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ABSTRACT

This report documents the use of the FITS routine, which provides automated fits of
various analytical, commonly used probability models from input data. It is intended to
complement the previously distributed FITTING routine documented in RMS Report 14
(Winterstein et al., 1994), which implements relatively complex four-moment
distribution models whose parameters are fit with numerical optimization routines.
Although these four-moment fits can be quite usefid and faithful to the observed data,
their complexity can make them difficult to automate within standard fitting algorithms.
In contrast, FITS provides more robust (lower moment) fits of simpler, more
conventional distribution forms. For each database of interest, the routine estimates the
distribution of annual maximum response based on the data values and the duration, T,
over which they were recorded. To focus on the upper tails of interest, the user can also
supply an arbitrary lower-bound threshold, Xlow,above which a shifted distribution
model-exponential or Weibull—is fit. (In estimating the annual maximum response,
the program automatically adjusts for the decreasing rate of response events as the
threshold XZOWis raised.)



Version History

Version 1.0: The first version of the FITS routine. This version was docu-

mented in an earlier report (Stanford RMS Report 19; Winterstein, 1995)

Version 1.1: This version added the “quadratic Weibull” distribution to
the original library. This distribution is fitted to the first three moments of a
data set, and has been found especially useful in modelling fatigue loads on
wind turbine blades (see Stanford RMS Report 31; Kashef and Winterstein,
1998).

Version 1.2: The current version of the FITS software supports more

compact formats for the input data. In addition to the original format which
required raw data one entry per response “event ,“ two other database formats
are now accepted by the software. Data can be input in a binned or histogram
format wherein bin centers and the number of occurrences in each bin are
read as input. Another alternative is to input the first four moments (mean,
standard deviation, skewness, and kurtosis) of the data and the number of
events for the duration of the database.
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1 Distribution Fitting: General Methodol-
ogy

This report documents the usage of the routine FITS, which provides auto-
mated fits of various analytical, commonly used probability models to input

data. This routine is intended to complement the previously distributed
routine, FITTING, documented in RMS Report 14 (Winterstein et al, 1994).
The FITTING routine implements relatively complex, four-moment distribu-
tion models, whose parameters are fit with numerical optimization routines.
While these four-moment fits can be quite useful and faithful to the observed
data, their complexity can make them difficult to automate within standard
fitting algorithms.

In contrast, the routine FITS is intended to provide more robust (lower
moment) fits of simpler, more conventional distribution forms. For each
database of interest, the routine estimates the distribution of annual maxi-
mum response, based on the data values and the duration, T, over which they
were recorded. It can also estimate the annual maximum response distribu-
tion due to multiple types of response “events,” intended to reflect different
statistical populations. Examples include waves or winds from different di-
rections, or response events due to hurricanes, eddy currents, or combined
hurricane-current events.

Specifically, FITS first estimates the cumulative distribution functions for
each individual response, Fi (z) =PIOutcome < x in database Z], from the
data in that database. It then predicts the corresponding distribution of
maximum response X~.Z, over a target duration of time T, by assuming
that events from each database occur in independent, Poisson fashionl:

1In this document we use the notation Gann to represent the probability of exceedence
of the response over a given duration of time. However, this target duration need not
neccesmrily be one year. The exceedence probabilityy will be calculated for unit time, the
units being consistent with those used in the input file.



P[ Max response in time T > Z] = G...(x) = I – exp[– ~ VZ7’GZ(Z)] (1)
i

in which
Gi(~) = I – Fi(z) (2)

Here vi is the mean rate of events per unit time in database i, estimated from

the observed number (possibly over a user-defined threshold; see below).

1.1 Available Distribution Types

Specific distributions currently included in FITS to estimate Fi (z) include
the following, as cataloged by the distribution index IDIST:

IDIST=l:

IDIST=2:

IDIST=3:

IDIST=4:

IDIST=5:

IDIST=6:

IDIST=7:

IDIST=8:

IDIST=9:

Normal Distribution

Lognormal Distribution

Exponential Distribution

Weibull Distribution

Gumbel Distribution

Shifted Exponential Distribution

Shifted Weibull Distribution

Quadratic Weibull Distribution

Shifted Quadratic Weibull Distribution

The distributions IDIST=l through 5 and 8 are all fit to statistical moments
of all available data. The single-parameter exponential preserves only the
mean mZ of the data, while the normal, lognormal, Weibull, and Gumbel
preserve both the mean and standard deviation OZ estimated from the data.
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The quadratic Weibull preserves the first three moments of the data
(mean, standard deviation, and skewness). It is therefore the most gen-
eral among the distributions included here. Note that this quadratic Weibull
model was not included in the original version of FITS (Winterstein, 1995).
Its inclusion in a subsequent version of FITS (Kashef and Winterstein, 1998)
as well as in the current version reflects its successful applications, partic-
ularly in modelling fatigue loads on wind turbine blades (Lange and Win-
terstein, 1996). At the same time, unlike the four-moment models from
FITTING (Winterstein et al, 1994), the parameter fitting of the quadratic
Weibull does not require numerical optimization. It also avoids the tendency
of four-moment models toward overfitting, when applied to positive variables
such as load peaks or ranges. This is demonstrated here through an addi-
tional example in a later section, which applies FITS to predict extremes
from a data set of observed wind turbine blade loads. Results offer a com-
parison between the Weibull and quadratic Weibull models, as well as with
the four-moment “cubic Weibull’ model available from the FITTING routine.

Most of the one-sided distributions above (exponential, Weibull, and
quadratic Weibull) are also generalized here by imposing an arbitrary shift
(IDIST=6, 7, and 9). These permit a user-defined lower threshold zIW, ignore
data below Zlm, and fit standard exponential/Weibull/quadratic Weibull
models to z – Xzm based on observed moments. These are perhaps the most 4
relevant distributions when modelling local peaks, Y, which generally have

a broadly skewed distribution away from a well-defined lower bound. (In es-
timating the annual maximum response, the program automatically adjusts
for the decreasing rate of response events as the threshold XIW is raised.)

The result aims to provide the user with a suite of smooth probability
models, to be fit throughout the body of the available data. It does not
directly address various special topics of data fitting; e.g., selective tail fit-

ting, fitting bimodal models to hybrid data, etc. Some of these issues can
be addressed, in a limited way, through the use here of the shifled mod-
els (ID IST=6, 7, and 9). In this way the user can focus the distribution
modelling resources on the extreme response levels of interest.

More specific tail-fitting procedures have not been given here, because
optimal use of these tends to be rather problem-specific. In the same vein

3



our extremal models are limited here to so-called “Type I“ behavior, leading
to (shifted) exponential distributions of peaks over a given threshold and
to Gumbel distributions of annual maxima. Type II and III distributions
are ill-suited to our moment-fits, due to potential moment divergence (Type
II) or to the difficulty in predicting truncated distributions (Type III) from
moment information.

1.2 Software Limitations

Several parameters have been assigned maximum values in the routine FITS.
These include the upper limits

● NFMAX,the maximum number of files (databases) to be fit, has been set

to 10.

● NMAX, the maximum number of data per database, has been set to

32768.

Both of these limits have been set in PARAMETERstatements in the main
driver program to FITS. These are rather arbitrarily selected limits, and can
be reset by the user without fundamental consequence.



2 Distribution Fitting: Routines

The fitting algorithm calls the following set of subroutines:

CALMOM:Estimates the mean mx, standard deviation a., skewness as and
kurtosis Q4 from an input set of data. These are based on unbiased
estimates of the cumulants kl=mz, k2=a~, k3=a3a~, and k4=(a4–3)a$.

If the user includes an optional lower limit ZIW, moments of the shifted
variable (Z – ZIOW)+=max(O, x – ~zm) are estimated.

DISPAR: Based on the sample moments estimated in CALMOM,DISPAR seeks
a consistent set of distribution parameters. The interpretation of these
parameters depends on the distribution type selected by the user. Ap-
pendix A includes a complete listing of the distribution functions and
their parameters.

GETCDF: For the user-defined distribution type with the distribution param-
eters from DISPAR, this routines estimates the cumulative distribution
function value, F(z) =PIOutcome < Z] for given input x value.

FRACTL: For the user-defined distribution type with the distribution param-
eters from DISPAR, this routines estimates the fractile x corresponding

to a specified input value of the probability p= F’(z) =PIOutcome < Z].

QDMOM:Uses Gaussian quadrature to estimate the first four moments of the
theoretical fitted distribution. These can be compared with the sample
moments from the data, as given by CALMOM,to verify the accuracy of
the fitted model—and in the case of the higher moments not used in
the original fitting, to test its goodness of fit.

The routines GETCDFand FRACTL,which supply general distribution func-
tions and their inverses, may also be useful in other stand-alone applications;
e.g., to create a distribution library for standard FORM/SORM or simulation
analyses (Madsen et al, 1986), or for use with new Inverse FORM algorithms
(Ude and Winterstein, 1996).

5



3 Input Format and Wave Height Example

3.1 Data Input

The file(s) containing data are read in free format, one datum per line. Non-
numerical input are taken as comments and ignored. The first numerical
value found is taken to be the duration of the database 2. Remaining values
(1 per line) are interpreted as data, and data are read until the end of the
file is encountered.

We illustrate the input here through a simple example, involving signifi-
cant wave height data. These are in fact 19 annual maximum Hs values, esti-
mated by hindcast in a Southern North Sea location (Winterstein and Haver,
1991). These data are stored in appropriate format in”the file gumbel. dat.

The contents of gumbel. dat are listed below. The first line reflects that
19 years are covered, and the remaining 19 lines contain the actual maximum
H,s encountered in each of these 19 years. (In this input file the data are
given in descending order; this is not required by the program.)

19.
9.66
9.44
9.18
9.17
8.85
8.79
8.60
8.58
8.54
8.49

2The units for the duration are chosen by the user. The exceedence probability in unit

time G~~~ calculated by the program will use the same units. For example, in order to
obtain annual exceedence probabilities the duration must be input in units of years.
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8.09
8.08
8.06
7.47
7.42
7.41
7.31
7.16
6.92

Contents of gumbel .dat.

3.2 Runtime Input: Batch Mode

We seek to invoke FITS under the following conditions:

1. Results to be written to a file named gumbell. out. (The distinction
between lower- and upper-case letters in filenames is honored by Unix,
and ignored in DOS.)

2. Distribution results are to be written for x (wave height) values ranging
from XMIN=5.O to XMAX=20.Om, at increments of DX=O.5 m.

3. The extreme in target duration 7’=1 (yr) is to be fit. (The T value
here conforms to that defined in Eq. 1).

4. Each database will be in raw data format (other options for reading
databases in binned/histogram format or as moments are described in
Section 6).

5. There is only NFILES=l database to be fit.

6. The wave height data are stored in a file named gumbel. dat.

7. The user desires to fit a Gumbel distribution (IDIST=5) to these data.
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In this example (and for any other in which only 1 database is to be fit),
FITS requires 7 lines of input, corresponding to the information given in the

7 items above. In this case the 7 input lines are as follows:

gumbell. out ; Input line 1:

5.0 20.0 0.5 ; Input line 2:

1 ; Input line 3:

0 ; Input line 4:
1 ; Input line 5:

gumbel.dat ; Input line 6:

5 ; Input line 7:

File where output is to be written

xmin, xmax, dx for writing dist results
target lifetime for calculating Pc
iprint = 0,1,2 (raw,histograms,moments)
number of databases (input files)
name of 1st database (input file)
idist = dist type (idist=5 -> Gumbel)

(the “;” and following information isnotread by FITS; these aregiven here
to remind the user ofthe input definition). These 71ineshave been stored in
a file named gumbell.in. Thus, to execute FITS in a batch mode, the user
can type (in either Unix orDOS environment) the following command:

fits <gumbell.in

This will create (or overwrite) acorresponding file gumbell.out, whose
contents is discussed in the next section. While FITS is executing, the user
will see prompts for terminal inputs; these can be simply ignored in this
batch mode operation.



3.3 Runtime Input: Interactive Mode

If the user only types “FITS” without specifying an input file, he will be
prompted for each input (the same 7 lines in this case) with interactive ex-

planations. Forexample, before requesting thedistribution index IDIST the
program lists all available distribution types and associated IDIST values.
Inputs with invalid formats are ignored. This interactive mode may be par-
ticularly useful for first-time users. (The text with input prompts is written
to the logical unit IOERR, which is set to O in the driver program for FITS.
The user can reset this if necessary.)

The following is a screen dump of the terminal input prompts and user’s
response. Lines beginning with “>” are input prompts generated by the
program. Other lines are the user’s response; in this case there are precisely

7 lines of response, as in the batch mode input file given previously.

>

> ** ENTER FILENAME WHERE OUTPUT WILL BE WRITTEN **

>

> ENTER OUTPUTFILENAME:
gumbel 1. out
>
> ** ENTER XMIN = MIN X VALUE AT WHICHTO OUTPUT CDF
> XMAX = MAXX VALUE AT WHICH TO OUTPUT CDF
> DX = INTERVAL OF X VALS WHERECDF IS OUTPUT
> ALL THREE VALUES ON SAME LINE; E.G.
>
> 0.5 10.0 0.5
>
> GIVES OUTPUTAT 20 X VALUES FROM0.5 TO 10.0
>
> ENTER XMIN, XMAX, DX:

5.0 20.0 0.5

>

> ** ENTER TARGET=TARGET LIFETIME FOR CALCULATING
> PROBABILITY OF EXCEEDENCE

9



>

>

1
>
> **

>
>
>
>

0
>
> **

>
>
>

1
>
>
> **

>
>

ENTER TARGET:

ENTER IPRINT=INTEGER VALUE (FLAG) FOR TYPE OF
INPUT DATA FILE FORMAT
IPRINT = O [Raw Data], 1 [Binned Datal, 2 [Moments]

ENTER IPRINT:

ENTER NFILES=NUMBEROF DATA SET FILES TO BE FIT

CURRENTOPTIONS: NFILES= 1 THROUGH 10

ENTER NFILES:

INPUT FILE NUMBER:

ENTER FILENAME WHERE DATA

ENTER INPUT FILENAME:

gumbel.dat
>

> **

>

>

>

>

>

>

>

>

>

>

>

>

5

1

ARE STORED,

ENTER IDIST =INDEX OF DISTRIBUTION TYPE TO BE

CURRENT OPTIONS:

IDIST= 1 . . . NORMAL

IDIST = 2 . . . LOGNORMAL

IDIST = 3 . . . EXPONENTIAL

IDIST = 4 . . . WEIBULL

IDIST= 5 . . . GUMBEL

FIT

IDIST= 6 . . . SHIFTED EXPONENTIAL
IDIST= 7 . . . SHIFTED WEIBULL
IDIST= 8... QUADRATICWEIBULL
IDIST= 9 . . . SHIFTED QUADRATICW

ENTER IDIST:

10



4 Output Format and Extreme Wave Height
Example

The first output section of FITS provides summary statistics for each of the
data files considered. These include (l)sample moments fromthe data, (2)
predicted moments from the fitted distribution, and (3) underlying distri-
bution parameters. Comparison of (1) and (2) can serve to verify the fit of
low-order moments, and the agreement of higher moments (e.g., skewness

and kurtosis) not used in the fitting can offer a rough goodness-of-fit test.

The second section of output gives distribution estimates for Gi(z), the
probability that a future outcome exceeds x as estimated from datafile Z. It
also reports the distribution of annual maxima3, GQ~n(x), as estimated from
Eq. 1. Note that all preceding output lines begin with “#”, which is inter-
preted as a comment within the public-domain gnuplot plotting package.
Thus the output file can be plotted directly with gnuplot.

The contents of the gumbell. out output file are shown at the end of
this chapter. The output confirms that, as intended, the fitted Gumbel

model preserves the mean mZ=8.275m and standard deviation oZ=0.816m
estimated from the data. The Gumbel model tends to overestimate the
higher moments, however; its predicted skewness 1.140 and kurtosis 5.40
varies notably from the values -0.053 and 1.91 estimated from the data.

This suggests that the Gumbel model may somewhat overestimate the
chance of large wave heights in this case. This has also been observed pre-
viously for this data set (Winterstein and Haver, 1991), where a cubic dis-
tortion of the Gumbel model was introduced to capture this trend. Here
we seek to model this effect by tail-fitting, within this population of an-
nual maxima. Specifically, we also apply FITS to the same data with a
shifted exponential model (IDIST=6). Two cases are considered, correspond-
ing to lower-bounds of x1W=8.0m and 8.5m. The input files show the addi-
tional input line required for shifted distributions, while the output (at least
for x1W=8.5m) shows a somewhat reduced 100-year wave height h (where

3See footnote in Chapter 1
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0.1

Figure 1: Estimating Annual Max HS distribution.

12



P[annual max H. > h] = 0.01) from 10.8m in the Gumbel case to 10.4m.
These distribution fits areshownin Figurel. They suggest that these shifted
models can begin to capture trends in distribution tails that are not available
in

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

moment-fits to the entire population.

A listing of gumbell. out follows:

RESULTS FOR FILE NUMBER: 1

FILE NAME : gumbel. dat

DURATIONOF DATABASE: 19.00

DIST TYPE SELECTED: GUMBEL

NUMBEROF DATAUSED: 19

MOMENTS FROM SAMPLE DATA ( MEAN, SIGMA, SKEWNESS, WRTOSIS)
0.8275E+OI 0.8186E+O0 -0.5282E-01 0.1905E+01

MOMENTS FROM FITTED DIST ( MEAN, SIGMA, SKEWNESS, KURTOSIS)
0.8275E+01 0.8186E+O0 0.1140E+01 0.5400E+01

DISTRIBUTION PARAMETERS (SEE DOCUMENTATION FOR DEFINITION)
0.8275E+OI 0.8186E+O0 0.1567E+01 0.7906E+01 O.OOOOE+OO

** FITTED

P1 = Prob
P2 = Prob
. . .
Pc = Prob

x

DISTRIBUTION RESULTS **

{Outcome > x} in database
{Outcome > x} in database

1,

2,

{Ann max > x} including all databases

P1 . . . . Pc

0.5000E+OI O.1OOOE+O1 0.6321E+O0
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0.5500E+OI

0.6000E+01

0.6500E+01

0.7000E+01

0.7500E+OI

0.8000E+01

0.8500E+01

0.9000E+OI

0.9500E+01

0.1000E+02

O.1O5OE+O2

O.I1OOE+O2

0.1150E+02

0.1200E+02

0.1250E+02

0.1300E+02

0.1350E+02

0.1400E+02

0.1450E+02

0.1500E+02

0.1550E+02

0.1600E+02

0.1650E+02

0.1700E+02

0.1750E+02

0.1800E+02

0.1850E+02

0.1900E+02

0.1950E+02

0.2000E+02

O.1OOOE+O1
O.1OOOE+O1

0.9999E+O0

0.9840E+O0

0.8489E+O0

0.5783E+O0

0.3260E+O0

0.1649E+O0

0.7905E-01

0.3692E-01

0.1704E-01

0.7822E-02

0.3581E-02

0.1638E-02

0.7486E-03

0.3421E-03

0.1563E-03

0.7141E-04

0.3263E-04

0.1491E-04

0.6810E-05

0.3111E-05

0.1421E-05

0.6494E-06

0.2967E-06

0.1356E-06

0.6193E-07

0.2830E-07

0.1293E-07

0.5906E-08

0.6321E+O0

0.6321E+O0

0.6321E+O0

0.6262E+O0

0.5721E+O0

0.4392E+O0

0.2782E+O0

0.1520E+O0

0.7600E-01

0.3625E-01

0.1690E-01

0.7791E-02

0.3575E-02

0.1636E-02

0.7483E-03

0.3420E-03

0.1563E-03

0.7141E-04

0.3263E-04

0.1491E-04

0.6810E-05

0.3111E-05

0.1421E-05

0.6494E-06

0.2967E-06

0.1356E-06

0.6193E-07

0.2829E-07

0.1293E-07

0.5906E-08



!5 Wind Turbine Load Example

5.1 The Data

For rotating machine components such as wind turbine blades, fatigue is
generally a source of concern. While FITS is most directly aimed at frequency
rates of extreme overloads, its statistical characterization of load occurrence
rates can also be used to estimate statistics of damage and hence fatigue life
(Winterstein and Lange, 1996). In particular, the quadratic Weibull model,
which is unique to this version of FITS, has been found promising in wind
turbine load characterization for LRFD design against fatigue (Lange and
Winterstein, 1996).

We consider here a data set of observed bending stresses, measured on a
specific horizontal-axis wind turbine (HAWT). Only the “flapwise” bending
mode (out of the plane of rotation) is considered here. The data represent a
total of roughly 4 hours duration, constructed from pooling various shorter
intervals during which wind conditions were similar. Further, since fatigue is
the prime concern, the stress time histories were rainflow-counted to achieve
a set of stress range amplitudes, which—in histogram form—comprise the
basis of our data set.

Figure 2 shows such a histogram of these “normalized” stress amplitudes.
(The units of these data are rather artificial, hence results should be inter-

preted in only a relative way across different cases and models.) As is typical
of such cases, there are many thousands of small-amplitude, high-frequency
cycles.

Note, however, that fatigue damage is commonly assumed to be pro-
portional to some power of S—e.g., Sb where b is on the order of 3–6 for
typical metals. Hence, these small-amplitude cycles are of little fatigue con-

sequence. To focus modelling attention and data resources, we are therefore
led to consider only stresses above a fixed threshold, Oo. Figures 3 and 4 show
such histograms for 00=54.2 and 65.1, respectively. While a general trend of
exponential-like decay remains, focusing on higher thresholds permits greater
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Figure 2: Histogram of rainflow-counted stress amplitudes, all values in-
cluded.

scrutiny of the rare, high-amplitude stresses that govern fatigue damage. At
the same time, the higher thresholds leave us with an increasingly sparse data
set, and hence considerable statistical uncertain y. We therefore investigate
here whether a more general probabilistic model, such as the quadratic or
cubic Weibull, seems to fit the data over a wider range than a simpler Weibull
model with fewer parameters. If so, these more general models can be ap-
plied with a lower stress threshold, and hence retain a larger fraction of the
original data set.
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5.2 Sample Input File

We will show here a variety of results based on this data set. In this example,

FITS requires 8 lines of input to analyze this single database of wind loads.

A typical input file is listed below:

quad48. 816 >
50 400 2.712 >
1 >
0 >
1 2
wind. dat >
9 Y
48.816 >

Input lime 1:
Input line 2:
Input line 3:
Input line 4:
Input line 5:
Input line 6:
Input line 7:
Input line 8:

File where output is to be written
xmin, xmax, dx for writing dist results

target lifetime for calculating Pc
iprint = 0,1,2 (raw,histogrms,mornents)
number of databases (input files)
name of 1st database (input file)
idist = dist type (idist=5 -> G~bel)
only for shifted distributions: shift

(the “;” and following information is not read by FITS; these are given here
to remind the user of the input definition).

In our distribution diskette containing FITS, these 8 lines have been stored
in afilenamedquad. in, together with thefilewind.dat containingthewind
data that produced the histogram in Figure2. T’oexecute FITS in abatch
mode, the user can type (in either Unixor DOS environment) the following

command:

fits <quad.in

Note that this particular input would request aquadratic Weibull distri-
bution(idist=9) ,andseek tomodel a~=lh ourmaximum.
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5.3 Results I: Comparing Weibull and Quadratic Weibull
Models

The previous wave height example demonstrated that even a fairly simple,
one-parameter distribution model (the exponential) —which clearly does not
apply over the entire range of the data set—may be satisfactory once a lower-
threshold has been imposed.

In the same way, we may expect that a relatively simple model—here,
the standard, two-parameter Weibull mode-would also behave acceptably,
at least for a sufficiently high threshold. Figure 5 shows that for thresholds
O. at or above 54.2, the Weibull models do appear fairly satisfactory. For
the lower threshold of 00=48.8, however, results deteriorate significantly. For
example, the 10-hour load (hourly p=lO–l ) appears to be underestimated by
roughly one-third.

Figure 6 shows the same results as Figure 5, except that all results shown
are” now based on the quadratic Weibull model. The use of this more general
model is shown to produce a notably more consistent fit across the range of
data, even at the lowest threshold level 00=48.8. This supports the view,
suggested above, that one may usefully extend these more general models
farther back into the body of the loads distribution, and hence use a larger
fraction of the data when estimating their parameters.

5.4 Results II: Comparing Quadratic Weibull and Cu-
bic Weibull Models

Finally, we compare the quadratic Weibull models in FITS, as used to obtain
the previous results, with similar results from the four-moment, cubic Weibull
model implemented in the routine FITTING.

As its name implies, the cubic Weibull model has a distribution function
which, when plotted on ordinary Weibull scale, appears as a cubic polyno-
mial. In the same way, the quadratic Weibull appears as a quadratic curve
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on this Weibull scale. Thus, unlike the quadratic Weibull model, the cu-
bic Weibull distribution function may display a double curvature on Weibull
scale. This may sometimes be a desirable capability, e.g., for two-sided phe-
nomena whose left- and right-tail behaviors may differ. For variables such as
load amplitudes, which have only a single (upper) tail, this flexibility may

lead to overfitting.

Figure 7 shows that for this data set, the cubic Weibull model can dis-
play such double curvature. While one may debate whether the data show
any such feature, it is fairly clear that extrapolating this highly nonlinear,
doubly curved distribution function beyond the range of the data is poten-
tially misleading. The quadratic Weibull appears to follow the trend of the
data nearly as well over the range of the data, and by its nature permits a
smoother, less tail-sensitive extrapolation beyond the highest data value.

As may be expected, Figure 8 shows that if we choose a sufficiently high
threshold, the remaining data appear fairly homogeneous. Thus, in this case
the cubic Weibull returns a rather “similar result to the quadratic Weibull.

(Still in this case, though, note the stronger curvature of the cubic Weibull
beyond the last data point.) Indeed, even the standard Weibull may well
suffice if only this upper tail is retained for the fit. These examples suggest,

however, that the quadratic Weibull model permits a rather useful compro-
mise: it is sufficiently flexible to model a wide range of the data set, yet is
sufficiently constrained to retain fairly smooth, well-behaved extrapolation
beyond the range of the observed data.
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6 Additional Input Format Capabilities

6.1 Background

FITS Version 1.1 required that the data sets for fitting be provided in raw
data format. For example, in the case of wind applications in fatigue (see
Section 5), this meant that large files containing each rainflow-counted stress
amplitude needed to be provided as input. Often, such data can be obtained
as output from simulation programs or from measurements in more compact
forms. A histogram describing the distribution of load amplitudes of different
sizes is one such compact form. Another is to describe the database only by
the moments of the response/load process along with an indication of the
number of events that occurred in the duration covered by the database.

6.2 New Input Capabilities

In the current release of FITS the user is permitted to provide data in one of
three formats depending on the value of IPRINT specified on input.

The following values of IPRINT are permissible:

1. IPRINT==O implies that raw data are read on input.

2. IPRINT=l implies that binned/histogram data are read on input.

3. IPRINT==2 implies that moments are read on input.

6.3 Illustration of Input Format IPRINT=l

In order to demonstrate the use of the second option for the input format
we will use the wind turbine example presented in Section 5. However, the
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data will be input inhistogram format rather than as raw data. The input
file for this example is listed below:

quad2. out ; Input line 1: File where output is to be written

50 400 2.712 ; Input line 2: xmin, xmax, dx for writing dist results

1 ; Input line 3: target lifetime for calculating Pc

1“ ; Input line 4: iprint = 0,1,2 (raw,histograms,moments)

1 “ Input line 5:> number of databases (input files)

wind. hgm ; Input line 6: name of 1st database (input file)

9 “ Input line 7: idist = dist type (idist=5 -> Gwbel)>

48.816 ; Input line 8: only for shifted distributions: shift

In our distribution diskette containing FITS these 81ines have been stored
in the file named quad2.in. The file wind.hgm contains the wind datain
histogram format. To execute FITS ina batch mode, theuser can type (in

either Unix or DOS environment) the following command:

fits <quad2.in

Alistingofthe file wind.hgm isshown below:

4.0

47.460 495

‘ 50.172 1263

52.884 1481

55.596 776

58.308 483

61.020 188

63.732 51

66.444 19

69.156 13

71.868 12

74.580 2
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77.292

80.004

82.716

85.428

88.140

90.852

93.564

96.276

98.988

101.70

104.41

107.12

109.83

112.54

115.26

117.97

120.68

123.39

126.10

128.82

131.53

134.24

136.95

139.66

142.38

145.09

147.80

150.51

153.22

155.94

158.65

161.36

164.07

166.78

169.50

172.21

174.92

5

6

6

2

3

3

6

2

2

2

3

3

2

1

1

0

1

2

3

0

1

2

2

0

1

0

1

0

1

0

1

1

1

2

1

2

0
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177.63

180.34

183.06

185.77

188.48

191.19

193.90

196.62

199.33

202.04

204.75

207.46

210.18

212.89

215.60

218.31

221.02

223.74

226.45

229.16

231.87

234.58

237.30

240.01

242.72

245.43

248.14

250.86

253.57

256.28

258.99

261.70

264.42

267.13

0
0
0
1

0
0
2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1
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The output of the program with the above input files is identical to that
presented in Section 5 for the Shifted Weibull fit with a stress threshold of
48.8. In that case, however, the input file consisted of the raw data, i.e., all
the stress amplitudes, and the IPRINT option was set to O.

6.4 Illustration of Input Format IPRINT=2

In order to demonstrate the use of the third option for the input format we
will use the wave height example presented in Section 4. In this case, the
statistical moments of the annual maximum Hs values are input instead of

the raw data.

In this example, FITS requires 7 lines of input as follows:

gumbe12. out ; Input line 1: File where output is to be written

5.0 20.0 0.5 - Input line 2:> xmin, xmax, dx for writing dist results

1 ; Input line 3: target lifetime for calculating Pc

2 - Input line 4: iprint> = 0,1,2 (raw ,histograms ,moments)

1 ; Input line 5: number of databases (input files)

gumbel. mom ; Input line 6: name of 1st database (input file)

5 ; Input line 7: idist = dist type (idist=5 -> Gumbel)

In the distribution diskette these 7 lines have been stored in the file named

gumbe12. in. The file gumbel. mom contains the moments (mean, standard
deviation, skewness, and kurtosis) based on the 19 annual maximum Hs
values.

To execute FITS in batch mode, the user must type (in either Unix or

DOS environment) the following command:

fits < gumbe12. in

A listing of the file gumbel. mom is shown below:
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19. 19

0.8275E+01 0.8186E+O0 -0.5282E-01 0.1905E+01

Note that the ingunbel.mom, the first line contains two values. The first

value, i.e., 19., refers to the duration (19 years) covered by the database.

The second value ,i.e.,19, refersto the number ofdata that were available in

the database from which the moments were estimated. (Note that the two

numbers on the first line of gumbel. mom are the same in this illustration be-

cause the database contained only annual maxima. If maxima were collected

every three months and were available in a database, the first value would

still be 19. but the second value would be 76.)

The second line in gumbel. mom contains the first four moments based on
the 19 annual maximum HS values.
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A Specific Distribution Types and Functional
Forms

Our purpose here is twofold. First, we seek to define the precise forms of

probability distributions available in FITS. Second, we wish to indicate pre-

cisely how the distribution parameters are defined, and reported in FITS

through the output of the subroutine DISPAR. This latter information may

be useful if the user seeks to perform additional, off-line calculations based

on the fitted distributions.

The following basic distribution types are currently available within FITS.

IDIST=l: Normal Distribution. The cumulative distribution function (CDF)

is given by

in terms of the standard normal CDF

o(x) = *~;exP(-u’/2)du

(3)

(4)

In this case the subroutine DISPAR returns the parameters DPARM(l)=mZ
and DPARM(2)=CTZ.

IDIST=2: Lognormal Distribution. The CDF is given by

P[ Outcome ~ x] = F(x) = @(ln(Z~~ZmlnZ ); x ~ O (5)

with ~(x) again given by Eq. 4. In this case the subroutine DISPAR re-
turns the parameters DPARM(l)=mZ, DPARM(2)=oZ, DPARM(3)=m1. Z,
and DPARM (4)=a1~ ~.

IDIST=3: Exponential Distribution. The CDF is given by

P[ Outcome < x] = F(z) = 1 – exp[–(~)]; x ~ O (6)

In this case the subroutine DISPAR returns the parameters DPARM(l)=mZ
and DPARM (2) =OZ, and no additional parameters.
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IDIST=4: Weibull Distribution. The CDF is given by

F’[ Outcome ~ x] = F’(z) = 1 – exp[–(~)”] ; x ~ O (7)

In this case the subroutine DISPAR returns the parameters DPARM(l)=mZ,
DPARM(2)=oZ, DPARM(3)=a, and DPARM(4)=~.

IDIST=5: Gumbel Distribution. The CDF is given by

P[ Outcome ~ x] = F(z) = exp{– exp[–a(z - u)]} (8)

In this case the subroutine DISPAR returns the parameters DPARM(l)=mZ,
DPARM(2)=aZ, DPARM(3)=a, and DPARM(4)=u.

IDIST=6: Shifted Exponential Distribution. The CDF is given by

F’[ Outcome ~ x] = F(z) = 1 – exp[–(x ‘mum)] ; x ~ Xlw (9)

As when IDIST=3, in this case the subroutine DISPAR returns the pa-
rameters DPARM (l)=mZ and DPARM (2) =Oz, and no additional pa-
rameters.

IDIST=7: Shifted Weibull Distribution. The CDF is given by

P[ Outcome ~ x] = F(z) = 1 – exp[–( x -oz~~)”] ; x > X,w (lo)

As when IDIST=4, in this case the subroutine DISPAR returns the pa-
rameters DPARM(l)=mZ, DPARM(2)=oZ, DPARM(3)=a, and DPARM(4)=~.

IDIST=8: Quadratic Weibull Distribution. The quadratic Weibull model

relates the physical variable X to a Weibull variable, W, with the same

coefficient of variation as that of X. If the skewness of the data exceeds

that of W, a quadratic term is added to W to broaden its probability

distribution:

x = xm~n + K[w + WV2] (11)

If the skewness of the data is instead less than that of W, the roles of
W and X in Eq. 11 are interchanged:

‘= (x-:min)+’(x-:m2n)2(12)
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(This quadratic equation is readily inverted to yield an explicit result
for X in terms of W.) In either case, the CDF of W is analogous to
Eq. 7:

P[ W ~ w] = F(w) = 1 –exp[–(~)”w]; w ~ O (13)

In this case the subroutine DISPAR returns the parameters DPARM(l)=z~i.,
DPARM(2)=~, DPARM(3)=f?w, DPARM(4)=l/aw. and DPARM(5)=*c.
(The actual c value used in Eqs. 11 or 12 is always positive; a negative
value of c indicates that the program uses Eq. 12 rather than Eq. 11.)

IDIST=9: Shifted Quadratic Weibull Distribution. This model shifts

the quadratic Weibull model by a user-defined lower limit, Xla. A

quadratic Weibull model is then fit to X – XIW; i.e.,

X = X~~ + X~.i~ + K[W + CW2] (14)

or
w= X–Xl~–X~a~ ● c X–Xl~–X~i~ 2

( )( )
(15)

K K

Note the distinction between Xlu and Xnz.: XIW is the intended lower
bound given by the user, and Xna. is an additional shift the program
computes (in order to preserve the mean of the data). The actual lowest
value X can attain is therefore XIOW+ x~in.

35





DISTRIBUTION

H. Ashley
Dept. of Aeronautics and

Astronautics Mechanical Engr.
Stanford University
Stanford, CA 94305

B. Bell
Zond Systems inc.
13000 Jarneson Road
P.O. Box 1910
Tehachapi, CA 93561

C. P. Butterfield
NREL
1617 Cole Boulevard
Golden, CO 80401

G. Bywaters
Northern Power Technology Co.
Box 999
Waitsfield,VT 05673

J. Cadogan
U.S. Department of Energy
Office of Photovoltaic & Wind

Technology
Energy Efficiency & Renewable Energy
EE- 11
1000 Independence Avenue SW
Washington, DC 20585

D. Cairns
Montana State University
Mechanical & Industrial Engineering Dept.
Bozeman, MT 59717

S. Calvert
U.S. Department of Energy
Office of Photovoltaic & Wind

Technology
Energy Efficiency & Renewable Energy
EE-11
1000 Independence Avenue SW
Washington, DC 20585

J. Chapman
OEM Development Corp.
840 Summer St.
Boston, MA 02127-1533

R. N. Clark
USDA
Agricultural Research Service
P.O. Drawer 10
Bushland, TX 79012

J. Cohen
Princeton Economic Research, Inc.
1700 Rockville Pike
Suite 550
Rockville, MD 20852

C. Coleman
Northern Power Technology Co.
Box 999
Waitsfield, VT 05673

K. J. Deering
The Wind Turbine Company
515 116th Avenue NE
No. 263
Bellevue, WA 98004

A. J. Eggers, Jr.
RANN, Inc.
744 San Antonio Road, Ste. 26
Palo Alto, CA 94303

P. R. Goldman
Acting Deputy Director
Office of Photovoltaic and

Wind Technology
Energy El%ciency & Renewable

Energy, EE- 11
U.S. Department of Energy
1000 Independence Avenue
Washington, DC 20585

G. Gregorek
Aeronautical & Astronautical Dept.
Ohio State University
2300 West Case Road
Columbus, OH 43220

C. Hansen
Windward Engineering
4661 Holly Lane
Salt Lake City, UT 84117

Dist-1



S. Hock
Wind Energy Program
NREL
1617 Cole Boulevard
Golden, CO 80401

K. Jackson
Dynamic Design
123 C Street
Davis, CA 95616

G. James
University of Houston
Dept. of Mechanical Engineering
4800 Calhoun
Houston, TX 77204-4792

A. Lucero
Librarian
National Atomic Museum
Albuquerque, NM 87185

R. Lynette
Springtime Co.
212 Jamestown Beach Lane
Sequim, WA 98382

D. Malcolm
Kamzin Technology Inc.
425 Pontius Avenue North
Suite 150
Seattle, WA 98109

J. F. Mandell
Montana State Universi~
302 Cableigh Hall
Bozeman, MT 59717

T. Mccoy

RLA
425 Pontius Avenue North
Suite 150
Seattle, WA 98109

R. N. Meroney
Dept. of Civil Engineering
Colorado State University
Fort Collins, CO 80521

P. Migliore
NREL
1617 Cole Boulevard
Golden, CO 80401

A. Mikhail
Zond Systems, Inc.
13000 Jameson Road
P.O. Box 1910
Tehachapi, CA 93561

E. Moroz
Zond Systems, Inc.
13000 Jameson Road
P.O. Box 1910
Tehachapi, CA 93561

W. Musial
NREL
1617 Cole Boulevard
Golden, CO 80401

NWTC Library (5)
NREL
1617 Cole Boulevard
Golden, CO 80401

V. Nelson
Department of Physics
West Texas State University
P.O. BOX 248
Canyon, TX 79016

R. G. Rajagopalan
Aerospace Engineering Department
Iowa State University
404 Town Engineering Bldg.
Ames, 1A 50011

Michael Robinson
NREL
1617 Cole Boulevard
Golden. CO 80401

D. Sanchez
U.S. Dept. of Energy
Albuquerque Operations Office
P.O. Box 5400
Albuquerque, NM 87185

L. Schlenbein
CWT Technologies, inc.
4006 S. Morain Loop
Kennewick, WA 99337

R. Sherwin
Atlantic Orient
PO Box 1097
Norwich, VT 05055

Dist-2



Brian Smith
NREL
1617 Cole Boulevard
Golden, CO 80401

K. Starcher
AEI
West Texas State University
P.O. BOX 248
Canyon, TX 79016

F. S. Stoddard
Dynamic Design-Atlantic Office
P.O. Box 1373
Amherst, MAO 1004

A. Swift
University of Texas at El Paso
320 Kent Ave.
El Paso. TX 79922

R. W. Thresher
NREL
1617 Cole Boulevard
Golden, CO 80401

W. A. Vachon
W. A. Vachon & Associates
P.O. Box 149
Manchester, MAO 1944

B. Vick
USDA, Agricultural Research Service
P.O. Drawer 10
Bushland, TX 79012

L. Wendell
2728 Enterprise Dr.
Richland, WA 99352

R. E. Wilson
Mechanical Engineering Dept.
Oregon State University
Corvallis, OR 97331

S. R. Winterstein (lo)
Civil Engineering Department
Stanford Universi~
Stanford, CA 94305

M.S. 0555
M.S. 0557
M.S. 0557
M.S. 0557
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0708
M.S. 0847
M.S. 0847
M.S. 0612

M.S. 0899
M.S. 9018

B. Hansche, 9122
T. J. Baca, 9119
T. G. Came, 9119
T. L. Paez, 9119
H. M. Dodd, 6214 (25)
T. D. Ashwill, 6214
D. E. Berg, 6214
P. L. Jones 6214
D. L. Laird, 6214
M. A. Rumsey, 6214
H. J. Sutherland, 6214
P. S. Veers, 6214 (lo)
D. W. Lobitz, 9125
D. R. Martinez, 9124
Review & Approval Desk,4912

For DOE/OST1
Technical Library, 4916 (2)
Central Technical Files, 8940-2

M. Zuteck
MDZ Consulting
931 Grove Street
Kemah, TX 77565

Dist–3


	ABSTRACT
	Version History
	Contents
	1 Distribution Fitting: General Methodology
	1.1 Available Distribution Types
	1.2 Software Limitations

	2 Distribution Fitting: Routines
	3 Input Format and Wave Height Example
	3.1 Data Input
	3.2 Runtime Input: Batch Mode
	3.3 Runtime Input: Interactive Mode

	4 Output Format and Extreme Wave Height Example
	5 Wind Turbine Load Example
	5.1 The Data
	5.2 Sample Input File
	5.3 Results I: Comparing Weibull and Quadratic Weibull Models
	5.4 Results II: Comparing Quadratic Weibull and Cubic Weibull Models

	6 Additional Input Format Capabilities
	6.1 Background
	6.2 New Input Capabilities
	6.3 Illustration of Input Format IPRINT=l
	6.4 Illustration of Input Format IPRINT=2

	7 References
	A Specific Distribution Types and Functional
	DISTRIBUTION

