
SANDIA REPORT
SAND90–2260 • UC–261
Unlimited Release
Printed January 1991

Programmer’s Guide for LIFE2’s
Rainflow Counting Algorithm

L. L. Schluter

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DPO0789

. . .

\, *... ..

.’

-.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessmly constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical information
PO BOX 62
Oak Ridge, TN 3’7831

Prices available from (615) 576-8401, ITS 626-8401

Ava!lable to the public from
National Technical Information Service
US Department of Commerce
5~3 port RoYal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

PROGRAMMER’S GUIDE FOR LIFE2’S
RAINFLOW COUNTING ALGORITHM*

by

L. L. Schluter

Wind Energy Research Division
Sandia National Laboratories

Albuquerque, NM 87185

ABSTRACT

The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to
the analysis of wind turbine components. The numerical formulation of the code
uses a series of cycle count matrices to describe the cyclic stress states imposed upon
the turbine. In this formulation, each stress cycle is counted or “binsed” according to
the magnitude of its mean stress and alternating stress components and by the
operating condition of the turbine. A set of numerical algorithms has been
incorporated into the LIFE2 code. These algorithms determine the cycle count
matrices for a turbine component using stress-time histories of the imposed stress
states. This paper describes the design decisions that were made and explains the
implementation of these algorithms using Fortran 77.

*This work is supported by the U.S. Department of Energy at Sandia National
Laboratories under contract DE-AC04-76DPO0789.

The author wishes to thank H. J. Sutherland, P. S. Veers, and D. P. Burwinkle for
their help in implementing and checking these algorithms.

-4-

TABLE OF CONTENTS

ACKNOWLEDGMENTS .
page

4

INTRODUCTION .

BACKGROUND INFORMATION .
Pre-Count Algorithms .
Rainflow Counting Algorithms .
Post-Count Algorithms .

DESIGN DECISIONS .
Nonstandard Fortran 77 .
Rainflow Algorithm Coding .
Use of Constants .
Temporary Files .

CODE ORGANIZATION .

CODE WALKTHROUGH .
Main Driving Routines .

Rainfl .
New File .
Old ‘File .
Insert_Data .

LIFE2 Support Routines .
Extreme Values .
Init Mafiix .
Inpfi_Cycle_Count .
Input_Header .
Input_Speed_Range .
List_Matrices .
Make Note .
MatrkZInformation .
Move_Stress Arrays .
Read_Matric=s .
Read Note .
Save =eader Info .
Setu~ Stress~A.rrays .
Upda~ Matrm File .

Rainflow Cou~ting Rtitines .
Rain Count .
PealG– .
Rtrack .
Srain .

SUMMARY .

REFERENCES .

6

7
7
7
8

9
9

10
10
10

11

13
13
13
13
14
15
17
17

::
18
18
18
19

;:
21
21
21
21
22
23
23
23
24
27

28

29

-5-

The LIFE2 computer code is a fatigue/fracture analysis code specifically
designed for the analysis of wind turbine components (l,2). It is a PC-
compatible Fortran code that is written in a top-down modular format with
a “user friendly” interactive interface. In this numerical formulation, an “S-
n” fatigue analysis is used to describe the initiation, growth and coalescence
of micro-cracks into macro-cracks. A linear, “da/dn” fracture analysis is
used to describe the growth of a macro-crack.

In the LIFE2 formulation, the cyclic stresses imposed on the turbine
component are characterized by the magnitude of their mean stress and
alternating stress components and by the operating condition of the turbine.
A set of numerical algorithms (3) that permits the code to analyze stress-
time histories of component stress states has been incorporated into the
code. This paper describes the design decisions that were made in
implementing the algorithms using Fortran 77. Also included is an
explanation of the organization of the code and a description of the function
of each subroutine.

This paper is intended for programmers who wish to understand how the
rainflow algorithms have been incorporated into the LIFE2 code. A
detailed explanation of the use of the algorithms is presented in Schluter
and Sutherland (4).

-6-

BACKGROUND INFORMATION

The prime algorithm used to count the number of cycles in the time series
data is a rainflow counting algorithm (5). This algorithm defines a stress
cycle to be a closed stress/strain hysteresis loop. The algorithm determines
the mean and alternating stress level for each stress cycle in the histogram.
Pre-count and post-count algorithms support the rainflow counter. The
pre-count al orithms repare the time series data for the rainflow counting
algorithm. The rainfl ow counting algorithm counts the cycles in the time
series and stores the mean and cyclic values of each cycle in a file. The
post-count algorithms insert the cycles into a cycle count matrix that is
compatible with the LIFE2 code.

The following discussion gives a brief description of the algorithms.
Schluter and Sutherland (4) has a more complete discussion of these
algorithms.

Pre-C ount Akzorithm$

The initial set of algorithms prepares the till time series data for counting
by selecting ~eaks and valleys and discarding “small” stress cycles. The pre-
count algorithms reduce the data record to a sequential list of peaks and
valleys. This list is stored in a temporary file for processing by the count
algorithm.

Peak-Valley Selection. The first algorithm identifies eaks and valleys in
f the data record by scanning for changes in the sign o the slope. When a

change in slope is detected the algorithm will fit a parabola through the
three nearest points to estimate the peak or valley found.

Filter. A “race track” filtering algorithm has been incorporated into the pre-
processing algorithms to eliminate “small” stress cycles (6). In the
technique used, the operator sets a “threshold” value for the algorithm.
When the absolute value of the difference between the maximum and
minimum values of a stress cycle is greater than the threshold, the algorithm
retains that cycle. When the difference is less than the threshold, the cycle
is discarded.

Rainflow Counting Alporithm

The rainflow counting algorithm (5) counts the number of closed
stress/strain hysteresis loops in the data. It determines the mean and the
peak-to-peak alternating stress level (i.e., the range) for each stress cycle in

-7-

the histogram. These stress levels are stored in a temporary file for post
processing. To speed operation, the algorithm uses “one-pass” through the
data to count the stress cycles; i.e., the peak-valley data are read only once
during processing by the count algorithm.

Post-cou nt AMzorithm$

The final algorithms ma each stress cycle into a cycle count matrix that can
$ be processed by the LI E2 code. The algorithms sort the stress cycle data

into bins that are functions of mean stress and alternating stress levels.

The cycle counts from a data record may be used to create a new cycle
count matrix, or they may be added to an existing cycle count matrix, at the
discretion of the operator.

-8-

DESIGN DECISIONS

Nonstandard Fortran 77

There were two major design decisions in the coding of the rainflow
al orithms that deviate from the decisions made when coding the main body

! o the LIFE2 program. The first decision was to replace common blocks
with ‘INCLUDE’ statements. This makes the code shorter and easier to
read and update. The second decision was to increase variable names from
a maximum of six characters to a maximum of 31 characters. The intent of
this decision was to increase readability and make coding and updating
easier.

The ‘INCLUDE statement is as a metacommand in the Microsoft Fortran
Optimizing Corn iler (7). This statement directs the compiler to proceed as

2 though the ‘IN LUDE statement were replaced by a specified file. The
syntax for the command is as follows:

$INCLUDE:’jilename’

The argument j?lename is the name of a file that contains the common block
just as the common block would appear in the program.

One major effect of the INCLUDE statement is to decrease the overall size
of the code by re lacing a multiline common block with a single line

r statement. This a so increases the readability of the code. The second
effect that the statement has is to make code modification and updating
easier. If a change or addition in the common block is needed, only the file
containing the common block needs to be changed. Without the INCLUDE
statement, the common block will need to be changed wherever it appears
in the code.

By increasing the variable size from a maximum of six characters to a
maximum of 31 characters the codin of algorithms becomes much easier.

f This change also increases the rea ability of the code to a great extent,
which in turn aids in updating the code at a later date. The maximum of 31
characters is based on the Microsoft Fortran Optimizin Compiler. In

I? version 4.1 this feature must be enabled by using the OTRUNCATE
metacommand. In version 5.0, and later, this becomes the default replacing
the standard six-character maximum.

These decisions were not made in the original LIFE2 code because both of
these coding features are not part of the standard Fortran 77 programming
language. However, most modern Fortran compilers include them. If a
compiler is to be used that does not support these features, the code must
be changed. The INCLUDE statements must be replaced by the actual
common blocks. The variable names in each subroutine are listed in the

-9-

header of the subroutine so that they can be found and changed easily.
While the maximum of 31 characters is specified in the Microsoft Compiler,
the actual maximum length used is 20 characters so a compiler that supports
a smaller maximum maybe used.

Rainflow Aborithm Coding

The original coding of the rainflow algorithms used arrays to store the time
series data as the cycles were counted. This method proved to be a limiting
factor when working with Iar e time series files. Not only was the amount

f of data fixed by the size o the array, but large arrays also used large
amounts of memory. To overcome this deficiency, the current code reads
the time series data in from disc only as it is needed. When data points
need to be stored an output file is created to store them. A disadvantage of
this approach is that speed of the program is slowed by reading and writing
to the disc. Also, the operator must ensure that there 1s ample room on the
disc for these temporag output files.

Use of Constants

Throughout the program, constants are used instead of numbers (i.e.,
instead of using the number 5 for the screen output specifier, the constant
screen is set equal to 5 and used). This aids in the readability of the
program. The value of the constants can be found in the files stdio.dat and
files.dat.

Teml.)ora N Files

Temporary files are used frequently to reduce the amount of memory that
the program requires. For example, the variable note is used in several
places. The header information uses note to store the title of the data set in.
Each wind speed matrix uses note to store its description (i.e., number of
records in the matrix and the wind speed range). There are also notes that
may be added to the end of each data file. Instead of having several note
variables, each of which would be 72 bytes, one variable is used. When the
operator in uts information into the variable note, it is written to a

f’ temporary fi e for storage, freeing up the variable to be used again.

-1o-

CODE ORGANIZATION

In the remainder of this document subroutine names
letters and variable names are written in italics.

are written in bold .

Fi~re 1 shows a hierarchy diagram of the rainflow subroutines. The main
drwing routine is called Rainfl. This routine links the rainflow subroutines
with LIFE2. Since LIFE2 uses the six character limit for the size of its
variables, this name is restricted to six characters.

I RAINFL I
L I

i

I I

INS ERT_DATA

Support Routines
1 ~–––––– ___

‘m

I I

I r PEAKS
RTRACK

I SRAIN

I

I

I
I
L– ______

EXTREME_VALUES
INIT_MATRIX

INPUT_CYCLE_COUNT

INPUT_HEADER

INPUT_SPEED_RANGE

LIST_MATRICES
LIST_LOG

MAKE_NOTE
MATRIX_INFO
MOVE_STRESS_ARRAYS

READ_MATRICES
READ_NOTE

SAVE_HEADER_INFO

SETUP_STRES S_ARRAYS
UPDATE_MATRIX_FI LE

-—— — ——— ——— ——— ———

I
I

I
I
I
I
I
I
J

Figure 1 Hierarchy of Rainflow Subroutines

-11-

Rainfl will then call either New-File or Old-File depending on whether the
time series is inserted into a new data file or an existing data file. New-File
will call the support routines directly to create the matrix for the first time
series. Once created, the file is treated as an existing data file and Insert
Data is used to insert additional time series. Old-File is called by Rainfl if
the data file initially exists. Old-File will call Insert-Data to insert the time
series.

There are two groups of support routines. One group implements the pre-
count and rainflow counting algorithms. These routines are needed to
accomplish the rainflow counting. When given a time series data file of
stresses, these routines would produce an output file listing the mean and
range values for each cycle found in the time series. Rain-Count is a driver
routine that calls Peaks (to find the maxima in the time series), Rtrack (to
do the racetrack filtering), and Srain (implements the single pass rainflow
counting algorithm). The other group of subroutines is used to implement
the al orithms to create and marupulate the data file that is compatible with

! LIFE .

-12-

CODE WALKTHROUGH

The following section describes the function of each subroutine used to
implement the algorithms. The main driving routines are discussed first,
then the support routines that create and mampulatethe data file, followed
by the pre-count and rainflow counting routines. The source code for all of
the routines may be found in the file rain.for on the distribution discs.

Ma in Drivin~ Rout ine$

Rainfl. This subroutine displays a menu that gives the operator the option
of puttin the time series into an existing data file or creating a new data

% file. Su routine New.File is used if a new file is being created, and
subroutine Old-File is used if an existing file is being used.

New FiJe. This subroutine creates a new data file in which the cycle count
will Fe placed. First the operator must input the header information for the
data file. The program prompts for this information in subroutine Input
Header-Info. Next, if the stresses are operational or buffeting, the program
calls Input -Speed -Range to get the lower and upper speed bounds for the
time series data. If the stresses are start/stop, then there is no wind speed
associated with the matrix. Since this is a new data file, this will be a new
matrix. As such, the number of records in the matrix will be 1, so the
variable num_records is set according , and the number of miscellaneous

{ notes placed at the end of the data file variable nrzotes) is initialized to O.

A note is then created to identify this wind matrix. The note contains the
number of records contained in the matrix, the lower wind speed and the
upper wind speed. Subroutine Make-Note creates the note.

The rainflow counting algorithms are then used by calling subroutine Rain
Count. On return from this subroutine the variable opstim will contain the
length of the time series data in seconds if operating or buffeting stresses
are being used. If the time series data contained start/stop stresses, then
the value of opstim will be 1 since this will be the first start/stop record in
the matrix.

The matrix can now be set up and filled with the cycle counts found in the
time series data. Subroutine Setup -Stress .Arrays is used to initialize the
mean stress array (opsm) and the cyclic stress array (opsc). Then Init
Matrix is used to set all of the count values to zero. Finally, Input-Cycle

-13-

Count will put the cycle counts found in the time series data into the matrix
in their proper locations. In memory, the matrix is stored in the two-
dimensional variable opscc.

At this point all of the variables contain the required information. The next
step is to store this information in the calculational file. This file will be
OPS.C~ BUF.C& or STS.CAL depending on the type of data contained
in the time series data. The calculational file is o ened along with the file

[containing the header information. The header in orrnation is copied to the
calculational file using Copyf. The file containing the header information is
then deleted since it is no longer needed. The matrix information is now
written to the calculational file using Writmx.

The operator may now add additional time series to this data file. If the
operator chooses to do so, the calculational file is rewound and then treated
as if it were and old file and Insert-Data is called. The variable modified is
used by Old-File and is not applicable in New-File. If the operator does not
want to put additional time series into the file, the program will ask if any
notes are to be added to the data file. Once the notes are entered, the
operator has the option of storing the data file in the libra~ for retrieval at
a later date. The routine then returns control to Rainfl.

Old_File. Subroutine Old-File will add time series data to an existing data
file. The operator is asked if the current calculational file is the desired
data file in which a time series is to be inserted. If not, the data files that
are available are listed and the one desired becomes the current
calculational file. Insert-Data is used to perform the rainflow counting on
the time series and to insert the counted cycles into the desired data file.
Once all desired time series have been added to the data file, control is
returned to Old-File.

It is possible to go into an existing data file and examine the matrices
without modifying the data file. In this situation, the variable modified will
be set equal to false when Insert-Data returns. This then indicates that the
notes should not be modified, so the routine does not prompt the operator
for notes.

If there are currently no notes in the data file, the operator is asked if notes
are desired. These notes are added to the data file. If notes already exist
the operator has three options: 1) leave the existing notes as they are; 2)
add to the existing notes; or 3) delete the existing notes and create new
notes. If notes already exist then they will be contained in a file called
mnote.tmp. With option 1 this file is simply copied to the end of the data
file. With option 2 the variable nnofe (it contains the number of notes in
the data file) is increased by the specified number. Then the new notes are
added to the file mnote.tmp before this file is copied to the data file. With
option 3 the new number of notes is put into nnote and then the file

-14-

mnote.tmp is rewound. When the new notes are written to this file, the old
notes are simply written over. The note file is then copied to the data file.

The code then asks the operator if the data file is to be stored in a library
before returning control to Rainfl.

Insert Data. Subroutine Insert-Data will insert counted cycles into an
existin~ data file. The counted cycles can be inserted into a matrix that
currently exists, or a new matrix maybe created to insert the data.

The variable modified is used to indicate that the data file has been
modified. This information is used by Old-File to decide if it should prompt
for changing the notes. The assumption is that if the file has not been
changed then the notes do not need to be changed. Variable modified is set
to false initially and changed to true when the file is modified.

Insert-Data must save the data file’s header information. This is done with
subroutine Save-HeaderTInfo. The number of matrices that currently exist
in the data file is stored m the variable nops. This value is read in from the
data file.

Two tempera
1!

files are now opened. The first is called matrix.tmp and is
used to hold t e notes that describe each matrix. This is done so that the
notes can be displayed allowing the operator to see what matrices currently
exist. The second is called windsp.tmp and it is used to hold the upper wind
speed value associated with each matrix. This creates a numerical hst of the
current matrices within the data file. When the operator creates a new
matrix, the program scans this list to find the proper lace to insert the new

i matrix. This way the matrices can be kept in ascen ing wind speed order.
Readmx is used to read a matrix. Then the note and the upper wind speed
are written to their respective temporary file. This is done for each wind
speed matrix within the data file. The existing notes are then read and put
into a temporary file called mnote.tmp.

List-Matrices is used to display the matrices that currently exist within the
data file. When List-Matrices returns, variable matrix num will contain the
number of the matrices to add to or create, and the va~iable create new will
tell whether a new matrix must be created. If a new matrix is to b=created,
then wind~ower and wind_upper will contain the lower and upper wind
speed associated with the new matrix. These values are used in creating a
note for the matrix.

If matrix_num is O, then the operator wishes to return to the main rainflow
menu (subroutine Rainfl). If the routine has not gotten past this point
previously, then modified will be false to indicate the data file has not been
modified. Once past this point in the routine modified becomes true and
will remain in this state untd Insert-Data is used again.

-15-

The next step is to read through the data file to where the data are to be
inserted. As this is done the reformation that is read must be saved in a
temporary file. The temporary file is opened and is called templ.cal. The
matrices are then read by rewinding the data file, using Save-Header-Info
to read over the header information, reading the number of matrices (rzops),
and then using Read-Matrices to read past the matrices that currently exist
to the point where the data are to be inserted. Subroutine Read-Matrices
reads a matrix and then writes the matrix to the temporary file.

If the create new is true then a new matrix must be created. Since it is a
new matrix t~e variable num_reconi.s is initialized to 1. Then Make-Note is
used to create the note for the new matrix. Rain-Count is used to count the
cycles in the time series data. The length of the time series in seconds is
returned in the variable time. Since this is a new matrix opstim is set to this
value if the time series contained operational or buffeting stresses. If the
time series contained start./stop stresses opstim is initialized to 1.

The matrix can now be set up and filled with the cycle counts found in the
time series data. Setup-Stress-Arrays is used to initialize the mean stress
array (opsm) and the cyclic stress array (opsc). Then Init-Matrix is used to
set all of the count values of the matrix to zero. Finally, Input-Cycle-Count
will put the cycle counts found in the time series data into the matrix in
their proper locations. In memory the matrix is stored in the two-
dimensional variable opscc.

Variable wndupp is contained in the main common block. It is used in the
lifetime calculations and also in the reading and writing routines Readmx
and Writmx. From the point where the operator inputs the upper wind
s eed for the current matrix to the point where this value is written to the
z ata file, Readmx may be used several times to read past existing matrices
(this is done in Read-Matrix). This means wndupp is changed several times
and will not contain the correct value. Variable wind upper is used to store
the value input by the operator so that it is not lost. ‘Wndupp is set to this
value before it is written it to the data file.

The matrix is now written to the temporary file using Writmx. To keep the
temporary files matrix.tmp and windsp.tmp current Update-Matrix-File is
used. This routine places the new note in matrix.tmp and the upper wind
speed associated with the matrix into windsp.tmp. Then Read-Matrices is
used to read the remaining matrices in the calculational file and write them
to the temporary file. The temporary file now contains the updated version
of the data file.

If the operator chooses to add the time series data to an existing file, then a
different set of sequences occurs. The first time Read-Matrices is used it
reads the matrices up to the desired one. Therefore, Readmx is used to
read in the matrix in which the data are to be inserted. Then Read-Note is
called to get the numerical values of the variables num records, wind lower,
and wind upper from the matrix’s note. Make-Note the—n takes these~alues —

-16-

and creates a new note with the number of records increased by one.
Subroutine Rain-Count is used to count the cycles in the time series data.
The length of the time series contained in the variable time is then added to
the old time value stored in optim if operational or buffeting data are used.
This procedure keeps track of the total time the matrix represents. If the
time series contained start/ stop data, opstim is incremented by one to
reflect the number of records the matrix contains.

If a cycle is found that has a mean or cyclic stress greater than the maximum
found in the current stress arrays, the respective stress array and cycle count
matrix must be adjusted. This is done with Move-Stress-Array. Once the
stress arrays have been adjusted, the counted cycles are inserted into the
matrix with Input-Cycle-CounL

The program continues as with the new matrix option. It assigns wndupp the
upper wind speed, writes the matrix to the temporary file, updates the
tempora~ files matrix.tmp and windsp.tmp, and finally writes the rest of the
matrices m the calculational file to the temporary file.

The temporary file now contains the u dated matrices. This information
must be copied back into the data file. A is is accomplished by first copying
the header information to the data file, then copying the temporary file to
the data file. Upon being completed, the program asks the operator if
another time series is to be added to this data file. For a positive reply, the
current matrices are listed and the process repeats. If negative, control is
returned to the calling routine.

L1~2 &JD Dort Routine$

Extreme_Values. This subroutine searches through the counted cycles and
finds the minimum and maximum of the mean and range stresses. These
values are required when initializing the stress arrays and also to ensure
that current stress arrays cover the maximums found in the counted cycles.

The rainflow algorithms will store the counted cycles in a file called
rain.dat. The mean and cyclic data are read in from this file and compared
to the existing minimums and maximums. If the new value represents a new
minimum or maximum, the old values are replaced. This continues until
there are no more data in the file.

Init_Matrix. This subroutine is used when a new matrix is created. It
simply zeros all of the values within the two-dimensional variable opscc.

-17-

InputWCycle CounL This subroutine will input the cycle count found by
the ramflow ~gorithms into a matrix. The rainflow algorithms will store the
counted cycles in a file called rain.dat. Each ent~ will have a mean value
and a range value. A do loop is executed until the first value is found in the
mean stress array (arran ed in ascending order) that is greater than the
mean value of the cycle. L en this occurs the do loop index (mean value)
will contain the mean stress index in the matrix. The same is done~or the
cyclic stress. The do loop will always find a value in the stress arrays that is
greater since, the arrays are adjusted to cover the maximum values found in
the counted cycles.

Once the proper indices have been found, the corresponding entry in the
matrix o scc is incremented by one to represent that another cycle has been
found. k is process repeats until the end of file is reached in rain.dat (i.e.,
no more cycles).

Input_Header. This subroutine is used when a new data file is created. It
simply prompts the operator for all of the necessa~ information required in
the header of a data file. It stores this information in the temporary file
header.tmp so that it maybe copied into the calculational file.

Input_Speed_Range. This subroutine simply prompts the operator for the
wind speed range that is represented by the time series.

List_Matrices. This subroutine will list the matrices that currently exist in a
data fde. They are listed on the screen 10 at a time with the o erator being
able to page forward and backward through the matrices. !-h e operator
may add time series data to an existing matrix or create a new matrix.

The variables ifinst and ilast are used to keep track of the first and last
matrices to be displayed on the screen. These are initialized to 1 and 10
respectively. The tempora~ file matrix.tmp contains the description of each
matrix in the data file. This is the description that is displayed. Temporary
file windsp.tmp contains the upper wmd speed for each matrix. This
information is used to find the Proper place to insert a new matrix. After
these files are opened, a loop 1s entered. The first statements within the
loop are not needed the first time but are required for successive passes
through the loop. The first statement rewinds the matrix file. The next
statements are used to ensure that the variables ij%st and ilast are between 1
and the number of matrix in the file (variable nops).

A do loop is used to read over the matrix descriptions up to the first
description to be displayed. Then another do loop is used to display the

-18-

desired descriptions. This is followed by displayin$ the operator options. If
theoperator chooses topagebachard, theni@t lsdecremed by lO. If the
operator chooses to page forward, i~t is increased by 10. The loop is then
repeated. In both cases the i~f and ikrst are held between 1 and nops by
the statements at the beginning of the loop.

If the time series is to be input into an existing matrix, then the code
prompts the operator for the corresponding matrix number. Variable
create_new is set to false to indicate the option chosen, and the program
exits the loop to return to the calling routine.

If a new matrix is to be created, List-Matrices calls Input-Speed-Range to

h
rompt the operator for the lower and up er wind speeds of the time series.

F en the file windsp.tmp is searched to md the correct place for the new
matrix to be inserted. The matrices are kept in the data file in ascending
upper wind speed. Once the insertion point is found, the create_new is set
to true and the program exits the loop to return control to the calling
routine.

Make_Note. This subroutine will create a note describing a matrix. If the
data are start/ stop data then there is no wind speed associated with the
matrix. In this case the operator is prom ted to input the note. If the data

E are operational or buffeting stresses t en the subroutine will take the
number of records and the lower and upper wind speeds and create the
note. For example, if the data are operational stresses with lower wind
speed of 10 and upper wind speed of 15 and contain 2 records, the
subroutine will create the following note:

Operational Stresses; # Records= 2; Range 10 to 15

To insert the number of records and wind speeds into the character string,
the note is first written to file note.tmp with the proper format statement.
Then the information is read in from the file as a character string into the
variable note.

Matrix_Information. This subroutine collects and displays information on a
matrix. It first prints a message informing the operator that it is retrieving
the desired matrix. If the matrix is one of the first in the data file this
message may scroll off the screen before the operator can read it.
Therefore, WAIT is used to pause for 2 seconds to ensure the operator has
time to read the message. The routine then reads over the header
information with Save-Header-Info and reads in the number of matrices. It
then reads matrices until the desired matrix is read into memory.

-19-

Next, information that istobedisplayed is tabulated. The routine displays
a message on the screen to inform the operator of its status. Read-Note is
then used to get the lower and upper wind speed values. Then the number
of cycles in the first bin for the mean and cyclic stresses is tabulated
together with the number of cycles in the rest of the matrix.

The information is now displayed, and a pause statement is used to suspend
program execution until the operator presses <ENTER>

Move Stress Arrays. This subroutine will increase the maximum value in
the c~clic an~/ or mean stress arrays if the time series maximums is not
contained in the arrays. If there are not 50 intervals (the maximum number
of intervals) in the stress array, intervals are added until the time series
maximum is covered. If there are 50 intervals in the stress array, the two
smallest intervals are combined with another interval being added until the
maximum is covered.

Subroutine Extreme-Values will find the maximum values of the mean and
cyclic stresses of the counted cycles. The routine will also find the minimum
values, but these are not used in Move-Stress-Arrays.

An ‘if’ statement is used to display the message that the mean stress array
needs adjusting. Since this message may scroll off the screen before the
operator has time to read it, Wait is used to delay for two seconds.

An ‘if’ statement is used inside a loop to determine the maximum in the
mean stress array is larger than the maximum value found in the counted
cycles. The resolution is found by calculating the difference between the
first two intervals.

If the number of intervals in the mean stress array is less than 50, another
interval is added. This is accomplished by increasing the number of
intervals (ncqnrn) by one, assigning the new interval the next greater
resolution step, and putting all zeros in the new interval. The routine then
loops back to determine if the time series maximum is contained within the
array.

If 50 intervals currently exist, then the first and second intervals are
combined. Then all of the intervals are moved back by one (third interval
to second, forth interval to third, etc.). The last interval is reinitialized to
zero. The mean stress array is moved back by one, with the last value being
increased by the resolution step size. The routine then loops back to
determine if the time series maximum is contained within the mean stress
array.

Once the time series mean stress maximum is contained within the mean
stress array the same procedure is used for the cyclic stress array.

-20-

Read_Matrices. This subroutine will read cycle count matrices and write
them to a temporary file. It is used to read existing matrices within a data
file to the point where new data are to be inserted. It is assumed that the
temporary file is already open when this routine is called.

Read_Note. This subroutine will read the note for a matrix and extract the
number of records and the lower and upper wind speeds from the character
string. This information is required when a matrix has a record added to it.
The number of records for the matrix must be updated. To accomplish this
task, the strin value must be converted to a numerical value. This is

% accomplished y writing onl the numerical fields within the note to a
tempora~ file as characters. h en the program reads in the information as
numerical values. The wind speeds must also be done so that a new note
can be constructed using mati_note.

Save_Header Info. This routine reads the header information in a data file
and stores it ~n a temporary file for later retrieval. The temporary file is
called header.tmp.

Setup_Stress Arrays.This routine sets up the stress arrays opsm and opsc.
The program first calls Extreme-Values to find the minimum and maximum
of both the mean and cyclic stresses. It then displays these values and
prompts the operator for the desired resolution of the arrays.

The starting mean stress value is found by starting at zero. If the minimum
time series stress is less than zero, the starting value is decreased by the
desired resolution until the starting value is less than the minimum time
series value. If the minimum time series value is greater than zero, the
starting value is increased by the resolution until another increase would
result in a starting value greater than the minimum time series value.

The variable nopsm (contains the number of elements in the mean stress
array) is initialized to zero and a loop is entered. If no sm is less than 50, it

t is incremented by 1 and a stress value is assigne to the appropriate
element in the array opsm. A check is used to insure that the final element
in opsm is larger than the time series maximum.

The maximum number of elements in the array is 50. If 50 elements are
used before the time series maximum is contained within the stress array,
the array must be shifted. This is done by assigning each element in the
array the stress value of the previous element (i.e., first = second, second =
third, etc.). The last array element is then assigned the next greater stress

-21-

value. This is repeated until the time series maximum is contained within
the mean stress array.

This procedure is then repeated for the cyclic stress. The only difference in
the procedure is in finding the starting stress value. Since the cyclic stress
will always be greater than zero, a check does not have to be done to see if
the time series minimum is less than zero.

Update Matrix File. The temporary files matrix.tmp and windsp.tmp
contain ~nformat~on about the matrices contained in the current data file.
File matrix.tmp contains the notes for each matrix in the file, and
windsp.tmp contains the upper wind speed associated with each matrix.
When a time series is added to a data fde these temporary files need to be
updated. Subroutine update_matifile performs this task.

File matrix.tmp must be updated when a time series is added. If the time
series is added to an existing matrix the old note must be discarded and
replaced with an updated note. If a new matrix has been created, then the
new note must be inserted into the temporary file.

Since the new note is stored in the variable note, it must be temporarily
stored so the program can use note. This is done by writing the note to the
temporary file note.tmp. Then a do loop is entered that reads the current
notes to the point the new note is to be inserted. As the current notes are
read, they are written to a temporary file that will contain the new list of
notes. The new note is then read in from note.tmp and written to the
temporary file. The program then reads the next note from matrix.tmp.
When a time series is added to an existing matrix, this next note is bein

t replaced by the new note so it is discarded. When a new matrix is create ,
this next note must be written to the temporary file. The remainder of the
notes in matrix.tmp are then written to the temporary file. The temporary
file now contains the updated list of notes and is copied back into
matrix.tmp.

File windsp.tmp contains the up er wind speed associated with each matrix.
f Therefore it is necessary to up ate this file when a new matrix is created.

The procedure is the same as when updatin matrix.tmp. The subroutine
! writes existing wind speeds to a temporary ile up to the point where the

new wind s eed is to be inserted. The new wind speed is written to the
F temporary ile, then the remainder of the wind speeds in windsp.tmp are

written to the temporary file. The temporary file is then copied back into
windsp.tmp.

-22-

Rainflow Cou ntimr Routines

Rain Count Subroutine Rain.Count calls the subroutines that im Iement
the r~inflow counting algorithms. E The rainflow counting algorit ms are
implemented by subroutines Peaks, Rtrac~ and Srain.

Subroutine Rain-Count first prompts the operator for the name of the file
that contains the time series data and the length of the time series in
seconds. It then tries to open the file displaying an error if it cannot open
the file. Three data files are then opened to store data from the rainflow
counting routines. File extrema.dat stores the peaks and valleys found in
the data by Peaks. File filtered.dat stores the data after they have been
filtered by Rtrack. File rain.dat is used to store the counted cycles found by
Srain.

The three subroutines are then called to implement the rainflow counting
algorithms. Subroutine Peaks is called first to find the peaks and valleys in
the time series. It will read data from the time series file and write the
results to the file extrema.dat. Subroutine Rtrack is called next to racetrack
filter the data. A threshold value, input by the operator, is passed to the
routine. It will read the data from file extrema.dat and write the results to
filtered.dat. Subroutine Srain is called last to do the actual cycle counting.
This routine will read the data in from the file tlltered.dat and write the
mean and cyclic stress of each cycle to the file rain.dat.

Peaks. Subroutine Peaks will find the extrema (peaks and valleys) in the
time series data. Since the time series is collected at uniform time intervals,
a maxima in the data may have been truncated. The routine compensates
for this by doing a parabolic interpolation with the three nearest points to
extremas.

The first point is considered an extrema by default so it is read in from the
time series, stored in variable xl, and written to the output file. Then the
second data point is read and stored in variable x2. The slope of these data
points is calculated and stored in &l. The first data point is no longer
needed so the second data point is stored in xl. A new data point is read
into x2. A new slope is calculated and stored in dx2. If there is a change in
the sign of the two slopes then the routine knows that an extrema has been
located. A parabolic interpolation is done to find the extrema, and it is then
written to the output file. The slope &2 is then written to cM, and the
routine loops back to read in another data point. If there is no change in
the signs of the two slopes, then an extrema does not exist between the data
points. The slope in uk2 is written to GM, and the process loops back to
read in another data point. This process continues until there are no more
data in the time series file. The last point in the time series is considered an
extrema by default so it is written to the output file also.

-23-

RtracL This subroutine implements a racetrack filtering technique. It
eliminates all cycles found in the data that are less than an operator-
specified threshold value. There are two main processes contained in the
routine; the initialization process and the falter/ store process. The
initialization will search through the data until a cycle is found that is
greater than the threshold value. The purpose of the initialization process
N to keep the cycle with the greatest cyclic value until a value is found that
is greater than the threshold. When this is found the routine will begin the
filter/store process in which all cycles greater than the threshold are written
to the output file.

The routine reads in the first three data points and calculates the
differences between each point. The absolute difference between the first
and second data points is referred to as difl12. The absolute difference
between the first and third data points is referred to as difl13, and the
absolute difference between the second and third data points is referred to
as di&3.

To illustrate the filtering algorithm, first consider the ease shown in Fig. 2.
In this ease, if di~12 is greater than the threshold value, the routine jumps to
the filter/ store process. If diff12 is less than the threshold but is greater
than dijfj23 and dif13, then the data may look like that shown in Fig. 2a. In
this situation the third data point is discarded (Fig. 2b), and the next data
point is read.

a) dif12 has largest value b) Third data point discarded

Figure 2

Next consider the ease where diff13 has the largest value. This is shown in
Fig. 3a. Note that Fig. 2 shows how this situation may arise. In this case the

-24-

routine will discard the second point as shown in Fig. 3b. If di~13 is greater
than the threshold value, then the routine begins the filter/store process. If
not, the routine will read in a new value for the third data point and
continue with the initialization process.

a) dif13 has largest value b) Second data point discarded

Figure 3

If dim has the largest value, then the data may look like those shown in
Fig. 4a. When this occurs the first data point is discarded and the points are
shifted, as shown in Fig. 4b. If dim is greater than the threshold, then the
routine jum s to the filter/store process. If not, then the routine will read

P in a new va ue for the third data point and continue with the initialization
process.

7

6

s

4

3

z I w
3

a) di&3 has largest value b) First data point discarded

Figure 4

-25-

When a cycle is found that is larger than the threshold the program begins
the filter/store process. In this process the difference between the first two
data points will always be greater than the threshold value. If the difference
between the second and third data points is also greater than the threshold
value, the data may appear as shown in Fig. 5a. In this case the first data
point is written to the output file and then the points are shifted, as shown
m Fig. 5b. The routine loops back to read in a new third data point.

am -

9 Ttreshdd < 2 ● Threshold < 2
● ●

7

; &f/’Jl ‘e :~

2
6

s

4

1
a

z

t
3

1
, J

a 12s4s6? ,,, ~ * 8
e 1234567 ● *1.

a) di&3 larger than threshold b) Points after shift

Figure 5

If the difference between the second and third data points is less than the
threshold value, then the data may be as shown in Fig. 6a. In this case the
next data point is read as a fourth data point. It can be seen in Fig. 6a that

1 < Tlrcshold < 2

4

19

9

[

1 < TtYeshokj < 2

●

&

s

●

a

?.

1
t

2

a) d@723 less than threshold b) Data points discarded

Figure 6

-26-

the difference between the first and and fourth data points is larger than the
difference between the first and second data points. In this s]tuation the
second and third data points are discarded (see Fig. 6b).

Another situation may have the data as shown in Fig. 7a. Here di#2?3 is less
than the threshold and diff12 is greater than diff14. In this case the third and
fourth data points are discarded (see Fig. 7b).

LL____
a 1234 S670 SIO

‘t 3

a) dim less than threshold b) Data points discarded

Figure 7

This process continues until there are no more data in the input file. When
this occurs, there is one more cycle to write to the output file. As
mentioned earlier, the difference between the first and second data points
will always be greater than the threshold value. This being the case, when
the end of file is reached these data points must be written to the output
file.

Srain. This subroutine implements the actual rainflow counting of cycles.
It reads in the filtered data and writes the mean and range stress of each
cycle to the rain.dat output file. A detailed explanation of this algorithm is
given in Downing and Socie (5). The paper discusses two types of
algorithms. The one incorporated into this routine is the single-pass
algorithm. The only difference is that the algorithm in the paper uses arrays
to store the data, whereas the algorithm incorporated here uses files.

-27-

SUMMARY

A set of algorithms that permits the analysis of time-series stress data has
been incorporated into the LIFE2 fatigue/fracture analysis code. The
algorithms are built around a rainflow counting algorlthm. Support
algorithms that structure the data in a format compatible with the LIFE2
code have also been implemented. This report describes the major design
decisions that were made in implementing the algorithms and gives a
detailed description of the subroutines used to implement the algorithms.
For a more detailed descri tion of the algorithms and an explanation of

f? how to use them please see chluter and Sutherland (4).

-28-

1. Schluter, L. L. and Sutherland, H. J., Reference Manual for the
LIFE2 co inter Code SAND89-1396, Sandia National Laboratories,
Albuquerq;, NM, Septe~ber 1989.

2. Sutherland, H. J., Analytical Framework for the LIFE2 Comnute
Code, SAND89-1397, Sandia National Laboratories, Albuquerque,-NM~
September 1989.

3. Schluter, L L and Sutherland, H. J., “Rainflow Counting Algorithm
for the LIFE2 Fatigue Analysis Code,” Ninth ASME Wind Energy

DOS ium, Vol. 9, 1990, pp.121-123.

4. Schluter, L. L. and Sutherland, H. J., User’s Guide for LIFE2’s
Rainflow Cou ntirw Al~orithm, SAN90-2259, Sandia National Laboratories,
Albuquerque, NM, August 1990

5. Downing, S. D., and Socie, D. F., ‘Simple Rainflow Counting
Algorithms,” IntemationalJoumal of Fatigue, Vol. 4, N. 1,1982, pp. 31-40.

6. Veers, P.S., Winterstein, S. R., Nelson, D. V. and Cornell, C. A.,
“Variable Amplitude Load Models for Fati e Damage and Crack Growth,”
Development of Fatigue Loading Spectra, 8 TM STP 1006, J. M. Potter and
R. T. Watanabe, eds., 1989, pp. 172-197.

7. Microsoft FORTRAN Oot imizirw Co mdier, Version 5.0, Microsoft
Corp. (1989).

-29-

DISTRIBUTION:

Dr. R. E. Akins
Washington & Lee University

P.O. Box 735
Lexington, VA 24450

The American Wind Energy Association

777 N. Capitol Street, NE

Suite 805
Washington, DC 20002

Dr. R. N. Clark
USDA
Agricultural Research Service
Southwest Great Plains Research

Center
Bushland, TX 79012

P. R. Goldman
Wind/Hydro/Ocean Division
U.S. Department of Energy
1000 Independence Avenue
Washington, DC 20585

R. W. Thresher

Solar Energy Research Institute

1617 Cole Boulevard
Golden, CO 80401

1520 L. W. Davison
1522 R. C. Reuter, Jr.
1522 D. W. Lobitz
1522 E. D. Reedy
1523 J. H. Biffle
1524 C. R. Dohrmann
1524 D. R. Martinez
3141 S. A. Landenberger (5)
3151 G. L. Esch (3)
3154-1 C. L. Ward (8)
3161 P. S. Wilson
6000 V. L. Dugan, Acting
6200 B. W. Marshall, Acting
6220 D. G. Schueler
6225 H. M. Dodd (50)
6225 T. D. Ashwill
6225 D. E. Berg
6225 M. A. Rumsey
6225 L. L. Schluter
6225 W. A. Stephenson
6225 H. J. Sutherland
6225 P. S. Veers
7543 R. Rodeman
7543 T. G. Carrie
7543 J. Lauffer
8524 J. R. Wackerly

W. A. Vachon
W. A. Vachon & Associates
P.O. Box 149
Manchester, MA 01944

30

	ABSTRACT
	TABLE OF CONTENTS
	INTRODUCTION
	BACKGROUND INFORMATION
	Pre-C ount Akzorithm$
	Rainflow Counting Alporithm
	Post-cou nt AMzorithm$

	DESIGN DECISIONS
	Nonstandard Fortran 77
	Rainflow Aborithm Coding
	Use of Constants
	Temporary Files

	CODE ORGANIZATION
	CODE WALKTHROUGH
	Main Driving Routines
	LIFE2 Support Routines
	Rainflow Counting Routines

	SUMMARY
	REFERENCES
	DISTRIBUTION

