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Abstract 

fitting is a Fortran subroutine that constructs a smooth, generalized four- 
parameter probability distribution model. It is fit to the first four statistical moments 
of the random variable X (i.e., average values of X, X2, X3, and X4) which can be 
calculated from data using the associated subroutine calmom. The generalized model 
is produced from a cubic distortion of the parent model, calibrated to match the first 
four moments of the data. This four-moment matching is intended to provide models 
that are more faithful to the data in the upper tail of the distribution. Examples are 
shown for two specific cases. 
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Executive Summary 

fitting is a Fortran subroutine that constructs a smooth, generalized four-parameter 
probability distribution model. It is fit to  the first four statistical moments of the 
random variable A’ (i.e., average values of A’, X2, X3, and A’:“) which can be calculated 
from data  using the associated subroutine calmom. 

This distribution is said to be “generalized” in that  it generalizes three conven- 
tional, standard two-parameter “parent” distribution models. The  user may select 
here between Gaussian, Gumbel, or Weibull parent models. ‘The generalized model 
is produced from a cubic distortion of the parent model, calibrated to match the first 
four moments of the data.  This four-moment matching is intended to provide models 
that  are more faithful to  the data  in the upper tail of the distribution. 

Examplcs are shown here for two specific cases: modelling rainflow-counted load 
ranges and extrerne wave heights, based respectively on Weibull and Gumbel parent 
models. To use fitting to fit a distribution to data,  a separate subroutine, calmom, 
is included to determine the first four statistical moments of the input data  set. 
Because these moments are required input to fitting, the routines calmom and 
fitting together serve as a general distribution fitting algorithm. A sample driver 
program is included to  illustrate the usage and in t e rpda t ion  of fitting and calmom 
for the two examples. 
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Chapter 1 

The fitting Subroutine 

1.1 What fitting Does 

f i t t i n g  is a Fortran subroutine that constructs a smooth, gcneralized four-p,zramc.:ter 
probability distribution model. The first four statistical moments of the random 
variable X (;.e., average values of X, A”, X3,  and X 4 )  are used by the subroutine 
to establish the generalized distribution. These moments can be based on thcory; 
however, they are almost always derived from data.  A separate subroutine calmom is 
provided. to compute the required mornents for ari arbitrary da ta  set. 

This distribution is said to be "generalized" in that  i t .  generalizes three coriven- 
tional, standard two-parameter “parent” distribution models. The user may select 
ticre between Gaussian, Gumbel, or Weibull parelit. models. The generalized rnodel is 
then produced from a cubic distortion of the parent, nioclel, calibrated t,o match the 
first four momelits of the data.  (Depending on the numerical values of the moments, 
an inverse cubic distortion may also be used.) This four-moment matching is intended 
to provide models that  are more faithful to the extreme values of the data ,  commonly 
referred to  as the upper tail region. 

By invoking various parent modcls, the user is ablc to reflect reasonable “prior” 
probability distribut,ion choiccs based on the context, a t  hand. For example, val- 
ues from a random process may bc assigned Gaussian distribution i f  sampled at an 
arbitrary time, Weibull distributiori i f  sampled at  an arbitrary peak, or Gurribel distri- 
bution if sampled a t  a global peak in a fixed duration (Benjamin and Cornell, 1970). 
These three distributioris arc included here as possible parerit distribution choices. 

Examples are shown here for two spccific cases: modelling rainflow-counted load 
ranges and extreme wave heights, basecl respectively on Weibull and Gumbel parent 
models. Notably, we find that over a rangc of practical values, these applications are 
controlled by the four moment values and are relatively inscnsitive to the underlying 
parent distribution choice. Because this conclusion may change with the application, 
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Table 1.1 

Values z, [kip-ftl: 
9.250 
9.500 
9.750 

10.000 
0.250 
0.500 
0.750 
1 .ooo 
2.000 

13.000 
14.000 
15.000 

Pro babi 1 it i es  p ,  = F [ z, ) : 
0.004 
0.058 
0.146 
0.251 
0.360 
0.465 
0.561 
0.645 
0.862 
0.949 
0.981 
0.993 

'redicted probabilities, pi, of not exceeding various 5 levels. 

fitting allows the user to implement various parent distributions and assess the 
sensitivity to this choice. 

1.1.1 Overview of Capabilities 

The subroutine fitting has two options. In the first option, the user can provide 
arbitrary values x l ,  ..., ZN of the physical variable, and the routine returns corre- 
sponding probability values. p , ,  that  the random variable is less than the value 5,. 
Formally, p ,  is known as F ( x , ) ,  the cumulatzve dzstrzbutzon functzon (CDF) of X.  The  
second option works in the oppositc direction: the user provides specified cumulative 
probability values p , ,  and the routine returns levels 2, of the physical variable. In this 
case, the output levels 5, are known as specific fractzles of the probability distribution. 
Note that both options require the first four statistical moments of X to be input. 

As a simple example, consider the edgewise bending moment range X on a wind 
turbine blade (Coleman, 1989). Figure 1.1 shows the cycle counts (rainflow counted) 
for a 71 rninute time history of observed edgewise moments. The  clustering of counts 
in the moment ranges around 9-15 and 0-5 kip-ft is attributed to the dominant gravity 
induced loading combined with the turbulent effects of the wind respectively. From 
the viewpoint of fatigue damage, ranges less than 9 kip-ft contribute less than 5% to  
the total damage and are considered insignificant. Table 1.1 shows the cumulative 
distribution, F ( x ) ,  of applied loads above this level as predicted by fitting. 

For example, Table 1.1 shows that among all loads above xmin=9 [kip-ft], the load 
level 9.5 [kip-ft] is not exceeded 5.S% of the time-and hence exceeded the remaining 
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Figure 1.1: Histogram of Edgewise Bending Moment Time Series Data 

94.2% of the time. Similarly, this table shows that a typical, central load value is 
around 10.5 [kip-ft]. Strictly, this value is not exccedcd 46.5% of the time; i.e., the 
mediun value of the load .Y-which has 50% chance of being exceeded-is between 
10.5 arid 10.75 [kip-ft]. We show in Section 2.2 how thesc values are estimated from 
the fitting routines. W e  also show how, i f  wc invoke the second option of fitting, 
we can directly estimate t,he median level (for which F(z )=p ,  is specified to  be 0.5) to 
be 10.59 [kip-ft]. Notice also from Table 1.1 that, probabilities for values that exceed 
the range of observed values can be requested. 

In general, one may consider three distinct ways to use fitting: 

0 One option of the subroutine fitting takes input values 2, and cstimates the 
cumulative probability p1 of falling bclow cacti 2,. For examplc, da ta  in the first 
column of Table 1.1) are input and the second column values are output.  

0 With this same option, the differences pi - p l - l  betjiveen these cumulative proba- 
bilities can be used to give estimates of a theoretical histogram (;.e., probability 
content in  various discretized “cells” or “bins.”) For exarnple, Table 1.1 can 
be used t,o directly producc a histogram, with probability . O X  assigned to the 
interval (9.25, 9.50), probability .126-.032=.094 to the interval (‘3.50, 9.75), and 
so forth. 

0 l’hc ot,her option of the subroutline fitting takes input values p l  and returns 
corresponding valucs xL. For exaniplc, data  i I i  tlic second column of Table 1.1 
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are input and the first column values are output.  This is useful, for example, if  
the user can more easily specify interesting values of p ,  rather than z, values a 
priori. 

1.1.2 Subroutine calmom 

fitting requires the first four statistical moment,s of the random variable, .A', as in- 
put. These moments can be based on either ttieorctical considerations or derived from 
a particular set of data. To use fitting to fit, a distribution t,o data,  a separate sub- 
routine, c a l m o m ,  is included to accurately estimate the first four statistical momerits 
of the input data  set. Input and outpu: for tlic c a l m o m  subroutine are described in 
Section 1.3. 

Because these moments are required input to fitting, thc routines c a l m o m  and 
fitting together serve as a general distributioii fitting algorithm. A sample driver 
program is included to illustratc the usage and int,crpretation of fitting and c a l m o m  
for two example problems given in Chapters 2 and 3 .  

1.1.3 How to Read or Not Read This Manual 

We recognize that, there are two distinct types of computer users: those who read 
manuals thoroughly and those who go to great lengths to avoid doing so. For this 
latter group, who prefer to learn by example, \re have included a driver program 
with detailed comments, and the saInple input and output used to generate Table 
1.1. Those users may wish to proceed to the driver source code listing, also given 
in Appendix A .  Additional description of tlie driver arid this example, based on a 
generalized Weibull model, is given i n  Chapter 2. Chapter 3 describes a n  alternate 
application to  extreme wave height levels, using a generalized Gumbel model. 

Those who prefer a more precise overview of fitting are referrcd to the remainder 
of Chapter 1. Section 1.2 describes its input and output arguments and calling syntax, 
while Section 1.3 discusses the usage and arguments of the subroutine c a l m o m  which 
computes statistical moments for a given data  sct,. 

Finally, Chapter 4 brings together a nuniber of more detailed technic a 1 issues ' con- 
cerning fitting. These range from underlying motivation (Section 4 . 1 )  to the basic 
methodology underlying fitting (Section 4.3) and c a l m o m  (Section 4.3).  Section 4.4 
includes various additional practical notes on their usage, limitations and potential 
error conditions. 
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1.2 fitting Input and Output 

The user can call fitting with the following command 

callfitting(itype,xmom,ndata,xmin,x,cdf,nx,pmom,iflag,ioout,etol) 

Each component of the fitting argument list is defined below. Output quantities 
include the array pmom and, depending on the value of iflag, either x or cdf. All 
other quantities are input. 

itype: index used to define the parent distribution used by fitting 

itype = 1: Gaussian dist,ribution 

itype = 2: Gumbel distribution 

itype = 3: Weibull distribution 

xmom(2)': standard deviation, oz = { f ? [ ( ~ - p , ) ~ ] } " ~  = {J,rr r ( 2 - P z ) 2 f ( w 4 1 ' 2  

xrnom(3)': skewness, 0 3  = E [ ( - ) 3 ]  = Ju, ,=( - 3  ul ) j(x)dx 
us 

ndata': Number of sample data  used to  estimate moments in xmom. If ndata< 
100, fitting checks by simulation that these moments do not have excessive 
bias (Section 4.3) .  The user can avoid this simulation check by setting ndata 
2 100 on input. 

xmin: Optional shift parameter to be applied in the M'eibull case (itype=3). 
Note that the standard Weibull model produces values for X 2 0, while the ' 

Gaussian and Gumbel models are unbounded. I f  the user inputs a nonzero 
value of xmin, a shifted Wcibull model (standard Weibull model of X- xmin) 
is then used as a parent distribution. Accordingly, in this case xmom(1) ... 
xmom(4) should contain moments of the shifted variable X- xmin. (This is 
precisely what is returned by the routine calmom when xmin is nonzero.) The  
da ta  shown in figure 1.1 is a good example of using this variable (xmin 9.0) 
when only the upper portion of the data  is important. Note finally that fitting 
ignores the value of xmin i f  the Gaussian or Gumbel distribution is selected. 

x: array containing values of the physical variable. 

'Section 1.3 explains these moments further and subroutine calmom used to compute them 
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0 cdf: array containing the cumulative (non-exceedance) probabilities correspond- 
ing to  each x; in the x array above. 

0 nx: number of x or cdf values requested. 

0 pmom: array of the absolute moments of the fitted distribution: 

I: z"f(x)dx pmom(n): the n-th absolute moment, E [ X " ]  = 

The first four moments will be consistent with the input moments given in xmom, 
within the error tolerance described below. Higher moments may be of interest 
in other applications; e.g., fatigue damage of various materials. Here n=10 
moments are output,  using the probability density function f ( x )  estimated by 
the Generalized distribution model. 

0 iflag: index used to define the type of calculation to be performed by fitting 

i f l a g  = 0: returns output estimates of x for each of the cumulative probabilities 
input in the array cdf. 

i f l a g  = 1: returns output estimates of probabilities cdf for each of the physical 
values input in the array x. 

0 ioout: logical unit number for writing error messages. The  calling program 
should make a file available for error messages by opening a file with ioout as 
its logical unit number. (The sample driver illustrates this in Chapter 2. )  

0 etol: the error tolerance in matching higher moments. This is defined formally 
in Eq. 4.2. In general, there is a tradeoff between moment accuracy and com- 
putation time. Based on experience with various tolerances, we use the value 
etol=.01 in our examples. This may be changed by the user. 

If the theoretical moments xmom(i) are known, the fitting routine can be applied 
directly. In practice, it is often necessary to  estimate these statistical moments from a 
set of data.  A separate subroutine, calmom, is supplied here to compute the required 
moments from data;  i.e., to act as a pre-processor for fitting routine. The  procedure 
used to  compute these moments is discussed in section 4.3, and its use is demonstrated 
in Chapter 2. 

T h e  Role of t h e  Lower T h r e s h o l d  xmin. In  most applications of the Weibull 
model we seek to model all possible values of a positive quantity (e.g., stress range, 
number of cycles to failure, etc.). In certain applications, however, the user may 
wish to impose a non-zero lower-bound xmin. This is useful, for example, if  we 
wish to  exclude lower values as non-physical, or due to a fundamentally different 
probability distribution. We have found this useful, for example, i n  modelling some 
edgewise bending loads on a turbine blade. In this case, we seek to exclude small, 
non-damaging loads produced by a different mechanism: low amplitude (turbulence 
induced) cycles superimposed on marked gravity-driven bending moment ranges. This 
case is illustrated further in the example of Chapter 2. 
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1.3 calmom Input and Output 

The subroutine calmom estimates the first four statistical moments zrnorn(i), i=1 ... 4, 
from an input da ta  set. It can thus serve as a preprocessor to fitting. 

The calmom argument list is: 

subroutine calmom(xmom,data,ndata,nrmax,xmin,itype) 

The input to  calmom are the following: 

0 data: array containing the data  for which the mornents are to  be calculated. 

0 ndata: number of data  poiiit,s in array data. 

0 nrmax: dimension size of array data (should be consistent, with that, used in 
calling program). 

0 xmin: threshold value of the physical variable, as used in fitting (see descrip- 
tion of xmin in section 1.2 and the example problem in Chapter 2). 

0 itype: index used to define the parent, distribution used by fitting 

itype = 1: Gaussian distribution 

itype = 2: Gurnbel distribution 

itype = 3: Weibull distribut.ion 

The  sample da ta  input v ia  the array data, can be arranged in any order and 
does not nccd to  be sorted in increasing rnagnitude as shown in the example input  of 
Table 2.1. Also, calmom screens tlie array data reniovirig any values that are below 
the threshold xmin. 

On oritput, the array xmom contains the saniplc Inonicnts of the data: as defined 
in section 1.2. These can thcn be used directly as input to the routine fitting. Thc 
theoretical background for calmom is dcscribetl in  Section 4.3 .  

1.4 The Driver Program 

A single dr iwr  program is used to demonstrate the use of suhroutincs fitting and 
calmom for two examples. 

In general, the source code is distributed i n  three scparat.e files: 
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calmom.for: The calmom subroutine to estimate moments from an input data  set. 

fitting.for: The fitting subroutine, to usc these moments to estimate thc entire 
distribution function of A’. 

driver.for: A separate driver program that calls these routines (listing in Appendix 
A ) .  

This driver program is included to help speed the reader’s understanding and imple- 
mentation of fitting. The example shown here can thus be run without creating 
any additional source code. One needs merely to compile and link the three source 
codes listed above, and execute with the input files provided. 

Of course, prospective users are encouraged to modify the driver program accord- 
ing to their needs. Toward that end,  it is hoped that driver. for can provide a useful 
template. For those users who prefer to learn by esaniple, we recommend reading the 
source code of driver. f o r  as a useful starting point. 

Analysis Steps. As implemented in driver. f or, the analysis proceeds in the 
following steps: 

1. Read control data: itype, xmin, iflag, and the array cdf or x used as input 
to  fitting. 

2. Read input data: the array data used as input. to calmom, which calculates the 
necessary moment input for fitting. 

3. Call calmom to estimate moments. 

4. Call fitting to estirnate the corresponding fu l l  distribution function. 

5. Write results. 

These steps are clearly delineated in comment,s contained within the source code of 
driver. 

File Architecture. In the current coding of the driver (Appendix A ) ,  two input 
files are expected: 

driver.in: Input file containing control data  read in step 1 above. 

driver.dat: Input file containing physical data  read i n  step 2 above. 

Together with the three source code files, we are distributing input files for two 
examples: (1) weibull . in, weibull . dat; and (2) gumbel . in: gumbel . dat. The user 
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should note that to implement one of these examples, the input files * . in and * . dat  
(*=‘weibull’ or ‘gumbel’) should be copied to driver. in and driver. d a t  before 
executing. The  corresponding output file, driver. o u t ,  should then agree with the 
file *.out that  has been distributed. 

The  examples described in Chapters 2 and 3 provide tables that identify more 
clearly the contents of the files driver. in and driver. dat. 



Chapter 2 

Fatigue Load Modelling: A Generalized 
Weibull Example 

This chapter describes the first example, which relates to fatigue load modelling. The 
next chapter describes an alternate application to extreme wave height modelling. 

2.1 Wind Turbine Loads Example 

This example concerns the edgewise bending moments shown in figure 1.1 of Chapter 
1 (Coleman, 1989). We consider here 8913 values of A'=bending moment range [kip- 
ft], as found by rainflow counting (Fuchs and Stephens, 1980). The data  are stored 
in the file w e i b u l l . d a t .  Table 2.1 gives a partial listing of these values. For the 
sake of clarity they are input in increasing ordcr; however, this is not required by the 
program. 

A scparate analysis of these data (Winterstcin and Lange, 1994) has shown that 
bending moment ranges below 9 kip-ft do not contribute to the total fatigue damage 
given by this data  set. Since the application for the load model is a fatigue analysis of 
the HAWT blade, we choose to fit the model above a lower threshold xmin=9 [kip-ft]. 
Note that only 4819 ranges are above this threshold. 

This threshold is set in the first line of the input file w e i b u l l .  i n .  Table 2.2 lists 
this file. The first line also contains the values i f l a g = l  and i t ype=3 .  The value 
i f l a g = l  indicates that values of x are to follow on the subsequent lines in the file, 
and the program is to calculate corresponding cdf values. The value i t y p e = 3  tells 
the f i t t i n g  routine to select Weibull as the parent distribution. The remaining lines 
list the actual x values requested, which arc the same as in column 1 of Table 1.1. 

Output .  The driver produces a single output file, d r i v e r .  o u t ,  which we have 
The stored here as w e i b u l l .  ou t .  Table 2.3 lists w e i b u l l .  ou t  for our example. 
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1 8911 
s9 12 
8913 

Data 5, [kip-ft]: 
0.0190 
0.0190 
0.0190 

8.981 0 
8.9820 
8.9820 
9.0010 
9.0010 
9.00 10 

18.0420 
1s.9290 
20.4990 

Table 2.1: Abridged listing of edgewise moment ranges [kip-ft] from weibull . d a t .  
File contains column 2 da ta  only; line numbers are inserted here for clarity. 

9.00 1 3 ; X M I N = L O W E R  T I I R E S I I O L D .  IF 'LAG=l  T O  G E T  C D F  FOR GIVEN X ,  I T Y P E = 3  T O  FIT G E N E R A L I Z E D  W E I E U L L  

9.25 
9.50 
9.75 

10.00 
10.25 
10.50 
10.75 
11.00 
12.00 
13.00 
14.00 
15.00 

Table 2.2: Listing of input  file, weibull . in, with control da ta  for dr iver  program. 
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Figure 2.1: Generalized Weibull Distribution for Fatigue Loads-4819 Data. 

fractile results reported by f i t t i n g  are precisely those given in Chapter 1 (Table 
1.1). Note also that the output confirms that 1819 data  points have been found above 
the input lower threshold of x=9. It also reports the first four moments from these 
data,  as estimated by calmom, that  are used as input to f i t t i n g .  Finally, the model 
predicts the first 10 absolute moments, E[X“] .  Note that these are consistent with 
the first four moments found for the data. For example, E[X’]=1.831, the mean value 
pz, while E [ X ’ ] = a ~  + p; ,  or 1.154’ + 1.831’=4.685. Similarly, the predicted third 
and fourth moments can be shown to be consistent with those estimated from the 
data.  The  main virtue of the routine, of course, is that it secks to  predict still higher 
moments more accurately-through introduction of a smooth distribution model- 
than would be possible from the data  alone. 

Figure 2.1 compares the fitted distribution function F ( z )  with the data.  (These 
results have been obtained by running the f i t t i n g  routine over a larger range of 
x values than shown in the example.) Results are shown on “Weibull probability 
scale,” on which the parent Weibull model appears as a straight line. It appears that  
the generalized Weibull model reflects the curvature of the data  shown on this scale, 
particularly in the upper tail of interest (which is most heavily weighted by the third 
and fourth moments). 
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Lower Threshold Value: 9.000 
Number of Data Processed: 4819 

** MOMENT RESULTS ** 

Mean : 1.831 
Standard Deviation : 1.154 

Skewness : 1.552 
Kurtosis: 7.449 

** FRACTILE RESULTS (FITTING) ** 

X :  CDF : 

9.250 
9.500 
9.750 
10.000 
10.250 
10.500 
10.750 
11 .ooo 
12.000 
13.000 
14.000 
15.000 

0.004 
0.058 
0.146 
0.251 
0.360 
0.465 
0.561 
0.645 
0.862 
0.949 
0.981 
0.993 

** PREDICTED MOMENTS (FITTING) ** 

N :  E[X**N] : 

1.000 0.183E+01 
2.000 0.469E+O1 
3.000 0.159E+02 
4.000 0.688E+02 
5.000 0.377E+03 
6.000 0.259E+04 
7.000 0.221E+05 
8.000 0.234E+06 
9.000 0.302E+07 
10.000 0.472E+08 

Table 2.3: Listing of output file, weibull .out, produced by driver program. 
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9.00 0 3 ; XMIN=LOWER THRESHOLD,  IFLAG=O T O  G E T  X F O R  GIVEN CDF;  ITYPE=J T O  F I T  GENERALIZED WEIBULL 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.999 

Table 2.4: Listing of input file for iflag=O option. 

2.2 Alternate Usage of fitting 

Finally, we illustrate the if lag=O option of fitting. For example, if the weibull . in 
content is modified as shown in Table 2.4, Table 2.5 shows the corresponding out- 
put. The  data  file weibull. dat remains the same, and hence all moment results are 
unchanged. The  only difference is that  in this case, the distribution fractiles x have 
been evaluated at  the requested probability levels given in the input file driver. in 
(Table 2.4). For example, as noted in Chapter 1, the median value of X (with 50% 
chance of being exceeded) is found to be 10.589. The  values of bending moment that  
are not exceeded 99% and 99.9% of the time were also determined. 
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Lower Threshold Value: 9.000 
Number of Data Processed: 4819 

** MOMENT RESULTS ** 

Mean : 1.831 
Standard Deviation : 1.154 

Skewness : 1.552 
Kurtosis: 7.449 

** FRACTILE RESULTS (FITTING) ** 

X: CDF : 

9.627 
9.882 
10.114 
10.345 
10.589 
10.861 
11.188 
11.620 
12.324 
14.664 
17.255 

0.100 
0.200 
0.300 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
0.990 
0.999 

** PREDICTED MOMENTS (FITTING) ** 

N: E[X**N] : 

1.000 0.183E+Ol 
2.000 0.469E+01 
3.000 0.159E+02 
4.000 0.688E+02 
5.000 0.377E+03 
6.000 0.259E+04 
7.000 0.221E+05 
8.000 0.234E+06 
9.000 0.302E+07 
10.000 0.472E+08 

Table 2.5: Listing of output  file, generated from iflag=O input file given in Table 
2.4. 



Chapter 3 

Extreme Values: A Generalized Gumbel 
Example 

This chapter illustrates the use of the fitting routine to fit a generalized Gum- 
bel distribution to extreme values. The driver program used for this demonstration 
is described in Chapter 1 .  This driver program reads the relevant input data  for 
this example and passes them to the calmom and fitting routines to construct the 
generalized Gumbel distribution. 

This example concerns the significant wave height HS i n  a Southern North Sea 
location, for which 19 years of hindcast data are available (Danish Hydraulic Institute, 
1989). For each of these 19 years, a single storm event has been identified with 
maximum significant wave height I I ,  (i.e. the extreme values). This value ranges 
from IIs = 6.92m (1972/1973) to 9.66m {19S1/19S2). A sorted list of all 19 values is 
reported in Table 3.1. 

This chapter has two sections. The first section deals with the generalized Gumbel 
model for the significant wave height data. The second section compares the three 
different generalized distribution models for the same data  set. 

Finally, it should be noted that a generalized Gumbel model has previously been 
fit to this data  set (Winterstein and Haver, 1991). The results shown here are an 
improvement in two senses: (1)  fitting permits greater accuracy to  be achieved in 
matching moments; and (2) fitting includes a n  inverse cubic transformation, which 
is particularly important in refiecting the narrower-than-Gumbel tails similar to the 
data  in Table 3.1. 
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I Line number i: Data H,, [m]: 
9.66 
9.44 
9.18 
9.17 
8.85 
8.79 
8.60 
8.58 
8.54 
8.49 
8.09 
8.08 
8.06 
7.47 
7.42 
7.41 
7.31 
7.16 
6.92 

Table 3.1: Listing of annual significant wave height [m] from gumbel .dat. File con- 
tains column 2 da ta  only; line numbers are inserted here for clarity. 

3.1 Generalized Gumbel Results 

The annual significant wave height data consists of 19 values listed in Table 3.1. The 
da ta  are stored in the file gumbel.dat. For the sake of clarity they are input in 
decreasing order; however, this is not required by the program. 

The  control data  are stored in gumbel.in. Table 3.2 lists this file. The first 
line of this file contains three values. The first value is xmin=0.0, which sets the 
lower threshold value. Note, however, that this is not used in this case of Gumbel 
distribution since there is no cutoff value. This threshold value is used when gener- 
alized Weibull distribution is fit to  the data  (see Chapter 2). The  second argument, 
i f l ag= l ,  indicates that  x values are to  follow in the file and the program will calculate 
corresponding cdf values. The  third argument, itype=2, indicates that  a generalized 
Gumbel distribution is to  be fit to the data  in file gumbel. dat. The  remaining lines 
list the actual x values requested. 

Output. Table 3.3 lists the corresponding output file gumbel .out for this exam- 
ple. I t  also reports the first four moments from these data ,  as estimated by calmom, 
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0.00 1 2 ; XMIN=LOWER THRESHOLD,  IFLAG=] T O  G E T  C D F  FOR GIVEN X;  I T Y P E = 2  T O  F I T  GENERALIZED GUMBEL 

10.00 
9.66 
9.44 
9.18 
9.17 
8.85 
8.79 
8.60 
8.58 
8.54 
8.49 
8.09 
8.08 
8.06 

Table 3.2: Listing of input file, gumbel. in, with control data  for driver program. 

which are used as input to  fitting. Finally, the model predicts the first 10 absolute 
moments, E [ X " ] .  Note that these are consistent with the first four moments found for 
the data.  For example, E [ X ' ]  = 8.275, the mean value pz, while E [ X Z ]  = u$ + p i ,  
or .819' + 8.275'=69.1. Similarly, the predicted third and fourth moments can be 
shown consistent with those estimated from the data. 

As discussed in Chapter 2,  note that to use the input files gumbel . in and gumbel . dat 
with the driver program they must be copied to the files driver. in and driver. dat  
respectively. The output, written to driver .out, should then be comparable to 
gumbel . out. 

In order to generate a smooth plot of the generalized Gumbel distribution, an 
input file similar to driver. in with a greater number of input values to compute 
corresponding CDF values was used. This distribution is plotted in Figure 3.1 along 
with the observed data  values. It appears to capture fairly well the systematic cur- 
vature of the data  on the Gumbel probability scale used. 

3.2 Comparison of Three Generalized Distribu- 
tions for Wave Height 

Because we deal here with annual extreme values, the Gumbel distribution is the 
natural choice of parent distribution. \Ire may ask, however, what effect is achieved if 



26 Chapter 3. Extreme Values: A Generalized Gumbel Example 

Number of Data Processed: 19 

** MOMENT RESULTS ** 

Mean : 8.275 
Standard Deviation: 0.819 

Skewness : -0.053 
Kurtosis: 1.905 

** FRACTILE RESULTS (FITTING) ** 

X :  CDF : 

10.000 
9.660 
9.440 
9.180 
9.170 
8.850 
8.790 
8.600 
8.580 
8.540 
8.490 
8.090 
8.080 
8.060 

0.998 
0.978 
0.937 
0.846 
0.842 
0.690 
0.662 
0.580 
0.572 
0.557 
0.539 
0.427 
0.424 
0.419 

** PREDICTED MOMENTS (FITTING) ** 
N: E[X**N] : 

1.000 0.827E+Ol 
2.000 0.691E+02 
3.000 0.583E+03 
4.000 0.496E+04 
5.000 0.426E+05 
6.000 0.369E+06 
7.000 0.322E+07 
8.000 0.282E+08 
9.000 0.250E+09 
10.000 0.222E+10 

Table 3.3: Listing of output  file, gumbel .out, produced by driver program. 
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Figure  3.1: General ized G u m b e l  Distr ibut ion for A n n u a l  E x t r e m e  W a v e  Height-19 
D a t a .  
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Generalized Gumbel Model of Annual Significant Wave Height 
.999 
.998 Generalized Gumbel - 

Generalized Gaussian ------ 
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Figure 3.2: Comparison of Generalized Gaussian, Gumbel, and Weibull Distributions 
for Annual Extreme Wave Height. 

a different choice of parent distribution is selected. This is investigated in this section. 

We again use the same data  set as listed in Table 3.1. Thus the input da ta  file 
is same as d r i v e r . d a t  of Section 3.1. However, the control input file d r i v e r . i n  
is varied so that  i t y p e  is either 1, 2, or 3. These three different values of i t y p e  
give three generalized distributions: generalized Gaussian ( i t y p e  = l ) ,  generalized 
Gumbel ( i t y p e  = 2), and generalized Weibull ( i t y p e  = 3). 

The  three distribution are shown in Figure 3.2. The  figure shows wave height re- 
sults up to  the 1000-year fractile, i.e. for which p=.999 and hence - In(- ln(p))=6.9. 
The  pattern of variation follows that of the underlying parent distributions: the 
Weibull has the narrowest upper tail and hence predicts the lowest extreme values, 
while the Gumbel predicts the largest. Most notably, however, all three parent dis- 
tributions predict quite similar wave heights over this domain of interest. 

This suggests that  knowledge of four moments is sufficient to  control the tail 
behavior of interest. This apparent robustness of the four-moment description is en- 
couraging, particularly in cases where the optimal parent distribution is not obvious. 
Of course this conclusion may be problem-dependent; the user is encouraged to  vary 
the choice of i t y p e  for the problem a t  hand. 
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Technical Background and Additional 
Details 

4.1 Mot ivat ion 

The fitting routine has been developed to  modify standard, commonly used dis- 
tributions to  better match observed tail behavior. In particular, cubic distortions of 
these standard “parent” distributions are sought to match the first four moments of 
the data. We may then ask why precisely four moments are used to fit the probabil- 
ity distribution of X-and not two, three, five, ten, etc. Conventional models are of 
lower order, requiring only one or two moments. The problem is that  a number of 
plausible models, with very different tail behavior and hence fatigue reliability, can 
be fit to  the same first two moments. This scatter in reliability estimates is said to  be 
produced by model uncertainty. This is prevalent in low-order, one- or two-moment 
models. (Note that many common fatigue load models include only one parameter; 
e.g., the Rayleigh and exponential models.) 

To avoid this model uncertainty, which is difficult to  quantify, one is led to  try 
to  preserve higher moments as well. This will help to discriminate between various 
models, and hence reduce model uncertainty. The benefit does not come without cost, 
however: higher moments are more sensitive to  rare extreme outcomes, and hence 
are more difficult to  estimate from a limited data  set. This is known as statistical 
uncertainty, which reflects the limitations of our data  set. 

Thus, our search for an “optimal” model reflects an attempt a t  balance between 
model and statistical uncertainties. Practical experience (e.g., Winterstein, 1988) 
suggests that  four moments are often sufficient to define upper distribution tails over 
the range of interest. This experience motivates the generalized models developed 
here. It is again supported by the results of Section 3.2, in which extreme wave 
heights are insensitive to the choice of parent distribution, once four moments have 
been specified. 
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4.2 Underlying Methodology : fitting 

The fitting routine begins with a theoretical, 2-parameter “parent” distribution. 
In the current implementation, the user may choose Gaussian, Gumbel, or Weibull 
parent distributions. Denoting this parent variable as U ,  fitting then models the 
physical random variable X through a cubic transformation of Cl: 

X = Q +  C l U  + c2u2 + c3U3 (4.1) 
The optimizer adjusts the coefficients c, through an iterative scheme until the differ- 
ence between the requested skewness, ~ 3 ,  and kurtosis, a4, (see xmom(3) and xmom(4), 
section 1.2) and those of the generalized model in Eq. 4.1 ( Q ~ X  and a4x) are mini- 
mized. 

The  optimizer also restricts the coefficients so that Eq. 4.1 remains monotonically 
increasing, producing a well-behaved model that  only mildly modifies the underlying 
parent distribution. This leads, for example, to  requiring cg 2 0 so that  X in Eq. 4.1 
continues to  grow as U becomes large. This in turn makes it difficult to  model cases 
with tails that are narrower than those of the parent distribution. In particular, it 
is difficult to  use Eq. 4.1,  with positive cg, to model situations in  which the desired 
kurtosis, ~ 4 ,  is less than that of the parent variable, Q ~ U .  In this case fitting inverts 
the model, seeking to  fit a model analogous to Eq. 4.1 in which the roles of X and 
U are interchanged. (In this view, one seeks to expand the distribution tail of the 
actual variable X to produce a parent variable U ,  so that  c3 becomes positive.) 

Note that  this switching between two dual models, based on the size of cy4, occurs 
automatically within fitting and should be of no consequence to  the user. Adding 
such a dual model, however, has has been found to greatly increase modelling flexi- 
bility for small kurtosis cases. These have been found to arise both in extreme and 
fatigue loading applications. 

Finally, in whichever form the model is defined, the coefficients c, are chosen to 
minimize the error e,  defined as 

e = J ( a 3  - Q3xy + ( a 4  - a4x)2 (4.2) 
The speed of executing fitting is governed largely by the speed of this optimization; 
i.e., by the amount of effort (trial c, values) needed to achieve an acceptably small 
tolerance, eto( .  The driver program sets eto,=.Ol for the examples shown. The  user can 
vary this tolerance, with the resulting change in computation time to  be expected. 

4.3 Underlying Methodology: calmom 

To motivate the need for this routine, we must consider a brief background in sta- 
tistical moment estimation. If we seek to estimate the ordinary mean value E [ X ) = p  
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from data  XI... X,,, a natural estimate is the simple average value x=Cr=l X’,/n. 
Similarly, the k-th order “ordinary” moment, E [ X k ] ,  is naturally estimated by the 
corresponding average Cy=, Xk/n. 

The difficulties arise when we instead seek, as in many applications, to  estimate 
not ordinary but central moments; i.e., of the form pk=E[(X - P ) ~ ]  for k=2, 3, 4.... 
(Note that f i t t i n g  input stops a t  k=4: or=p2 1 1 2  , a3=p3/p:.’ ,  and a4=p4 /p i . )  

The problem here lies in i t s  circular aspect: we must first estimate the unknown 
first moment p before seeking to estimate p k = E [ ( X  - p ) ‘ ] .  And, if  we use the same 
data  set for both purposes, we typically find too-low estimates of p2, p3, p 4 ,  etc. 
because our p value is artificially tuned to best match the mean of the observations. 
Those exposed to  a standard statistics coursc will best recognize this phenomenon 
when estimating the variancc p 2 :  to inflate the sample variance to  account for this 
bias, the sum of squared deviations is divided by n - 1 rather than n.  

While unbiased estimates of the higher moments 113, p4, ... are less familiar, they 
are available in the statistical literature (Fisher, 19%): 

p3 = m3 (4.5) ( n  - l ) ( n  - 2)  

in terms of the sample central moment mk=C:,l(X; - X)‘/n.  Eq. 4.4 is the conven- 
tional result for the sample variance. 

Remaining Bias. Finally, the routine calmom uses these results to  estimate 
the quantities oz by p:.5, a3 by p 3 / ( p ; . 5 ) ,  and a4 by /id/(&). Because these vary 
nonlinearly with p,,, they may still contain some bias although the p,, estimates do 
not. 

For example, if we fit a Gumbel model to the 19 wave height data  from Chapter 3, 
the true skewness and  kurtosis values are 1.14 and 5.40. However, simulating 10000 
data sets of size n=19 and running each through calmom, we find on average the 
skewness 0.79 and kurtosis 3.S9 (Winterstcin and Haver, 1991). 

To address this problem, the f i t t i n g  routine has a n  automatic check for remain- 
ing bias through simulation. This is why n d a t a  is given as an input parameter. After 
f i t t i n g  constructs a distribution with moments from the input array xmom, many 
similar data  sets (of size n d a t a )  are simulated from this distribution. If the moments 
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Figure 4.1: Effect of Ignoring Bias: Wave Height Example. 

predicted from calmom differ appreciably on average from the input values, new the- 
oretical estimates of the moments are constructed. This estimation-simulation loop 
is continued iteratively until satisfactory convergence is found. 

Note that the fitting routine does not perform this simulation if its input pa- 
rameter ndata > 100. This value can be hard-wired if the user wishes to bypass this 
option. Figure 4.1 shows the effect of enabling this “unbiased” option (the default) 
and disabling it (using “raw” moments from calmom directly) for the generalized 
Gumbel model produced for the example given in Chapter 3. There is relatively little 
difference found in these cases. Larger effects may be found for cases of (1) fewer 
data and/or (2) distributions with broader tails. 

4.4 Notes on Usage 

The  fitting routine has limiting conditions that users should note. When these 
conditions are encountered, appropriate error messages are written to  the output 
file/device corresponding to  the input logical unit number ioout. This section ex- 
plains the meaning of these messages and discusses other details regarding fitting 
usage. 
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4.4.1 Errors in Matching Moments 

Note that in most practical cases, the coefficients c,  in Eq. 4.1 can be chosen so that  
the error e ,  as given in Eq. 4.2, falls within the user-defined tolerance limit ctol .  In 
rare cases the minimized error exceeds c to l .  In these cases fitting writes an error 
message indicating the magnitude of c, the error norm of the skewness and kurtosis 
in Eq. 4.2. 

4.4.2 Lower Tail Limiting Values 

Lower tail limiting values are only a problem when the parent distribution is Weibull. 
In this case the variable I/ in Eq. 4.1 has Weibull distribution, and hence a minimum 
value of 0. Because Eq. 4.1 is monotonic, the corresponding smallest possible value 
of the physical variable X is G. This physical lower limit G, can be either greater or 
less than zero, since the optimized Weibull model in Eq. 4.1 will not in general have 
its 5 intercept a t  exactly zero. 

This may lead to  situations that seem anomalous. If the lower limit G, is negative, 
for example, fitting may estimate negative values of X for probabilities near zero. 
Conversely, if the lowest possible value G, is positive, a n  input X value below G, cannot 
occur and fitting will return a zero cumulative probability (CDF=O). When xmin 
is not zero the situation is entirely analogous: Q may be greater or less than xmin. 

In practice we believe this to be a minor issue for the following reasons: 

0 The routine fitting is intended for applications where large X values (upper 
distribution tails) are crucial. This is the motivation for preserving higher mo- 
ments. Its accuracy at  the lower end of the distribution may not be of great 
concern. 

0 If we wish to preserve a positive range of values, one can easily introduce a 
transformation to the data. For example, apply fitting not to  the physical 
variable X but rather Y=ln(X),  based on the first four moments of Y .  Then 
the reverse transformation X=exp(Y) will still be positive. 

0 The routine fitting is intended for applications where the true distribution is 
not too different than a Weibull model would predict. In such cases we may 
expect the nonlinear terms (proportional to Q, c2, and cg) in Eq. 4.1 to be 
relatively small on average relative to the linear term. Thus, compared to  the 
range of likely variation of X values, Q may seem to lie rather “close” to  zero. 
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Appendix A 

Driver Source Code Listing 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

XMIN LOWER THRESHOLD DATA VALUE USED IN THE ANALYSIS 
IFLAG INPUT/OUTPUT FLAG: 

IFLAC = O.....FINDS X FOR INPUT CDF VALUES 
IFLAC = l.....FINDS CDF FOR INPUT X VALUES 

ITYPE CONTROL VARIABLE TO CHOOSE THE GENERALIZED 
DISTRIBUTION TYPE 

ITYPE = 1 :FIT GENERALIZED GAUSSIAN DISTRIBUTION 
ITYPE = 2 :FIT GENERALIZED GUMBEL DISTRIBUTION 
ITYPE = 3 :FIT GENERALIZED WEIBULL DISTRIBUTION 

X (NXMAX) LEVELS OF X AT WHICH DISTRIBUTION IS REPORTED 
CDF(NXMAX) CDF VALUES (NON-EXCEEDENCE PROBABILITIES) FOR 

NXMAX MAXIMUM NUMBER OF X OR CDF VALUES REQUESTED 
NX ACTUAL NUMBER OF X OR CDF VALUES REQUESTED 

EACH X LEVEL 

READ(IOIN,*) XMIN,IFLAG,ITYPE 
IF (ITYPE .NE. 3) XMIN = O.dO 
IF (IFLAG. EQ. 0) THEN 

DO 10 IX = 1,NXMAX 
10 READ(IOIN,*,ERR=30,END=30) CDF(1X) 

READ CDF VALUES IF IFLAG=O 
ELSE 

DO 20 IX = 1,NXMAX 
20 READ(IOIN,*,ERR=30,END=30) X(1X) 

READ X VALUES IF IFLAG=l 
ENDIF 

30 NX = IX - 1 

C 
C 
C 
C 
C 

40 

DATA(NDMAX) ARRAY OF INPUT DATA FOR WHICH MOMENTS ARE FOUND 
NDMAX MAXIMUM NUMBER OF INPUT DATA PERMISSIBLE 
NDATA ACTUAL NUMBER OF INPUT DATA 

NDATA=O 
READ(IODAT,*,ERR=50,END=50) X1 
NDATA=NDATA+l 

GO TO 40 
DATA ( ND ATA) =X 1 
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C 
C XMOM (4) ARRAY OF FOUR 
C XMOM(1) = 
C XMOM(2) = 
C XMOM(3) = 
C XMOM(4) = 
C 

MOMENTS COMPUTED FROM DATA: 
MEAN 
STANDARD DEVIATION 
SKEWNESS 
KURTOSIS 

CALL CALMOM(XMOM,DATA,NDATA,NDMAX,XMIN,ITYPE) 
C 
c----------------------------------------------------------- 
C 

WRITE OUTPUT 

IF (ITYPE .EQ. 3) THEN 
WRITE(IOOUT,900) ’ Lower Threshold Value:’, XMIN 
ENDIF 
WRITE(IOOUT, * ) ’ Number of Data Processed:’, NDATA 
WRITE(IOOUT, * ) ’ ’ 
WRITE(IOOUT, * ) ’ **  MOMENT RESULTS **’  
WRITE(IOOUT, * ) ’ ’ 
WRITE(IOOUT,900) ’ Mean: ’ , XMOM(1) 
WRITE(IOOUT,900) ’ Standard Deviation:’, XMOM(2) 
WRITE(IOOUT,900) ’ Skewness:’, XMOM(3) 
WRITE(IOOUT,900) ’ Kurtosis:’, XMOM(4) 
WRITE(IOOUT, * ) ’ ’ 

C 
c--------------------- CALL FITTING TO ESTIMATE X FOR GIVEN CDF (IFLAG=O) 
C OR CDF FOR GIVEN X (IFLAG=l) 
C 
C ETOL ERROR TOLERANCE IN MATCHING OBSERVED MOMENTS 
C . . .  HERE WE ACCEPT 0.01 ERROR---USER CAN ALTER 
C 
C PMOM( 10) ARRAY OF PREDICTED ABSOLUTE MOMENTS FROM MODEL 
C PMOM(1) = PREDICTED AVERAGE OF X**N, N=l..10 
C 

ETOL = .01DO 
CALL FITTING(ITYPE,XMOM,NDATA,XMIN,X,CDF,NX,PMOM,IFLAG,IOO~,ETOL) 

OUTPUT 
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DO 60 IX = 1 , NX 
60 WRITE(IOOUT,~OI) X(IX),CDF(IX) 

WRITE(IOOUT, * 
WRITE(IOOUT, * ) ** PREDICTED MOMENTS (FITTING) ** ’  
WRITE(IOOUT, * ) ’ ’ 
WRITE(IOOUT, * N: E[X**N] : ’ 
WRITE(IOOUT, * ) 

DO 70 IX = 1 , 10 
70 WRITE(IOOUT,902) REAL(IX),PMOM(IX) 

C 
900 FORMAT(A26, F10.3) 
901 FORMAT(16X,2F10.3) 
902 FORMAT(16X, F10.3,E10.3) 

C 
STOP 
END 
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