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VERTICAL AXIS WIND TURBINE
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Thomas D. Ashwill
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ABSTRACT

The 34-meter Test Bed is a research-oriented, variable-speed vertical-axis wind
turbine located at the USDA Agricultural Research Station in Bushland, Texas.
Sandia National Laboratories designed and built this machine to perform
research in structural dynamics, aerodynamics, and fatigue. Testing to determine
its performance in various wind conditions and rotation rates has been ongoing
for over three years. This report documents a broad range of test data and
includes comparisons to analytical results.
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1.0 INTRODUCTION

The 34-meter Test Bed is a research-oriented vertical-axis wind turbine (VAWT)
located at the USDA Agricultural Research Service facility in Bushland, Texas.
Sandia National Laboratories designed and built this machine to perform
research in structural dynamics, aecrodynamics, fatigue, and controls. Testing of
the Test Bed to determine its performance in various wind conditions and at
different rotation rates has been ongoing since before the official dedication on
~ May 10, 1988. This report contains a broad range of Test Bed data collected over
the past four years and serves as a reference document for aerodynamic and
structural performance data.

The Test Bed is pictured
in Fig. 1.1. The rotor is 34
meters in diameter with a
swept area of 955 m2 and
a height-to-diameter ratio
of 1.25. This variable-
speed machine has an
operating range of 28 to
38 rpm, and the rated
power is 500 kW at a
rotation rate of 37.5 rpm
in mean winds of 12.5 m/s
(28 mph). Table I
summarizes the Test Bed
specifications.

Compared to previously
constructed VAWTs, the
Test Bed blades are
unique in that they are
tailored both structurally
and aerodynamically to
minimize stresses and
maximize energy capture.
The root sections are
straight and consist of 1.22
m (48 in.) chord, NACA Figure 1.1. 34-m Test Bed
0021 profiles. The

equatorial sections are




Table I. Test Bed Specifications

ROTOR

Diameter 34 m
Height 50 m
Ground Clearance 7m
Speed 28 to 38 RPM
Number of Blades 2
Blade Material 6065-T6 Extruded
Aluminum
Blade Length 545 m
Aerodynamic Control Stall
Regulation
Airfoils SNL 0018/50
NACA 0021
Chord Dimensions,m 0.91,1.07,1.22
Swept Area 955 m2
Solidity 0.13

Central Column
Material Aluminum
Diameter 3m
Wall Thickness 12.5mm

Guy Cables
Number 3 Sets of 2
Tension 750-830 kIN/Set
Material Steel Bridge Strand
Diameter 64 mm
GEARBOX

Type Three-Stage Parallel
Step-up Ratio 475:1

Rating 709 kW

GENERATOR
Type Variable Speed Synchronous AC
Rating 625 kVA
Voltage 1200
Speed 280 to 1900 RPM
Frequency 60 Hz
CONTROLS
System-

Programmable Industrial Controller
Generator Speed and Torque-
Load Commutated Inverter

PERFORMANCE
Rated Power 500 kWe
RPM at Rated 375
Wind Speed at Equator, m/s
Rated 12.5
Cut-out 20
Survival 67

DATA ACQUISITION AND ANALYSIS
Number of Channels 128

Maximum Data Throughput Rate
200 kHz



curved, 0.91 m (36 in.)

chord, SNL 0018/50 /TOWERCENTERLINE
profiles, and the transition

sections are curved, 1.07 m =L A\ e

(42 in.) chord, SNL BDEN e | f—1.22m

0018/50 profiles. The
schematic of Fig. 1.2
details the blade shape B ' — | [—107m
geometry including the
spanwise lengths of each
* blade section. The SNL |
0018/50 profiles are part 41.9m
of a series of natural B
laminar flow airfoils !
developed at Sandia
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VAWTs (Klimas 1984). —
The turbine and its ' | om
environment are heavily
instrumented to measure . —] ¢ |=—1.22m
blade strains at many e =
locations, wind speed and L\(g'zm

direction, temperature,

rotor torque, electrical Figure 1.2. Blade Shape Geometry
power output and

rotational speed.

SANDIA 0018/50 0.91m

19.1m
17.1mR

SANDIA 0018/50

1.1 Scope

This report begins with a brief description of the test program for the 34-meter
Test Bed (Section 1.2). Section 2.0 provides details of the instrumentation system
(both rotor-based and ground-based) and the data acquisition and analysis system
(DAAS).

Turbine test data are discussed in Sections 3.0, 4.0, and 5.0. Section 3.0
emphasizes aerodynamic performance data, which includes tare and drag
measurements, rotor torque data at the three primary rotation rates, and C; and
Kp curves. In addition, measured rotor power is compared to analytical
calculations, and the effects of joint fairings and bug contamination on
performance are shown. Section 4.0 contains structural performance data
composed of centrifugal- and gravity-induced blade responses, operating stresses
at the three primary rotation rates, and measured natural frequencies. Included
are comparisons between measured data and analytical calculations. Section 5.0



shows selected time histories during normal turbine operation, start-up and
braking, and examples of blade stress amplitude spectra at three rotation rates.
Appendices A, B, and C contain complete sets of RMV stresses at three rotation
rates.

1.2 Turbine Testing

The turbine testing program began with a series of assembly and start-up tests
[Phase I of the 34-Meter Test Plan, Stephenson (1986)]. These tests were
performed during and immediately after construction to make fundamental
measurements not easily repeated after the machine was operational. The major
tests performed in Phase I are described below:

1) Testing and calibration of instrumentation and equipment
during installation and validation of the data collection system.

2) Weighing of rotor components.

3) Testing of the variable-speed generator by the manufacturer,
General Electric.

4) Checkouts of the Allen Bradley controller to determine the
enable/interrupt functions.

5) Determination of the power required to start the turbine with
no blades and turn the turbine with and without blades (tare and
zero-wind drag tests).

6) Modal vibration tests on the stationary rotor and individual
components including blades, column, and guy cables.

7) Brake tests to determine the dynamic coefficient of friction of
the brake pads and to insure correct operation of the entire brake
system.

8) Calibration of blade strain gauges by subjecting the blades to
known static loads.

9) Initial start-up tests for checkout of the entire turbine system.

In Phase II, the machine characterization phase, resonance surveys were
performed to determine the location of natural frequencies at several rotation



rates and to approximate cyclic stresses at various wind speeds. Other tests
provided additional controller checkouts and full acrodynamic and structural
performance characterizations.

Phase III, the current stage of testing, supports the study of advanced concepts.
Flow visualization tests, including tuft studies, are complete, and tests to
determine the effects of bug contamination and joint fairings on performance
have recently been performed. Tests to validate different variable-speed control
algorithms are next on the agenda.

" The measured data shown in this report are from Phase I and II testing with the
exception of the results from the bug contamination and joint fairing studies.



2.0 INSTRUMENTATION

To meet current and future research needs, the turbine and its environment were
equipped with a large array of sensors (see Fig. 2.1) to monitor all aspects of the
machine’s performance. Current instrumentation includes 57 strain signals from
the blades, 13 strain signals from the tower, 8 strain signals from the brakes, 5
crack propagation signals, 25 environmental signals, 22 turbine performance
signals, and 29 electrical performance signals. The rotor instrumentation is
described in detail in Sutherland and Stephenson (1988).

Figure 2.2 is a Test Bed site plan. It shows the two data acquisition and analysis
system (DAAS) meteorological towers northeast (North tower) and southwest
(South tower) of the turbine. Each DAAS tower has two anemometers, which
measure wind speed and direction at the equator height of 28.2 m (92.5 ft). Wind
information from the anemometer tower upwind of the turbine is used by the
DAAS software in the data collection process. The location of the guy cables and
associated tie-downs are also indicated in Fig. 2.2. A third meteorological tower,
southeast of the south tower (not shown in Fig. 2.2), has five anemometers at
heights of 10, 20, 30, 40, and 48 meters. These anemometers supply wind
information to a data logger, which records long-term wind speeds and directions
(Ralph 1990). The 30-meter anemometer also provides wind information to the
turbine controller.

2.1 Ground-Based Instrumentation

The ground-based instrumentation includes sensors that measure wind speed and
direction, environmental conditions (temperature and barometric pressure), rotor
and generator rpm, rotor torque, generator current and voltage, blade position,
guy cable tension, transmission and generator bearing vibration, and brake paddle
strains. Analog signals from these sensors are transmitted through ground cables
to an instrumentation room adjacent to the turbine pad and then to an analog-to-
digital (A/D) convertor located in the control building, which is over 122 m (400
ft) west of the turbine base (See Fig. 2.2).

2.2 Rotor-Based Instrumentation

The rotor-based instrumentation consists primarily of blade and column strain
gauges. These analog signals travel through cables located inside the blades,
down the outside of the column, and to the pulse code modulation (PCM) system,
which resides in the base of the column. The PCM converts the signals into a
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high-speed serial stream, which is passed through slip rings to the instrumentation
room. From there the signals travel to the control building where they are
decommutated, sent to a D/A convertor, synchronized with the ground-based
signals, and reconverted by an A/D convertor. Pressure taps, cable connectors,
and video connectors are available on the column or blades for future testing
hookups.

2.3 Data Acquisition and Analysis System

Figure 2.3 shows a schematic of the data collection system. The signals from both
the ground-based and rotor-based instrumentation arrive at the data acquisition
and analysis (DAAS) processor, a Hewlett Packard (HP) 1000 minicomputer,
from the A/D convertor. Some of the signals are also routed to the data logger, a
separate HP 1000 minicomputer, through a smaller A/D convertor.

Data are collected in the form of time histories. With the use of our data
acquisition and analysis system (Berg et al. 1988), data can be processed in any of
several ways. The data can simply be plotted as a function of time (time
histories) or data segments can be averaged to obtain values of mean and root
mean variance. Also, frequency analyses may be performed by executing spectral
- and cross-spectral programs.

Much of the data is processed with the BINS program, which uses the Method of
Bins (Akins 1978) to reduce data for field performance evaluation. In this
methodology the range of anticipated wind speed readings is partitioned into
equal intervals or wind bins, which are 0.5 m/s wide. Measurements of turbine
output (torque, strain, vibration, etc.) and a reference anemometer are sampled,
usually at 20 Hz. The mean, standard deviation and variance are calculated for
every data channel each rotation to create a bin entry for each of these three
parameters. [For example, at 34 rpm one revolution occurs every 1.764 seconds.
Approximately 35 samples, then, occur in a revolution (1.764 seconds X 20
samples per second) and are averaged to determine a bin entry for the mean.]
The average wind speed for that rotation identifies the proper wind bin. The bin
entries for the mean, standard deviation, and variance are added to the
appropriate running totals in each wind bin for each channel and then stored.
The stored record, which consists of a wind speed distribution and the
corresponding summations, may be combined with other records to provide
quantitative measures of performance. For a complete data set it is desirable to
obtain over 1000 revolutions or bin entries for each wind bin, although this is
usually difficult at the high and low end of the wind spectrum.

All sensors are zeroed at prescribed intervals to eliminate drifting. Because the
low-speed torque sensor is the instrument that determines aerodynamic
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performance, its zeroing occurs more often--both before and during the collection
of a data set.

Table 11 lists the measurement channels available on the DAAS. Included are the
channel numbers, the measurement code, and the measurement type with
associated units. For the strain gauges the measurement code contains
information that indicates the gauge location on the rotor and the type of strain
measurement. This strain gauge location code is further described in the
structural performance section (Section 4.0). Sutherland and Stephenson (1988)
describe the details of the strain gauge circuits.

Table II. Measurement Channels

Channel Code Measurement Type (Units)
Number

1-30 (see Section 4.4) Strain Gauges (MPa)

31 WSNE Wind Speed North East (m/s)

32 WSNW Wind Speed North West (m/s)

33 WSSE Wind Speed South East (m/s)

34 WSSW Wind Speed South West (m/s)

35 WDN Wind Direction North Tower

36 WDS Wind Direction South Tower

37 KPA Barometric Pressure (kPa)

38 C10 Temperature @ 10m height (deg C)
39 C48 Temperature @ 48m height (deg C)
40 RPMO Low Speed Shaft RPM (optical)
41 KNML Low Speed Shaft Torque (kNm)
42 KWG Generator Power (kW)

43 KWSY System Power (kW)

44 PFSY System Power Factor

45 AG Generator Current (A)

46 KVG Generator Volts (kV)

47 ASY System Current (A)

48 KVSY System Voltage (KV)

49 KWAE Auxiliary Equipment Power (kW)
50 ACMC AC Voltage Motor Control Center
51 KN#1 Tension in Guy Cable #1 (kN)

52 KN#2 Tension in Guy Cable #2 (kN)

53 KN#3 Tension in Guy Cable #3 (KN)
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54
35
56
57
58
59
61
62
63
64
65
66
67
68
69
70
71
72
79
80
81
82
83
84
85
86
87
88
125
126
127
128

Table II. (continued)

GENR
TRNR
TRNA
UBRG
LERG
RPMG
BRKS
BRKN
BRKE
BRKW
RPML
NMHS
HRPM
DEG
PLC2
RRPM
LCAC
ACCB
MS48
MS40
MS30
MS20
MS10
WDA48
WD40
WD30
WwD20
WwD10
PCMO
PCMV
PHO
PHV

Generator Radial Vibration (in/s)
Transmission Radial Vibration(in/s)
Transmission Axial Vibration (in/s)
Upper Bearing Vibration (in/s)
Lower Bearing Vibration (in/s)
Generator Shaft RPM

South Brake Strain Gauge (MPa)
North Brake Strain Gauge (MPa)
East Brake Strain Gauge (MPa)
West Brake Strain Gauge (MPa)
Low Speed Shaft RPM (Lebow)
High Speed Shaft Torque (Nm)
RPM High Speed Shaft (Lebow)
Blade Position

Comm Line to Remote Controller
Rotor RPM

LCI AC Voltage

AC Waveform at Control Bldg.
Wind Speed at 48m Height (m/s)
Wind Speed at 40m Height (m/s)
Wind Speed at 30m Height (m/s)
Wind Speed at 20m Height (m/s)
Wind Speed at 10m Height (m/s)
Wind Direction at 48m Height (deg)
Wind Direction at 40m Height (deg)
Wind Direction at 30m Height (deg)
Wind Direction at 20m Height (deg)
Wind Direction at 10m Height (deg)
Zero Volt Check (PCM)

Nominal 4.1 Volt Check (PCM)
Phoenix Zero Volt Check

Phoenix 8.0 Volt Check
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3.0 AERODYNAMIC PERFORMANCE

3.1 Tare Loss and Zero-Wind Drag Measurements

Tare losses are those losses that occur in the rotor bearings due to friction. The
torque required to turn the center column without blades is a measure of the tare
loss and is known as the tare torque. The tare torque is measured by the torque
sensor on the low-speed shaft. The tare and rotor torques, when added together,
determine the aerodynamic torque. Several tests to determine the tare losses
under different conditions were performed in Phase I testing. Tares were
measured at different guy cable tension levels, temperatures, operation times, and
rotation rates before the blades were installed.

Several conclusions resulted from the tare tests (Stephenson 1990): 1) The
effects on tare torque of changes in machine rotation rate or guy cable tension
are minimal and can be neglected. 2) The average value for tare loss in turning
the rotor at any rpm was initially estimated to be 5.0 kNm, but later revised to 3.0
kNm. 3) This average tare loss varies somewhat with ambient temperature and
duration of operation. At a given ambient temperature approximately 30 to 40
minutes of machine operation minimizes the tare loss.

After blade installation, a value for zero-wind drag plus tare loss at 10 rpm was
measured to be about 5.0 kKNm - the same value as that measured for the tare loss
only. An analytical calculation determined a likely value for zero-wind drag to be
2.0 kNm; this results in a more likely value of 3.0 kNm for the tare loss. This
value, 3.0 kNm, is used in the binsing process to adjust the low speed torque to
aerodynamic torque. The drop in tare torque from 5.0 kNm was probably due to
a loosening of the bearing seals with additional operation. (The zero-wind-plus-
tare torques at 28, 34, and 38 rpm are 12.3, 16.2 and 20.7 kNm, respectively -
Section 3.3.)

These levels of torque measurement (2-5 kNm), however, are close to being in
the noise for the size of torque sensor in use. The Test Bed torque sensor, a
Lebow Model 1121, has a maximum range of 339 kNm; the measured value of
tare plus drag is only 1 to 1.5 % of this range. For such small measurements a
smaller torque sensor would be more appropriate, but would be undersized for
the maximum operating torque.
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3.2 Transmission (Gearbox) and Generator Losses

In the original construction a high-speed torque sensor was located between the
transmission and generator on the high-speed shaft. Its use would facilitate the
measurement of losses in the transmission and generator. Due to high vibrations,
however, the high-speed torque sensor was damaged and became inoperable.
Taking the difference between measurements of system power and low-speed
torque gives a value for the combined transmission and generator losses;
however, calibration of the system power transducer was not obtained. Estimates
_ of these losses are provided in the remainder of this subsection.

The Test Bed gearbox, a Brad Foote Model 3RV-2250-§, is a triple reduction unit
(47.1 gear ratio) with a right-angle spiral bevel-gear on the last stage. With a
service factor of 1.0 it has a rating of 902 hp (673 kW) at 1750 rpm (37.1 rpm low-
speed shaft), 760 hp (567 kW) at 1450 rpm (30.8 rpm low-speed shaft), and
approximately 700 hp (522 kW) at 28 rpm on the low-speed shaft. The following
information is published in the Brad Foote catalog and lists losses for different
units as a percentage of full load.

Brad Foote Gearbox Losses (% of Full Load)

Single Reduction 1-1/2%
Double Reduction 3%
Triple Reduction 4-112%
Quadruple Reduction 6%

A right-angle gear adds 0.3-0.4 % to these losses.
For losses at less than full load, the following estimates were obtained from a
different gearbox manufacturer and applied to the Test Bed gearbox.

Losses (%) For Parallel Shaft Reducers

100% Load 75% load 50% Load 25% load

Triple Reduction 4.0 4.25 4.75 6.0
Test Bed Gearbox- 4.5 4.75 5.25 6.5
(approximate)

Again, a right-angle gear adds 0.3-0.4% to these numbers.
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Estimates of the total Test Bed transmission losses are given below.

Estimated Transmission Losses (kW)

100% Load 75% Load 50% Load 25% Load

28 RPM 26 20 15 9

37.1 RPM 33 26 19 12

The generator is a General Electric 700-kW synchronous motor with an
adjustable-speed load-commutated inverter (LCI) drive. The motor itself is
94.4% efficient at rated load. The total losses at full load including the LCI,
inductor, reactor, and motor/generator and excluding the transformer are
estimated below.

Estimated Generator Losses (kW)

RPM 1190 1430 1670 1790 1900

Losses (kW) 23 24 36 42 42

3.3 Performance Data

The design operating range of the turbine spans from 28 to 38 rpm. Three
rotational rates - 28, 34, and 38 rpm - were chosen as major data collection
points. The turbine was operated at each of these rotation rates at all wind
speeds up to the cutout (20 m/s at 28 and 34 rpm and 13 m/s at 38 rpm) to collect
data to fully characterize the machine structurally and acrodynamically.

For the data plots included in this report, the reference velocity is the wind
velocity at the turbine equator, which is 28.2 m (92 ft) above ground level. The
measurements of rotor torque and power are adjusted to sea-level air density.
[The elevation at the Bushland site is 1183 m (3880 ft) above sea level.]

3.3.1 28 RPM

Figure 3.1 shows the binsed rotor torque (mean average) curve of the Test Bed at
28 rpm for winds from 0 to 21.25 m/s. The rotor torque is measured at the low-
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speed shaft; therefore, these values have been adjusted upwards by the addition
of the tare torque of 3.0 kNm (See Section 3.1). The binsed rotor power (mean
average) is shown in Fig. 3.2. Both Figs. 3.1 and 3.2 clearly exhibit the desired
characteristic of power regulation or power rollover in moderate to high winds.
This effect is caused by the sharp stall behavior of the laminar flow airfoil
sections. The peak torque of 91.5 kNm and peak power of 268 kW both occur at
a 13.75 m/s wind speed. Positive rotor power first takes place at 4.5 m/s; however,
positive electrical power occurs at a higher wind speed because of the
transmission and generator losses.

In the Method of Bins two nondimensional quantities, Cp and Kp, are defined as
indicated below (Akins 1978):

T(VR)w

1/2p AVR3

where
T(VR) is the average torque for a particular bin

p is the density of ambient air during the test
A is the swept area of the turbine

VR s the reference wind velocity for the bin
corresponding to the torque, T(VR)

R is the radius of the turbine
w is the angular velocity of the turbine.
The power coefficient”, Cp, i1s a measure of the fraction of available power

extracted from a stream-tube of air passing through the turbine cross section.
The performance coefficient®, Kp, is a measure of power outputand is

* The terms, power and performance cocfficient, are often interchanged when
describing C;, and Kp.
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proportional to turbine power in a constant rpm mode of operation.

The coefficient Cp, as a function of the tip-speed ratio, Rw/VR, is illustrated in
Fig. 3.3 for the 28 rpm data set. The peak C, is 0.409 and occurs at a wind speed
of 7.75 m/s (tip-speed ratio of 6.34). The coefficient K, as a function of advance
ratio, VR/Rw, is shown in Fig. 3.4.

The distribution of bin entries for this 28 rpm data set is shown in Fig. 3.5. This
curve was developed by dividing the number of entries in each bin by the total
~ number of bin entries. To minimize biasing of the data, it is desirable to obtain a
fairly even distribution of bin entries.

A listing of the 28 rpm data set is presented in Table III. Over 1000 bin entries
reside in the wind bins from 2.75 to 13.25 m/s. In plotting Figs. 3.1 - 3.5, the
minimum number of bin entries in each bin was chosen to be 100. Table III has
10 data columns, which are described below.

Column 1 is the value of wind speed at the middle of each 0.5
m/s bin.

Column 2 is the number of bin entries in each bin. Each entry
is the average of the data points sampled during one
revolution.

Column 3 is the % of total entries that occur in that particular
bin.

Column 4 is the mean average of the rotor torque.

Column 5 is the root mean variance (square root of the
average of the variances for that bin) of the rotor torque.

Column 6 is the tip speed ratio.
Column 7 lists Cp values.
Column 8 lists K, values.
Column 9 is the rotor power in kW.
A standard heading is printed at the beginning of Table III. The first line of the

heading provides a title of the data collected. For example, in Table III the title
is B280290: BU-34. BU-34 refers to the current turbine configuration, and

17
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Table III. Performance Data - 28§ RPM

B280290: BU-34 Turbine at 28.0 RPM, Total # pts = 43725.
Sample rate = 20.000 HZ, Samples/pt = 43, min pts/bin = 1.
Air Density = 1.226 Kg/m**3(CH 41 Corrected)

CH 41 Tare Torque = ,3000E+04 (Nm)

Series # Records:

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
3 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5 1
CHAN # 41 (KNML) + TARE {[Nm]
M/S #PTS PROB MAV RMV RW/V cP KP KW

.25 623 .0142 -.927E+04 .111E+04 196.45 -2969.551 -.00039 -27.17
75 473 .0108 -.904E+04 .121E+04 65.48 -107.289 -.00038 -26.50

1.25 791 .0181 ~-.892E+04 .123E+04 39.29 -22.862 ~.00038 -26.14
1.75 1042 .0238 ~-.833E+04 .135E+04 28.06 -7.785 -.00035 -24.43
2.25 892 .0204 ~.778E+04 .157E+04 21.83 -3.422 -.00033 -22.82
2.75 1220 .0279 -.650E+04 .190E+04 17.86 -1.565 ~.00027 <-19.06
3.25 2026 .0463 -.555E+04 .220E+04 15.11 -.810 -.00023 -16.27
3.75 2007 .0459 -.3B6E+04 .242E+04 13.10 -.367 ~-.00016 -11.32
4.25 1889 .0432 -.121E+04 .263E+04 111.56 -.079 -.00005 -3.54
4.75 1834 .0419 .194E+04 .2Bl1E+04 10.34 .091 .00008 5.69
5.25 1812 .0414 .590E+04 .370E+04 9.35 .204 .00025 17.30
5.75 1926 .0440 .103E+05 .486E+04 8.54 .271 .00043 30.15
6.25 1780 .0407 .143E+05 .590E+04 7.86 .294 .00061 41.98
6.75 1477 .0338 .197E+05 .690E+04 7.28 .321 .00083 57.79
7.25 1193 .0273 .28lE+05 .793E+04 6.77 .370 .00119 82.51
7.75 1206 .0276 .38B0E+05 .893E+04 6.34 .409 .00161 :111.35
8.25 1312 .0300 .457E+05 .945E+04 5.95 .407 .00193 133.92
8.75 1340 .0306 .502E+05 .968E+04 5.61 .376 .00212 147.30
9.25 1181 .0270 .575E+05 .993E+04 5.31 .364 .00243 168.55
9.75 1121 .0256 .653E+05 .102E+05 5.04 .353 .00276 191.48
10.25 1149 .0263 .712E+05 .105E+05 4.79 .331 .00301 208.82
10.75 1279 .0293 .780E+05 .108E+05 4.57 .314 .00330 228.61
11.25 1287 .0294 .825E+05 .110E+05 4.37 .290 .00349 242.03
11.75 1375 .0314 .864E+05 .110E+0S5 4.18 .267 .00365 253.37
12.25% 1379 .0315 .883E+05 .110E+05 4.01 .240 .00373 258.84
12.75 1260 .0288 .904E+05 .108E+05 3.85 .219 .00382 265.19
13.25 1152 .0263 .916E+05 .106E+05 3.71 -197 .00387 268.49
13.75 986 .0226 .916E+05 .103E+05 3.57 .176 .00387 268.51
14.25 875 .0200 .913E+05 .988E+04 3.45 .158 .00386 267.77
14.75 717 .0164 .B99E+05 .946E+04 3.33 .140 .00380 263.45
15.25 619 .0142 .88BE+05 .909E+04 3.22 .125 .00375 260.33
15.75 518 .0118 .871E+05 .8S55E+04 3.12 .112 .00368 255.48
16.25 518 .0118 .853E+05 .813E+04 3.02 .100 .00361 250.20
16.75 483 .0110 .813E+05 .758E+04 2.93 .087 .00344 238.37
17.25 472 .0108 .822E+05 .757E+04 2.85 .080 .00347 240.88
17.75 455 .0104 .BOOE+05 .722E+04 2.77 .072 .00338 234.45
18.25 410 .0094 .781E+05 .717E+04 2.69 -064 .00330 228.98
18.75 371 .0085 .766E+05 .696E+04 2.62 .058 .00324 224.63
19.25 325 .0074 .761E+05 .695E+04 2.55 .053 .00322 223.08
19.75 281 .0064 .748E+05 .696E+04 2.49 .049 .00316 219.24
20.25 226 .0052 .742E+05 .690E+04 2.43 .045 .00313 217.44
20.75 183 .0042 .729E+05 .700E+04 2.37 .041 .00308 213.75
21.25 121 .0028 .724E+05 .695E+04 2.31 -038 .00306 212.37
21.75 70 .0016 .710E+05 .693E+04 2.26 .035 .00300 208.30
22.25 37 .0008 .712E+405 .732E+04 2.21 .032 .00301 208.79
22.75 11 .0003 .685E+05 .765E+04 2.16 .029 .00289 200.79
23.25 9 .0002 .715E+05 .6BlE+04 2.11 .028 .00302 209.61
23.75 6 .0001 .683E+05 .734E+04 2.07 .026 .0028% 200.14
24.25 5 .0001 .701E+05 .B874E+04 2.03 .025 .00296 205.47
24.75 1 .0000 .698E+05 .845E+04 1.98 .023 .00295 204.68
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B280290 signifies a 28 rpm data set that was collected starting in February 1990.
The total number of bin entries is 43,725. The sample rate, samples per entry, air
density to which the data are corrected, and tare torque are all part of the header
information. Finally, a list of the user-chosen bins records is provided, and in this
case, we have chosen all available records, which consist of four series with 16
records each and one series with one record.

3.3.2 34 RPM and 38 RPM

- A set of performance plots is included in this subsection for both the 34 rpm data
set (Figs. 3.6 to 3.10 and Table IV) and the 38 rpm data set (Figs. 3.11 to 3.15 and
Table V).

The 34 rpm torque and power curves show the rollover due to stall regulation
that occurs in the higher winds (Figs. 3.6 and 3.7). Peak power is 484 kW at 17.25
m/s (Fig. 3.7), and positive rotor power is first produced at 5.5 m/s. Peak G, is
0.401 and occurs at a tip speed ratio of 6.12 or a 9.75 m/s wind speed (Fig. 3.8).
The Ky, curve is shown in Fig. 3.9 and the distribution of bin entries in Fig. 3.10.
Over 1000 bin entries were gathered in wind bins from 1.25 m/s to 16.25 m/s
(Table IV).

The turbine is not operated at 38 rpm in winds with sufficient velocity to observe
stall regulation. Design constraints limit turbine operation to 13 m/s at 38 rpm;
the drive train, including the generator, was designed for a maximum sustained
power production of 500 kW. With overload factors the generator system can
safely produce as much as 625 kW, however, above 625 kW a runaway condition
could occur. Stall regulation at 38 rpm would take place in the 700 - 800 kW
range, well above the design limits. Figures 3.11 to 3.15 show torque, power, Cp,
K, and bin entry distribution for the 38 rpm data set, and Table V lists the data
plotted in these figures. The goal of 1000 points in each bin was achieved to wind
speeds of only 9.25 m/s.

Table VI summarizes the rotor power data for several wind speeds (in 2.5 m/s
increments) at the three rotation rates. Included for each rpm are the peak Cp,
peak power, and the wind speed at which positive rotor power is first achieved.
As expected, the amount of power required to turn the turbine in zero winds
increases with rpm. The maximum C;, achieved is 0.409 occurring at 28 rpm in
winds of 7.75 m/s.

The measured powers at the three preselected rotation rates are very consistent
with predicted values (Berg et al. 1990). Figures 3.16 and 3.17 are reproduced
from that report and compare the measured rotor (shaft) powers at 28 and 34
rpm to predictions developed with SLICEIT, a momentum-based, double
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Table IV. Performance Data - 34 RPM

B340290: BU-34 Turbine at 34.0 RPM, Total # pts =
Sample rate = 20.000 HZ, Samples/pt = 35, min pts/bin
Air Density = 1.226 Kg/m**3(CH 41 Corrected)
CH 41 Tare Torque = .3000E+04 (Nm)
Series # Records:
1 1 2 3 4 5 66 7 8 9 10 11 12 13
2 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1 2 3 4 5 6 7 8 910 11 12 13
4 1 2 3 4 5 6 7 8 9 10 11 12 13
5 i1 2 3 4 5 6 7 8 9 10 11 12 13
6 1 2 3 4 5 6
CHAN # 41 (KNML) + TARE [Nm])
M/S #PTS PROB MAV RMV RW/V CP

.132E+05 .102E+04 238.55 -5133.195
.133E+05 .102E+04 79.52 -182.189

.25 635 .0104
.75 867 .0142

1.25 1596 .0262 -.133E+05 .104E+04 47.71 -41.556 -
1.75 2026 .0333 -.133E+05 .110E+04 34.08 -15.077 -
2.25 1752 .0288 -.131E+05 .114E+04 26.51 -7.014 -
2.75 1396 .0229 -.124E+05 .121E+04 21.69 -3.618 -
3.25 1086 .0178 -.113E+05 .129E+04 18.35 -2.001 -
3.75 956 .0157 -.889E+04 .146E+04 15.90 -1.026 -
4.25 1365 .0224 -.592E+04 .16BE+04 14.03 -.469 -
4.75 2145 .0352 ~-.325E+04 .186E+04 12.56 -.184 -
5.25 2941 .0483 ~.329E+03 .201E+04 11.36 -.014 -
5.75 3085 .0507 .375E+04 .231E+04 10.37 .120
6.25 2962 .0486 .B42E+04 .274E+04 9.54 .210
6.75 2884 .0474 .137E+05 .324E+04 8.84 .270
7.25 2741 .0450 .185E+05 .371E+04 8.23 .295
7.75 2334 .0383 .246E+05 .418E+04 7.70 .322
8.25 1931 .0317 .313E+05 .457E+04 7.23 .339
8.75 1508 .0248 .397E+05 .496E+04 6.82 -360
9.25 1231 .0202 .510E+05 .S536E+04 6.45 .392
9.75 1263 .0207 .611E+05 .570E+04 6.12 .401
10.25 1386 .0228 .702E+05 .610E+04 5.82 .396
10.75 1445 .0237 .792E+05 .650E+04 5.55 .388
11.25 1583 .0260 .B8B89E+05 .692E+04 5.30 .380
11.75 1511 .0248 .976E+05 .731E+04 5.08 .366
12.25 1703 .0280 .104E+06 .762E+04 4.87 .344
12.75 1672 .0275 .112E+06 .801E+04 4.68 .328
13.25 1500 .0246 .117E+06 .832E+04 4.50 .306
13.75 1408 .0231 .123E+06 .B864E+04 4.34 .289
14.25 1371 .0225 .128E+06 .87BE+04 4.19 .270
14.75 1341 .0220 .133E+06 .B895E+04 4.04 .251
15.25 1253 .0206 .134E+06 .887E+04 3.91 .230
15.75 1141 .0187 .134E+06 .B78E+04 3.79 .209
16.25 1114 .0183 .136E+06 .B864E+04 3.67 .192
16.75 938 .0154 .134E+06 .843E+04 3.56 .173
17.25 762 .0125 .136E+06 .B22E+04 3.46 .161
17.75 691 .0113 .133E+06 .804E+04 3.36 .145
18.25 629 .0103 .132E+06 .77SE+04 3.27 .132
18.75 560 .0092 .130E+06 .752E+04 3.18 .120
19.25 473 .0078 .128E+06 .724E+04 3.10 .109
19.75 402 .0066 .125E+06 .699E+04 3.02 .C98
20.25 330 .0054 .125E+06 .692E+04 2.95 .091
20.75 269 .0044 .122E+06 .675E+04 2.87 .083
21.25 209 .0034 .122E+06 .662E+04 2.81 .077
21.75 169 .0028 .121E+06 .642E+04 2.74 .071
22.25 134 .0022 .115E+06 .627E+04 2.68 -063
22.75 77 .0013 .116E+06 .612E+04 2.62 .060
23.25 55 .0009 .114E+06 .642E+04 2.57 .055
23.75 33 .0005 .111E+06 .660E+04 2.51 .050
24.25 10 .0002 .106E+06 .646E+04 2.46 . 045
24.75 8 .0001 .103E+06 .552E+04 2.41 . 041
25.25 4 .0001 .114E+06 .560E+04 2.36 .043
25.75 3 .0000 .108E+06 .609E+04 2.32 .038
26.75 2 .0000 .107E+06 .635E+04 2.23 .034
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60890.

= 1.

14 15
14 15
14 15

14 15

KP
.00038
.00038
.00038
.00038
.00038
.00035
.00032
.00025
.00017
.00009
.00001
.00011
.00024
.00039
.00053
.00071
.00090
.00114
.00146
.00175
.00201
.00227
.00255
.00280
.00298
.00321
.00336
.00354
.00368
.00380
.00385
.00385
.00389
.00384
.00390
.00382
.00378
.00373
.00366
.00357
.00358
.00349
.00349
.00346
.00329
.00332
.00326
.00317
.00305
.00297
.00327
.00308
.00306

16

16
16
16

-46.96
-47.47
-47.52
-47.31
-46.78
-44.06
~40.23
-31.67
-21.07
-11.57
-1.17
13.35
29.97
48.66
65.80
87.68
111.60
141.20
181.46
217.70
249.98
282.15
316.61
347.56
370.31
398.45
416.79
439.40
456.98
472.25
478.03
478.09
482.90
477.28
484.08
474.73
469.57
462.87
454.89
443.56
444.69
433.04
432.93
429.26
408.48
411.73
405.00
394.17
378.70
368.34
405.77
383.06
379.60
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Figure 3.11. Rotor Torque vs. Wind Speed at 38 RPM
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Figure 3.12. Rotor Power vs. Wind Speed at 38 RPM
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Table V. Performance Data - 3§ RPM

B380290: BU-34 Turbine at 38.0 RPM, Total # pts = 28496.
Sample rate = 20.000 HZ, Samples/pt = 32, min pts/bin = 1.
Air Density = 1.226 Kg/m**3(CH 41 Corrected)
CH 41 Tare Torque = .3000E+04 (Nm)
Series # Records:
1 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
2 1 2 3 4 5 6 7 8 910 11 12 13 14 15

CHAN # 41 (KNML) + TARE [Nm]

M/S #PTS PROB MAV RMV RW/V CP KP Kw
.25 301 .0106 -.177E+05 .121E+04 266.62 -7689.044 -.00041 -70.34
.75 394 .0138 -.177E+05 .124E+04 88.87 -284.927 -.00041 -70.38

1.25 637 .0224 -.175E+05 .125E+04 53.32 ~-60.994 -.00040 -69.75
1.75 839 .0294 -.172E+05 .128E+04 38.09 -21.780 -.00039 -68.34
2.25 846 .0297 -.165E+05 .135E+04 29.62 ~9.869 -.00038 -65.82
2.75 1054 .0370 -.15BE+05 .153E+04 24.24 -5.160 -.00036 -62.83
3.25 1424 .0500 -.150E+05 .166E+04 20.51 -2.960 -.00034 -59.50
3.75 1905 .0669 ~.136E+05 .178E+04 17.77 -1.752 -.00031 -=54.10
4.25 2251 .0790 -.122E+05 .18lE+04 15.68 -1.076 -.00028 -48.35
4.75 1939 .0680 -.992E+04 .184E+04 14.03 -.629 ~-.00023 =~39.46
5.25 1784 .0626 -.660E+04 .197E+04 12.70 -.310 -.00015 -26.26
5.75 1620 .0569 =-.230E+04 .213E+04 11.59 ~.082 -.00005 -9.15
6.25 1716 .0602 .349E+04 .241E+04 10.66 .097 .00008 13.87
6.75 1850 .0649 .798E+04 .263E+04 9.87 .176 .00018 31.77
7.25 1722 .0604 .140E+05 .298E+04 9.19 .249 .00032 55.53
7.75 1615 .0567 .196E+05 .337E+04 8.60 .286 .00045 77.96
8.25 1457 .0511 .264E+05 .371E+04 8.08 .319 .00061 104.91
8.75 1363 .0478 .332E+05 .407E+04 7.62 .337 .00076 132.01
9.25 1097 .0385 .3BOE+05 .427E+04 7.21 .326 .00087 151.23
9.75 783 .0275 .442E+05 .450E+04 6.84 .324 .00102 176.03
10.25 580 .0204 .538E+05 .475E+04 6.50 .340 .00124 214.22
10.75 350 .0123 .677E+05 .S503E+04 6.20 .370 .00155 269.40
11.25 314 .0110 .769E+05 .S531E+04 5.92 .367 .00176 305.86
11.75 278 .0098 .B35E+05 .560E+04 5.67 .350 .00192 332.28
12.25 183 .0064 .B871E+05 .585E+04 5.44 .322 .00200 346.52
12.75 109 .0038 .978BE+05 .611E+04 5.23 .321 .00224 389.03
13.25 42 .0015 .106E+06 .638E+04 5.03 -310 .00244 422.84
13.75 30 .0011 .109E+06 .642E+04 4.85 .284 .00249 431.76
14.25 12 .0004 .96BE+05 .643E+04 4.68 .227 .00222 385.07
14.75 1 .0000 .939E+05 .663E+04 4.52 .199 .00216 373.71
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Table V1. Performance Data Summary

Wind
Speed 28 RPM 34 RPM 38 RPM
0 -27.2 -47.0 -70.3
2.75 -19.1 -44.1 -62.8
5.25 17.3 -1.2 -26.3
7.75 111.4 87.7 78.0
Power
(kW) 10.25 208.8 250.0 214.2
12.75 265.2 398.4 389.0
15.25 260.3 478.0 --
17.75 234 .4 474.7 --
20.25 217 .4 4447 --
Peak Cp 0.409 0.401 Insufficient
@7.75 m/s @ 9.75 m/s Data
Peak Power (kW) 268.5 484 .1 Exceeds
@ 13.75 m/s @ 17.25 m/s 625 kW
Wind Speed at Initial
Positive Power 4.5 m/s 5.3 m/s 5.9 m/s
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multiple streamtube code based on the CARDAA code (Paraschivoiu 1981).
SLICEIT is a steady wind code and incorporates the Gormont dynamic stall
model. In Figs. 3.16 and 3.17 SLICEIT calculations predict the values of
maximum power and the associated wind speeds but over-predict the
performance in winds of 5 to 10 m/s.

3.3.3 Effects of Joint Fairings and Bug Contamination

The over-predictions in the low winds observed in Figs. 3.16 and 3.17 are thought
to be due primarily to drag on the blade-to-blade joints, which have many
exposed bolt heads. To verify this, joint fairings were constructed over the four
blade-to-blade joints on each blade. The fairings, made of lightweight foam
epoxy, extend over the entire joint and were shaped to an aerodynamic surface.
Test data collected with the faired blade joints are compared to the previous 28
rpm data set in Fig. 3.18. The 2/90 data set is the unfaired, clean blade data
already shown, and the 12/90 data set is the case of clean blades with fairings
installed. When compared to the "clean blades with no fairings” data, the "clean
blades with fairings" data show improved performance at the low wind speeds
from 4 to 11 m/s. Also, the "clean blades with fairings" data show significant
improvement in winds greater than 17 m/s. This behavior may be partly due to
stochastic effects and the availability of less data at these high winds.

Later in the spring of 1990 the blades became contaminated with bug residue. A
set of data was collected at 28 rpm with the dirty, faired blades (4/90) and is
compared to the clean, faired blade data in Fig. 3.19. Here we observe that the
dirty blades exhibit lower performance in winds to 11 m/s, but then significantly
outperform the clean blades in winds greater than 11 m/s. This increased
performance in high winds by the dirty blades is the opposite of anything observed
before on either HAWTs or VAWTs. This behavior is not clearly understood,
but it is speculated that the bugs are acting like tiny vortex generators. Further
study is underway to understand this phenomenon.

Tables VII and VIII present the 4/90 and 12/90 data in detail.
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Table VII. Performance Data with Joint Fairings - 28 RPM

B281290: BU-34 Turbine at 28.0 RPM, Total # pts = 46520.
Sample rate = 20.000 HZ, Samples/pt = 43, min pts/bin = 100.
Air Density = 1.226 Kg/m**3(CH 41 Corrected)

CH 41 Tare Torque = .3000E+04 (Nm)

Series # Records:

10 11 12 13 14 15 16
10 11 12 13 14 15 16
10 11 12 13 14 15 16
10 11 12 13 14 15 16

L SRR
Sl R N ]
NN N
WWLWLW
P NN
[CEC RGN
Lo e N
KRN NN
oo
TRV VY]

CHAN # 41 (KNML) + TARE [Nm)

M/S #PTS PROB MAV RMV RW/V cP KP KW

.75 201 .0043 -.826E+04 .117E+04 65.48 -98.068 -.00035 =-24.22
1.25 1162 .0249 -.821E+04 .123E+04 39.29 -21.057 -.00035 -24.08
1.75 1684 .0361 -.810E+04 .131E+04 28.06 -7.565 —.00034 -23.74
2.25 1034 .0221 -.835E+04 .162E+04 21.83 -3.669 -.00035 -24.47
2.75 1081 .0231 -.840E+04 .222E+04 17.86 -2.022 -.00035 -24.62
3.25 1226 .0263 -.646E+04 .265E+04 15.11 -.943 -.00027 -18.96
3.75 1205 .0258 -.339E+04 .286E+04 13.10 ~.322 -.00014 -9.94
4.25 1409 .0302 -.116E+03 .276E+04 11.56 -.008 ~-.00000 -.34
4.75 1232 .0264 .355E+04 .319E+04 10.34 .166 .00015 10.40
5.25 1418 .0304 .871E+04 .450E+04 9.35 .301 .00037 25.53
5.75 1556 .0333 .126E+05 .538E+04 8.54 .331 .00053 36.85
6.25 1494 .0320 .171E+05 .630E+04 7.86 .351 .00072 50.12
6.75 1311 .0281 .232E+05 .725E+04 7.28 .378 .00098  68.09
7.25 1092 .0234 .308E+05 .820E+04 6.77 .404 .00130 90.17
7.75 1173 .0251 .391E+05 .908E+04  6.34 .421 .00165 114.75
8.25 1194 .0256 .476E+05 .967E+04 5.95 .425 .00201 139.69
8.75 1504 .0322 .544E+05 .102E+05 5.61 .407 .00230 159.65
9.25 1926 .0412 .616E+05 .107E+05 5.31 .390 .00261 180.75
9.75 1769 .0379 .685E+05 .110E+05 5.04 .370 .00290 200.88
10.25 1795 .0384 .749E+05 .112E+05 4.79 .348 .00317 219.66
10.75 1863 .0399 .799E+05 .113E+05 4.57 .322 .00338 234.19
11.25 1818 .0389 .833E+05 .114E+05 4.37 .293 .00352 244.16
11.75 1859 .0398 .871E+05 .114E+05 4.18 .269 .00368 255.45
12.25 1779 .0381 .898E+05 .113E+05 4.01 .245 .00379 263.19
12.75 1563 .0335 .911E+05 .111E+05 3.85 .220 .00385 267.20
13.25 1441 .0309 .915E+05 .108E+05 3.71 .197 .00387 268.21
13.75 1113 .0238 .908E+05 .104E+05 3.57 .175 .00384 266.11
14.25 861 .0184 .912E+05 .996E+04  3.45 .158 .00385 267.32
14.75 712 .0152 .902E+05 .949E+04  3.33 .141 .00381 264.50
15.25 680 .0146 .901E+05 .906E+04  3.22 .127 .00381 264.28
15.75 587 .0126 .86S5E+05 .860E+04  3.12 .111 .00366 253.75
16.25 582 .0125 .861E+05 .832E+04  3.02 .101 .00364 252.58
16.75 526 .0113 .821E+05 .798E+04 2.93 .088 .00347 240.84
17.25 540 .0116 .846E+05 .788E+04  2.85 .083 .00358 248.18
17.75 504 .0108 .841E+05 .779E+04 2.77 .075 .00355 246.45
18.25 534 .0114 .829E+05 .766E+04  2.69 .068 .00350 243.02
18.75 494 .0106 .823E+05 .742E+04  2.62 .063 .00348 241.46
19.25 418 .0090 .811E+05 .746E+04  2.55 .057 .00343 237.81
19.75 414 .0089 .B06E+05 .751E+04  2.49 .052 .00341 236.29
20.25 366 .0078 .B803E+05 .737E+04  2.43 .048 .00339 235.33
20.75 356 .0076 .786E+05 .736E+04  2.37 .044 .00332 230.55
21.25 326 .0070 .774E+05 .727E+04  2.31 .040 .00327 227.08
21.75 246 .0053 .774E+05 .730E+04 2.26 .038  .00327 226.99
22.25 189 .0040 .775E+05 .722E+04  2.21 .035 .00327 227.11
22.75 160 .0034 .765E+05 .751E+04 2.16 .033  .00323 224.27
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Table VIII. Performance Data with Bug Contamination
and Joint Fairings - 28 RPM

B280490: BU-34 Turbine at 28.0 RPM, Total # pts = 45939.
Sample rate = 20.000 HZ, Samples/pt = 43, min pts/bin = 100.

Air Density

1.226 Kg/m**3(CH 41 Corrected)

CH 41 Tare Torque = .3000E+04 (Nm)
Series # Records:

M/S
.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25
4.75
5.25
5.75
6.25
6.75
7.25
7.75
8.25
8.75
9.25
9.75
10.25
10.75
11.25
11.75
12.25
12.75
13.25
13.75
14.25
14.75
15.25
15.75
16.25
16.75
17.25
17.75

10 11 12 13 14 15
10 11 12 13 14 15
10 11 12 13 14 15
10 11 12 13 14 15

MewN e
e
NN N
WWWwWww
I NN
L ECNCNT D)
Ao
N ECRNRN RN
0 ®o® o

VWYV

CHAN # 41 (KNML) + TARE (Nm]

#PTS PROB MAV RMV RW/V CP KP
320 .0069 -.105E+05 .122E+04 65.48 -124.837 -.00044
710 .0153 -.103E+05 .127E+04 39.29 -26.289 -.00043

1160 .0250 -.105E+05 .132E+04 28.06 -9.838 -.00045

1423 .0306 -.102E+05 .144E+04 21.83 -4.486 -.00043

1363 .0293 -.929E+04 .l68E+04 17.86 ~2.237 ~.00039

1374 .0296 -.767E+04 .207E+04 15.11 -1.120 -.00032

1430 .0308 -.613E+04 .233E+04 13.10 -.582 -.00026

1480 .0319 -.28B1E+04 .266E+04 11.56 -.183 -.00012

1621 .0349 .631E+03 .299E+04 10.34 .029 .00003

1782 .0384 .540E+04 .372E+04 9.35 .187 .00023

2024 .0436 .104E+05 .480E+04 8.54 .273  .00044

2249 .0484 .157E+05 .594E+04 7.86 .323 .00067

2454 .0528 .20BE+05 .676E+04 7.28 .339 .00088

2337 .0503 .267E+05 .746E+04 6.77 .351 .00113

2195 .0473 .343E+05 .821E+04 6.34 .369 .00145

2073 .0446 .418E+05 .B85E+04 5.95 .372 .00177

1999 .0430 .490E+05 .939E+04 5.61 .366 .00207

1983 .0427 .559E+05 .982E+04 5.31 .354 .00236

1954 .0421 .646E+05 .103E+05 5.04 .349 .00273

2002 .0431 .717E+05 .105E+05 4.79 .333 .00303

1802 .0388 .796E+05 .107E+05 4.57 .321 .00337

1725 .0371 .856E+05 .109E+05 4.37 .301 .00362

1691 .0364 .895E+05 .111E+05 4.18 .276 .00379

1557 .0335 .943E+05 .113E+05 4.01 .257 .00399

1258 .0271 .995E+05 .1l1S5E+05 3.85 .240 .00420
976 .0210 .103E+06 .1ll6E+05 3.71 .222 .00436
729 .0157 .109E+06 .1l1BE+05 3.57 .209 .00459
612 .0132 .110E+06 .116E+05 3.45 .190 .00463
443 .0095 .110E+06 .114E+05 3.33 .171 .00464
330 .0071 .111E+06 .1l1l1E+05 3.22 .157 .00469
249 .0054 .109E+06 .107E+05 3.12 .140 .00461
195 .0042 .110E+06 .105E+05 3.02 .128 .00465
166 .0036 .110E+06 .1l03E+05 2.93 .117 .00464
135 .0029 .107E+06 .979E+04 2.85 .104 .00450
138 .0030 .107E+06 .943E+04 2.77 .095 .00450
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16
16

16

-30.84
~-30.06
-30.87
-29.92
-27.24
-22.50
-17.97
~8.23
1.85
15.83
30.39
46.17
61.04
78.31
100.49
122.44
143.75
164.04
189.43
210.13
233.47
250.88
262.56
276.44
291.60
302.54
318.69
321.26
321.72
325.61
319.51
322.39
321.57
312.42
312.30



4.0 STRUCTURAL PERFORMANCE

A VAWT blade, as it rotates, is subjected to two main types of loading--steady
loading, which consists of loads due to gravity and centrifugal effects, and
vibratory loading, which is caused by the wind and consists of both harmonic (due
to blade rotation) and random (due to turbulence in the wind) components. This
section presents measured structural response data including gravity stresses,
centrifugal stresses, and vibratory stresses consisting of both the harmonic and
random components.

4.1 Gravity Stresses

After the completion of blade instrumention and before rotor assembly, the strain
gauges were calibrated by hanging known weights from each blade section,
recording the resulting strains, and comparing the measurements to analytical
values. The entire set of gauges functioned correctly, and the measured strains
agreed with predictions to within 2 % (Sutherland 1988).

To measure gravity stresses, the strain gauges were zeroed with the blades on the
ground and then monitored immediately after blade mounting. The resulting
strains were converted to stress values in MPa. Figure 4.1 illustrates the
measured flatwise gravity stress distribution. Stresses along the blade (from top
to bottom of the turbine) are plotted left to right on the x-axis, and positive stress
corresponds to tension on the outboard side of the blade. The location of the
different blade sections that make up the blade are noted along the x-axis. Also
shown in Fig. 4.1 are analytical values, and it can be seen that the measured stress
distribution is generally as predicted (Ashwill 1990). Discontinuities in the stress
distribution occur at the joints where the blade stiffness changes; differences in
the measured data between blades one and two are observed in the 36-inch and
lower 42-inch sections.

4.2 Centrifugal Stresses

Figure 4.2 shows a time series record of rotation speed and an upper root,
flatwise gauge. Since the strain gauges are zeroed before testing, the mean
component of the flatwise stress signal during rotation is caused by centrifugal
loading only. As the rpm increases from 0 to 40 rpm in Fig. 4.2, flatwise blade
bending at the upper root increases due to the larger centrifugal loading. By
averaging each flatwise gauge for 40 seconds at each rpm, centrifugal stresses are
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determined. The increase of centrifugal stresses with higher rpm continues to
offset the bending stresses due to gravity until the mean stresses are minimized at
37.5 rpm, the troposkien rpm (Ashwill and Leonard 1986). Figures 4.3 and 4.4
show the distribution of measured and predicted flatwise centrifugal stresses
along the blade at 28 and 40 rpm. The stresses at the top (bottom) of the blade
are plotted on the left (right) side of the x-axis. These plots show the very good
agreement between measurements and predictions at both 28 and 40 rpm
(Ashwill 1990).

4.3 Natural Frequencies

Before initial turbine operation, a modal test was performed on the parked rotor
by Sandia’s Modal Test Group. Accelerometers temporarily attached to the
blades, tower and guy cables measured turbine motion. The measurements were
used to estimate the mode shapes, their frequencies of vibration and modal
damping values (Carne et al. 1989).

The first eight natural frequencies obtained from the modal test are compared to
analytical predictions from a NASTRAN frequency analysis in Table IX. The
mode number and shape are listed in the first two columns. The third column
shows the natural frequencies for the stationary rotor measured by the modal test
during wind excitation. Column four lists the analytical values. There is excellent
agreement between the measured and predicted frequencies for these eight
modes. All predicted modal frequencies are within 2.6% of the measurements
except for the first blade edgewise mode (5.2%). Additional information about
these comparisons is provided in Ashwill 1990.

Amplitude spectra were obtained from the strain gauge data collected during the
resonance surveys. Modal frequencies and harmonic excitations (per revs)
appear as peaks in the amplitude spectra. By plotting these measured natural
frequencies at several rotation rates on the predicted fan-plot, as shown in Fig.
4.5, one can estimate the accuracy of predictive techniques. For example, the
measured frequencies of the two first flatwise modes plotted in Fig. 4.5 are the
antisymmetric and symmetric modes, which are predicted to vibrate at nearly the
same frequency. The first blade edgewise mode (1BE) was under-predicted by
5% at zero rpm, but above 25 rpm the observed and predicted frequencies nearly
coincide. The predicted natural frequencies below 3 Hz closely approximate the
measured values over almost the entire range of operating speeds (Ashwill 1990).

4.4 Vibratory Stresses

Vibratory stresses are caused by wind loading and are often described
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MODE MODE | MODAL | ANALYT- | DEVIA-

NUMBER | SHAPE* | TEST ICAL TION
1,2 1FA/1FS 1.06 1.05 1.0%

3 1Pr 1.52 1.56 2.6%

4 1BE 1.81 1.72 5.2%

5 2FA 2.06 2.07 0.5%

6 2FS 2.16 2.14 1.0%

7 1TI 2.50 2.46 1.6%

8 1TO 2.61 2.58 1.2%

* Mode Shape Abbreviation Key:

1FA = First Flatwise Antisymmetric
1FS = First Flatwise Symmetric

1Pr = First Propeller

1BE = First Blade Edgewise

2FA = Second Flatwise Antisymmetric
2FS = Second Flatwise Symmetric
1TI = First Tower In-Plane

1TO = First Tower Out-of-Plane

Table IX. Parked Modal Frequencies (Hz) - Test and Analysis
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analytically by the root mean square (RMS) of the stress signal. For the
measured data we use the root mean variances (RMYV) of each stress bin which is
identical to the RMS for these measurements.

Included in this report are binsed strain data for the 28, 34 and 38 rpm data sets.
As previously mentioned, the data have been adjusted by calibration factors,
which convert the strain signals to stress values in MPa. Each strain gauge has a
four-digit identifier code that provides information about the gauge location and
type of strain measurement. The first two digits of the identification code
_indicate the gauge location. For example,

1Q indicates that the gauge is located on blade one at the Q
location. The schematic of Fig. 4.6 shows the locations of
strain gauges.

1A through 1Q and 2A through 2X are strain gauges on
blades one and two, respectively.

TS indicates gauges located at the column (or tower) center
and TT, the lower column.

TU is a location on the lower shaft above the brakes and
stand.

The last two digits of the code indicate the type of strain measurement. For
example, gauge 1AML is a lead-lag (L) bending moment (M) gauge located on
blade one at section A. The current set of active strain gauges, which are listed in
Table X, measure mostly flatwise or lead-lag bending, however, a few measure
average axial strain across the blade section or direct strain at a particular
location. The lead-lag bending gauges are calibrated to provide the maximum
bending stress, which occurs at the trailing edge. There are some 70 strain gauges
available, but only 30 are active at a time. As of this writing four gauges have
failed and been replaced in the data acquisition system by working gauges.

Table X. Test Bed Strain Gauges

Channel Code Measurement Type (Units)
Number
01 1AML Lead-lag Bending (MPa)
02 1AMF Flatwise Bending (MPa)
03 1DMF Flatwise Bending (MPa)

41



18.00

RMV Stress (MPa) - 1AML

4.00 6.08

2.00

BLADE 1 ¢tH T TS 2H¢ BLADE 2
1 21
24
1L | 2‘(2L
2M
N N
10
1P w 2p
1Q 2Q
sy
{
J

Figure 4.6. Strain Gauge Locations

2

Figure 4.7. Upper Root, Flatwise RMV Stress vs. Wind Speed at 28 RPM

x;!;
- x!‘
x"x
x
X
x
x
- X
t
+ X
l!
x
- xx
pet¥
X
x!
T 4
xr!g*!!*;
S B BRI TR PR ST
00 5.00 10.900 15.06  20.00  25.00  30.00
Wind Speed (WS)

42



Table X. (continued)

04 1EML Lead-lag Bending (MPa)

05 1EMF Flatwise Bending (MPa)

06 1FMF Flatwise Bending (MPa)

07 2HML Lead-lag Bending (MPa)

08 2HF1 Flatwise Bending (MPa)

09 1HAF Average Axial (MPa)

10 1IMF Flatwise Bending (MPa)

11 1LML Lead-lag Bending (MPa)

12 1LMF Flatwise Bending (MPa)

13 TSMI Tower In-plane Bending (MPa)
14 TSMO Tower Out-of-plane Bending(MPa)
15 INMF Flatwise Bending (MPa)

16 10MF Flatwise Bending (MPa)

17 1PMF Flatwise Bending (MPa)

18 1PAL Average Lead-lag Axial (MPa)
19 1PAF Average Flatwise Axial (MPa)
20 1QML Lead-lag Bending (MPa)

21 1QMF Flatwise Bending (MPa)

22 2XML Lead-lag Bending (MPa)

23 2XMF Flatwise Bending (MPa)

24 2HMF Flatwise Bending (MPa)

25 TURT Torsional Stress (MPa)

26 2IDF Direct Strain (Stress,MPa)

27 2NDF Direct Strain (Stress,MPa)

28 2QDF1 Direct Strain (Stress,MPa)

29 2QDF2 Direct Strain (Stress,MPa)

30 2QDF3 Direct Strain (Stress,MPa)

Figure 4.7 is a bins plot of the root mean variance (RMV) of stress versus wind
speed at 28 rpm for gauge 1AMF. This gauge is located on blade one at the
upper root and measures flatwise bending. As can be seen in Fig. 4.7, the flatwise
stress at this location increases with increasing wind speed. The units of stress are
megapascals (MPa). (1 MPa is 145 psi.)

Appendices A, B, and C contain sets of RMV stress vs. wind speed plots for the
active strain gauges of the 28, 34 and 38 rpm data sets, respectively. The data sets
are composed of the same bin records used for the plots described in the
aerodynamic performance section (3.0). Tables XI, XII, and XIII summarize the
RMYV stress data at wind speeds of 6.75 m/s (15 mph), 11.25 m/s (25 mph), 15.75
m/s (35 mph) and 20.25 m/s (45 mph).
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Table XI. Summary of RMV Stresses (MPa) at 28 RPM

Wind Speed (m/s)

Wind Speed (m/s)

.75 11.25 15.75 20.25 .75 11.25 15.75 20.25
Gauge Gauge
Code Code
1AMF .22 3.91 7.18 9.93 1AML .09 2.42 5.21 6.22
1DMF .05 2.17 5.32 8.14
1EMF .31 2.53 5.79 8.74 1EML .78 1.34 2.74 3.41
1FMF .51 2.78 5.60 8.13 2HML .56 1.26 2.62 3.33
1IMF .76 4.50 6.84 8.71
1IMF .16 2.01 4.57 7.13 1IML .85 1.49 .08 3.72
1NMF .86 1.67 3.76 5.81
10MF .10 1.75 2.60 3.20
1PMF 71 2.73 4.14 5.28
1QMF .69 4.30 7.09 9.55 1QML .98 1.85 4.52 5.52
2XMF .86 4.76 6.76 8.70 2XML .80 1.53 2.22 2.54
2HMF .27 2.45 4.09 6.37
TSMI .87 1.69 3.79 5.86 TSMO .31 0.68 1.15 1.39
1PAF .36 0.59 1.11 1.34 1PAL .17 0.27 0.43 0.51
TURT .16 0.20 0.17 0.14
21IDF .89 4.87 7.30 9.76 2NF1 .93 1.87 3.51 5.32
2HF1 .71 3.17 4.73 7.02
QDF1 .35 4.30 6.72 9.11
QDF3 .67 4.46 6.97 9.35




Table XII. Summary of RMV Stresses (MPa) at 34 RPM

Wind Speed (m/s) Wind Speed (m/s)
.75 11.25 15.75 20.25 .75 11.25 15.75 20.25
Gauge Gauge
Code Code
1AMF 47 4.34 7.09 10.10 1AML .16 2.55 5.12 7.21
iDMF .26 2.33 4.40 6.62
1EMF .50 2.70 4.92 7.55 1EML .88 1.74 2.80 3.81
1FMF .63 2.94 5.11 7.58 2HML .56 1.36 2.94 3.98
1IMF .04 5.01 7.19 9.18
1LMF .43 2.35 3.82 5.54 1IML .94 1.88 3.12 4.24
1NMF .99 1.80 3.24 4.70
10MF .18 1.93 2.81 3.64
1PMF .93 3.16 4.47 5.69
1QMF .19 5.17 7.47 9.66 1QML .05 2.19 4.46 6.35
2XMF .07 5.26 7.67 9.62 2XML .95 1.86 2.80 3.44
2HMF .49 2.67 4.49 6.26
TSMI .98 1.81 3.27 4.75 TSMO A4l 0.78 1.25 1.56
1PAF 42 0.77 1.17 1.53 1PAL .18 0.31 0.52 0.67
TURT .14 0.16 0.17 0.16
21DF .19 5.46 8.17 10.40 2NF1 .01 1.88 3.58 5.34
2HF1 .97 3.58 5.51 7.10
QDF1 .68 3.49 4.03 4.45
QDF3 .08 5.25 8.13 10.40
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Table XIII. Summary of RMV Stresses (MPa) at 38 RPM

Wind Speed (m/s) Wind Speed (m/s)
.75 11.25 15.75 6.75 11.25 15.75
Gauge Gauge
Code Code
1AMF .85 .25 1AML 2.13 3.98
1DMF .66 .58
1EMF .85 .77 1EML 1.43 2.60
1FMF .90 .99 2HML 1.16 2.12
1IMF .28 .87
11MF .77 .58 1IML 1.59 2.87
1NMF .23 .00
10MF .33 .83
1PMF .14 .13
1QMF .67 .31 1QML 2.08 3.77
2XMF .27 .17 2XML 1.08 2.03
2HMF .84 .83
TSMI .23 .02 TSMO 0.41 0.84
1PAF .61 .07 1PAL 0.25 0.39
TURT .13 .14
21IDF .51 .49 2NF1 1.22 1.98
2HF1 .34 .78
QDF1 .14 .52
QDF3 .52 .60
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Several trends are evident:

1. The blade roots have the highest lead-lag and flatwise
vibratory stresses at a given wind speed--for all three rotation
rates.

2. Stresses increase (not necessarily linearly) with increased
wind speed for all gauges at the three rotation rates.

3. Lead-lag stresses increase as rpm increases from 28 to 34
to 38 rpm for a given windspeed.

4. Flatwise stresses do not necessarily increase with
increased rpm for a given windspeed.

5. Tower in-plane bending stresses are significantly higher
than tower out-of-plane bending stresses at a given rpm and
windspeed.

6. ‘Torsional stresses in the lower shaft above the brakes are
very low.

7. Vibratory stresses at the upper root of blade one are
similar in value to those at the lower root of blade one (for
both the flatwise and lead-lag directions). As one would
expect, upper root flatwise stresses at a given location on
blade one and two are very comparable in magnitude.
However, the upper root lead-lag stresses of blade two are
significantly lower than those of blade one. This difference is
puzzling as the blades are identical to each other, and each
should provide the same amount of torque to the tower.

Measured vibratory stresses (both flatwise and lead-lag) have recently been
compared to steady wind and turbulent wind predictions (Ashwill and Veers
1990). The steady wind predictions are reasonably close to measured values in
low winds (up to 11.25 m/s), but diverge from measured values in high winds
(Figs. 4.8 and 4.9). The turbulent wind predictions were determined with TRES4
(Malcolm 1988), and the few data points available show good agreement to
measured values at most wind speeds and rotation rates. More work is required
to determine analytical aeroelastic damping values (Figs. 4.10 and 4.11), and
questions still exist about the aerodynamic loading models in the stall regime.
(The labels "+Aero" and "No Aero" in Figs. 4.10 and 4.11 indicate analytical
results that include or exclude aeroelastic damping.)
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5.0 SELECTED TIME HISTORIES AND STRESS AMPLITUDE SPECTRA

5.1 Start-up Torque

The time history of Fig. 5.1 shows a turbine start-up followed by a ramping to 28
rpm in winds that average 16.0 m/s. Wind speed, rpm, and rotor torque are
displayed on the plot. Torque transients with a range as high as 230 kNm occur
when the turbine first begins turning. This is observed more clearly in Fig. 5.2, a
smaller time segment of the data shown in Fig. 5.1.

5.2 Normal Operation

Figure 5.3 is a 200-second time history plot of wind speed, rpm, and rotor torque
while the Test Bed operates at 34 rpm in winds averaging 10.8 m/s. The rpm
signal contains an oscillation with a period of 30 to 40 seconds, which is due to
the variable speed controller. The torque signal contains both the normal two
per revolution oscillation and a 30- to 40-second oscillation similar to but lagging
the rpm oscillation.

During the same time series we can examine flatwise and lead-lag (trailing edge)
bending gauges at the upper root on blade one. These 100-second traces are
shown in Fig. 5.4. Both gauges exhibit oscillation, the lead-lag gauge around a
mean of -1.47 MPa and the flatwise gauge around a mean of -39.3 MPa. The
larger mean value for the flatwise gauge is due to centrifugal loading.

A spectral analysis performed on these two gauges results in the plots shown in
Figs. 5.5 and 5.6. Spectra from four data blocks each 25 seconds long are
averaged together for each channel. In Fig. 5.5, the amplitude spectrum for the
lead-lag gauge, we observe large spikes due to the one and three per-rev rotor
harmonics at 0.567 and 1.7 Hz and stochastic wind excitations of natural
frequencies between two and three per-rev and above three per-rev. Similarly, in
Fig. 5.6, the amplitude spectrum for the flatwise gauge, we note harmonic spikes
at one, two, and three per-rev in addition to responses due to stochastic
excitation. The large spike just above 2P is the first flatwise mode of the blades.

5.3 Braking Data

An important feature of the Test Bed with its variable speed generator
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is the capability to brake the turbine in different ways. There are three types of
stopping:

1. Normal
2. Alarm

3. Emergency

For a normal stop the generator slowly ramps the turbine down from its operating
rpm, and when 6 rpm is reached, two of the four brake calipers are applied to the
brake disc to complete the stop. Figure 5.7 shows the rotor torque, rpm and wind
speed during a typical normal stop. The torque plot shows oscillations larger
than normal when the brakes are applied and for a few seconds after the turbine
has stopped. Lead-lag stresses at the root (Fig. 5.8) increase during the braking
and then oscillate around zero in a decaying fashion after the rotor stops. The
largest stress range is approximately 10 MPa. Root flatwise stresses are only
slightly impacted by this stop (Fig. 5.8).

In an alarm stop the turbine is quickly ramped down to 6 rpm at rate of 1 rpm per
second and then two calipers are applied after a normal delay of 20 seconds at 6
rpm. An example of an alarm stop is shown in Fig. 5.9. In this particular stop
there was a delay at 6 rpm of only a couple of seconds. During the ramp-down
period the torque remains above 120 kNm (positive torque). When the turbine
reaches 6 rpm and the brakes are applied, large torque oscillations with ranges as
high as 150 kNm occur (Fig. 5.9). The largest lead-lag stress range during the
stop is less than 15 MPa (Fig. 5.10), and the flatwise stresses are not affected by
the stop, which occurred in winds of 6.5 m/s (Fig. 5.10).

An emergency stop takes place at any rpm when an emergency fault is detected.
At that point all four brake calipers are immediately applied, and the turbine
comes to a quick stop. Figure 5.11 is an example of an emergency stop. In this
case the turbine is operating at 28 rpm in winds of 11.8 m/s when an emergency
stop is initiated, and the turbine stops in about 7 seconds. Torque oscillations as
high as 150 kNm occur during braking and immediately after the turbine stops.
Figure 5.12 shows root lead-lag and flatwise stresses during the stop. The largest
lead-lag stress range is 30 MPa, and again, flatwise stresses are only slightly
affected.

As expected, the level of lead-lag stress oscillation is higher for an emergency
stop than for an alarm stop, which is higher than for a normal stop. The level of
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braking torque applied to the turbine has been adjusted to provide a quick
stopping time but with acceptable stress levels.

5.4 Torque Ripple

Torque ripple is defined as a harmonic oscillation of torque about some mean
value, and its magnitude is given by the following (Reuter and Worstell 1978):

Torque Ripple = ( Tmax - Tmean ) / Tmean

Aerodynamic torque at the base of the rotor will approach 100%. The drive train
must be designed to withstand this ripple and also attenuate it for the input to the
generator. The Test Bed low-speed drive shaft consists of a steel shaft, the low-
speed torque sensor, and two pairs of steel plates each connected by many rubber
isolators. (See Fig. 5.13, an assembly drawing of the turbine stand and drive
train.) The number of rubber isolators can be adjusted to change the shaft
stiffness and affect the level of torque ripple and the torsional frequencies of the
drive train. Figure 5.14 is a short time history of torque at 28 rpm in winds of 10
m/s. The torque ripple at the torque sensor is approximately 25%; however, the
torque sensor sits between the two pairs of rubber isolators indicating the ripple
seen at the generator should be even more attenuated. Figure 5.15 plots system
power measured at the generator over the same time period. (Positive power to
the grid is plotted as negative values.) Here we observe the average power ripple
to be reduced significantly to approximately 5%. The low-speed shaft was
designed to reduce the torque ripple to 17%.

Figures 5.16 and 5.17 show similar plots of torque and power ripple for the
turbine operating at 34 rpm in winds of 11 m/s. The average torque ripple is
approximately 11% and the power ripple about 2%. Similar plots are shown in
Figs. 5.18 and 5.19 for 38 rpm in winds of 11 m/s. The torque ripple is
approximately 13% and the power ripple about 2-3%.

5.5 Stress Amplitude Spectra

During Phase I and Phase II testing a significant effort was expended on
understanding the structural dynamic behavior of the Test Bed. The turbine
natural frequencies were determined by performing spectral analyses in
conjunction with modal tests. Recently, we developed the capability to perform a
spectral analysis of data over a longer operating period by averaging several
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spectral plots together. This averaging process smooths out the plot by reducing
the effects of statistical uncertainty.

Figures 5.20 and 5.21 are averaged spectral plots (10 blocks of data, each 25
seconds long) for an upper root lead-lag and flatwise gauge at 28 rpm in winds
that average 10 m/s. RPM variations, which always occur during the Test Bed
operation, tend to cause the harmonic responses to be somewhat wider than
otherwise would be the case. Both per-rev and natural frequency peaks are
observed in these figures. Natural frequency peaks and their magnitude are of
_ interest in understanding the frequency content of the operating stress data, in
evaluating the contribution of stochastic effects, and in efforts to improve
prediction tools. Figures 5.22 and 5.23 show similar plots for 34 rpm in 9.76 m/s
winds and Figs. 5.24 and 5.25 for 38 rpm in 9.4 m/s winds. The lead-lag spectra
tend to be dominated by 1 and 3 per-rev and the flatwise by 1 and 2 per-rev
responses. However, spikes at several natural frequencies can also be observed.

SUMMARY

Sandia National Laboratories designed and built the 34-meter Test Bed to
support our research in structural dynamics, acrodynamics, fatigue, and controls.
This data report contains results from testing of the 34-meter Test Bed during the
period from initial turbine operation in late 1987 up through mid-1991. A section
on acrodynamic performance shows binsed power data at three rotation rates and
includes measurements of tare and zero-wind drag, and transmission and
generator losses. Comparisons of measured power data to predictions show
excellent agreement. Data collected with aerodynamic fairings on the blade-to-
blade joints and with bug contamination on the blades show their effects.

Structural response measurements include binsed stresses at three rotation rates,
gravity and centrifugal stresses and selected time histories during start-up, braking
and normal operation. Measurements of natural frequencies and sample stress
spectra are also shown. Again excellent agreement between measured and
predicted data is observed.

Based on the data collected up to this time, the Test Bed machine is responding
to the wind much as expected. Measured data have been used to perform fatigue
analyses of the 34-m Test Bed at different rotation rates (Ashwill, et al. 1990).
Future testing will support efforts in understanding aeroelastic effects, studying
control algorithms and optimizing the placement of vortex generators.
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APPENDIX A

RMYV Stresses at 28 RPM
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Sample rate =20.00088 HZ, Samples/pt = 43, min ptss/bin = 100.
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Figure A-6. RMYV Stress vs. Wind Speed at 28 RPM - IFMF
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E280298: BU-34 Turbine at 28.8RPM, Total & pts = 43586 .
Sample rate =20.80000 HZ, Samples/pt = " 43, min ptss/bin = 166.

© Rir Density = 1.678 Kg/m¥ %3 (RVG)
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Figure A-7. RMV Stress vs. Wind Speed at 28 RPM - 2HML
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Figure A-8. RMYV Stress vs. Wind Speed at 28 RPM - 2HF1
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P280290: BU-34 Turbine at 28.8RPM, Total s pts = 43586.
Sample rate =20.80000 HZ, Samples/pt = 43, min ptss/bin = 106.

[ Air Density = 1.878 Kg/m¥#3 (AVG)
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Figure A-9. RMV Stress vs. Wind Speed at 28 RPM - 1IMF

B28©296: BU-34 Turbine at 28.8RPM, Total ® pts = 43586 .
Sample rate =20.000808 HZ, Sampless/pt = 43, min ptss/bin = 100.
@ Air Density = 1.678 Kg/m*%3 (AVG)
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Figure A-10. RMYV Stress vs. Wind Speed at 28 RPM - ILML
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RMYV Stress (MPa) - 1LMF

RMV Stress (MPa) - TSMI

B280298: BU-34 Turbine at 28.8RPM, Total & pts = 43586.
Sample rate =20.00000 HZ, Samples/pt = 43, min ptss/bin = 100.
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Figure A-11. RMYV Stress vs. Wind Speed at 28 RPM - 1LMF

B280296: BU-34 Turbine at 28.8RPM, Total s pts = 43586.

Sample rate =206.00000 HZ, Sampless/pt = 43, min ptss/bin = 168.
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Figure A-12. RMYV Stress vs. Wind Speed at 28 RPM - TSMI
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B28029%0:

BU-34 Turbine at 28.8RPM, Total ® pts = 43586.
Sample rate =28.08888 HZ, Samples/pt = 43, min pts/bin = 100.
o Air Density = 1.0878 Kg/m*#3 (AVG)
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Figure A-13. RMYV Stress vs. Wind Speed at 28 RPM - TSMO
B286298: BU-34 Turbine at 28.8RPM, Total & pts = 43586.
Sample rate =20.60000 HZ, Sampless/pt = 43, min pts/bin = 100.
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Figure A-14. RMYV Stress vs. Wind Speed at 28 RPM - INMF
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Figure A-15. RMYV Stress vs. Wind Speed at 28 RPM - 10MF
B286290: BU-34 Turbine at 28.0RPM, Total = pts = 43586.
Sample rate =20.00008 HZ, Samples/pt = 43, min ptss/bin = 180.
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Figure A-16. RMYV Stress vs. Wind Speed at 28 RPM - 1PMF
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B28029@: BU-34 Turbine at 28.0RPM, Total & pts = 43586 .
Sample rate =20.008000 HZ2, Sampless/pt = 43, min ptss/bin = 100.
Air Density = 1.878 Kg/m#*3(AYG)
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Figure A-17. RMYV Stress vs. Wind Speed at 28 RPM - 1PAL

BE280298: BU-34 Turbine at 28.6RPM, Total ® pts = 43586 .
Sample rate =20.000800 HZ, Sampless/pt = 43, min ptss/bin = 1808.

@ Air Density = 1.678 Kg/m#*3 (AYG)
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Figure A-18. RMYV Stress vs. Wind Speed at 28 RPM - 1PAF
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RMV Stress (MPa) - QML

RMV Stress (MPa) - 1QMF

B286290: BU-34 Turbine at 28.6RPM, Total & pts = 43586.
Sample rate =20.08080 HZ, Sampless/pt = 43, min ptssbin = 100.

o Air Density = 1.078 Kg/m¥ %3 (AVG)
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Figure A-19. RMYV Stress vs. Wind Speed at 28 RPM - 1QML
E280298: BU-34 Turbine at 28.8RPM, Total & pts = 43586.
Sample rate =20.008090 H2, Sampless/pt = 43, min ptssbin = 100.
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Figure A-20. RMYV Stress vs. Wind Speed at 28 RPM - 1QMF
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RMV Strass (MPa) - 2X

B280296: BU-34 Turbine at 28.0RPM, Total & pts = 43586.
Sample rate =26.88000 HZ, Samples/pt = 43, min ptssbin = 100.
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Figure A-21. RMV Stress vs. Wind Speed at 28 RPM - 2XML

B28(3296: PRU-34 Turbine at 28.0RPM, Total s pts = 43586.
Sample rate =20.00000 HZ, Samples/pt = 43, min pts/bin = 100.
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Figure A-22. RMV Stress vs. Wind Speed at 28 RPM - 2XMF
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RMV Stress (MPa) - 2HMF

RMV Stress (MPa) - TURT

B288296: BU-34 Turbine at 28.0RPM, Total # pts = 43586.
Sample rate =20.00000 HZ, Samples/pt = 43, min ptss/bin = 100.
© Rir Density = 1.6878 Kg/m*#3 (AVG)
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Figure A-23. RMYV Stress vs. Wind Speed at 28 RPM - 2HMF
B288296: BU-34 Turbine at 28.8RPM, Total # pts = 43586,
Sample rate =20.86880 HZ, Sampless/pt = 43, min ptssbin = 166.
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Figure A-24. RMV Stress vs. Wind Speed at 28 RPM - TURT
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B286829@: BU-34 Turbine at 28.8RPM, Total = pts = 43586.
Sample rate =20.008000 HZ, Samples/pt = 43, min ptssbin = 1080.

[ Rir Density = 1.878 Kg/m**3 (AVG)
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Figure A-25. RMV Stress vs. Wind Speed at 28 RPM - 2IDF

B286290: BU-34 Turbine at 28.0RPM, Total & pts = 43586 .
Sample rate =20.80000 HZ, Samples/pt = 43, min ptss/bin = 100.
[~} Air Density = 1.078 Kg/m¥%3 (AVG)
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Figure A-26. RMV Stress vs. Wind Speed at 28 RPM - 2NF1
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RMV Stress (MPa) - QDF1

RMYV Stress (MPa) - QDF3
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Figure A-27. RMYV Stress vs. Wind Speed at 28 RPM - QDF1

B280299: BU-34 Turbine at 28.0ORPHM,
Sample rate =20.00000 HZ, Samples/pt =

43586.
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Figure A-28. RMYV Stress vs. Wind Speed at 28 RPM - QDF3
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APPENDIX B

RMYV Stresses at 34 RPM
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B340290: BU-34 Turbine at 34.6RPM, Total # pts = 68696 .

Sample rate =20.99000 HZ, Sampless/pt = 35, min ptssbin =

[ Air Density = 1.086 Kg/m#*3 (AVG)
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Figure B-1. RMYV Stress vs. Wind Speed at 34 RPM - 1AML
B348290: BU-34 Turbine at 34.8RPM, Total ® pts = 608698.
Sample rate =20.06080 HZ, Sampless/pt = 35, min ptss/bin = 100.

o Air Density = 1.086 Kg/m*%3 (AVYG)
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Figure B-2. RMYV Stress vs. Wind Speed at 34 RPM - 1AMF
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B340290: BU-34 Turbine at 34.0RPM, Total # pts = €Q69%.
Sample rate =20.00860 HZ, Samples/pt = 35, min ptssbin = 100.
Air Density = 1.0886 Ko/m**3 (AVG]
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Figure B-3. RMYV Stress vs. Wind Speed at 34 RPM - IDMF
B340296: BU-34 Turbine at 34.0RPM, Total * pts = €6698.
Sample rate =20.00080 HZ, Samples/pt = 35, min ptss/bin = 100.
[ Air Density = 1.086 Kg/m¥%#3 (RVE)
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Figure B-4. RMYV Stress vs. Wind Speed at 34 RPM - 1IEML
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RMV Stress (MPa) - 1EMF

RMV Stress (MPa) - 1FMF

B3402906: BU-34 Turbine at 34.0RPM, Total ® pts = &B692.,
Sample rate =20.00008 HZ, Samplesspt = 35, min ptssbin = 160,

© Air Density = 1.886 Kg/7m®#3 (AVG)
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Figure B-5. RMV Stress vs. Wind Speed at 34 RPM - 1IEMF
B348290: BU-34 Turbine at 34.8RPM, Total & pts = 68698.
Sample rate =208.00000 HZ, Samples/pt = 35S, min ptss/bin = 100.
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Figure B-6. RMYV Stress vs. Wind Speed at 34 RPM - 1IFMF
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B340290: BU-34 Turbine at 34.6RPM, Total ® pts = 60698 .
Sample rate =20.06600 HZ, Samples/pt = 35, min ptssbin = 160.

© Air Density = 1.086 Kg/m*%#3 (AVG)
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Figure B-7. RMV Stress vs. Wind Speed at 34 RPM - 2HML
B3482%0: BU-34 Turbine at 34.6RPM, Total ® pts = 60698.
Sample rate =20.00000 HZ, Saamples/pt = 35, min ptssbin = 100,
© Air Density = 1.0886 Kg/m##3 (AVG)
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Figure B-8. RMYV Stress vs. Wind Speed at 34 RPM - 2HF1
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RMV Stress (MPa) - 1LML

E3462906: BU-34 Turbine at 34.0RPM, Total # pts = 60698 .
Sample rate =20.00060 HZ, Samplesspt = 35, min ptss/bin = 106.

© Air Density = 1.086 Kg/mx£3 (RVYG)
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Figure B-9. RMYV Stress vs. Wind Speed at 34 RPM - 1IMF

E346290: BU-34 Turbine at 34.8RPM, Total ® pts = €9698.
Sample rate =208.00888 HZ, Sampless/pt = 35, min ptssbin = 100.
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Figure B-10. RMV Stress vs. Wind Speed at 34 RPM - 1ILML
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RMV Stress (MPa)

B340290: BU-34 Turbine at 34.6RPM, Total = pts = €0698.
Sample rate =20.08000 HZ, Sampless/pt = 35, min pts/bin = 186.

© Air Density = 1.086 Kg/m¥£3 (AVG)
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Figure B-11. RMV Stress vs. Wind Speed at 34 RPM - 1LMF

B340290: BU-34 Turbine at 34.0RPM, Total s pts = 60698.

Sample rate =20.80000 HZ, Sampless/pt = 35, min ptss/bin = 100.
© flir Density = 1.086 Kg/m#%#3 (AVG)
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Figure B-12. RMV Stress vs. Wind Speed at 34 RPM - TSMI
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RMYV Stress (MPa) - TSMO

RMV Stress (MPa) - INMF

B340296: BU-34 Turbine at 34.8RPM, Total ® pts = 6Q€9C.
Sample rate =208.800808 HZ2, Samples/pt = 35, min ptssbin = 106.

@ Rir Density = 1.0886 Kg/m* %3 (AVG)
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Figure B-13. RMYV Stress vs. Wind Speed at 34 RPM - TSMO

B340298: BU-34 Turbine at 34.0RPM, Total = pts = 6069¢2.
Sample rate =28.66800 HZ, Samples/pt = 35, min ptss/bin = 166.
[ Rir Density = 1.886 Kg/m*#3 (AVG)
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Figure B-14. RMYV Stress vs. Wind Speed at 34 RPM - INMF
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RAMV Stress (MPa) - 10MF

B340290: BU-34 Turbine at 34.8RPM, Total # pts = 6969€E .,
Sample rate =20.00808 HZ, Sampless/pt = 35, min ptssbin = 160,
© Air Density = 1.886 Kg/m*%3 (RVEG)
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Figure B-15. RMYV Stress vs. Wind Speed at 34 RPM - 10MF

B3490298: BU-34 Turbine at 34.8RPM, Total & pts = 60696 .
Sample rate =20.00000 HZ, Samples/pt = 35, min ptssbin = 160,
[ Air Density = 1.086 Kg/m®*#3 (AVG)
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Figure B-16. RMV Stress vs. Wind Speed at 34 RPM - 1PMF
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RMYV Stress (MPa) - 1PAL

RMV Stress (MPa) - 1PAF

E340294: EU-34 Turbine at 34.0RPHM, Total # pts = 60£9
Sample rate =20.00000 HZ, Sampless/pt = 35, min pts/bin = 1

© Air Density = 1.086 Kg/m*%#3 (RAVG)
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Figure B-17. RMV Stress vs. Wind Speed at 34 RPM - 1PAL
B340290: BEBU-34 Turbine at 34.06RPM, Total & pts = 6Q59%,
Sample rate =20.606600 HZ, Samples/pt = 35, min ptssbin = 106,

o ARir Density = 1.886 Kg/m*#3 (AVG)
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Figure B-18. RMV Stress vs. Wind Speed at 34 RPM - 1PAF
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RMYV Stress (MPa) - 1QML

RMV Stress (MPa) - 1QMF

B340290: BU-34 Turbine at 34.6RPM, Total s pts = €0693.
Sample rate =20.00000 HZ, Sampless/pt = 35, min ptss/bin = 100,
© Air Density = 1.6886 Kg/m**3 (AVG)
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Figure B-19. RMYV Stress vs. Wind Speed at 34 RPM - 1QML
E3498296: BU-34 Turbine at 34.0RPM, Total ® pts = 68698.
Sample rate =20.080660 HZ, Samples/pt = 35, min pts/bin = 180.

© Rir Density = 1.086 Kg/m% %3 (RYG)
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Figure B-20. RMV Stress vs. Wind Speed at 34 RPM - 1QMF
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RMV Stress (MPa) - 2XML

RMV Stress (MPa) - 2XMF

B340296: BU-34 Turbine at 34.0RPM, Total & pts = 66G698.
Sample rate =20.00000 HZ, Sampless/pt = 35, min ptss/bin = 100,

[~} Rir Density = 1.086 Kg/m*¥%3 (AVG)
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Figure B-21. RMYV Stress vs. Wind Speed at 34 RPM - 2XML

B3406290: BU-34 Turbine at 34.8RPM, Total = pts = 60698.
Sample rate =208.00000 HZ, Sampless/pt = 35, min ptssbin = 100.

© Air Density = 1.686 Kg/m**3 (AVG)
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Figure B-22. RMYV Stress vs. Wind Speed at 34 RPM - 2XMF
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B340296: BU-34 Turbine at 34.0RPM, Total # pts = 608698 .
Sample rate =208.068000 HZ, Samples/pt = 35, min ptssbin = 1606.

© Air Density = 1.086 Kg/m**3(AVG)
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Figure B-23. RMYV Stress vs. Wind Speed at 34 RPM - 2HMF

B340290: BU-34 Turbine at 34.0RPM, Total # pts = 66698.
Sample rate =20.00008 HZ2, Samples/pt = 35, min ptss/bin = 166.

o Air Density = 1.086 Kg/m*%3 (AVG)

@ s 1: 1->16 S 2: 1->16 § 3: 1->16 S 4: 1->16 S S: 1->16 S 6:

© 1-> 6

of

oL

o}

of

@__

0L

ot

ol

L 43

o}

(] Y

N

oy vy Yy S MY EY XX YT T RN E NIRRT YRS BNORTIN | o o |
6.00 5.60 10.00 15.00 290.00 25.00 30.00

Wind Speed (M/S)

Figure B-24. RMV Stress vs. Wind Speed at 3¢ RPM - TURT
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RMV Stress (MPa) - 2I1DF

RMV Stress (MPa) - 2NF1

B3402%0: BU-34 Turbine at 34.0RPM, Total @ pts = €0698.
Sample rate =20.00000 HZ, Sampless/pt = 35, min ptss/bin = 100.

[ Air Density = 1.086 Kg/m*##3(RVYG)
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Figure B-25. RMV Stress vs. Wind Speed at 34 RPM - 2IDF
B3402%8: BU-34 Turbine at 34.0RPM, Total & pts = 60698.
Sample rate =20.80000 HZ, Samplesspt = 35, min ptss/bin = 100,

[ Air Density = 1.886 Kg/m##3 (RAVG)
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Figure B-26. RMV Stress vs. Wind Speed at 34 RPM - 2NF1
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RAMV Stress (MPa) - QDF3

B3482906: BU-34 Turbine at 34.8RPHM, Total # pts = 60692
Sample rate =20.06800 HZ, Samplesspt = 35, min ptss/bin = 14

© Air Density = 1.086 Kg/m¥#3 (AVYG) :
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Figure B-27. RMV Stress vs. Wind Speed at 34 RPM - QDF1

B346290: BU-34 Turbine at 34.0RPM, Total ® pts = 60698.
Sample rate =20.008808 HZ, Sampless/pt = 35, min ptss/bin = 160.
© Air Density = 1.0886 Kg/m**3 (AVE)
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Figure B-28. RMV Stress vs. Wind Speed at 34 RPM - QDF3
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APPENDIX C

RMY Stresses at 38 RPM
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RMV Stress (MPa) - 1AML

B3862968: BU-34 Turbine at 38.0RPM, Total ®* pts = 28411.
Sample rate =20.00880 HZ2, Samplesspt = 32, amin ptssbin = 100.

© Air Density = 1.123 Kg/7m*%#3 (RAVG)
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Figure C-1. RMV Stress vs. Wind Speed at 38 RPM - 1AML
B386290: BU-34 Turbine at 38.0RPM, Total ¥ pts = 28411,
Sample rate =206.00008 HZ, Samples/pt = 32, min ptss/bin = 100.

© Air Density = 1.123 Kg/m*#3 (AVG)
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Figure C-2. RMYV Stress vs. Wind Speed at 38 RPM - 1AMF
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RMV Stress (MPa) - 1DMF

RMV Stress (MPa) - TEML

B386296: BU-34 Turbine at 38.8RPM, .Total = pts = 28411,

Sample rate =20.80000 HZ, Sampless/pt = 32, min ptssbin 100.

© Air Density = 1.123 Kg/m* %3 (AVG)
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Figure C-3. RMYV Stress vs. Wind Speed at 38 RPM - 1DMF
B3802906: BU-34 Turbine at 38.6RPM, Total # ptc = 28411.
Sample rate =20.00000 HZ, Sampless/pt = 32, min ptss/bin = 166.
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Figure C-4. RMV Stress vs. Wind Speed at 33 RPM - 1IEML
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1FMF

RMV Stress (MPa)

B38@298: BU-34 Turbine at 38.8RPM, Total ® pts = ze41
Sample rate =20.80000 HZ, Sampless/pt = 32, min pts/bin = 1
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Figure C-5. RMYV Stress vs. Wind Speed at 38 RPM - 1IEMF

B38@299: BU-34 Turbine at 38.0RPM, Total & pts = 22411.

Sample rate =20.00088 HZ, Samples/pt = 32, min pts/bin = 100.
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Figure C-6. RMYV Stress vs. Wind Speed at 38 RPM - 1FMF

103



RMV Stress (MPa) - 2HML

RMV Stress (MPa) - 2HF1

E3562906: PBU-34 Turbine at 38.8RPM, Total = pts = 23411.
Sample rate =206.00000 HZ, Samples/pt = 32, min pts/bin = 104,
< Air Demsity = 1.123 Ka/m**3 (AVG)
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Figure C-7. RMV Stress vs. Wind Speed at 38 RPM - 2HML
F38029%0: BU-34 Turbine at 38.0RPM, Total * pts = 28411,
Sample rate =20.00000 HZ, Sampless/pt = 32, min ptssbin = 189.
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Figure C-8. RMYV Stress vs. Wind Speed at 38 RPM - 2HF1
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E386290: BU-34 Turbine at 38.0RPM, Total ® pts = 23411.
Sample rate =20.00080 HZ, Samplesspt = 32, min ptssbin = 100.
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Figure C-9. RMYV Stress vs. Wind Speed at 38 RPM - 1IMF
B386290: BU-34 Turbine at 38.0RPM, Total ® pts = 28411.
Sample rate =20.9008@ HZ, Samples/pt = 32, min ptssbin = 100.
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Figure C-10. RMV Stress vs. Wind Speed at 38 RPM - 1LML
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RMV Stress (MPa) - 1ILMF

RMV Stress (MPa) - TSM!

E380290: EBU-34 Turbine at 38.86RPM, Total 8 pts = 23411,
Sample rate =2(G.00000 HZ, Samples/pt = 32, min ptssbin = {100,

o Air Density = 1.123 Ka/m**3 (RVG)
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Figure C-11. RMYV Stress vs. Wind Speed at 38 RPM - 1ILMF

B3362%8: BU-34 Turbine at 38.86RPM, Total # pts = 28411,

Sample rate =20.00000 HZ, Samples/pt = 32, min ptss/bin = 100.
o Air Density = 1.123 Kg/m# %3 (AVG)
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Figure C-12. RMV Stress vs. Wind Speed at 38 RPM - TSMI
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RMV Stress (MPa) - TSMO

B386296: EBU-34 Turbine at 38.6RPM, Total & pts = 26411.
Sample rate =26.00008 HZ, Samplesspt = 32, nmin ptssbin = 100,
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Figure C-13. RMV Stress vs. Wind Speed at 38 RPM - TSMO
B380290: BU-34 Turbine at 38.8RPM, Total s pts = 28411.
Sample rate =28.00080 HZ, Samples/pt = 32, min pts/bin = 100.
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Figure C-14. RMV Stress vs. Wind Speed at 38 RPM - INMF
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RMV Stress (MPa) - 1OMF

RMV Stress (MPa) - 1IPMF

B3806290: BU-34 Turbine at 38.6RPH, TJotal # pts = 28411,
Sample rate =28.806000 HZ, Samplesspt = 32, min ptss/bin = 100
[ Rir Density = 1.123 Kg/m* %3 (AVG)
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Figure C-15. RMV Stress vs. Wind Speed at 38 RPM - 10MF
B3802%8: BU-34 Turbine at 38.0RPM, Total = pts = 28411.
Sample rate =20.00000 HZ, Samples/pt = 32, min ptssbin = 168,

[ Air Density = 1.123 Kg/m®#3 (AVG)
@ S 1: 1->16 § 2: 1->15§

<

of

ol

[+ ]

of

oL

©

d BLADE 194 BLADE 2

®
ob
<
th
X;XX
X
¥
gl )
. pExxX
ol ‘xu X
! ‘!
EF
L 1 1 1 l 1 1 1 1 ] 1 J St 1 l 1 1 1 1 I 1 1 1 i 1 1 1 1 I I
9.00 $.00 10.00 15.0890 28.0 25 .80 30.00

Wind Speed (M/S)

Figure C-16. RMV Stress vs. Wind Speed at 38 RPM - 1PMF
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RMV Stress (MPa) - 1PAL

RMV Stress (MPa) - 1PAF

E3802%0: BU-34 Turbine at 38.8RPM, Total = pts = 28411.
Sample rate =28.60008 HZ, Sampless/pt = 32, min ptssbin = 106.
= Rir Density = 1.123 Kgs7m*#3 (AVG)
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Figure C-17. RMYV Stress vs. Wind Speed at 38 RPM - 1PAL

B38P2%0: BU-34 Turbine at 38.86RPM, Total ®# pts = 28411.
Sample rate =20.000008 HZ, Sampless/pt = 32, min ptssbin = 100.
[ Rir Density = 1.123 Kgs/m¥%3 (AVG)
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Figure C-18. RMV Stress vs. Wind Speed at 38 RPM - 1PAF
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RMV Stress (MPa) - 1QML

RMV Stress (MPa) - 1QMF

B3802906: BU-34 Turbine at 38.6RPM, Total = pts = 2341
Sample rate =20.00000 HZ, Samples/pt = 32, min pts/bin = 1

o Rir Density = 1.123 Kg/m*#3 (AVG)
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Figure C-19. RMV Stress vs. Wind Speed at 38 RPM - 1QML
B380290: BU-34 Turbine at 3B.B6RPM, Total = pts = 28411.
Sample rate =208.00080 HZ, Samples/pt = 32, min ptss/bin = 1696,
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Figure C-20. RMYV Stress vs. Wind Speed at 38 RPM - 1QMF
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RMYV Stress (MPa) - 2XML

tr

RMV

B380290:

BU-34 Turbine at 38.6RPH, Total = pts = 28411.
Sample rate =20.060080 HZ, Sampless/pt = 32, min ptss/bin = 100,
© Rir Density = 1,123 Kg/m**3 (AVG)
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Figure C-21. RMUV Stress vs. Wind Speed at 38 RPM - 2XML
B380298: BU-34 Turbine at 38.8RPM, Total & pts = 28411.
Sample rate =20.80000 HZ, Samples/pt = 32, min ptss/bin = 106.
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Figure C-22. RMYV Stress vs. Wind Speed at 38 RPM - 2XMF
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RMYV Stress (MPa) - 2HMF

RMV Stress (MPa) - TURT

E320290: BU-34 Turbine at 38.8RPM, Total ® pts = 28411.
Sample rate =20.60088 HZ, Samples/pt = 32, min pts/bin = 1608.
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Figure C-23. RMYV Stress vs. Wind Speed at 38 RPM - 2HMF
B380298: BU-34 Turbine at 38.0RPM, Total s pts = 28411,
Sample rate =28.00008 HZ, Sampless/pt = 32, min pts/bin = 166,
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Figure C-24. RMY Stress vs. Wind Speed at 38 RPM - TURT
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RMYV Stress (MPa) - 2I1DF

© Air Density = 1.123 Kg/m¥*3 (AVG)
@ S 1: 1->16 S 2: 1->15
Q-
of
oL
o}
of
U H
ol ¥X
"
X
ll SLADE 2
r D

St o
- xl

X \

xlﬁ‘x; !
I X
g!' l!
gk
|
L i 11 l 1 1 1 1 l 1 1 | 1 ' 1 1 A 1 I 1 1 1 1 l 1 1 1 1 l
9.00 5.08 10.00 15.0 20 .00 25.0 30.00
Wind Speed (M/S)

Figure C-25. RMV Stress vs. Wind Speed at 38 RPM - 2IDF
B3882968: BU-34 Turbine at 38.6RPM, Total # pts = 28411.
Sample rate =28.68000 HZ, Sampless/pt = 32, min ptssbin = 106G,
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Figure C-26. RMYV Stress vs. Wind Speed at 38 RPM - 2NF1
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RMV Stress (MPa) - QDF1

RMV Stress (MPa) - QDF3

B388298: BU-34 Turbine at 38.6RPN, = 284

Total » pts
Sample rate =20.800060 HZ, Samples/pt =

32, min ptss/bin
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Figure C-27. RMV Stress vs. Wind Speed at 38 RPM - QDF1
B380290: BU-34 Turbine at 38.80RPM, Total * pts = 28411.
Sample rate =20.00800 HZ, Samples/pt = 32, min pts/bin = 160.
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Figure C-28. RMYV Stress vs. Wind Speed at 38 RPM - QDF3
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