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Abstract 

Wind turbines subjected to highly irregular loadings due to wind, gravity, and 

gyroscopic effects are especially vulnerable to fatigue damage. The objective of this 

study is to develop and illustrate methods for the probabilistic analysis and design 

of fatigue-sensitive wind turbine components. A computer program (CYCLES) that 

estimates fatigue reliability of structural and mechanical components has been devel- 

oped. A FORM/SORM analysis is used to compute failure probabilities and impor- 

tance factors of the random variables. The limit state equation includes uncertainty 

in environmental loading, gross structural response, and local fatigue properties. Sev- 

eral techniques are shown to better study fatigue loads data. Common one-parameter 

models, such as the Rayleigh and exponential models are shown to produce dramat- 

ically different estimates of load distributions and fatigue damage. Improved fits 

may be achieved with the two-parameter Weibull model. High b values require bet- 

ter modeling of relatively large stress ranges; this is effectively done by matching at 

least two moments (Weibull) and better by matching still higher moments. For this 

purpose, a new, four-moment “generalized Weibull” model is introduced. Load and 

resistance factor design (LRFD) methodology for design against fatigue is proposed 

and demonstrated using data from two horizontal-axis wind turbines. To estimate 

fatigue damage, wind turbine blade loads have been represented by their first three 

statistical moments across a range of wind conditions. Based on the moments PI.. .p3, 

new “quadratic Weibull” load distribution models are introduced. The fatigue relia- 

bility is found to be notably affected by the choice of load distribution model. 
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Chapter 1 

Introduction 

The deterioration of engineering structures due to fatigue has been a difficult problem 

facing engineers for many decades. This is due in part to the complex nature of the 

fatigue process, which makes adeterministic engineering description of the problem 

difficult. Traditional deterministic fatigue analyses have often employed rather large 

safety factors, in order to compensate for the large degree of uncertainty involved. 

Recently, within the last few decades, probabilistic design techniques which ac- 

count for stat istical distributions of stress, strength, geometry, etc., have promised 

to provide a more rational and consistent design approach for fatigue (Committee on 

Fatigue and Fracture Reliability, 1982). The use of stationary random (or stochastic) 

processes to define statistical loads models for earthquakes, wind, ocean wave forces, 

and vehicle environments have played an important role in probabilistic analyses. The 

advantage of a probabilistic approach to fatigue design lies in the logical framework 

for analyzing design uncertainties and the quantitative basis for assessing structural 

integrity in the form of the risk or probability of unfavorable performance. 

Wind turbines used to produce electrical energy from the wind are especially vul- 

nerable to fatigue damage. Highly irregular loadings due to wind, gravity, and gyro- 

scopic effects combined with extremely variable material properties make an efficient 

design against fatigue a challenging task. Virtually all turbines built in California in 

the early 1980’s and operating in energetic sites 

experienced fatigue problems (Sutherland et al, 

1 

(average wind speeds z 7 m/s) have 

1994). Although significant progress 
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has been achieved through inspection, maintenance programs, operating experience, 

and research activities, deterministic design approaches currently employed by the 

industry have serious shortcomings as evidenced by continued turbine failures. 

The objective of this study is to develop and illustrate methods for the proba- 

bilistic analysis and design of fatigue-sensitive wind turbine components. (Note that 

while the specific focus lies with wind turbines, the methods shown here may be of 

use across a range of problems of damage accumulation, crack growth, etc.) We seek 

to capitalize on a rapidly evolving set of computational methods, grouped broadly 

under the topic of “structural reliability” (e.g., Madsen et al, 1986, Thoft-Christensen 

and Baker, 1982, Melchers, 1987). In particular, powerful asymptotic numerical tech- 

niques known as “FORM/SORM” (First- and Second-Order Reliability Methods) 

have been found quite efficient in estimating probabilities of rare failure events, asso- 

ciated with well-designed engineering systems. Simulation techniques—both ordinary 

Monte-Carlo and more sophisticated importance sampling schemes (e.g., Rubinstein, 

1981, Melchers, 1987)—give a useful alternative for systems with higher failure rates, 

for which FORM/SORM may become inaccurate. 

The net result is that computational analysis methods are available to estimate 

the reliability of complex engineering systems, which may involve 

o A large number of random variables (e.g., tens to hundreds) 

● Arbitrary probability distributions, given analytically or through numerical al- 

gorithms 

o Arbitrary probabilistic dependence among variables (defined through a sequence 

of conditional distributions; e.g. Madsen et al, 1986) 

Since we have gained this generality of analysis capabilities, the burden has been 

shifted back to the task of appropriate probabilistic modeling. We are free to use 

whatever probability distribution is most “correct” given the available data. With 

this freedom comes the associated need for more flexible distribution models, more 

robust distribution fitting techniques, methods to include uncertainty due to limited 

data, and finally a vehicle to propagate all of these to estimate the net consequence on 

.“. 
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fatigue reliability. These topics are addressed 

An overview of each chapter follows below. 

in the following chapters of this work. 

1.1 Organization 

Each of the following three thesis chapters is devoted to a particular topic of interest 

for wind turbine fatigue reliability. These are described in turn below. A brief 

concluding chapter is also offered to suggest topics of future work. 

CYCLES Fatigue ReIiabiIity Forrm.dation (Chapter 2). A FORM/SORM based 

computer code capable of computing failure probabilities of wind turbine com- 

ponents has been developed. Based on Miners law to predict fatigue failure, 

it utilizes a closed-form expression for the limit state equation made possible 

by simplifying assumptions for distributions of wind speed and structural re- 

sponse. The resulting analytical form of the limit-state equation facilitates 

study of important parametric variations, e.g., of distribution parameters, S–N 

curve properties, etc. An example that demonstrates the impact of distribution 

type (for the S–N parameter C) on predicted reliability is given. 

Load Models for Fatigue Reliability (Chapter 3). The availability of load mod- 

els (e.g., probability distributions) that adequately reflect wind turbine response 

to environmental loading is required for a probabilistic fatigue analysis. There- 

fore, empirically based load models that are useful for describing structural 

response for a wide range of wind turbine components are established. Expo- 

nential, Rayleigh, and Weibull distributions are investigated from the stand- 

point of goodness of fit, damage density, and implications on predicted fatigue 

damage. A new “generalized” Weibull distribution is proposed and shown to 

offer improved modeling characteristics in some cases. 

Load and Resistance Factor Design for Fatigue (Chapter 4). LRFD method- 

ology for design against fatigue damage is proposed. The methodology is imple- 

mented using data from two different wind turbine rotor blades. The effects of 
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turbine design and limited data are discussed and shown to be important on the 

resulting partial safety factors. Results are presented for different load models 

(Chapter 3) and appropriate load models are shown to be highly important to 

the reliability calculations. The usefulness of LRFD in moving probabilistic 

fatigue methodology from a research topic to design practice is emphasized. 



Chapter 2 

CYCLES Fatigue Reliability 

Formulation 

CYCLES is an algorithm and computer program that estimates the fatigue reliability 

of structural and mechanical components. It includes a rather flexible model of un- 

certainty, both in distribution 

environment parameters such 

(e.g., S-N fatigue properties). 

bility across a range of fatigue 

parameters of randomly varying quantities (e.g., load 

as wind speed) and in uncertain material properties 

The formulation is intended to be of general applica- 

problems. 

2.1 CYCLES Overview 

The CYCLES algorithm is based on a deterministic fatigue life formulation specifically 

for structural components operating in a continuously varying load environment. The 

fatigue formulation is intended to be of rather general applicability. Originally devel- 

oped by Veers, (1990), and since extended at Stanford with wind turbine applications 

in mind, it is equally useful for offshore applications (Winterstein and Lange, 1994). 

The fatigue formulation employed by CYCLES is intended to reflect uncertainty in 

environmental loading, gross structural response, and local fatigue properties. Fa- 

tigue damage is modeled probabilistically using Miner’s Rule, including the effects 

of variable loads, mean stress effects, and stress concentration factors. A critical 

5 
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distinction here is between continuously varying quantities such as an environmental 

parameter (e.g., significant wave height Ifs, mean wind speed V, applied stress level 

S versus time, etc.) and fixed parameters which may be uncertain (e.g. fatigue law 

coefficients, distribution parameters of Hs, V, S given either Hs or V, etc.). Con- 

tinuously varying quantities are reflected here implicitly, through their average effect 

on fatigue damage. In contrast, parameter uncertainty doesn’t “average out” over 

fatigue life, and is modeled here explicitly. 

The CYCLES analysis assumes specific functional forms for the controlling quan- 

tities of fatigue life. The assumed functional forms enable the derivation of a closed 

form expression for fatigue damage in terms of the various parameters in the func- 

tions such as S–N coefficient and exponent, RMS stress level at a characteristic wind 

speed, average wind speed, etc.. These parameters can then be treated as constants 

or random variables in the probabilistic analysis. The trade-off is in the level of gen- 

erality, the restrictive assumptions cataloged in section 2.4 that permit definition of 

the entire problem with a condensed data set. The emphasis has been on keeping the 

input simple and easy to use. 

The assumed functional forms “built in” to the CYCLES formulation do restrict its 

generality. An obvious constraint is the use of only one environmental variable with 

predetermined distribution type (e.g. Weibull). Other assumptions regarding the 

load distribution and its dependence on the environment limit the program’s ability 

to model measured load distributions across a range of environmental states. This 

is demonstrated in Chapter 4 where it is also shown that for some wind turbines 

the CYCLES formulation may work quite well. Therefore, the CYCLES limit state for- 

mulation, while not the most complex or detailed model that could be established, 

represents a useful compromise between its level of detail in mechanical and prob- 

abilistic modeling, and the state of knowledge of many structures and mechanical 

components to which it may be applied. . . 

In contrast to the deterministic fatigue analysis code LIFE2 (Sutherland, 1989) 

used by the wind industry, CYCLES computes a probability of failure for wind turbine 

components. LIFE2 on the other hand gives only a projected time to failure as 

it treats all analysis parameters as constants. Furthermore the input to LIFE2 is 
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,. . . 

7 

achieved numerically with various “look-up” tables used to define various aspects 

of the input. While adding generality to the code the input procedure can become 

tedious. CYCLES however with its closed form limit state formulation requires only 

the distribution types and associated parameters for each of the 14 random variables 

used 

The probability of failure is calculated using the general purpose FORM/SORM 

(first and second order reliability methods) package developed by Golweitzer et al, 

(1988). Enhancements to the way the basic algorithm treats correlation between 

random variables have been added (Winterstein et al, 1989). Section 2.5 describes 

the technique used to include the correlation. Importance factors and sensitivities 

are calculated as well. 
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2.2 General Fatigue Formulation: Assumptions 

Whether fatigue or an alternate failure condition is considered, a complete reliability 

formulation generally includes uncertainty in three distinct-aspects: 

1. The loading environment; 

2. The gross level of structural response given the load environment; and 

3. The local failure criterion given both load environment and gross stress response. 

The following treatment is intended to provide a general approach to fatigue mod- 

eling and at the same time produce a limit state equation that can be implemented 

in a FORM analysis. For the fatigue limit state of interest, each of these aspects is 

examined in turn below. 

2.2.1 Loacl Environment 

Characterizing Variable: X=dorninant environmental parameter. 

For the subsequent analysis, the load environment is assumed to be well char- 

acterized by a single controlling random variable, herein denoted X for generality. 

Therefore its probability density function, Jx (x), is required as input to the fatigue 

reliability analysis. This will commonly be estimated from site-specific environmental 

data. 

The environmental parameter X usually represents an “average” value over a 

relatively short time period. Problems involving fixed offshore platforms typically take 

X=17~, the “significant wave height” during a period when the wave elevation process 

q(t) can be assumed to be stationary (i.e., in a statistical steady-state condition). 

This period of assumed stationarity can be anywhere between one and six hours. 

Following common convention, the significant wave height is defined to be 4 times 

the standard deviation (RMS) of the wave elevation process, e.g. HS=40V. It is 

also roughly equal to the mean of the highest one-third of all wave heights (peak– 

trough distances), provided the common Gaussian model of q(t) is assumed to hold. 

For wind, a common scalar definition of X is to choose V, some measure of average 



2.2. GENERAL FATIGUE FORMULATION: ASSUMPTIONS 9 

wind speed over a reference period of approximately ten minutes, and at a reference 

elevation. 

Note that other environmental variables may be significant in various applications. 

Offshore problems may include significant effects due to wave period TZ, current U, 

wave direction 8, etc. Additional wind parameters of interest include the turbulence 

intensity (ratio of RMS to mean wind speed), direction, and other spectral parameters 

in one or more directions. In the basic CYCLES formulation documented here, these 

variables are fixed, either at representative or worst-case values given knowledge of 

the dominant variable X. (More general models involving several variables, e.g., mean 

wind speed~ V, and turbulence intensity, It, have also been implemented. These are 

discussed further in Chapter 4.) 

2.2.2 Gross Response 

Characterizing Variable: S=amplitude of local stress process. 

The stress response at the location of interest will typically not be regular (i.e., 

sinusoidal). Nonetheless, it is assumed that some method, such as rainflow count- 

ing, is available to identify amplitudes of stress “cycles.” Statistics of an arbitrarily 

chosen amplitude S will generally depend on the underlying environmental variable 

X. Thus the conditional probability density ~~lX(SIZ), over all possible values of the 

environmental variable Z, is required. 

This conditional distribution of S may be fit directly from observed stress histories. 

One might first sort the histories into bins according to the value of the environmental 

variable z (wave height, wind speed, etc.). The resulting histories may be rainflow 

counted and a density ~slx(slx) fit for each bin. An example of this approach will 

be considered in Chapter 4. An alternative analytical model, tied to the RMS stress 

O(X) as a function of x, is used here in the following analytical formulation (section 

2.4). 

2.2.3 Failure Measure 

Characterizing Variable: ~=mean value of Miner’s damage. 
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Is is assumed that fatigue tests at constant stress amplitude S are available to 

estimate the “S-N” curve; that is, the number of cycles Nf (.s) to failure as a function 

of stress amplitude s. Miner’s rule is then used, assigning damage I/Nf (Sz) due 

to a single stress cycle of amplitude S’z. This damage is assumed to grow linearly 

at its mean rate ~, ignoring local variations in this rate due to variability in the 

cyclic amplitudes Si. (This will tend to average out quickly for the high-cycle fatigue 

applications of interest here. ) As a result, fatigue behavior is characterized by only 

the mean damage rate ~. 

2.3 General Fatigue Formulation: Results 

To summarize from the previous section, the general fatigue formulation requires three 

functional inputs: jx(x), jslx (six), and ~f (s) to characterize the load, response, and 

fatigue damage respectively. A convenient scalar quantity on which to focus is the 

mean damage ~. This is found by integrating/summing over all load and response 

levels, x and s: 

CD 

D= H w fslx(+).f)d~)~s~z 

Nt(s) 
(2.1) 

Z=o S=O 

It is informative to also study the behavior of the inner integral, the “damage 

density” D(z): 

(2.2) 

Physically, D(z)dx is the contribution to mean damage ~ due to values of the 

environmental variable, X, between z and z + dx. Thus, D(z) shows the relative 

fatigue contribution of different x levels. As might be expected, it depends both 

on the long-term environmental variation, reflected by jx (z), and on the stress and 

fatigue properties for various x values. 

Once obtained, ~ can be used to directly estimate the fatigue life T“. Considering 

the many cycles that contribute to high-cycle fatigue, the actual damage is assumed to 

vary negligibly from its average value ~ per cycle, or equivalently ~o~ per unit time 

.’ 
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(jO=average response cycle rate). Assuming that failure occurs when this damage 

reaches a critical threshold A, and the structure is loaded some fraction of time, A, 

the failure time is then 

A 
Tf=— 

A fo~ 
(2.3) 

Note the generalization to cases where the measured cycle rate varies with the 

environmental variable X, i.e., j. = f.(z). In this case foD in Eq. 2.3 is replaced by: 

H fslx(wfx(z)dsdz ~= 
.:O ,:fo@) N,(s) 

(2.4) 

If Miner’s rule is correct one would assign A=l. More generally, variability in A would 

reflect uncertainty in Miner’s rule; i.e., the effect of predicting variable-amplitude 

fatigue behavior from constant-amplitude tests. 

In general, Eqs. 2.1–2.3 can be evaluated numerically, permitting arbitrary func- 

tional choices of fX (z), fSIX (slz), and Nf (s). In the CYCLES formulation specific 

functional forms of each of these three quantities are chosen. These permit analyti- 

cal expressions to be derived for Eqs. 2. 1–2.3. As discussed earlier in Section 2 the 

assumed functional forms restrict the generality of the formulation however the re- 

sulting analytical form facilitates study of important parametric variations, e.g., of 

distribution parameters, S-N curve constants, etc. The following section describes 

the specific simplifying assumptions that permit this analytical formulation. 

2.4 Analytical Fatigue Formulation 

Described here are the basic assumptions which permit a closed-form, analytical ex- 

pression for fatigue life. As noted earlier, these are based on a model suggested 

originally for fatigue of wind turbines (Veers, 1990). Some minor generalizations are 

included here as well. The resulting formulation is intended to be useful for a variety 

of applications beyond wind turbines, such as offshore structures, bridges, etc. 

The assumptions are as follows: 

● The long-term load variable, X, is assumed to have Weibull distribution. This 
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distribution involves two free parameters, which may be expressed in various ~ 

ways. For example, in terms of its mean value ~ and shape parameter ax, the 

probability distribution of X satisfies 

~ ,&-1 

P[X > z] = exp{–[-&]”’}; jx(fc) = ‘QaZ exp[–(~)a’] (2.5) 
x x 

The parameter ~. in this result is related to the mean ~ as follows: 

(2.6) 

Resulting parameters: ~, a. = mean, Weibull shape parameter of environ- 

mental parameter X (wave height, wind speed, etc.). 

o The RMS of the (global) stress process is assumed to be of the form 

x 

Z..f)p C7g(z) = a,ef(— 7 
(2.7) 

i.e., increasing in power-law fashion with the load variable x. The local stress 

at the fatigue-sensitive detail is further scaled by a stress concentration factor 

K. The resulting RMS O(Z) is then finally 

o(z) = K . Og(z). (2.8) 

Resulting parameters: Xr.f, O,.f, p, K = reference level of load variable, ref- 

erence level of RMS stress, power-law exponent, and stress concentration factor. 

. Given load environment X, the stress amplitude S is also assumed to have . 

Weibull distribution. From random vibration theory, the mean-square value 
. 

E[S2] = 20(z)2, (2.9) 
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is assumed with o-(z) from Eq. 2.8. The resulting density ~slx (sIz) is of the 

form given in Eq. 2.5, with shape parameter CZ,, and scale parameter 

/%= 0(4[2/(2/%)!]1/? (2.10) 

Resulting parameter: as = Weibull shape parameter of stress S given X. 

Typical range: between a$=l (exponential stress distribution) and a~=2 (Rayleigh 

stress distribution). 

The S–N curve is taken here as a straight line on log-log scale, with an effective 

intercept Co that includes the Goodman correction for mean stress effects: 

s 
Nf(s) = C(l – KISm\/su )-’ = Cos-’ ; co= C(I - Kpm[/s.)b (’2.11) 

in which S~ and SU are the mean and ultimate stress levels. 

Resulting parameters: C’, b = S–N curve parameters; S~, Su = mean, ulti- 

mate stress levels. 

Substituting Eqs. 2.5–2,11 into Eqs. 2.1 and 2.3, the following expression for fa- 

tigue life Tf is found: 

(2.12) 

Note that parameters directly scaling stress, such as o,.f and the stress concen- 

tration factor K, are raised to the power b arising from the S–N curve. In contrast, 

parameters scaling the environmental variable X, such as its mean ~, are raised to 

the composite power bp, reflecting the combined nonlinear effect of Eqs. 2.7 and 2.11. 

If p >1, this suggests that the uncertainty in these environmental parameters may 

have significant effect on fatigue life. 
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Finally, under the foregoing assumptions the damage density ~(~) from Eq. 2.2 

may also be found: 

D(z) cx xbp+”’-l exp[–(~)”r] (2.13) 
z 

By finding the maximum of this function, the environmental level x~.x that produces 

the largest damage is found to be 

=pz(@+-yaz_ 
~ ~bP+%–jl/.. 

x max 
— 

CYZ (l/az)! CYz 

For example, if X has exponential distribution az=l, so that 

x maz = bpx 

(2.14) 

(2.15) 

Thus, the most damaging X level depends not only its average value, ~, but also 

on the exponents b and p of the S–N curve and RMS stress relation. Note that xm~z 
— 

–20~ if b=10 and p=2. This may be a rather may far exceed the mean X; e.g., x~aZ— 

extreme case, however. For example in a wind turbine application, common values of 

~Z=2 (Rayleigh distribution) and p=l (linear increase in stress with X) would result 

in xmZ between 2 and 3 times ~ for b values within a realistic range (4 < b < 13). 
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f 2.5 Solution Algorithm for Failure Probability 

y For the reliability analysis the failure criterion is taken to be the difference between 

the computed fatigue life (eqn. 2.12) and a specified target lifetime, Tt. 

G(X) = 7“ – Tt (2.16) 

The vector X contains the resulting parameters from the analytical fatigue formu- 

lation of Section 2.4; X=[~, az, ~ref, aref, p, K, as, C, b, Sm, S., A, fo, A]. Equation 

2.16, known as the failure state function, G(X), is positive when the component is 

safe and negative when it has failed. 

The solution for the failure probability is a four step procedure that has been 

described in Veers, (1990) and is reviewed here briefly for completeness. A more 

thorough description of reliability methods can be found in several references (Madsen 

et al, 1986, Ang and Tang, 1990, Thoft-Christensen and Baker, 1982, and, Melchers, 

1987). 

The first step of the solution procedure is the “formulation” of the limit state 

equation given above as Eq. 2.16. In the second step, the “transformation” requires 

that each random variable be associated with a uncorrelated, unit variance, normally 

distributed random variable. For independent variables this is achieved by equating 

the cumulative distribution functions of the input variable and its associated standard 

normal variate. Correlation can be included by working with conditional distributions 

(Madsen et al, 1986). Alternatively if only the marginal distributions and correlation 

coefficients among the Zi are known, transformation may proceed in two steps: 

. With conventional methods, each xi can be transformed marginally to a stan- 

dard normal variable Vi. The resulting ~ variables will also be correlated, to 

a typically somewhat greater extent than the original physical (non-normal) 

variables xi. Analytical methods have been developed to efficiently predict this 

correlation “distortion” due to non-normal physical variables (Winterstein et 

al, 1989). 

. Correlation among the Vi’s may be removed by standard methods (e.g., Cholesky 
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P 
g(u)=o 

u, 

Figure 2.1: FORM and SORM approximations to g(U) <0 

decomposition of the covariance matrix) to obtain standard nomal variables Ui. 

This is the approach used in CYCLES. All random variables are transformed in this 

fashion and the calculations proceed in standard normal space, also called “normal” 

or U–space. 

The failure state function (eqn. 2.16) is evaluated in normal U–space and gradient 

search methods are e-mployed to find the point where it is closest to the origin, also 

known as the design point, U;. (The design point in the original coordinates, X: 

is determined through the inverse of the transformation step. ) In the third step of 

the reliability calculation an “approximation” of the failure probability is obtained 

by fitting a tangent line (first order reliability method, FORM) or a parabola (second 

order reliability method, SORM) to the failure state function at the design point (see 

Figure 2.1). The direction cosines, ai, of the vector ~, that defines the design point 

are measures of the relative importance of each of the random variables. 
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The symmetry of standard normal space simplifies the “computation” of the failure 

probabilities and the importance factors as the final step of the solution algorithm. 

FORM probabilities are computed directly from the length of the vector identifying 

the design point. SORM estimates of failure probability are based upon the vector 

length and the curvatures of the surface at the design point. 

2.6 Program CYcLIZS Capabilities 

The current features of the CYCLES program are: 

● 

● 

● 

● 

● 

● 

● 

Calculation of mean excess life 

First order (FORM) and second order (SORM) failure probabilities 

Importance factors for each random variable 

Sensitivity analysis for each parameter used to define the probability distribu- 

tions of the random variables 

Option to run simulation 

Calculation of failure probabilities as a function of time 

Library of random variable distribution functions 

The primary result of the CYCLES program is an estimate of the “failure” proba- 

bility, pf, i.e. the reliability is the probability that the fatigue life will be less than the 

target lifetime of the component. It is determined as described in section 2.5. The 

importance factors, which reflect the relative contribution of each variable to fatigue 

life uncertainty, are also reported. 

The program estimates pf over a range of target lifetimes (provided by the user) 

and sensitivities of the parameters for each random variable. The sensitivities are 

evaluated by varying each input parameter and dividing the change in reliability 

by the change in the respective parameter; dB/dp where dB and dp are change in 

reliability and change in parameter respectively. Note that this is effectively a partial 
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derivative; i.e., CYCLES reports sensitivities to each parameter individually while fixing 

the others at their input values. 

Flowcharts depicting program execution and initial processing of random variables 

are shown in Figures 2.2 and 2.3 respectively. 
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Figure 2.2: Flow chart, general CYCLES code execution. 
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Figure 2.3: Flow chart, initial processing of CYCLES random 
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2.7 Example Application: The Sandia 34-m Test 

Bed VA~T 

The capabilities of the CYCLES reliability program is demonstrated by way of exam- 

ple. This example is intended to demonstrate a typical analysis one might encounter 

in the final design of a machine where there has already been extensive testing and 

data analysis, so that the uncertainty in many of the inputs is small. In particular, 

a research oriented 34-meter diameter Darrieus, vertical axis wind turbine (VAWT) 

erected by Sandia National Laboratories near Bushland Texas, has provided an abun- 

dance of test data useful to this reliability analysis. 

This turbine has operated since 1988 with extensive instrumentation to collect 

wind-speed and operational-stress data. The aluminum material of which the blades 

are extruded has also been well characterized by constant amplitude fatigue tests. 

A reliability analysis for fatigue of blade joints on this turbine therefore has many 

inputs that are relatively well known. However, there has been no component testing 

to establish fatigue properties of the joints or stress concentration factors so that 

some inputs do have high uncertainty. 

Much of the data used here has been taken from a deterministic fatigue analysis 

performed by Ashwill et al, (1990) on the same VAWT blade joint. This example 

reproduces the original probabilistic fatigue analysis performed by Veers, (1990), for 

the same turbine. 

2.7.1 Definition of Input 

The underlying assumptions and numerical values used to model: 

1. the load environment, 

2. the stress response, and 

3. the resulting fatigue damage accumulation, 

are described for this example to further illustrate the three aspects of the fatigue 

formulation described in section 2.2. 
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● Load Environment. 

Following the approach used by Ashwill et al, (1990), V, the “10 minute mean 

wind speed” is used as the dominant environmental variable; X. Extensive 

measurements of V have been made at the Bushland site, as well as the Amarillo 

Airport about 30 miles away across flat terrain. The distributions measured at 

these two sites are plotted in Figure 2.4 along with a Rayleigh distribution. The 

mean of the “10 minute mean wind speeds,” ~, for Bushland and Amarillo are 

6.2 and 6.6 m/s respectively. Note that the high wind tails of the distributions 

are different. Since the data sets are of different lengths, the following statistics 

are employed to model the local wind speed distribution; 

E[V] = ~ = 6.3 m/s (2.17) 

with 

av = ax = 2.0. (2.18) 

The values in Eqs. 2.17 and 2.18 are based on limited data, and hence may 

differ from the true values we would find from infinite data. Therefore, these 

values are used as the mean values of ~ and az, while assigning COV values of 

.05 and .10 to ~ and ax respectively. The result is a wind speed distribution 

with uncertain parameters that is a perturbation about a Rayleigh distribution 

(implied by the mean ax of 2.0) with mean 6.3 m/s. Both parameters are 

assumed to be normally distributed. 

. Gross Stress Response. 

The wind turbine and its components have been equipped with a large array 

of sensors that permit characterization of the turbine under field conditions. 

Structural response measurements such as stationary and rotating natural fre- 

quencies, mean stresses, and operational stresses have been compared to an- 

alytical predictions with good agreement (Ashwill et al, 1990). The highest 

stressed region in the blade was found to be in the flatwise direction at the 

upper blade-to-tower joint, where the 48 inch chord blade section attaches to 
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Figure 2.4: Wind speed distributions from Amarillo, Bushland, and the theoretical 
Rayleigh distribution with ~ = 6.3 m/s 
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the tower. 

CHAPTER 2. CYCLES FATIGUE RELIABILITY FORMULATION 

The stress states for the upper root were predicted using FFEVD (Lobitz and 

Sullivan, 1984), a Sandia written frequency response finite element code that 

assumes steady winds. Strain gages were employed to measure stress states at 

the upper root location. Figure 2.5 shows the measured RMS stresses for fixed 

speeds of operation at 28, 34, and 38 rpm. The trend is seen to be nearly linear 

for all three modes of operation. 

For the power-law relationship used by CYCLES (Eq. 2.7), the following param- 

eters are used to characterize the response: Xr,i = 10 m/s, crr,f = 4.5 MF’a, 

and p = 1. Only the reference RMS level Or,f is treated as a random variable 

while the exponent, p, and the characteristic wind speed, x,~f, are defined as 

constants. Because there is a great deal of data available a relatively small vari- 

ation, COY = 0.05, was chosen for oref which is assumed normally distributed. 

In chapter 4 procedures useful for determining uncertainty measures from data 

will be shown. The COV used here for oref is an assumed value believed to be 

representative of the existing uncertainty. 

The remaining variables associated with the gross stress response of the ma- 

chine are the stress concentration factor, K, and the shape factor, as, of the 

Weibull stress amplitude distribution. The stress concentration factor has not 

been predicted or measured with accuracy. As an approximation for the heavily 

bolted joint a mean K of 3.5 with 10% GOV is used. Histograms of rainflow 

counted stress time histories show very good agreement with a Rayleigh distri- 

bution (Veers, 1982). In Chapter 3 we will see that typical data from horizontal 

axis wind turbines (HAWT) is 

there is an abundance of stress 

Weibull shape parameter is set 

distribution Rayleigh. 

. S—iV Curve 

The blades and joints are made 

more exponential in nature. Again, because 

data and the observed fits are very good, the 

to the constant value of 2.0 making the stress 

-t 

of 6063-T6 aluminum extrusions for which ex- 

tensive fatigue test data are available. The test data are shown in Figure 2.6, 
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Figure 2.6: Effective stress amplitude versus cycles to failure for 6063 aluminum alloy 

normalized to an effective stress amplitude as used by CYCLES (see Eq. 2.11). 

This data displays a commonly observed “fatigue limit” below which the fa- 

tigue lives are considerably extended. This effect is not included since cumu- 

lative damage assessments with occasionally applied larger stresses (as is the 

case here for wind turbines) may effectively eliminate the fatigue limit (Dowl- 

ing, 1988). The higher stress peaks alter the way most materials respond and 

result in greater rates of fatigue damage than would be concluded based solely 

on constant amplitude results. The least squares fit to the data gives an S– 

N exponent, b = 7.3, with intercept C = 5.0E+21 (based on stress units of 

MPa). The distribution of the data about the least squares line fits a Weibull 

distribution with COV = 0.613. 

The mean stress and ultimate strength are needed to define the effective stress 

amplitudes using Goodman’s rule. The mean stress has been measured near 

the joint but may vary substantially along the blade span, resulting in high 
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Variable 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Symbol 
x 

Zf 

; 
as 
c 
b 

s. 
s. 

f. 
A 
A 
Tt 

Definition 
Mean Wind Speed 

Wind Shape Factor 
Ref Stress 

RMS exponent 
Stress Cone 

Stress Shape Fact 
S-n Coeff 

S-n Exponent 
Mean Stress 

Ultimate Strs 
Cycle Rate 

Miners Damage 
Availability 
Target Life 

Distribution 

Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Weibull 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

Mean 

6.3 m/s 
2.0 

4.5 MPa 
1.0 
3.5 
2.0 

5.0E+21 
7.3 

7.0 MPa 
285 MPa 

2.0 Hz 
1.0 
1.0 
20. 

Cov 
0.05 
0.1 

0.05 

0.1 

0.61 

0.2 

0.2 

Table 2.1: Sandia 34-m Test Bed VAWT, CYCLES Base Case Input Summary 

uncertainty for the actual local mean. The mean stress is defined to be normally 

distributed with mean 7.0 MPa and 20% COV. The ultimate stress for the 

extruded aluminum material has been measured and is set to the constant value 

285 MPa. 

The three remaining parameters used to calculate the average fatigue damage rate 

are the average response cycle rate, ~o, the actual value of Miner’s damage at failure, 

A, and fraction of time the turbine is available, A. The cycle rate frequency has been 

measured and found to be relatively independent of wind speed but does vary from 

sample to sample. f. is assumed normally distributed with mean 2.0 (Hz) and 20?Z0 

COV. For simplicity, both A and A are set to unity with no variation. Table 2.1 

summarizes all the parameters used in this wind turbine fatigue reliability example. 
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2.7.2 Results: Base Case 

The output from the CYCLES analysis for this example is given in Table 2.2 under the 

column heading identified as “Weibull”. The results show a probability of failure of 

approximately 3% for a target lifetime of 20 years with a median excess lifetime of 294 

years. The reliability analysis identifies the likelihood or probability that the turbine 

will achieve some desired lifetime. Of equal importance is the relative importance 

of each random variable on the fatigue life of the turbine. Results show that the 

leading coefficient in the S-N relationship is the most important source of variability 

supplying about half of the total variability in this example. The stress concentration 

factor, K, and wind speed shape factor, av, are next, having approximately 21% 

and 1470 contribution respectively. The relative importance of each random variable 

provides valuable insight to the designer who is attempting to reduce the effects of 

fatigue damage. 

2.7.3 Lognormal versus Weibull Distribution for S–N Param- 

eter: C 

Finally, in order to investigate the effect of distribution type on the results of the 

reliability analysis, the example problem run here was repeated with the distribution 

type for the S-N coefficient changed to lognormal. Table 2.2 summarizes how the 

results vary between the two cases. 

As might be expected the failure probability decreased to 1.5%. This result is due 

to the shift in probabilities of the resistance variable C towards larger values (e.g. the 

lognormal distribution has both a narrower lower tail and a fatter upper tail than the 

corresponding Weibull distribution), This model here predicts greater reliability, as 

it is applied to a resistance variable (fatigue life at given S) for which large values are 

favorable (non-failures). Note also the shifting of importance from the S–N intercept 

to the stress concentration factor, K, and wind speed shape factor, av, as the analysis 

shifts from a blade with marginal resistance (e.g., a Weibull distribution for C) to one 

having potentially much higher resistance (e.g., the lognormal distribution for C’). 

The influence of distribution type on reliability is clearly case dependent as the 
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Weibull Lognormal 
Excess life over 20 years: 294 yrs 277 yrs 

FORM pi (in %) 2.56 1.50 

SORM pf (in %) 3.01 1.55 

Symbol Definition Importance Factors: (in?%) 

x Mean Wind Speed 4.9 7.9 
Wind Shape Factor 14.4 27.6 

;,:j Ref Stress 4.9 7.9 
RMS exponent - 

2 Stress Cone 21.2 32.6 
as Stress Shape Fact - 
c’ S-n Coeff 52.2 20.3 
b S-n Exponent - 

Sm Mean Stress 0.9 1.6 
s. Ultimate Strs - 

f. Cycle Rate 1.4 2.2 
A Miners Damage - 
A Availability 
Tt Target Life 

Table 2.2: Sandia 34-m Test Bed VAWT, CYCLES Reliability Results 

following example demonstrates. In this second example, it is assumed that sufficient 

testing was performed to reduce the uncertainty in the previous example for the stress 

concentration factor, K, and wind speed shape factor, av. Both (20V’S are now taken 

to be 5%. A new reliability analysis shows that the S–N intercept, G’, with a Weibull 

distribution, dominates the relative importance of all random variables, e.g. 79% 

importance. Results for this hypothetical case and one with a lognormal distribution 

for C are shown in Table 2.3. 

Note that when the overall uncertainty in the problem has been reduced, the 

failure probability has also been reduced. Furthermore, with a lower pf the shifting 

of importance away from the resistance variable to those constituting the load is much 

more dramatic. This is expected, due to the large role played by the random variable 

C’ in the reliability calculations. 

The caution here is two-fold. First, the choice of distribution model for a critical 

,. 
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Excess life over 20 years: 
FORM pf (in %) 
SORM w{ (in %) 

Symbol 
x 

;,;j 

i 
as 
c 
b 
Sm 
s. 
f. 

A 
A 
Tt 

.,, , 
Definition 

Mean Wind Speed 
Wind Shape Factor 

Ref Stress 
RMS exponent 

Stress Cone 
Stress Shape Fact 

S-n Coeff 
S-n Exponent 
Mean Stress 

Ultimate Strs 
Cycle Rate 

Miners Damage 
Availability 
Target Life 

Weibull I LoKnormal 
294 yrs $77 yrs 

1.29 0.17 
1.37 0.16 

Importance Factors: (in%) 

5.0 14.2 
2.8 
5.0 

6.0 

79.0 

0.8 

1.4 

9.4 
14.2 

17.3 

38.4 

2.6 

3.8 

Table 2.3: Effect of S-N Intercept Distribution Type with Reduced Uncertainty 

random variable, when fit to the same mean and variance, can change failure proba- 

bility estimates by one or more orders of magnitude. Second, although the lognormal 

model has been widely used in these fatigue strength and S–N formulations, it may 

be considerably unconservative. At the least, if one knows nothing more than second- 

moment information (mean and variance), it is perhaps prudent to at least fit both 

a lognormal and Weibull models, and estimate the reliability under each assumption. 

Practical experience suggests that these two models provide useful bounds on the 

plausible range of reliability index, in view of distribution model uncertainty. 



Chapter 3 

Load Models for Fatigue Reliability 

The fatigue reliability of wind turbines depends on the relative frequency, or proba- 

bility distribution, of various cyclic load levels to be encountered during the turbine’s 

operating life. These are typically required across a range of representative wind 

conditions. 

For time scales of the order of minutes, these loads may be measured by relatively 

short-term experimental studies, or predicted by analytical methods. Practical ques- 

tions then arise as to how these limited data should best be used (e.g., Jackson, 1992; 

Sutherland, 1993; Sutherland and Butterfield, 1994; Thresher et al, 1991). First, in 

seeking to estimate a representative fatigue life, is it sufficient to use the observed 

histogram of cyclic loads, or should a smooth theoretical probability distribution be 

fit to the limited data? If a smooth distribution is to be fit, what functional form is 

sufficiently flexible and how should it be fit? Finally, beyond forming a single best 

estimate of fatigue life, what is the uncertainty in this estimate due to limited data? 

This chapter seeks to address these concerns. Subsequent sections address the 

following points in turn: 

1. Fatigue Data and Damage Densities. We first show several useful ap- 

proaches to study fatigue load data and modeling needs. Damage density plots are 

constructed, to suggest which stress ranges are most important to model. In ad- 

dition, Weibull scale plots are used to show systematic deviations from a range of 

standard Weibull models. While not completely new, these approaches have yet to 

30 
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widespread use among wind turbine load modelers. 
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2. Model Uncertainty Effects. We fit a number of conventional load models 

to a particular data set, and determine the resulting scatter in fatigue damage they 

predict. Considerable scatter is found among common one-parameter load models, 

such as the Rayleigh and exponential models, when they are fit to the mean stress 

range or RMS level. This motivates the need for more general load models, with two 

or more parameters fit to the data. 

3. New Statistical Loads Models. We introduce here a new generalized load 

model, which preserves the first four statistical moments of the data. By retaining 

these higher, more tail-sensitive moments, it is more faithful to the observed frequency 

of relatively large load levels. At the same time, it is a rather mild perturbation of a 

conventional 2-parameter load model, e.g., Weibull, Gumbel, or Gaussian. Of primary 

interest here is the generalized Weibull model which has found favor in various fatigue 

applications. Other applications include a generalized Gumbel model for extreme 

values, and a generalized Gaussian model useful for analyzing nonlinear vibration 

problems. 

4. Uncertainty due to Limited Data. Finally, we discuss the implications 

of limited data. Techniques are shown to estimate the associated uncertainty in 

fatigue damage estimates. Acceptable levels of this uncertainty are also discussed, 

together with the data needs these imply. The result is strongly dependent on material 

properties; e.g., the slope of the S–N curve that governs fatigue behavior. 

Our application here concerns both flapwise and edgewise loads on a horizontal 

axis wind turbine (HAWT). A companion study (Sutherland and Veers, 1995) ap- 

plies similar models to estimate loads on the Sandia 34-m vertical axis wind turbine 

(VAWT). 

3.1 Fatigue Data and Damage Densities 

In 1989 an extensive data set was obtained for a 100-kW wind turbine operated at 

Altamont Pass, California by Northern Power Systems. This turbine is a two-bladed, 

upwind HAWT with a teetering hub design utilizing full-span hydraulic passive pitch 
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control. The fiberglass rotor blades span 17.8 meters (rotor diameter). The root 

bending moment in both the flapwise (out-of-plane) and edgewise (in-plane) directions 

were measured in various wind conditions (Coleman and McNiff, 1989). 

We consider first the flapwise moment. Figure 3.1 shows the histogram of rainflow 

counted ranges, taken from a 71-minute history during an average inflow wind speed 

of 10 m/s. Various studies have suggested a straight-line fit on this semi-log scale, 

implying an exponential probability model. We may question, however, whether 

a log-linear extrapolation adequately captures the frequency of rare, large stresses. 

Note, in particular, the single extreme stress range of around 32 [kN-m], which pairs 

the largest peak and smallest trough in the history. One may ask how much impact 

such extreme, rare loads have. 

We address this issue here through the concept of the damage density. Fatigue 

tests are typically used to estimate N(S), the number of cycles to failure under 

constant stress amplitude S. We adopt here a common power-law form of IV(S): ‘ 

N(s) = + (3.1) 

of 

Here c and b are material properties where c = I/C’, C used in the earlier definition 

the S–N Law, Eq. 2.11, from Chapter 2. 

As shown in Figure 3.1, actual load histories produce a number of load cycles, 

n(Sz), at various stress levels Sz. For each stress level, Miner’s rule assigns fatigue 

damage 

TL(S2) 
– cSjn(Si) D(si) = jqzjj “ (3.2) 

The latter form uses the S–N relation from Eq. 3.1. The total damage is then 

estimated as DtOt=~i D(Si), the sum across all stress levels S2. 

In fitting loads models, it is useful to focus on the relative fraction of damage 

incurred at different levels. This is the damage density, herein denoted d(Si): 

. . 

D(SZ) S)n(Si) 
d(s~) = ~i D(SZ) = xi $n(si) (3.3) 
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Thus, the relative damage is independent of the intercept c of the S-N curve, but 

depends importantly on its slope b. 

Figure 3.2 shows the damage densities of the flapwise loading for fatigue exponents 

b=2 and b=7. Fatigue exponents below 5 are typical of welded steel details, while 

exponents of 6 or above have been found from coupon tests of aluminums used in 

wind turbine blades (VanDenAvyle and Sutherland, 1987). Some fatigue studies of 

typical fiberglass blade materials have suggested even higher exponents; e.g., b values 

of 10 or above (Mandell et al, 1993). 

Figure 3.2 shows that the most damaging stress level changes dramatically with 

the fatigue exponent, b. For welded steels, loads that lie within the body of the data 

(3-6 [kN-m]) are most damaging. In contrast, for aluminums with b=7, the single 

largest cycle contributes over 37% of the damage. For composites this single cycle 

may give still larger contribution. This leads to increasing uncertainty on fatigue 

life estimates given limited data. This effect is quantified in subsequent sections. In 

general, however, any loads model—whether observed or fitted-should be used with 

care if the largest observed load drives fatigue damage. 

3.2 One and Two Parameter Load Models 

As noted above, a common probability model suggested for HAWT blade loads is 

the exponential probability model. This model has a single parameter, essentially 

reflecting the slope of the expected histogram on semi-log scale (Figure 3.1). An 

alternative one-parameter model, based on random vibration theory of linear systems, 

is the Rayleigh distribution. Here we investigate the adequacy of these through the 

more general, two-parameter Weibull distribution. 

For a general Weibull load model with parameters Q and ~, the cumulative dis- 

tribution function F(s) is given by 

F(s) = P[ Load < s] = 1 – e-(’lp)a (3.4) 

This model includes the exponential and Rayleigh as special cases, corresponding 



3.2. ONE AND TWO PARAMETER LOAD MODELS 35 

to a=l and c2=2 respectively. Note that F(s) is the cumulative probability of all 

loads less than specified s. It is also useful to ask the inverse question: what fractile 

SP has specified cumulative probability F’(s)=p. Setting the left-side of Eq. 3.4 to p, 

solving for s yields 

SP = @[– In(l – p)]l/a (3.5) 

To determine the adequacy of a model such as Eq. 3.4, it is convenient to display 

the data on an appropriate “probability scale” plot. In general, probability scale is 

constructed for any distribution by transforming one or both axes to obtain a linear 

graph between cumulative probabilities and the corresponding values of the physical 

variable. For the specific case of Eq. 3.5, a linear result arises from taking logarithms: 

ln(s,) = ln(~) + ~ ln[– ln(l – P)] (3.6) 

Thus, the observed load values are first sorted into ascending order (.sI < Sz s 

., .SN). We then plot ln(sz) versus ln[– In(l – pi)] on linear scale, with pi=i/(N + 1). 

Equivalently, we may plot Sz versus – ln(l –pi) on log-log scale; this is the alternative 

chosen here. The result is a linear plot in any Weibull case, including both the 

Rayleigh and exponential as important special cases. It also includes a still wider 

range of models, with the slope of the line directly showing whether the model should 

be Rayleigh, exponential, or something between (or outside). 

Figure 3.3 shows the flapwise data from Figure 3.1 on this “Weibull scale.” This 

plot also shows corresponding exponential and Rayleigh distributions, which preserve 

the mean of the data. Observe that with this graphical “goodness-of-fit” method 

it is fairly easy to discriminate between the two distributions, and confirm that the 

exponential model follows the data far better than the Rayleigh model. 

Figure 3.4 repeats the flapwise data on Weibull scale, now plotted with the “best” 

Weibull distribution. The two parameters of this Weibull model have been chosen to 

match both the mean and standard deviation of the data. While providing an appar- 

ently better fit, we will consider below whether the difference between exponential 

model (Figure 3.3) and Weibull model (Figure 3.4) is statistically significant. In the 
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next section, we will also consider still more general models. In general, these figures 

show the advantage of using probability scale instead of the traditional histogram to 

discriminate between different models. ~ * 

. 

* 
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3.3 Generalized Four-Parameter Load Models 

By using data to fit two parameters—both a as well as /3 in Eq. 3.4—it is not surpris- 

ing that the Weibull fit seems visually superior to the l-parameter exponential and 

Rayleigh models. In the same way, one may seek to introduce still more parameters, 

ultimately leading to seemingly perfect agreement as the number of parameters ap- 

proaches the number of data. The tradeoff, of course, is that as one seeks to estimate 

more parameters from a fixed amount of data, our uncertainty in estimating each 

parameter grows. The practical effect of this should be measured by the resulting 

uncertainty (e.g., coefficient of variation or confidence interval) on our mean damage 

rate estimate. In general, adding more parameters to a probabilistic model is no 

longer beneficial if the resulting damage estimate does not vary significantly, in view 

of its uncertainty, from that given by a simpler model. 

Comparing Figures 3.3 and 3.4, we may ask whether the difference between ex- 

ponential and Weibull models is statistically significant. We will show below (e.g., 

Figure 3.13) that at least for high exponents b damage differences between Weibull 

and exponential models are statistically significant. This supports the effort of seek- 

ing a two-parameter Weibull model. To test in turn whether the Weibull model is 

sufficient, we require a still more detailed model with which to compare it. This is 

provided by the four-moment, “generalized Weibull” model defined below. 

These generalized 4-parameter load models are perturbations of 2-parameter “par- 

ent” models that are based on fitting not only to the mean p and and standard devi- 

ation a, but also the skewness a3 and kurtosis a4 of the data. (For a general random 

variable X, an is defined as the average value of ((X — p)/o)n. ) This section contains 

applications for not only a generalized Weibull model but also a generalized Gumbel 

and generalized Gaussian model as well. Each model is shown useful for a specific 

application. The emphasis however is on fatigue applications using the generalized 

Weibull model. 
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Generalized four-parameter distributions have been developed to modify standard, 

commonly used two-parameter distributions to better match observed tail behavior. 

In particular, cubic distortions of these standard “parent” distributions are sought 

to match the first four moments of the data. We may then ask why precisely four 

moments are used to fit the probability distribution of X—and not two, three, five, 

ten, etc. Conventional models are of lower order, requiring only one or two moments. 

The problem is that a number of plausible models, with very different tail behavior 

and hence fatigue reliability, can be fit to the same first two moments. This scatter 

in reliability estimates is said to be produced by model uncertainty. This is prevalent 

in low-order, one- or two-moment models, 

To avoid this model uncertainty, which is difficult to quantify, one is led to try 

to preserve higher moments as well. This will help to discriminate between various 

models, and hence reduce model uncertainty. The benefit does not come without cost, 

however: higher moments are more sensitive to rare extreme outcomes, and hence 

are more difficult to estimate from a limited data set. This is known as statistical 

uncertainty, which reflects the limitations of our data set. 

Thus, our search for an “optimal” model reflects an attempt at balance between 

model and statistical uncertainties. Practical experience (e.g., Winterstein, 1988) 

suggests that four moments are often sufficient to define upper distribution tails over 

the range of interest. This experience motivates the generalized models developed 

here. It is again supported by the results of Section 3.3.4, in which extreme wave 

heights are insensitive to the choice of parent distribution, once four moments have 

been specified. 

This issue of statistical uncertainty with moment estimates is discussed further 

in Appendix A. Methodology useful for estimating the first four statistical moments 

of a data set, especially when the number of data points is limited, is outlined. 

Of particular interest are cases with data limitations that introduce considerable 

bias into estimated values of normalized moments. The generalized Gumbel example 

(Section 3.3.4) is one such case and the effects of bias as well as corrective measures 

to compensate for it are presented. 
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3.3.2 Underlying Methodology 

Development of a four-parameter distribution model begins with a theoretical, two- 

parameter “parent” distribution. Implementation has been achieved for Weibull, 

Gumbel, and Gaussian parent distributions. Denoting the parent variable as U, the 

physical random variable X is related to U through a cubic transformation: 

x = co + c~u + CJJ2 + CJ73 (3.7) 

An automated optimization routine then adjusts the coefficients c. to minimize the 

difference between the measured skewness and kurtosis and those of the generalized 

variable X. Such a routine, FITTING (Winterstein et al, 1994) has been recently 

developed at Stanford University. Note also that for Eq. 3.7 to remain monotone 

we require C3 > 0. The positive cubic term implies that X eventually has broader 

tails than U. When X has narrower tails than the parent distribution, the program 

automatically fits the alternate relation: 

u = c; + C;x + 4X2+ Cjxs (3.8) “ 

Here the positive cubic coefficient c! plays the opposite role, expanding the dis- 

tribution of the physical variable X to recover the parent model. 

This switching between two dual models, based on the size of Q4, occurs auto- 

matically within the FITTING program. Adding such a dual model has been found to 

greatly increase modeling flexibility for small kurtosis cases. These have been found 

to arise both in extreme and fatigue loading applications. 

Finally, in whichever form the model is defined, the coefficients c. are chosen to 

minimize the error c, defined as 

6 = /(a, - a3~)’ + (0!. – cl!,~)2 (3.9) --- 

The speed of executing FITTING is governed largely by the speed of this optimiza- 

tion; i.e., by the amount of effort (trial Cn values) needed to achieve an acceptably 

small tolerance, 6tO~. 
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The FITTING report (Winterstein et al, 1994) supplies additional details and sub- 

routine documentation. The basic goal of these generalized load models is to reflect 

probabilistic engineering judgment—through the choice of basic two-parameter model 

(Weibull, Gumbel, etc.)—and then introduce a cubic distortion to better reflect rare 

extreme values through their higher statistical moments. 

Numerical vs Analytical Four-Moment Models. 

Another distinction among four-moment models concerns whether their coeffi- 

cients (e.g., Cn in Eq. 3.7 or c: in Eq. 3.8) are found analytically or from some numer- 

ical algorithm. Implementation of Eqs. 3.7–3.8 as described above for the FITTING 

program is numerical where the coefficients c. or c: are found by minimizing 62, the 

sum of squared errors in skewness and kurtosis. This is done with constrained op- 

timization, requiring Eq. 3.7 or 3.8 to remain monotone and often achieves perfect 

moment fits; i.e., 62=0. 

Although the numerical approach is not computationally burdensome, analytical 

four-moment models have been pursued (Winterstein and Lange, 1995), particularly 

in the case where U is standard Gaussian and a4x > a4u = 3. Here it is useful to 

rewrite Eq. 3.7 in terms of Hermite polynomials: 

X = mx + KOXIU + c~(U2 – 1) + CA(U3 – 3U)]; ~ = (1 + 2c~ + 6c~)-112 (3.10) 

Results for c~ and C4 have been found to make 62 vanish to first-order (Winterstein, 

1985) and second-order (Winterstein, 1988) in Cn. The most recent (and accurate) 

expressions have been fit to “exact” results from constrained 

c13x 1 – .o151a3xl + .3c& 

6[ 
c3. — 

1 + o.2(c14x – 3) 1 

optimization: 

(3.11) 

(3.12) 
1.43& l–f).la~~ . C40 = [1+ l.%(qx - 3)]1/3 -1 

c’= c40[1 - (Q!’x - 3)1 ‘ 10 

The above expressions were produced using FITTING to generate a matrix of exact 

solutions for a range of requested skewness and kurtosis. The results were then 
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Figure 3.5: Weibull and Generalized Weibull models; Flapwise data 

curvefit to produce expressions for C3 and C4 to be used in Eq. 3.10. 

3.3.3 Generalized Weibull Model for Fatigue Loads 

Figure 3.5 shows a generalized Weibull model of the NPS flapwise data, fit to its 

first four moments. Perhaps most notable is its similarity to the 2-parameter Weibull 

model. Unlike a least-squares or visual fit of a cubic model on this scale, this 4- 

moment fit does not bend to better match the cumulative probability at the highest 

level. Thus this single largest stress level; while visually striking, does not have 

sufficient impact to affect even a four-moment fit to the data. The net result is to 

support the general adequacy of the Weibull model for this flapwise case. 

Somewhat different findings arise for the edgewise bending component, however. 
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Figure 3.6 shows the histogram of the edgewise bending history over the same 71- 

minute duration. This bimodal histogram shows the presence of fairly regular, large- 

amplitude stress cycles due to gravity, with small-amplitude oscillations superposed. 

Clearly, no single-mode distribution model, Weibull or other, can describe this entire 

load frequency pattern. 

Fortunately, the small-amplitude load cycles need not be modeled for fatigue ap- 

plications. This is seen in Figure 3.7, which shows that negligible fatigue damage is 

caused by cyclic loads below about S~an=l 2 [kN-m]. Therefore, we consider models 

of load ranges above S~i. only. Above this value, Figure 3.8 shows that the general- 

ized Weibull model gives quite a reasonable extrapolation of the observed trends in 

the data. It captures the curvature seen in the body of the data and the flattening 

characteristic of its upper tail. The generalized Weibull model appears to offer a 

significant improvement over the ordinary Weibull result in this case. 

3.3.4 Generalized Gumbel and Generalized Gaussian Load 

Models 

The primary motivation for a four-parameter load model here is the generalized 

Weibull model for fatigue applications. Generalized load models with other par- 

ent distributions are useful in other applications. They are presented here to both 

demonstrate these alternative uses and reiterate the important issue of statistical un- 

certainty in normalized moment estimates and its significance to the four-moment 

models. 

Extreme Values: A Generalized Gumbel Example 

Based on probabilistic engineering judgement the two-parameter Gumbel distri- 

bution is the natural choice for modeling extreme value problems. Although this 

example considers annual maximum significant wave heights, this generalized Gum- 

bel model may also prove useful for extreme wind loads. 

This application concerns the significant wave height H. in a Southern North 

Sea location, for which 19 years of hindcast data are available (Danish Hydraulic 
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Institute, 1989). For each of these 19 years, a single storm event has been identified 

with maximum significant wave height H. (i.e. the annuaI maximum values). This 

value ranges from H. = 6.92m (1972/1973) to 9.66m (1981/1982). 

The generalized Gumbel distribution, plotted in Figure 3.9 along with the observed 

data values, is of the inverse cubic form given by Eq. 3.8. It appears to capture 

fairly well the systematic curvature of the data on the Gumbel probability scale 

used. As there are only 19 data points, the statistical uncertainty or bias in the 

estimated moments is of concern. Appendix A examines the magnitude of this bias 

and quantifies its significance. 

It should be noted that an analytically based generalized Gumbel model has pre- 

viously been fit to this data set (Winterstein and Haver, 1991). The results shown 

here are an improvement in two senses: (1) FITTING includes an inverse cubic trans- 

formation, which is particularly important in reflecting the narrower-than-Gumbel 
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tails; and (2) FITTING permits greater accuracy to be achieved in matching moments. 

Because we deal here with annual extreme values, the Gumbel distribution is the 

natural choice of parent distribution. We may ask, however, what effect is achieved 

if a different choice of parent distribution is selected. 

The three distributions are shown in Figure 3.10, The figure shows wave height 

results up to the 1000-year fractile, i.e. for which p= .999. The pattern of variation 

follows that of the underlying parent distributions: the Weibull has the narrowest 

upper tail and hence predicts the lowest extreme values, while the Gumbel predicts 

the largest. Most notably, however, all three parent distributions predict quite similar 

wave heights over this domain of interest. 

This suggests that knowledge of four moments is sufficient to control the tail 

behavior of interest. This apparent robustness of the four-moment description is en- 

couraging, particularly in cases where the optimal parent distribution is not obvious. 
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Of course this conclusion may be problem-dependent; the user is encouraged to vary 

the choice of parent distribution for the problem at hand. 

Nonlinear Vibration: A Generalized Gaussian Example 

As a final example, we consider the vibration response of a linear structure under 

non-Gaussian loads. Such non-Gaussian loading may arise, in wind and wave appli- 

cations, due to nonlinear relations between wind/wave velocities and applied forces. 

Adopting a simple lDOF model of the response X, 

x(t) + WJnx(t) + (d;x(t) = Y(t)2 (3.13) 

in terms of the zero-mean Gaussian process Y(t), and the system natural frequency 
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Un and damping ratio ~. We consider a case studied previously (Grigoriu and Ari- 

aratnam, 1987), for which Un=l.26 [rad/see], <=.30, and the covariance between Y(t) 

and Y(t+~) is exp(–O.12]~1). As noted in that reference, this covariance ensures that 

[X, X, Y] is a Markov vector process, whose moments can be found from standard 

state-space moment relations. This yields a~X=2.7 and cr~x = 14.3, quite far from 

their respective values (O and 3) in the Gaussian case. (We also consider a more mild 

non-Gaussian case below, due to lower damping ratio <=.10.) 

Figure 3.11 shows the distribution of X, estimated by simulation, on normal prob- 

ability scale. As expected, a two-moment Gaussian fit dramatically underestimates 

response fractiles XP at levels of practical interest (e.g., p above .99). The general- 

ized Gaussian model is a marked improvement, showing good agreement far into the 

response tails. 

A maximum entropy model is shown here as a comparative model. The maximum 

entropy approach maximizes a quantity associated with the probability density ~x (x) 

defined as “entropy” (Jaynes, 1957). The result, assuming four moments are known, 

is of the form 

fx(x) = f=m(-~(x)); U(X)= $ &Xn (3.14) 
nd) 

A numerical algorithm is used to find constants JI . ..A4 that preserve (or minimize 

error in) the four moments. Unit area is achieved through Ao. Note the similarity 

between Eq. 3.14 and Eq. 3.8 when U is Gaussian. Both ensure a hardening effect in 

the limit: A4 >0 in Eq. 3.14 to achieve a proper pdf, and hence its distribution tails 

are ultimately narrower than the normal pdf ju (u). 

The maximum entropy model underestimates response fractiles XP systematically 

for p above .999; compensating errors occur at lower fractiles in its effort to preserve 

moments through an inconsistent functional form. As might be expected, similar 

though less dramatic effects are found when the damping is reduced to (=.10 (Fig- 

ure 3.12), as the response becomes more nearly Gaussian. 
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Figure 3.12: Oscillator Response; 10% Damping. 
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3.4 Fatigue Damage Estimates 

Ultimately, the impact and adequacy of any probabilistic model must be viewed in 

the context of the application at hand. In our case, probabilistic models of stress 

ranges Sa are to be used to estimate the total fatigue damage: 

DtOt = c ~ S~n(Si) = cNiot~ (3.15) 
z 

Thus, our interest focuses on estimating the normalized damage per cycle ~, the 

long-run average value of S6 over all stress cycles. 

Figure 3.13 shows estimates of ~ found from the data, and from the various fit- 

ted probabilistic models. The generalized Weibull model follows the data quite well 

over the entire range of b values shown. The basic Weibull model also shows good 

agreement, with mild departure for exponents above around b=l O. As might be ex- 

pected from Figure 3.3, the Rayleigh model is extremely inaccurate. Somewhat more 

surprisingly, the visually plausible exponent ial model (Figures 3.1 and 3.3) appears 

to potentially underestimate damage, by about an order of magnitude for b z 7 and 

still more for higher b values. 

Note that we need not expect more damage when the observed distribution tail 

is “filled in” with a continuous probability model. Indeed the observed normalized 

damage, D~~= ~, is essentially a sample moment (of order b), and as such is always 

an unbiased estimate of the true long-run value, Dtr.,=f Sbj(s)ds. (Here ~(s) is the 

long-run probability density of stress S.) A caveat is in order here: in practice Dob~ 

may vary rat her asymmetrically around DtTUe. Consider, for example, an extreme 

case in which damage is governed by a single stress level bin, whose mean recurrence 

rate is one per 10 histories. (Multiple occurrences per history are thus negligible.) 

If we collect many such histories, on average 90V0 will show no occurrences in this 

critical bin—and hence will give mildly non-conservative damage estimates—while 

the remaining 10?ZO show one occurrence, and hence strongly overestimate damage. 

Thus, while the correct average is achieved, the chance of (mild) non-conservatism is 

typically higher than that of (stronger) conservatism. 

By fitting a smooth, continuous probabilistic model to all stress data, we hope 

., 
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Figure 3.13: Normalized Damage per cycle; flapwise data 

to avoid this extreme sensitivity of observed damage, Dob~, to the widely (and asym- 

metrically) varying tails of the observed stress distribution. In fitting this continuous 

model, however, it remains critical to well-represent the most damaging stress lev- 

els. High b values require better modeling of relatively large stress ranges; this is 

effectively done by matching at least two moments (Weibull) and still better by four 

moments (generalized Weibull). 

3.5 Uncertainty Due to Limited Data 

Finally, we consider the impact of uncertainty in damage due to our limited data 

history of 71 minutes. To do this we divide this history into subsets—e.g., n.eg=4 

segments each with IV/4 data—and produce damage estimates for each. The resulting 

variance among segment damages, &.9, is then resealed to estimate ~2=&&/n,e~, the 

damage variance based on all nseg segments. While we take n~~g=4 here, the final 
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Figure 3.14: Damage coefficient of variation; flapwise data 

variance 02 should be relatively insensitive to the number of segments used. 

As the exponent b increases, we may expect damage estimates to grow in uncer- 

tainty due to their sensitivity to rare, high stresses. This is confirmed in Figure 3.14. 

This figure shows V’&, the coefficient of variation (ratio of o to mean damage) of 

the normalized damage, ~. Vm is shown to grow systematically with exponent b, 

reaching 5070 for b of about 5 and nearing 1007o for b values above 10. Note also that 

these results do not depend significantly on whether the damage estimates use the 

observed data or a Weibull model. 

This worst-case value of VT= I can be supported by a simple heuristic argument. 

Consider a stress history whose highest ranges fall into a bin at level S~.X, in which 

there are n(S~w) data among the total of NtOt cycles. As b grows, the normalized 

damage ~ becomes increasingly dominated by cycles at Sm.. only: 
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(3.16) 
bn(si) ~ # 

~=~sax 
n(Smaz ) 

‘m Ntot i 

The coefficient of variation can then be estimated as 

v~ = 
‘“(S””’) = & 

(3.17) 

Ifn(S~.Z)=l observation inthislargest bin, ~in Figure 3.1, this suggests 100% 

coefficient of variation in our damage estimate. 

Finally, to determine data needs we need to consider what level of damage uncer- 

tainty is acceptable. This can only be addressed by comparing it with other uncer- 

tainty sources in fatigue life estimation. Here we define A as the actual damage level 

at failure. Setting Dtot=A in Eq. 3.15 and solving for the fatigue life Ntot=N1zf ~ (in 

cycles): 

A 
Nlife = ~ (3.18) 

The coefficient of variation of Nlife is then roughly 

‘Nlife = 4 I’q+v:+v$ (3.19) 

Here the three coefficient of variations, VC, VA, and V-, respectively reflect (1) 

scatter in the S–N curve, (2) errors in Miner’s rule, and (3) load modeling uncertainty 

due to limited data (e.g., as shown in Figure 3.14 for our 71-min. history). To ensure 

that load uncertainty has only moderate impact, we require 

For most materials, typical 

only seek a Vw value of 0.5, or 

VW< @ + v~ (3.20) 

values of ~~ are 0.5 or higher. Thus, we need 

perhaps a bit less. For cases in Figure 3.14 where V~ 

is about 1.0, this suggests that we obtain at least n&t=4 times our current duration 

of 71 minutes. This should reduce Vm to about 1/=, or 0.5. It should also yield 

multiple observations of the most damaging stress, unlike the current situation shown 
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in Figures 3. 1–3.2. In other words, we seek at least n(S~u ) =4 observations at the 

most damaging stress level S~.Z; this should give V~ of about 0.5 (Eq. 3.17). 

3.6 Summary 

Several techniques have been shown to better study fatigue loads data. Damage den- 

sities show which stress ranges are most important to model, reflecting fundamental 

differences between flapwise and edgewise data (Figures 3.2 and 3.7). 

Common one-parameter models, such as the Rayleigh and exponential models, 

should be used with care. They may produce dramatically different estimates of load 

distributions (Figure 3.3) and damage (Figure 3.13). While the exponential model 

seems visually plausible for the flapwise data, it can potentially underestimate damage 

by an order of magnitude for S–N exponent b >7 and still more for higher b values. 

“Filling in” the distribution tail with a continuous model need not result in more 

damage (Figure 3.13). In fitting such a model, however, it is crucial to well-represent 

the most damaging stress levels. High b values require better modeling of relatively 

large stress ranges; this is effectively done by matching at least two moments (Weibull) 

and better by matching still higher moments. For this purpose, a new, four-moment 

“generalized Weibull” model has been introduced. 

For edgewise data, the lower mode of the observed histogram gives negligible 

damage (Figure 3.7). Over the important range of larger stresses, the generalized 

Weibull model gives quite a reasonable extrapolation of the observed trends in the 

data (Figure 3.8). It appears to offer a notable improvement over the ordinary Weibull 

result in this case. 

As the exponent b increases, damage estimates show growing uncertainty due to 

their sensitivity to rare, high stresses (Figure 3.14). This is quantified by Figure 3.14, 

and resulting data needs are discussed. 



Chapter 4 

LRFD for 

This chapter considers 

Fatigue 

the design of wind turbine blades to resist fatigue failures. In 

particular, factors are developed for load and resistance factor design (LRFD) against 

fatigue. The use of separate load and resistance factors is consistent with a wide range 

of current, probability-based design codes (e.g., API, 1993). 

This chapter combines several novel approaches to the blade fatigue problem. 

These include: 

1, 

2. 

3. 

4.1 

the use of FORM/SORM (first- and second-order reliability methods) to esti- 

mate failure probabilities and dominant uncertainty sources (Chapter 2); 

new moment-based model of wind turbine loads, designed especially to reflect 

limited load data (Chapter 3); and 

a parallel LRFD study of a specific Danish wind turbine, also based on FORM/SORM 

(Ronold et al, 1994). 

Scope and Organization 

The dominant fatigue blade loading is assumed here to be flapwise bending. We 

consider the following three different horizontal-axis wind turbines (HAWTS), for 

which measured load data are available. 

55 
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Turbine 1: 

Turbine 1 is the AWT-26 machine, a downwind, two-bladed, free-yaw, with 26-m 

diameter teetered rotor, and power rating of 275kW (McCoy, 1995). This turbine 

is used for our base case study, in view of the relatively large amount of load data 

available (197 10-minute segments). 

Turbine 2: 

Turbine 2 is an upwind, two-bladed HAWT with a rotor diameter of 17.8-m and a 

power rating of 100kW, operated by Northern Power Systems (Coleman and McNiff, 

1989). It has a teetering hub design with full-span hydraulic passive pitch control. 

It affords a contrast to Turbine 1 both in mechanical design, and in the amount of 

available load data (only 20 10-minute segments). 

Turbine 3: 

Turbine 3 is a Danish machine, with hub height of 35-m and power rating of 

500kW. This has been the subject of a similar LRFD study on wind turbine blade 

fatigue (Ronold et al, 1994). This study has been supported as one of four sub-projects 

within the 1994–1995 European Wind Turbine Standards (EWTS) project. 

We seek here both to demonstrate basic methodology for fatigue reliability, and 

to identify the general impact of different load models on reliability calculations. We 

thus consider normalized bending loads from these various turbines, and fit different 

probability distributions to each. To focus on load modeling only, we adopt the same, 

hypothetical models of wind environment and blade properties in each case. Thus, 

our results are not intended to apply specifically to any of the machines in question. 

Rather, they should be seen as the result of applying various plausible load models 

to the same (hypothetical) wind turbine blade. 
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4.2 Background: Probabilistic Design 

4.2.1 Probabilistic Design against Overloads. 

Historically, codified probabilistic design has been most widely applied to “overload” 

failures, caused when the worst load, L, in the service life of a component exceeds its 

capacity R. This capacity may be associated with first yield, excessive deformation, 

buckling, or a similar criterion. 

If both the load L and resistance R were known perfectly at the time of design, 

we would merely require that R z L. More generally, in load- and resistance-factor 

design (LRFD) separate factors, ~~ and @R, are used to scale the nominal load and 

resistance, Lnm and ~0~: 

@R&~ k ~LLnm (4.1) 

Of course, in any single situation Eq. 4.1 can be replaced by a checking equation 

involving a single design factor SFde~ on the net safety factor: 

%. 
SF... = ~ > SFd.. ; SFd,. = ~ (4.2) 

nom 

With the two factors ~~ and ~R, however, Eq. 4.1 can more readily give uniform re- 

liability across various cases—specifically, covering cases in which uncertainty in load 

may dominate over that of resistance, or vice versa. Similarly, different factors may 

be applied to separate load contributions which show different variability. Examples 

include separate factors for dead and live loads on offshore structures (API, 1993), 

or the separate factors recently suggested for static, wave-frequency, 

loads on floating structures (Banon et al, 1994). 

4.2.2 Probabilistic Design against Fatigue 

and slow-drift 

Because fatigue is the cumulative result of many loads, the choice of an “equivalent” 

load L and resistance R is somewhat ambiguous. Fatigue predictions are generally 
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based on tests with constant stress amplitude S (and mean stress S~=O). The result- 

ing number of cycles to fail, N(S), is commonly modeled with a power-law relation: 

s 
N(S) = N,efS;:m ; Snorm = — 

Sref ‘ 
(4.3) 

Here S,,j is a reference stress level, and Nr.f the number of cycles to fail at that 

level. In Chapter 2 the S-N Law was written as N = CS’-b where c = N,~f@,f. 

Both N,ef and the power-law exponent, b, are material properties, both of which may 

generally be considered uncertain. 

Miner’s rule then assigns damage D= I/N(S) per cycle, and hence average damage 

(4.4) 

over the service life of the specimen. (Overbars are used here to denote average 

values.) More generally, this damage rate ~ can be adjusted to reflect; 

1. a stress concentration factor K relating local to far-field stresses; 

2. an availability factor A, the fraction of time the wind turbine component oper- 

ates; and 

3. the effect of a non-zero mean stress S~, w hich with the Goodman rule scales 

the fatigue life by (1 – KISml)/SU (here Sw=ultimate stress); 

as was done in the CYCLES limit state formulation (Chapter 2). The result is an 

effective damage rate 

cJ~wm (1 – K\sm]/sJb 
‘eff = ~ i ‘eff = ‘ref AKb (4.5) 

Finally, we can identify load and resistance variables, L and R, such that L z R 

implies fatigue failure. If we seek the specimen to withstand N~e, cycles in its service 

life, Miner’s rule predicts failure if ~ef f IV8., 2 1. Here we generalize this failure 

criterion to read 
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~ef f N,e, 2 A, (4.6) 

where randomness in A reflects possible errors (both bias and uncertainty) in Miner’s 

rule. This implies a failure criterion of the form L z R, in terms of the following 

“fatigue” load and resistance: 

L= S~mm” N..T; R= Neff” A (4.7) 

Note that in this formulation, fatigue load and resistance have units of cycles. 

Alternative formulations can instead assign load and resistance factors ~~ and y~ 

in terms of stresses by taking the bt~ root of the above expressions (Eq. 4.7); e.g., 

Ronold et al, 1994. Numerical values of these factors may differ notably; we may 

llb because damage is related here to the bth power of stress. expect ~~ = y~ 

Our current formulation seeks to reflect common usage; e.g., a nominal value of 

N.ff that may be based on a lower-fractile S–N curve. The resulting load factor 

yL then serves to inflate a number of load cycles to be withstood. For example, 

critical offshore facilities are often designed against -yL=10 times the service life (e.g., 

demonstration of 200-year nominal life if the actual service life is 20 years). 

In the following section we seek to; 

1. 

2. 

3. 

model load variability given limited wind and load data; 

study sensitivity y to various modeling assumptions, different machines, etc.; and 

suggest convenient choices of nominal fatigue load and resistance, and associated 

load and resistance factors ~~ and #~, to achieve desired reliability against 

fatigue failure. 
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4.3 Fatigue Load Modeling 

Previously (Chapter 3) the use of smooth, analytical probability distributions con- 

veniently fit to a limited number of statistical moments was evaluated with respect 

to fatigue load modeling. When fitting such models it was shown that, for high b 

values, proper modeling of relatively large stress ranges is required. This is achieved 

by matching at least two moments (Weibull) and sometimes improved further with 

the four-moment “generalized Weibull”. 

For this reason it is desirable to utilize the four-moment model in the partial 

safety factor calculations performed here. Unfortunately, the generalized Weibull as 

calculated by the FITTING routine is not easily integrated into a FORM analysis. Si- 

multaneous solution of nonlinear equations to preserve the third and fourth moments 

becomes computationally burdensome as the iterative FORM calculations require 

repeated fits of the distribution. 

However, our subsequent experience suggests that three-moment models may suf- 

fice for fatigue load ranges. Such a model, herein referred to as a “quadratic Weibull”, 

is presented below in the following subsection. Its implementation for various wind 

conditions is also described. 

4.3.1 Fatigue Loads for Given Wind Climate 

We work here with the first three moments, defined as follows: 

pl=~ (4.8) 

(4.9) 

~,= (s -33 (4.10) 
0; 

Note that both M2, the coefficient of variation, and p3, the skewness coefficient, are 

normalized to be unitless. Successively higher moments provide increasingly detailed 

information about rare large loads, at the expense of being increasingly difficult to 

estimate from limited data. Alternatively, one may estimate the b-th moment (and 
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Figure 4.1: Distribution of normalized loads (Turbine 1: V = 11.5 m/see, I = .16). 

hence S$O,~) directly from data, thus avoiding the need to fit any theoretical probabil- 

ity model. Our use of lower-moment models, however, seeks to reduce the variability 

associated with estimating Sb nor7n> Particularly for the relatively high ~ values (e.g. ~ 

10 or above) found for some composite materials (e.g., Mandell et al, 1993). 

Following common wind turbine practice, we divide load histories into 10-minute 

segments. Rainflow-counted stress ranges, S, are identified for each segment, and 

the results binned by mean wind speed V and turbulence intensity I. This study 

employed an eight by eight bin scheme where the minimum and maximum values of 

the bins (for V and 1) correspond to the minimum and maximum values of the data. 

Figure 4.1 shows a resulting distribution of flapwise bending loads, found for Turbine 

1 at a wind climate bin centered at V=ll.5 m/s and 1=.16. This is a fairly frequently 

occurring bin, and Figure 4.1 reflects a total of approximately 5 hours of data. The 

results are shown on “Weibull scale,” along which any Weibull model of the form 
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Prob [ load > s] = exp[-(s/~)”] (4.11) 

will appear as a straight line. Recall that special cases of the Weibull include the 

exponential (Q=l ) and Rayleigh (a=2) models. Both of these have been previously 

applied to model HAWT and VAWT loads (Jackson, 1992; Kelley, 1995; Malcolm, 

1990; Veers, 1982). 

The Weibull model in Figure 4.1, fit to the first two moments PI and p2, appears 

to match the data fairly well. It fails, however, to reflect the systematic curvature the 

data display on this scale. An alternate two-moment model, the Iognormal, shows 

curvature in the other direction, suggesting it notably overestimates loads at high- 

fractile levels. (A 4-moment variation on this lognormal model has been used in the 

Danish wind turbine study of Ronold et al, 1994.) 

We also show results from a “quadratic Weibull” model, based on the first three 

moments of the data. It begins with the Weibull model SW.~b of Figure 4.1, fit to 

pl and p2. If the skewness p3 of the data exceeds that of SW.i~, a quadratic term is 

added to SWe~b to broaden its probability distribution: 

S = Sm~n + ~[swezb + &eib] (4.12) 

When the skewness p~ of the data is less than that of SW.zb, the roles of S and SW,~b 

in Eq. 4.12 are interchanged: 

swez~ = Smzn + /$[s + 6s2] (4.13) 

(This quadratic equation is readily inverted to yield an explicit result for S in terms 

of SW.ab.) In either case, the fitting proceeds in 3 steps: 

1. e is chosen to preserve the skewness, #3; 

2. K is chosen to recover the correct variance, a;; and 

3. the shift parameter s ~in is finally introduced to recover the correct mean, PI. 
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Figure 4.1 shows that the quadratic Weibull model indeed provides an improved fit to 

the data. Note here that the best Weibull model, SW.~b, overestimates the frequency 

of large loads, and hence the load skewness. Thus we select Eq. 4.13, with c > 0 to 

ensure that S has narrower distribution tails than SWeab. Similar trends are found 

for this turbine in other wind conditions, as shown in the next section. We focus in 

Section 4.5 on how such differences, among the three load distributions shown, impact 

result ing estimates of fatigue reliability. Note also that the data show p2=l. 1, so that 

the best Weibull model SW.~b has broader distribution tails than the commonly used 

exponential model. 

4.3.2 Fatigue Loads 

To implement the preceding 

Across Wind Climates 

3-moment load model for various wind conditions, best 

estimates E[pi] (“expected values”) of the three moments pi (z=1,2,3) have been 

found for each V-I bin. The following power-law relation has then been fit: 

v 
E[L2] = ati(v ,e~)ali(fi)a2i (4.14) 

Te 

Figures 4.2-4.4 show resulting estimates of E[pi] for the three wind turbines. (All 

loads have been normalized by their respective mean values at V= V..f=7.5m/s, so 

that all results in Figure 4.2 predict unit values of the normalized mean load at 

V= V7ef.) This approach of modeling the load moments, pi, ascross different wind 

conditions closely parallels that of the Danish fatigue reliability study (Ronold et al, 

1994). This permits us to include results for that machine (Turbine 3), by substituting 

appropriate expressions for E[pt]. Also, all results are shown versus mean wind speed 

V at a reference turbulence intensity l=l,e$=0.15. Because all quantities showed 

relatively moderate variation with 1, (e.g., .1 s azi s .3) this dependence is not 

shown in the figures (although it is kept in the subsequent analyses). 

Most notable in these figures is the similarity of the various turbines: Turbines 1 

and 2 show similar estimates of all 3 moments, and Turbine 3 gives consistent pl and 

p2 (albeit apparently lower p3 estimates). A notable distinction however between the 

two studys is that Ronold et al, (1994) employed a polynomial expression of the form 
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Figure 4.4: Estimated load skewness, 

E[pz] = aji + a{iV + a&V2 + ajiI + aji12 (4,15) 

which explains the nonzero mean load (at V=O) for Turbine 3 in Figure 4.2. It is 

also important to note that Turbine 3 results are inferred from cited results (Ronold 

et al, 1994) for the mean P!, standard deviation pi, and skewness p! of S’=ln S. 

Figures 4.2-4.7 have been constructed from Taylor series approximations, which sug- 

gest the mean load PI N exp(p~), while the higher unitless moments pz = p; for i=2 

and 3. These approximations may add to the discrepancy, however, for example in 

Figure 4.4. 

In general, Figure 4.3 suggests that for all 3 turbines, the coefficient of variation 

uz generally exceeds 1.0, its value for an exponential model. Thus the “best” two- 

moment Weibull model is broader in its tail, or more damaging, than the commonly 
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used exponential. However, the skewness p3 is generally less than 2.0, the corre- 

sponding value for an exponential variable. This implies that the basic Weibull fit, 

while more damaging than a body-fit exponential, in turn overestimates damage due 

to large load levels. In other words, the result shown in Figure 4.1 for Turbine 1 is 

symptomatic of various turbines in diverse wind climates: the data show curvature 

on Weibull scale, toward lower load levels at high fractiles than the Weibull model 

predicts. This effect will grow in importance as the fatigue exponent b increases; e.g., 

as we move from common metals to composites. 

Analogous to Eq. 4.14, power-law fits have also been made of the corresponding 

standard deviations, D[pi], of the 3 moments pl. ..p3. These have been estimated for 

each V–I bin by a bootstrapping technique, in which “equally likely” rainflow range 

data (the same number as observed) are found by resampling from the observed ranges 

(Efron and Tibshirani, 1986). These quantities D[pz] directly reflect the impact of 

limited data, and approach zero as the amount of data grows. We should thus expect 

cases with little data (e.g., Turbine 2) to show relatively higher uncertainty levels, 

D[pz], than those with more data (Turbines 1 and 3). Again Turbines 1 and 2 are 

found to yield consistent results in Figures 4.5-4.7. Turbine 3 appears relatively 

more variable, especially in Figures 4.5–4.6 and at extreme wind speeds. It is not 

clear whether this reflects the observed data for this turbine, our approximation of 

moments of S from those reported of in S, or the extrapolation of functional forms 

beyond the range of observed data. 

This difference, however, appears to propagate to the load- and resistance-factor 

calculation. In particular, the next section will show LRFD factors for both Turbine 1 

(dense load data) and Turbine 2 (sparse load data). Because the uncertainty in Tur- 

bine 3 appears closer in Figures 4.5–4.7 to that of Turbine 2, LRFD factors reported 

in the Danish study more closely parallel our sparse-data case. 
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4.4 LRFD 

dure 
~ 

From Eq. 4.7, the 

Assumptions and Computational Proce- 

—— 
fatigue loading involves the bt~ moment S~Wm=Sb/S$ef. This 

weights the conditional moment Sb I V, 1, given various values of V and I, by their 

joint probability density fv,r(v, z): 

jy= H Syv, I “ jv,~(v, i) Ch (ii 
all V I 

(4.16) 

We assume here that the mean wind speed V has Weibull distribution, with aver- 
— 

age V and shape parameter CZv. The turbulence intensity 1 is assumed independent 

of V, and assigned lognormal distribution with average ~ and coefficient of varia- 

tion COV1. Finally, we estimate Sb IV, I from three moment-based fits: the Weibull, 

lognormal, and quadratic Weibull models as in Figure 4.1. 

From the previous section, the necessary moments pi are modeled as 

Pi = E[Pi] + D[Li] . IX; i = 1,2,3 (4.17) 

in terms of standard normal variables Ui. Correlations among the Ua are included, es- 

timated from all the moment data irrespective of their V and 1 values. This approach 

directly parallels that suggested in the Danish fatigue reliability study (Ronold et al, 

1994). 

Thus, the fatigue load L=~” lV~.r/S$ef is modeled here as a function of seven 

uncertain quantities: 

=(X) “ N.e, 
L = L(X) = Sb 

ref 
(4.18) 

in which X=[av, ~, COV1, ~, U1, U2, U3]. Note that ~/S#.f is unitless, so that this 
s 

load definition has units of cyczes. An alternative definition of load and resistance, in 

terms of stress, will be described later (cf. Eq. 4.23). The first four of these charac- 
? 

terize the Weibull distribution of V and the lognormal distribution of 1, respectively, 

which are assumed to be statistically independent. The latter three are used, with 
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Variable Distribution 
Weibull 
Normal 
Weibull 

Normal 
Normal 

Normal 
Normal 
Weibull 

Constant 
Constant 

Mean 
1.8 

7.5 
0.25 

0.15 
0.0 
0.0 
0.0 

2.42E+18 
4.1 OE+O9 

8.0 

Stn Dev 
0.135 

0.563 
0.019 

0.011 
1,0 
1.0 
1.0 

1.69E+18 

Table 4.1: Random variables in reliability analyses 

Eq. 4.17, to reflect load uncertainty due to limited data. 

Table 4.1 shows the distribution types and parameters for each of these variables, 

as well as of the net resistance variable R = ~~f ~” A in Eq. 4.7. Generally, this would 

in turn require joint modeling of its various components; e.g., IVref, K, S~, SU, and 

A in Eq. 4.5; cf Veers et al, 1993. Here, however, for simplicity we choose the value 

b=8 and the resistance variable R to have net coefficient of variation of 0.70. 

Note that the computational procedure outlined will result in a limit state equa- 

tion somewhat different from the CYCLES formulation described in Chapter 2. Thus an 

alternative version of CYCLES has been used here where the restrictive assumptions 

enforced in CYCLES (see Section 2.4) have been relaxed to permit more generality. 

(Incorporating such enhancements in future CYCLES versions may be a useful topic 

of future work; see the recommendations that follow in Chapter 5.) As our intent 

here is to study the impact of various load models on reliability calculations it was 

necessary to include those model types into the program input and modify the limit 

state formulation to accommodate different distribution types. With the additional 

complexity generated by the use of both wind speed, V, and turbulence intensity, 1, 

.“. 
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● as environmental parameters, closed form expressions for fatigue life become imprac- 

ticable. Therefore the ensuing FORM analyses employ a limit state equation that is 
* 

evaluated numerically using quadrature. 

This implementation of numerical integration significantly enhances the flexibility 

of the FORM analyses. For example not only can the distribution types of the load 

be selected as an input option but also the environmental variables distribution types 

can be changed as well. The distributions are selected from the internal library 

of distribution types that exists within the original CYCLES program. A separate 

subroutine has been added to compute the conditional moment Sb I V, I required to 

determine the bt~ moment of the load in Eq. 4.16. This subroutine includes the 

quadratic Weibull distribution as well as the Weibull and lognormal distributions, 

the three distributions considered in this study. 

Of course this added capability does not come without cost. Numerical integration 

requires longer solution times; however, typical runs are on the order of minutes so 

this is not a big factor. Run-time costs are tied directly to the number of quadrature 

points selected; this number was varied and several runs were made to ensure stable 

results. Also, required input to the program is increased. In addition to the random 

variable definitions, the ati’s, ali’s, and azi’s of Eq. 4.14 must also be input for the 

three moments I?[pa] and their standard deviations, D[pi]. 

This alternative FORM program with its added generality should not be con- 

sidered as making the original CYCLES program obsolete. on the contrary, results 

show that CYCLES would likely have produced similar results for Turbine 2 with an 

assumed Weibull load distribution. This is because the turbulence intensity is rela- 

tively unimportant in this case, and the loads data here show relatively constant COV 

(see Figures 4.2 and 4.3) in accordance with the assumptions of CYCLES. While this 

enhanced version of CYCLES was necessary for the academic study performed here, 

the CYCLES program represents a useful compromise between level of detail and the 

existing knowledge of many structures and mechanical components. 
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Pf ~ 
Variable 

Stress Distribution Type 

Log Weibull 
4.4 x 10-1 2.5 X 10-7 

1 

Uncertainty Percentage 

0.5 
0.0 
19.9 
1.1 
0.9 
4.3 

73.3 

0.1 - 
0.0 
0.1 

0.0 
0.0 
0.0 

99.8 

Table 4.2: Turbinel reliability results; effect ofload distribution type 

4.5 Variations 

We first consider results 

the three load models as 

with Load Distribution 

for Turbine 1, comparing the effect of switching between 

in Figure 4.1: lognormal, Weibull, and quadratic Weibull. 

As in Figure 4.1, we pursue moment-based fits, matching PI and pz for the two- 

parameter models, and PI through p3 for the quadratic Weibull. Thus all three 

models yield identical fatigue damage results for fatigue exponents b=l and 2; the 

quadratic Weibull would also agree with the observed damage when b=3. 

With the exponent b=8 chosen here, however, these models yield dramatically 

different estimates of fatigue damage, and hence of the probability pf of fatigue failure 

within 20 years (iV~.r= 4.1 x 109 cycles at an average rate of 6.5 Hz). Typical pf values 

differ by more than 5 orders of magnitude: from less than 10-6 to above 10-1. Table 

4.2 shows the failure probabilities and relative importance of the different random 

variables for the lognormal and Weibull load distributions. Note that the relative 

importance of the load variables shifts from 2770 for the lognormal distribution to 

less than 1% for the Weibull distribution of loads. 
._ 

This highlights the importance of choosing an appropriate load model. It reflects 
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the well-known effect of tail-sensitivity in reliability, while the first two moments of 
. 

S have been preserved here, the higher moment ~ can vary greatly among various 

* models fit to the same data. This effect grows with b; note that we choose here b=8, 

which is a relatively high value for metals but relatively low for many composites. 

4.6 LRFD Calculations 

The foregoing shows that if we consider an identically designed turbine blade, the 

calculated fatigue reliability is altered notably by the choice of load distribution. Con- 

versely, vastly different load factors would be needed to achieve the same reliability 

for different load distributions—i. e., much higher load factors if the lognormal model 

were correct, much lower for the Weibull model, and so forth. This is demonstrated 

later with the results for Turbine 1. 

To reduce this sensitivity of load factors to distribution choice, we can seek to 

reflect the load distribution type in our nominal load. Assume we consider a design 

parameter W, which relates the observed bending moment M to resulting stress S; 

i.e., S= Al/W. We may then seek to adjust W to preserve the mean damage, given 

our best estimates of the distributions of V, I and S I V, I—in other words, choose W 

to preserve 

Thus, if applied 

sturdier blade—i.e., 

L ..rn = Siom . N.., = L(X given Xi= ~) 

moments M truly follow a lognormal model we would 
—— 

(4.19) 

require a 

higher W to preserve S~=M~/Wb—than if a Weibull model of M 

were correct. Moreover, these differences between blade designs would increase with 

b, to reflect increasing sensitivity to distribution choice as b grows. Other design rules 

are also possible; e.g., choose W to preserve a specific upper fractile of the long-run 

stress distribution. An advantage of preserving Ln~ in Eq. 4.19, however, is that it 

reflects not only the choice of load distribution but also the fatigue material behavior 

(i.e., choice of b). 

Table 4.3 shows the resulting advantage of the nominal load definition in Eq. 4.19. 
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Stress Distribution Type 
Log Weibull Quad Weib 

4 x 10-4 4 x 10-4 5 x 10-4 
I 1 

Uncertainty Percentage 
2.7 0.0 0.; 

0.1 1.6 
0.2 0.0 
2.6 1.2 
0.1 0.0 
0.6 0.1 

96.4 96.6 

3.3 
0.0 
1.0 
0.2 
0.0 

0.3 
92.5 

Table 4.3: Turbinel reliability results; allresults with same normalized fatigue load 
L nom. 

By preserving the nominal load L nw in Eq. 4.19 for each distribution type, the results 

in Table 4.3 correspond to three different blade designs. Resizing the blade in each 

case scales the relative stress levels so that the l?[Sb] for each stress distribution type 

(and therefore L.m ) is the same for each blade. The results are seen to be only 

mildly sensitive to the choice of load distribution. In fact both two-moment models 

(lognormal and Weibull) give pf=4 x 10-4, with almost all uncertainty due to R 

(96-97%). The three-moment model (quadratic Weibull) gives slightly higher pf, due 

to the additional uncertainty in the higher-moment statistic p3. (The uncertain y 

contribution of R is thus reduced to 92.570 in this case. ) 

We therefore suggest that load factors ~~ should be based on the nominal load 

defined in Eq. 4.19. This should promote relatively stable results across different 

materials, load modeling assumptions, and blade designs. 

. 
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4.6.1 Turbine 1 Results 

Finally, we consider the inverse problem of probabilistic design: what factors ~~and 

~~ should be used in Eq. 4.1, with nominal fatigue load L.~ and resistance Am, to 

achieve a target failure probability pf over the service life? FORM/SORM methods 

are particularly useful for these purposes. In addition to providing estimates of pf 

and uncertainty contributions, they provide load and resistance values, L* and R*, 

most likely to cause failure at the design lifetime (see Section 2.5). By setting our 

design load and resistance to these most likely values, we can estimate the necessary 

factors: 

(4.20) 

Regarding nominal loads and resistances, we again use Eq. 4.19 to define a “mean” 

nominal load LnOn. Recall that Lno~ has units of “cycles” so that corresponding load 

factors are applied to an expected number of service lifetime cycles. In contrast, 

following common practice the nominal fatigue resistance, RnO~, is set at its lower 

2.3% fractile, i.e., the underlying normal variable lies two standard deviations below 

the mean. An example utilizing units of “stress” ‘ ES given in the next section using 

results for turbine 2. 

Figures 4.8–4.9 show resulting load and resistance factors, respectively, for Turbine 

1. As may be expected, the resistance factor OR decreases steadily as the target 

pf is lowered. This reflects that while the nominal resistance ~Om was somewhat 

conservatively set (2.370 fractile), still lower resistances must be designed against if 

we require still rarer failure events. 

In Figures 4.8–4.9 both the load and resistance factors are nearly identical for 

the assumed 2 parameter stress distribution cases while those for the 3 parameter 

quadratic Weibull are somewhat different. This can be explained by observing the 

relative levels of uncertainty reported for these results in Table 4.3. The lognormal 

and Weibull distribution cases have nearly the same levels of relative importance 

distributed between the resistance (= 96.5 %) and load (N 3.5 %) variables result- 

ing in nearly identical load and resistance factors. Also from Figure 4.8, note that 



76 CHAPTER 4. LRFD FOR FATIG UE 

2 

1.8 

1.6 

1.4 
8 
~ 1.2 

21 
v 
~ 0.8 

J 0.6 

0.4 

0.2 

0 

. 

- +. Q-””=-=+”-” a+- -----””-= ~...z- ‘$? 
Quadratic Weibull +--- 

Weibull -+--- 
Lognormal -n... 1 

.1 .03 .01 .003 .001 
Failure Probability 

Figure 4.8: Load factors, Turbinel. Note that these factors apply toa load defined 
in units of cycles (Eqs. 4.18–4.19). 
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defined in units of cycles (Eq. 4.7). 
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the required load factors~~ are effectively constant over the several decades ofpt 

values shown. This is because load uncertainty is relatively unimportant (i.e., the 

uncertainty contributions from all 7wind and Ioadvariables remains less than 7.570 

throughout). The actual load factor~~ is not 1.0, however; somewhat larger values 

(~~=1.2-l.8) areneeded to cover not the uncertainty in load, but rather the bias 

between the nominal “mean” load L ~~ and the actual load L* most likely to cause 

failure. 

In Section 4.5 the choice of load model on fatigue reliability was shown to be 

critical as pf estimates differed by more than 5 orders of magnitudes for identically 

designed blades. Nominal load definitions that do not include load distribution type 

in their definition will produce load factors that also differ by orders of magnitude. 

To demonstrate, an alternative nominal load is defined where the design parameter, 

W, is chosen to preserve the conditional mean stress given a mean wind speed V=50 

m/see. Using Eq. 4.14 to evaluate ~ =i!l[pl] with V = 50 m/s and 1 = ~, we define 

the nominal load by; 

L~~ = 

The resulting load factors in 

alternative nominal load (L~~) 

[~lV = 50 m/sec]b. N~.r 

%?f 
(4.21) 

Figure 4.10 differ by orders of magnitude as our 

does not reflect the distribution type. Note the 

critical distinction between ~b here and@ in earlier nominal load definitions; Eq. 4.21 

reflects only the mean stress ~ at V=50 m/see, which is a poor predictor of ~ for 

high stress exponents b. These results clearly demonstrate the advantage of including 

distribution type in nominal load definitions as Eq. 4.19 does. 

4.6.2 Turbine 2 Results 

Figures 4.11 and 4.12 show load and resistance factors for Turbine 2 based on 

Eq. 4.19. Results vary markedly from those for Turbine 1. Due to the relatively 

sparse load data in this case, FORM results show roughly equal contribution from 

load and resistance uncertainty (see Table 4.4). As a result, the implied load and 

resistance factors in Figures 4. 11–4.12 vary similarly over the range of pf values 
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Figure 4.10: Load factors needed, for Turbine 1, if nominal load is based only on the 
mean stress for wind speed V=50 m/s. 

reported: ~~ varies by about a factor of 3, and @R by about a factor of 7. Note also 

that for relatively high pf values, the 2.3% fractile nominal resistance ~~ is too 

conservative; OR factors above 1.0 show that we may design with a less conservative 

S–N curve. However, to cover load uncertainty we may need ~~ on the order of 5; 

i.e., ensure that our design life is an order of magnitude greater than the service life. 

Finally, note again that our formulation applies all safety factors to a number of 

cycles: @R is applied to the number of cycles N to resist failure in a nominal S–N 

curve, and 7L to the number of cycles to be withstood in the service life. Alterna- 

tively, we may define nominal loads and resistances in terms of stresses, and find 

an equivalent set of factors ~~ and ~~. In order to define nominal loads and resis- 

tances in terms of stresses recall the failure criterion defined in Section 4.2.2, e.g., 

~.ffN$.. > A, given by Eq. 4.6. Substituting for ~,ff from Eq. 4.5 and transposing 

terms results in; 
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Figure 4.11: Load factors, Turbine 2. Note that these factors apply to a load defined 
in units of cycles (Eqs. 4.18–4.19). 
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Figure 4.12: Resistance factors, Turbine 2. Note that these factors apply 
tance defined in units of cycles (Eq. 4.7). 
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Stress Distribution Type 

Log I Weibull I Quad Weib 

Pf ~ I 4 x 14–’ I 1(I x 10–’ 17 x lU–” 
nt age Variable I Uncertainty Perce 

7.3 
0.0 
0.4 
0.3 
8.9 

57.2 

28.3 2;6 

7.1 
0.0 
0.4 
0.3 
2.1 

61.7 

7.3 
0.0 
1.4 
3.5 
5.2 
7.0 

52.5 

Table 4.4: Turbine 2 reliability results; all results with same normalized fatigue load 
L nom. 

A 
(4.22) ~ k @.fN.ff “ ~ 

Taking the @ root produces expressions for load and resistance in units of stress; 

I/b 

[ 

1 
1 

lib 

[1 
L’= ~ ; R’ = s:ef Neff - ~ . A~/b, 

se~ 
(4.23) 

The load term is simply the @ root of the expected value of Sb integrated over 

the environmental variables V and 1. For the resistance term recall our definition of 

the constant amplitude S–N relationship, Eqs. 4.3 and 4.5; 

() s –b 

[ 

1 1 
I/b 

N(S’) = Neff ~ or S = S~efiVeff “ ~ (4.24) 

The resulting resistance term then can be interpreted as the stress level associated 

with N~er as given by the S–N relationship of Eq. 4.3 (and scaled by Al/b). Therefore 

R’ reflects the material properties (e.g. the resistance) through the required service 
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cycles N~er. 

Figures 4.13 and 4.14 show load and resistance factors for Turbine 2 based on 

Eq. 4.23 Because damage is related to the bth power of stresses, y~ = #b. To verify 

this equality consider the load definitions given by Eqs. 4.18 and 4.23 and observe 

that L1/b = L’ o [N~~~/S..f]. Since the load factors, 7L are computed as the ratio of 

the design load L* to the nominal load Lm~ (see Eq. 4.20) the constant N~#’/Sr.f 

I’b holds. A similar argument drops out of the calculation and the equality ~~ = ~~ 

can be made for the resistance term. In Figure 4.11 typical values of ~~ range from 

5 to 20. For b=8, corresponding factors y~ on stresses range from 1.2 to 1.4. These 

factors lie in a similar range as those of the Danish study (Ronold et al, 1994). 

4.7 Effects of Limited Data 

The use of Eqs. 4.14 and 4.17 to model fatigue loads across wind climates is intended 

to include uncertainty in the loads due to limited data through the standard deviations 

(D[pi]’s) of the moments pl...p~. The difference in D[pz] ‘s, observed in Figures 4.5 

-4.7, is expected to propagate through the load- and resistance-factor calculations. 

This approach apparently works quite well as Turbine 1, with approximately 10 times 

more data than Turbine 2, has much lower load factors (Figure: 4.8 and 4.11). 

Closer inspection of the results shows that the effects of data limitations in this 

case are more subtle. Table 4.4 shows reliability results and uncertainty contributions 

for Turbine 2. As for Turbine 1, the nominal load L.- has again been preserved across 

the three load distribution types, by appropriate choice of blade section modulus, W. 

One would expect Turbine 2, with higher D[pi]’s and load factors to show a shift 

of importance away from the resistance R to the moments Ui. Results show only a 

moderate shift to the Uz’s and a dramatic shift to the wind speed shape factor, crv. 

These results would suggest that there are sufficient blade load data for Turbine 2 

and the other sources of uncertainty are dictating the reliability. Table 4.4 shows 

that the dependence upon wind speeds and the uncertainty in those wind speeds is 

an important factor to consider for Turbine 2. 

The dependence of Turbine 2 upon wind speeds, in contrast to Turbine 1, can be 
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Figure 4.13: Load factors, Turbine2. Note that 
in units of stress (Eq. 4.23). 
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Figure 4.14: Resistance factors, Turbine 2. Note that these factors apply to a resis- 
tance defined in units of stress (Eq. 4.23). 
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, 

* 

explained by considering the trends in the mean blade loads rather than the standard 

deviations. That is, it is the l?[pi]’s in Figures 4.2-4.4 and not the D[pi]’s (from Fig- 

ures 4.5–4.7) that are responsible for the shift in uncertainty. This has been confirmed 

through an additional case study, in which the FORM analyses used to generate the 

results of Table 4.4 are repeated with the D[pi]’s set to zero (to assume perfect data). 

In this case the results in Table 4.4 change very little since load uncertainty (e.g., Ul, 

Uz, and Us) is small. Since identical distribution parameters were used for all random 

variables (except the loads) in the reliability analyses, we conclude that apparent 

differences in mean blade damage, ~, are attributed to different turbine designs. 

It is also useful to examine most damaging wind speeds (Eq. 2.14) for the two 

turbines and compare them against the range of available data for each machine. 

Table 4.5 gives the most damaging wind speeds obtained from the associated FORM 

analyses at their converged, most-likely failure points. Figure 4.15 shows mean load 

(I?[pl]) relationships from Figure 4.2 plotted over the range of data used to produce 

the power-law fits. The most damaging wind speeds for Turbine 1 are within the range 

of measured data. This is desirable as the results of the regression analysis used to 

produce the curve-fits in Figure 4.15 are not valid outside the range of available data. 

Turbine 2 on the other hand is predicted to receive most damage from wind speeds 

that far exceed the associated data seriously compromising the results. 

There are two important points to be made here. First, there are data limitations 

associated with the reliability analysis of Turbine 2 but it is the lack of blade load data 

at higher wind speeds rather than the paucity of the data at the more moderate wind 

speeds for which measurements are available. (Recall that the wind environment model 

has been chosen arbitrarily in this study, with no regard to the specific environment 

in which Turbine 2 is planned to operate. ) In general these results reflect the clear 

need for prototype machines, on which load measurements are made, to be subjected 

to wind conditions that span the range of envisioned operating conditions. 

A second point to be considered is the potential danger that may be encountered 

when using automated curve-fitting models to describe blade loads across a broad 

range of wind conditions. When the critical (most damaging) environment is far 

outside the range of observations as Turbine 2 is, results are likely to be governed 
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m Distribution Turbine 1 Turbine 2 

Table 4.5: Most Damaging Wind Speeds (m/s) from Reliability Analyses 

not by the data but by the curve-fit. In such cases it seems likely a range of answers 

are possible depending upon the assumed functional form of the relationship, fitting 

method, etc.. 
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4.8 Summary 

We have directly studied the fatigue reliability of two horizontal-axis wind turbines, 

one with rather dense load data (Turbine 1) and another with relatively sparse data 

(Turbine 2). We have also tried to infer similar results for a Danish machine, reported 

in a parallel fatigue reliability study (Ronold et al, 1994). Our findings include the 

following. 

To estimate fatigue damage, flapwise loads have been represented by their first 

three statistical moments across a range of wind conditions. The first two moments, pl 

and p2, show similar trends for all 3 machines (Figures 4.2–4.3). Despite their rather 

different designs, Turbines 1 and 2 also show similar third moment p~ in Figure 4.4. 

This tends to support the goal of establishing a fairly general set of load distributions, 

at least for specific load components, HAWT designs, etc. 

Based on the moments PI.. .p~, we have introduced new “quadratic Weibull” load 

distribution models. By preserving p~, they more faithfully reflect the upper fractile 

of observed loads (e.g., Figure 4.1) than common two-moment models such as the 

Weibull or the lognormal. At the same time, they are rather simpler to implement 

than our earlier 4-moment models (e.g., Winterstein et al, 1994). This leads to 

particular savings when many fits are required; e.g., to estimate damage contributions 

over a range of wind speeds V and turbulence intensities 1. 

The fatigue reliability is found to be notably affected by the choice of load dis- 

tribution model. When lognormal, Weibull, and quadratic Weibull models are fit to 

the same 3 moments of loads data, typical failure probabilities for a 20-year life were 

found to differ by more than 5 orders of magnitude: from less than 10-6 to above 

10-1. This effect will grow with b; note that we choose here b=8, which is a relatively 

high value for metals but relatively low for many composites. Once an appropriate 

load distribution has been selected, this choice can be directly reflected in the fatigue 

design by seeking to preserve the nominal load Ln~ in Eq. 4.19. Resulting load- 

and resistance factors are then only mildly sensitive to the choice of load distribution 

(e.g., Figures 4.8-4.12). 

Because a broad range of load data is available for Turbine 1, its fatigue reliability 



4.8. SUMMARY 87 

is governed by the uncertainty in fatigue resist ante R (e.g., uncertainty in S–N curve, 

Miner’s rule, etc.). The required resistance factor @~—applied to the nominal S–N 

curve-is shown in Figure 4.9 to decrease steadily as the target pf is lowered. This 

reflects that while the nominal resistance ~ ~ was somewhat conservatively set (2.3Y0 

fractile), still lower resistances must be designed against if we require still rarer failure 

events. In contrast, the load factor 7L in this case is relatively flat, reflecting only the 

bias between the nominal “mean” load L ~~ and the actual load most likely to cause 

failure. 

Because relatively sparse load data is available for Turbine 2, load and resistance 

uncertainties are found to be of comparable importance in this case. (This lack of 

data however is associated more with the range over which the data was acquired 

than with the quantity of data itself.) Thus the implied load and resistance factors 

in Figures 4. 11–4.12 vary similarly over the range of pf values reported: y~ varies by 

about a factor of 3, and OR by about a factor of 7. 



Chapter 5 

Summary and Recommendations 

5.1 Overview of Important Conclusions 

CYCLES Fatigue Fteliabilit y Formulation 

A computer program (CYCLES) that estimates fatigue reliability of structural and 

mechanical components has been developed. A FORM/SORM analysis is used to 

compute failure probabilities and importance factors of the random variables. The 

limit state equation includes uncertainty in environmental loading, gross structural 

response, and local fatigue properties. 

The CYCLES fatigue reliability formulation assumes specific functional forms for 

the controlling quantities of fatigue life so that a closed form expression for fatigue 

damage can be derived. While these assumptions limit the program’s generality, 

the CYCL12S formulation represents a useful compromise between level of detail in 

probabilistic modeling and the state of knowledge of many components to which it 

may be applied. 

Load Models for Fatigue Reliability . 

Several techniques have been shown to better study fatigue loads data. Damage 

densities show which stress ranges are most important to model, reflecting fundamen- 

tal differences between flapwise and edgewise data. 

88 
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Common one-parameter models, such as the Rayleigh and exponential models, 

should be used with care. They may produce dramatically different estimates of 

load distributions and fatigue damage. Improved fits may be achieved with the two- 

parameter Weibull model. 

“Filling in” the distribution tail with a continuous model need not result in more 

damage. In fitting such a model, however, it is crucial to well-represent the most 

damaging stress levels. High b values require better modeling of relative~y large stress 

ranges; this is most effectively done by matching at least two moments (Weibull) 

and better by matching still higher moments. For this purpose, a new, four-moment 

“generalized Weibull” model has been introduced. 

As the exponent b increases, damage estimates show growing uncertainty due to 

their sensitivity to rare, high stresses. This effect has been quantified and resulting 

data needs have been discussed. 

LRFD for Fatigue 

We have directly studied the fatigue reliability of two horizontal-axis wind turbines 

(Turbines 1 and 2), and tried to infer similar results for a Danish machine, reported 

in a parallel fatigue reliability study (Ronold et al, 1994). 

To estimate fatigue damage, flapwise loads have been represented by their first 

three statistical moments across a range of wind conditions. The first two moments, 

PI and ~2, show similar trends for all 3 machines. Turbines 1 and 2 also show similar 

third moment p3. This tends to support the goal of establishing a fairly general set 

of load distributions, at least for specific load components, HAWT designs, etc. 

Based on the moments pl...ps, we have introduced new “quadratic Weibull” load 

distribution models. By preserving p~, they more faithfully reflect the upper frac- 

tile of observed loads than common two-moment models such as the Weibull or the 

lognormal. 

The fatigue reliability is found to be notably affected by the choice of load dis- 

tribution model. When lognormal, Weibull, and quadratic Weibull models are fit to 

the same 3 moments of loads data, typical failure probabilities for a 20-year life were 

found to differ by more than 5 orders of magnitude. This effect will grow with b; note 
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that we choose here b=8. 

Because a broad range of load data is available for Turbine 1, its fatigue reliability 

is governed by the uncertainty in fatigue resistance R (e.g., uncertainty in S–N curve, 

Miner’s rule, etc.). The required resistance factor #~—applied to the nominal S–N 

curv~decreases steadily M the target Pf is lowered. In contra.% the 10ad factor ~~ 

in this case is relatively flat, reflecting only the bias between the nominal “mean” 

load L .~ and the actual load most likely to cause failure. Because relatively sparse 

load data is available for Turbine 2, load and resistance uncertainties are found to be 

of comparable importance in this case. 

5.2 General Recommendations of Future Work 

The are a few recommendations of a general nature that will be mentioned before 

more specific recommendations, that are direct extensions of this study, are presented. 

First it would be instructive to repeat the reliability analyses for the LRFD study in 

Chapter 4 with data from additional turbines. The similarity of trends for the two 

turbines considered gives promise to establishing a general set of load distributions 

for specific components, blade designs, etc. Additional data from different turbines 

would help establish the feasibility of such distributions. 

Note too that our predictions and load factors have been based here entirely on 

observed (empirical) loads data from prototype machines. It may also be useful to 

consider modeling errors, and resulting load factors, that arise when analytical load 

predictions are used. In this case one trades statistical uncertainty, due to a limited 

quantity of observed data, for modeling uncertainty due to simplifying assumptions 

made in the analysis. This modeling error could be assessed by comparing predicted 

and measured loads, statistically, for different wind regimes (and possibly different 

turbine types). Results would parallel common practice in the offshore industry, in 

which LRFD design reflects both natural variability in the ocean climate, and model 

uncertainty in load prediction inferred from measured loads on offshore structures. 

Such results could be used to improve design against both overload and fatigue fail- 

ures. 
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A final recommendation of general interest is to further study, and characterize, 

the set of wind characteristics that best explain blade loads and hence fatigue damage. 

There is nothing in CYCLES that limits the analysis to considering wind speed and/or 

turbulence intensity; other wind parameters could in principle be propagated through 

the analysis in a similar way. The main challenge remains in identifying which wind 

parameters best “explain” blade loads and resulting damage; this is a question that 

classical statistics is often well-suited to address. New methods have also been devel- 

oped to efficiently predict, and display, all sets of environmental variables that may 

likely contribute to overload failure independent of structural concept (e.g., Winter- 

stein et al, 1993). While commonly applied to predict overload failures of offshore 

structures, such concepts may prove useful for the wind industry as well—again for 

both overload and fatigue failure applications. 

5.3 Specific Recommendations to Extend Current 

Work 

Through the course of this thesis, a number of basic developments have been made; 

e.g., in modeling loads from limited data, and in propagating this uncertainty ef- 

ficiently into fatigue reliability calculations. Based on this experience, we focus 

here on suggesting specific avenues of further work, both in the form of document- 

ing/implementing our improved algorithms and in further studying the areas we found 

challenging to model. 

Directing attention first to the reliability algorithm (g–function) used here, further 

work could profitably be directed to include formal development and documentation 

of an “enhanced” version of CYCLES. The capabilities of such a version could par- 

allel those used in the LRFD analysis of Chapter 4. Our research efforts suggest 

that it is conceptually straightforward, and of little numerical cost, to generalize our 

load models to include dependence on both wind speed and turbulence intensity (or 

another vector set of wind attributes). We believe this generalization, through nu- 

merical quadrature methods to calculate the mean damage required in our fatigue 
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g–function, should be made to significantly broaden the applicability of these meth- 

ods. (This more general quadrature routine would also permit other generalizations; 

e.g., non-smooth S–N relations. ) 

An additional generality has been offered through the creation of generalized, 

moment-based load models. These distributions have been used in research versions 

of CYCLES, and deserve incorporation into its standard distribution library for dis- 

semination. A cause of concern had been its numerical robustness, particularly when 

four moments are sought to be fit, with minimum error, from a numerical optimiza- 

tion routine. The simpler, 3-moment fits (e.g., quadratic Weibull model) avoid this 

numerical optimization, and are believed to be good candidates to include in an au- 

tomated package such as CYCLES. Note also that these distributions may have two 

distinct uses: (1) to model long-term uncertainties (e.g., in parameters of wind or 

load distributions); and (2) to model short-term variations in loads given wind. In 

case (2), these generalized distributions need to be included not in the CYCLES distri- 

bution library but rather in its g–function. This has already been incorporated in our 

in-house CYCLES version; it is recommended that it be included in a newly distributed 

version of CYCLES as well. 

5.4 ChaHenges for Future Study 

Parametric Models. Finally, we seek to elaborate on some of the practical aspects 

of our turbine-specific studies, and how they may suggest challenging avenues for 

future study. Important issues regarding loads modeling were encountered during the 

development of the ‘ienhanced” version of CYCLES for the LRFD analyses, required 

to best model the practical cases encountered with the two turbines in Chapter 4. 

The technique reported in Chapter 4 is based on a parametric load model, in which 

a power-law relationship is used to define the variation of predicted load moments 

(and their standard deviations) across different wind climates. It is perhaps useful to 

note here that this was not the first model adopted. We first sought a still simpler 

parametric model, in which it was assumed that only the mean load p~ (V, 1) varied 

systematically as a function of mean wind speed V and turbulence intensity 1. Data 
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of the normalized, unit-mean load Lnwn =L/p~(V, 1) were then created, and pooled 

over all wind conditions. (An analogous treatment could be made of fatigue life 

data: observed cycles IVto fail at different stresses Scould be normalized by their 

predicted mean, pN(S), and pooled to fit a single distribution of normalized resistance 

N .w~=N/pN(S).) 

When this single (normalized) load model was implemented for the turbines con- 

sidered here, uncertainty due to limited data was typically found to have little or no 

impact. This is to be expected: the assumption of a common (parametric) distribu- 

tion model reduces data needs enormously, as all data can be pooled/lumped, after 

proper normalization, into a common “bin” for fitting purposes. The corresponding 

danger of this method is that it is only as good as its assumptions; namely, it obscures 

any true variations that the unit-mean normalized load, L.w~, may show with wind 

conditions. 

Note that our final model was also of parametric form, fitting analytical, power- 

law form to observed statistics. It was, however, somewhat more general than the 

original l-parameter normalized load model considered above: the first three load 

moments pn (n=l ,2,3) were permitted to vary with wind conditions, and power-law 

relations were fit to both the mean and uncertainty of each pn (V, 1). Our limited 

results showed some promise for simpler l-moment models; e.g., the observed COV 

for two turbines remained nearly constant (near unity) for various wind conditions. 

This would tend to support the assumption of a common (exponential) distribution 

of blade loads, in which only the mean load needs to be fit as a function of wind 

conditions. Preliminary experience with other turbine blade loads data suggest that 

this conclusion may not be universal. We believe, however, that sufficient loads data 

exist to permit critical study of this question; i.e., which load statistics are permissible 

to be assumed constant, and which must be kept free to vary with wind parameters 

such as V and 1. An associated question concerns which parametric form—e.g., 

power-law or polynomial—is most appropriate if one seeks to fit one such form. 

As a final caution regarding parametric models, we note our experiences with the 

limited-data case of Turbine 2. We predict rather different results than for Turbine 

I--e.g., greater importance of wind vs fatigue resistance uncertainty. However, for 
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Turbine 2 the greatest damage contribution comes from wind conditions for which we 

have little or no data. Thus our conclusions in this case are driven less by our data 

than by our assumed curve-fits. This is a common danger of parametric models: while 

easy to automate, they create a danger that users will apply them indiscriminately, 

outside the range for which the data can validate them. Based on this experience, at a 

minimum we propose that future CYCLES versions will also report the most damaging 

wind conditions (at the design point most likely to cause fatigue failure). The user 

can then be cautioned as to whether the results are based on wind conditions for 

which adequate data are available. 

lVon-Parametric Models. Finally, we note that as an alternative to the para- 

metric load models described above, we have also considered and implemented non- 

parametric loads models. These assume no specific functional (“parametric”) form of 

any load statistic with V or 1. Instead they simply sort data into discrete bins; here, 

in 2 discretized dimensions involving bins of V and 1 values. Loads distributions— 

and uncertainty in their parameters—are sought separately from the data in each 

bin. The results are then propagated through the fatigue reliability analysis, using a 

numerical quadrature routine to estimate fatigue damage by summing contributions 

from each bin. (Several numerical strategies are possible here: 1. optimal quadrature 

points may be chosen for the integration, and load statistics at these optimal points 

may be interpolated from those observed at prescribed bin locations; or 2. the bins 

may be kept as given, and the probabilities lumped optimally into these prescribed 

bins.) 

Our preliminary experience with these models was that they provide a flexible 

load representation, more faithful to observed trends (and uncertainties) found in the 

loads data. However, due to their discrete nature, it was found difficult to use them 

to achieve converged, FORM-based analysis to predict fatigue reliability. This is 

typical with “noisy,” non-smooth g–functions: gradient-based searches for the most 

likely failure point are likely to have convergence difficulty, due to non-systematic 

variations in g and its derivatives with one or more uncertain variables. 

Therefore, we believe that both nonparametric as well as parametric load modeling 

methods provide useful topics for future study. Regarding the non-parametric models, 
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new inverse-#’0Rl14methods, which switch the objective function (failure probability) 

and the constraint (limit state function g), may be more stable for noisy g–functions 
. (Winterstein et al, 1993). Simulation and other analysis methods are also appropriate 

for these cases. 

A practical implementation question in these non-parametric models concerns the 

choice of optimal binning strategy. Indeed, any binning is effectively parametric; 

i.e., load statistics are at least assumed to be equal for all data that fall within the 

prescribed wind-condition bin. Thus, the extent of the bin width (in one or more 

dimensions) reflects the modeler’s assumption as to how uniform the turbine loads 

are with varying wind conditions. This bin width will in turn govern how much data 

are accumulated per bin, and hence the requisite data needs. 
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Appendix A 

Statistical Moment Estimation 

A brief background in statistical moment estimation is provided here. If we seek to 

estimate the ordinary mean value 13[X]=p from data Xl... X., a natural estimate is 

the simple average value ~=~~=1 Xi/n. Similarly, the k-th order “ordinary” moment, 

13[X~], is naturally estimated by the corresponding average ~~=1 X~/n. 

The difficulties arise when we instead seek, as in many applications, to estimate 

not ordinary but central moments; i.e., of the form p~=17[(X – p)~] for k=2, 3, 4 . . . . 

Note that only the first four moments are required, e.g., k=4: Qz=p~12, aS=jLS/p~”5, 

and a4=p4/p~ for the generalized models developed in Section 3.3. 

The problem here lies in its circular aspect: we must first estimate the unknown 

first moment p before seeking to estimate p~=13[(X – p)~]. And, if we use the same 

data set for both purposes, we typically find to~low estimates of PZ, PS, PA, etc. 

because our p value is artificially tuned to best match the mean of the observations. 

Those exposed to a standard statistics course will best recognize this phenomenon 

when estimating the variance p2: to inflate the sample variance to account for this 

bias, the sum of squared deviations is divided by n – 1 rather than n. 

While unbiased estimates of the higher moments ~3, PA, . . . are less familiar, they 

are available in the statistical literature (Fisher, 1928): 
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n2 
“ ‘3P;= (n- I)(n - 2)(n-3)[(n+1)~4 - 3(n - l)~;] 

(A.4) 

in terms of the sample central moment rn~=~~=l (Xi – ~)k/n. Eq. A.1 is the 

conventional result for the sample variance. 

Remaining Bias. 

The routine FIITING which produces generalized load models using constrained 

optimization, exmploys a companion routine, (MLMOM, to compute statistical moments 

of a given data set. The routine CALMOM uses Equations A. 1 thru A.4 to estimate 

the quantities CTZ by M~”5, a3 by p3/(p~-5), and a4 by p4/(p~). Because these vary 

nonlinearly with pn, they may still contain some bias although the pn estimates do 

not. 

For example, if we fit a Gumbel model to the 19 

3.3.4, the true skewness and kurtosis values are 1.14 

wave height data from Section 

and 5.40. However, simulating 

10000 data sets of size n=19 and running each through CALMOM, we find on average 

the skewness 0.79 and kurtosis 3.89 (Winterstein and Haver, 1991). 

To address this problem, the FITTING routine has an automatic check for remain- 

ing bias through simulation. After FITTING constructs a distribution with moments 

from the input data, many similar data sets (of identical size) are simulated from 

this distribution. If the moments predicted from CALMOM differ appreciably on aver- 

age from the input values, new theoretical estimates of the moments are constructed. 

This estimation-simulation loop is continued iteratively until satisfactory convergence 

is found. 

Figure A. 1 shows the effect of enabling this “unbiased” option and disabling it 
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Figure A,l: Effect of Ignoring Bias: Wave Height Example. 

(using “raw” moments from CALMOM directly) for the generalized Gumbel 

11 

model pro- 

. 

-% 

duced for the example given in Section 3.3.4. There is relatively little difference 

found in these cases. Larger effects may be found for cases of (1) fewer data and/or 

(2) distributions with broader tails. 
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