 0.1011 0.8718
V > 24m/s 46.6 12.784 0.0266 0.9866

Table F.7:Regression coefficients used in EquationF.1 to fit transformed (z = 3) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=4

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 16624 3.8901 0.6276 0.8907
17 < V 5 24m/s 38139 0.1271 0.9145 0.2396
V > 24m/s 15054 15.212 0.0590 0.9942

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 95320 3.4021 0.6266 0.9013
17 < V 5 24m/s 218818 0.6259 0.8576 0.3331
V > 24m/s 122149 12.815 0.0710 0.9928

Table F.8:Regression coefficients used in EquationF.1 to fit transformed (z = 4) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=4

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 6041 0.0012 0.0204 0.0009
V > 24m/s 50 17.172 0.0163 0.9911

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 2184 0.7229 0.0981 0.8567
V > 24m/s 511 16.912 0.0147 0.9878

Table F.9:Regression coefficients used in EquationF.1 to fit transformed (z = 4) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Transformed Blade Root Flap Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 17m/s 403931 4.6380 0.7838 0.8946
17 < V 5 24m/s 1137109 0.3384 1.123 0.2542
V > 24m/s 436263 17.885 0.0804 0.9931

Regression of the Standard Deviation
of Fatigue Ranges onV and I

a (kN-m) b c R2

V 5 24m/s 3153425 4.1583 0.7819 0.9038
17 < V 5 24m/s 8957484 1.0125 1.0402 0.3907
V > 24m/s 4925813 15.336 0.0925 0.9915

Table F.10:Regression coefficients used in EquationF.1 to fit transformed (z = 5) flap bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Transformed Blade Root Edge Bending Fatigue Ranges
z=5

Regression of the Mean
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 54502 0.0366 0.0066 0.2222
V > 24m/s 380 20.543 -0.0199 0.9886

Regression of the Standard Deviation
of Fatigue Ranges onV and I
a (kN-m) b c R2

V 5 24m/s 24810 0.7046 0.1023 0.8415
V > 24m/s 6811 20.945 -0.0167 0.9883

Table F.11:Regression coefficients used in EquationF.1 to fit transformed (z = 5) edge bending
moment fatigue ranges as functions of the mean wind speed and turbulence intensity.
The turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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(a)Pooled statistics of the mean of transformed (z = 3) fatigue ranges in 10-minute
blade root flap bending response time history.
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Figure F.8:Pooled statistics of the mean of transformed (z = 3) fatigue ranges in 10-minute blade
root flap and edge bending response time histories for given 10-minute mean wind
speeds. The wind turbine is operating forV 5 24m/s, otherwise the turbine is parked.
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Figure F.9:Pooled statistics of the standard deviation of transformed (z = 3) fatigue ranges in 10-
minute blade root flap and edge bending response time histories for given 10-minute
mean wind speeds. The wind turbine is operating forV 5 24m/s, otherwise the turbine
is parked.
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F.4.2 Long-Term Analysis

For the discussion here we defined the conditional probability distribution of fatigue ranges by a

damage-based Weibull model. Further, the moments of the data have been related to the environ-

mental variables through regression analysis.

The long-term distribution of fatigue load ranges, in an arbitrary 10-minute period is found in

the same way as discussed in SectionF.3. We will again assume that theAOC 15/50 turbine is

installed at a site with environmental conditions conforming to anIEC classIA site, described in

SectionF.3. The long-term distribution of the 10-minute mean wind speed is assumed to follow a

Rayleigh distribution with mean,µV = 10m/s. The conditional distribution of turbulence is given

by a lognormal distribution with conditional mean and standard deviation given by EquationsF.8

andF.9, respectively. A plot of the joint density function of the environmental variables is shown in

Figure4.1(Chapter4).

The ranges of the values of the environmental variables are discretized into evenly spaced in-

tervals. For each pair of values of the environmental variables the corresponding short-term dis-

tribution of fatigue ranges is generated. Then, per EquationF.2, the short-term conditional fatigue

range distributions are summed together, each weighted by the probability of the respective envi-

ronmental condition, i.e., pair of values of the environmental variables, occurring. The summation

is performed over the entire range of environmental variables.

As stated earlier, there are two loading conditions for the turbine, operating and parked. During

normal use the turbine is operating for wind speeds less than 24m/s and parked for wind speeds

greater than 24m/s. To develop the long-term distribution of the fatigue ranges the appropriate

regression model is used for each wind speed value. FigureF.5shows three long-term distributions

of fatigue ranges. Each distribution is based on a different transformation of the fatigue ranges

(z = 3, 4, 5); all of the distributions appear very similar.

In addition to obtaining an estimate of the long-term distribution of fatigue ranges, we saw in

Chapter5 how we may obtain an estimate of the fatigue damage in an arbitrary 10-minute interval.

The expected number of cycles and the environmental variables through regression analysis.2 The

same power-law functional form, EquationF.1, was used. The calculated regression coefficients and

R2 statistics are shown in TableF.12for blade root flap and edge bending fatigue ranges. Graphical

regression results are shown in FigureF.11. Applying EquationF.10we can obtain estimates of the

damage measure for blade root flap and edge bending consideringbf values corresponding toz and

2z for z = 3, 4, 5, these estimates are presented in TableF.13. We may also consider the portion of

2When we transform the fatigue ranges, withz = 3, 4, 5, only the magnitude of the fatigue ranges is transformed,
the number of fatigue ranges stays the same. Therefore, the expected number of fatigue ranges stays the same regardless
of the transformation. The results of the regression analysis presented here is valid for any value ofz used for the
transformation.
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(a)Long-term distribution of blade root flap bending fatigue ranges for an arbitrary 10
minutes.
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(b) Long-term distribution of blade root edge bending fatigue ranges for an arbitrary
10 minutes.

Figure F.10:Long-term distributions of blade root fatigue bending moment ranges,R, considering
three fatigue range transformations,z = 3, 4 and 5; for (a) flap and (b) edge bending.
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Regression of the number of Fatigue Ranges
on V and I

Blade Root Flap Bending
a (kN-m) b c R2

V 5 24m/s 1843 0.1488 0.0035 0.4978
V > 24m/s 5023 0.3442 -0.0070 0.9463

Blade Root Edge Bending
a (kN-m) b c R2

V 5 24m/s 671 0.0989 0.0085 0.7379
V > 24m/s 5474 0.2203 -0.0047 0.9463

Table F.12:Regression coefficients used in EquationF.1to fit the expected number of fatigue ranges,
for blade root flap and edge bending, as functions of the mean wind speed and turbulence
intensity. The turbine is operating forV 5 24m/s, otherwise the turbine is parked.

Estimate of Damage Measure,DM10,
for fatigue exponent values,bf = 1, . . . , 10.

bf Flap Edge
z = 3 3 2.315e+6 4.303e+5

6 1.952e+11 3.123e+8
z = 4 4 8.788e+7 3.812e+6

8 5.575e+14 2.552e+10
z = 5 5 3.897e+9 3.394e+7

10 1.787e+18 2.085e+12

Table F.13:Estimate of damage measure,DM10, for fatigue exponent values,bf = 1, . . . , 10, con-
sidering blade root flap and edge bending loads.

the expected damage contributed at different environmental conditions. FigureF.12presents the plot

of damage density for both blade root flap and edge bending moments. We can see from FigureF.12

that asbf increases the damage measure is more sensitive to higher wind speeds.

F.4.3 Summary

Similar to the previous section, here we have stepped through the process of obtaining an estimate

of the marginal probability distribution of the long-term distribution of fatigue ranges. The short-

term fatigue loads were modeled using the damage-based Weibull model, however. The general

methodology remained the same. In this case however, the statistical moments were obtained after

having first transformed the fatigue ranges, e.g.,z = 3, 4, 5. By performing this transformation
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(a)Expected number of fatigue ranges in 10-minute blade root flap bending time his-
tory.
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(b) Expected number of fatigue ranges in 10-minute blade root edge bending time
history.

Figure F.11:Expected number of fatigue ranges in 10-minute blade root flap and edge bending re-
sponse time histories, based on 100 pooled observations for each 10-minute mean wind
speed and turbulence class. The wind turbine is operating forV 5 24m/s, otherwise
the turbine is parked.
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(a) Blade root flap bending moment.
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(b) Blade root edge bending moment.

Figure F.12:Damage density for blade root flap and edge bending.
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when we employed the method of moments to obtain estimates of the distribution parameters, our

model was fit to thezth and2zth moments of the untransformed data. Forz = 3, this amounts to

fitting the standard Weibull model to the third and sixth statistical moment where we suspect a ma-

terial with fatigue exponentbf = 3-6 would be most sensitive to these higher fatigue ranges. The

statistical moments of the transformed fatigue ranges were related to the environmental variables

through regression analysis. Finally, an estimate of the marginal distribution of the long-term load

was obtained by summing the conditional short-term load distributions (each weighted by the prob-

ability of the values of the environmental variables occurring) over all environmental conditions.

We considered three transformation cases,z = 3, 4, and 5. We found that the marginal long-term

distributions of the fatigue ranges for an arbitrary 10-minute interval were very similar.

F.5 Comparison of Long-Term Estimates Based on Different Short-

Term Models

In SectionF.3, we obtained an estimate of the long-term distribution of fatigue ranges based on the

short-term distribution of fatigue ranges model by a quadratic Weibull model. Later, in SectionF.4

we obtained a similar estimate of the long-term distribution by modeling the short-term distribution

of fatigue ranges by a damage-based Weibull model.

FigureF.13shows the estimates of the long-term distribution of fatigue loads based on model-

ing the short-term fatigue ranges by quadratic or damage-based Weibull models. Considering flap

bending loads, using the quadratic Weibull distribution to model the short-term fatigue ranges gen-

erates a long-term distribution with generally lower fatigues loads compared with the the long-term

distribution of fatigue loads considering the damage-based model. The fatigue loads based on the

quadratic Weibull model are higher for fatigue ranges less than about 20 kN-m, however. For the

edge bending case, the long-term distribution of fatigue loads based on either quadratic Weibull or

damage based models are very similar.

TablesF.14 andF.15 compare estimates of damage measures,DM10, obtained from our two

model definitions. We saw above that the quadratic Weibull produced lower loads for the long-term

distribution for both blade root flap and edge bending loads. It would follow that we would expect

to see lower damage measures. In fact this is the case, for flap loads, that the damage-based Weibull

models do estimate much higher damage measures compared with the estimates from the quadratic

Weibull model. In the edge bending case, however, even though the quadratic Weibull model does

estimate similar fatigue loads the damage measure estimates are lower than those estimated from

the damage-based Weibull model.

We can alternatively compare our estimates of the fatigue damage measure from each of the
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(a) Blade root flap bending.
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(b) Blade root edge bending.

Figure F.13:Comparison of estimates of the long-term distribution of fatigue ranges based on
quadratic or damage-based Weibull models for short-term distribution of fatigue ranges
for (a) flap and (b) edge bending.
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Comparison of Estimates of Damage Measure,DM10,
Blade Root Flap Bending

Damage- Percent Difference
bf Q. W. Based z = 3 z = 4 z = 5
3 6.835e+5 2.315e+6 238%
4 1.447e+7 8.788e+7 511%
5 3.540e+8 3.897e+9 1000%
6 9.961e+9 2.0e+11 1859%
8 1.2e+13 5.6e+14 4739%
10 2.1e+16 1.8e+18 8491%

Table F.14:Comparison of damage measure,DM10, estimates for blade root flap bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3, 4, 5 (z = bf/2).

Comparison of Estimates of Damage Measure,DM10,
Blade Root Edge Bending

Damage- Percent Difference
bf Q. W. Based z = 3 z = 4 z = 5
3 3.146e+5 4.303e+5 +37%
4 2.833e+6 3.812e+6 +35%
5 2.557e+7 3.394e+7 +32%
6 2.316e+8 3.123e+8 +35%
8 1.9e+10 2.6e+10 +33%
10 1.6e+12 2.1e+12 28%

Table F.15:Comparison of damage measure,DM10, estimates for blade root edge bending fatigue
loads between short-term quadratic Weibull(Q.W.) model and damage-based Weibull
model forz = 3, 4, 5 (z = bf/2).
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proposed models to an empirical estimate of the fatigue damage measure. The empirical estimate

of the fatigue damage measure is obtained by using the raw rain-flow counted range data directly

from a representative time history for a given set of values of the environmental variables. We saw

in Chapter5 how we could obtain an empirical estimate of the damage measure.

TablesF.16andF.17show the fatigue damage measure for different values of the fatigue ex-

ponent,bf , based on the empirical model and compared to the estimates obtained based on the

quadratic Weibull and damage based models. In general, compared to the empirical model the es-

timates of the fatigue damage measure for the flap bending direction the quadratic Weibull model

under-predicts the fatigue damage measure for all fatigue exponents that we considered. The dam-

age based model on the other hand, over-predicts damage for fatigue exponent values less that 7,

bf < 7 and under-predicts for values greater than 7,bf > 7. We found slightly different results

for the edge bending direction. In this case, the quadratic Weibull model still under-predicted the

fatigue damage measure for all fatigue exponents that we considered, but not as drastically. The

damage based model over predicted the fatigue damage measure for all fatigue exponent values that

we considered. Similar to the results found in Chapter5 neither of the models do a very good job

of estimating the fatigue damage measure compared with the empirical model. However, it should

be noted that since the damage-based models are exact at matching the empirical damage at the

moments for which they are fit it is really the regression model that is being tested. Additional re-

search would be required to evaluate the general efficacy of these models and regression techniques

to predict fatigue damage.



APPENDIX F. LONG-TERM FATIGUE DISTRIBUTIONS—IEC ENVIRONMENT 348

Comparison of Estimates of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10, Flap Bending

Empirical Quadratic Weibull Damage-Based Weibull
bf DM10 DM10 % DM10 %

diff. diff
1 6.106e+3 2.321e+3 -62.0% - -
2 7.170e+4 3.713e+4 -48.2% - -
3 1.491e+6 6.835e+5 -54.2% 2.315e+6 55.2%
4 5.068e+7 1.447e+7 -71.5% 8.788e+7 73.4%
5 2.684e+9 3.540e+8 -86.8% 3.897e+8 45.2%
6 1.924e+11 9.961e+9 -94.8% 1.952e+9 1.46%
7 1.635e+13 3.193e+11 -98.1% - -
8 1.535e+15 1.152e+13 -99.2% 5.575e+12 -63.7%
9 1.538e+17 4.634e+14 -99.7% - -
10 1.619e+19 2.080e+16 -99.9% 1.787e+16 -89.0%

Table F.16:Comparison of estimates of blade root flap bending fatigue damage measure,DM10, for
fatigue exponent values,bf = 1, . . . , 10, considering empirical, quadratic Weibull, and
damage based models.

Comparison of Estimates of Damage Measure,DM10,
for Fatigue Exponent Values,bf = 1, . . . , 10, Edge Bending

Empirical Quadratic Weibull Damage-Based Weibull
bf DM10 DM10 % DM10 %

diff. diff
1 5.614e+3 3.929e+3 -30.0% - -
2 4.921e+4 3.505e+4 -28.8% - -
3 4.342e+5 3.146e+5 -27.5% 4.303e+5 36.8%
4 3.847e+6 2.833e+6 -26.4% 3.812e+6 34.6%
5 3.424e+7 2.557e+7 -24.7% 3.394e+7 31.7%
6 3.063e+8 2.316e+8 -24.4% 3.123e+8 34.8%
7 2.754e+9 2.140e+9 -22.3% - -
8 2.493e+10 1.920e+10 -23.0% 2.552E+10 32.9%
9 2.281e+11 1.759e+11 -36.0% - -
10 2.155e+12 1.623e+12 -24.7% 2.085e+12 28.5%

Table F.17:Comparison of estimates of blade root edge bending fatigue damage measure,DM10,
for fatigue exponent values,bf = 1, . . . , 10, considering empirical, quadratic Weibull,
and damage based models.
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