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Abstract

A method for numerically simulating a three-dimensional field of turbulent wind-

speed (the “Sandia method”) for use in the aerodynamic and structural analyses of

wind turbines is presented. The required inputs are single point power spectral den-

sities (PSDs) and the coherence function. Suggestions for appropriate inputs and an

example calculation are included. The simulation method is used to obtain “rota-

tionally sampled” PSDs, which are compared with measurements obtained by Pacific

Northwest Laboratories. The results show that the Sandia method is capable of pro-

ducing simulations that agree with the measurements, especially when the coherence

function is augmented from the usual form to include the ratio of spatial separation

over height raised to the 0.25 power. The method is specialized for horizontal axis

wind turbine analysis by phase lagging the simulations at each point in space so that

wind speeds are simulated only when the turbine blade passes the point, reducing

storage requirements and computation time by about an order of magnitude. For

vertical axis applications, where interpolation will be required, the error induced by

the interpolation is estimated and eliminated by the addition of white noise.
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1. Introduction

Wind simulation has become an important part of both vertical and horizontal

axis wind turbine structural analysis. Because of the highly nonlinear relationship

between atmospheric turbulence and aerodynamic loads on wind turbine blades, there

continues to be interest in numerically simulating the winds and then calculating time

series of blade loads. For mid-to-large size wind turbines, spatial variations in the

turbulence must be considered and three-dimensional wind simulation is required.

The basic approach of the Sandia method [1] is to simulate wind-speed time

series at several points in a plane perpendicular to the mean wind direction and to

propagate the time series in the mean wind direction at the mean wind speed (i.e.,

using Taylor’s frozen turbulence hypothesis ). This is a “full-field” method in that

it completely fills a three-dimensional block of space with a grid of instantaneous

wind speeds. This is especially useful for VAWT applications where the blades sweep

back and forth through the turbulence as it propagates through the rotor. Even

one-dimensional turbulence inputs have been shown to produce some unexpected

aerodynamic effects on VAWT loads [2]. Each point on a HAWT blade follows a

simpler path tracing a circle in a vertical plane. An improvement to the Sandia

method is obtained (for HAWT applications) by specializing the simulation for the

points in space and time occupied by rotating HAWT blades.

The Sandia method for full field wind simulation has already been applied to

both HAWT [3,4] and VAWT [5,6] structural analysis. Very little computer time is

needed to produce a full field of simulated winds. The limiting factor is the rather

hefty storage requirement. To simulate a time series of length Al at N points in

space requires more than AL?(N2 + N )/2 storage locations. For HAWT applications,

this storage requirement can be significantly reduced by using the efficient simulation

technique described in this report.

The required input includes the single point, turbulence PSDS for all N points

and the coherence function, which describes how turbulence is correlated as a function

of spatial separation, mean wind speed, and frequency. The coherence is assumed to

be isotropic in the cross-wind plane and the cross spectral densities are assumed to

be real valued. Neither of these assumptions are necessary for the method to work,

but they both simplify implement at ion and are consistent, with current, knowledge of

turbulence statistics. If improved turbulence descriptions are found, they could be

included with” minor modifications.



2. Review of the Simulation Method

The three-dimensional wind simulation met hod described in Ref. 1 and reviewed

in this section is based on a method developed by Shinozuka [7] and more clearly

outlined by Smallwood [8]. It creates N correlated time series based on the spectral

matrix, S. The diagonals of S are the power spectral densities (PSDS). Each off-

diagonal term, Sj~, is the cross spectral density between points j and k.

For the purpose of numerical simulation, a discrete representation of each ele-

ment in the spectral matrix is required. The continuous, one-sided PSD at point j,

Gjj( j), is discretized by dividing it into frequency bands Aj Hertz wide with the

center frequency of each band designated as j~. The correct variance is rnaint ained

by letting Sjj(~~ ) = Gjj(~~ )A~/2. 1 Each entry in the spectral matrix must contain

lkf/2 frequency components to get a time series of length A4 using an FFT.

The magnitude of the cross spectrum between points j and k can be defined in

terms of the PSDS and the coherence function, Cohjkl by

[Sjk(.fm)l = co~jk(.fm, A~j)c, ~jk) J=== (2.1)

where the coherence is a function of frequency (~~ ), distance between points j and

k ( Arjk ), and mean Windspeed at points j and k ( [Tjk ). By assuming that there is

an average phase of zero between any two points, the imaginary parts of the cross

spectra are zero. Thus, the entire spectral matrix is defined by the PSDS and the

coherence.

The N correlated time series are generated by linear combinations of N inde-

pendent, white-noise processes. In this case, S can be written as the product of a

transformation matrix, H, and the transpose of its complex conjugate [7].

S(j~) = H(f~)H*~(j~) (2.2)

where each entry in S and H is a function of frequency.

Because S is real, H must also be real and H = H*. Because S is symmetric, it

contains (N2 + N)/2 independent entries while tile full H contains N2 entries; H is

therefore not uniquely defined. If H is assumed to be lower triangular, however, the

1Sjj (f~ ) is the two-sided Fourier amplitude of the ~~h frequency component. The normalization factor

( 1/2 in this case) must be unity if your FFT routine assumes a one-sided input.
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nonzero entries will be uniquely defined and can be determined by a simple recursive

set of equations:

Hl~ = S:{2
HZ* = s2~/H~~

~22 = (s22 – H;J1/2

H~~ = s~~/H~*
(2.3)

The elements of the H matrix can be thought of as the weighting factors for the

linear combination of N independent, unit-magnitude, white-noise inputs that will

yield N correlated outputs with the correct spectral matrix. Each row of H gives

the contributions of all the inputs to the output at point k. Each column gives the

contributions of the j‘~ input to all of the outputs.

The independent, unit -magnitude, white-noise inputs are cent ained in an N x N

diagonal matrix X such that

(2.4)

where i is @ and dk~ is the phase angle associated with the kth input point and

the mt~ frequency component. dk~ is a uniformly distributed random variable on the

interval (O, 27r). This insures that the time series will approach a Gaussian process

as the number of frequency components becomes large.

The matrix equation for the N x 1 vector of complex Fourier coefficients of the

simulated wind speed, V, is given by

where 1 is an N x 1

The operations

V=HX1 (2.5)

vector of ones.

may be more easily visualized in summation notation where it

is evident that the vector 1 is only present for the purpose of summing across each

row of HX.

‘~(.f~) = ~Hjk(.fm)Xkk(.fm) = ~ ~jk(fm) eiekm (2.6)
k=l k=l

Because X has all unit magnitude entries, the only effect it has is to apply a

random phase to each column of H. The summation form shows that the Vj depend

4



on the inputs from all the earlier points (k < j), which are weighted by the Hj~. The

fact that each output does not depend on all the inputs is an artifact of selecting

a lower triangular form for H. Assuming that H has other forms (e. g., symmetric)

could eliminate the order dependence, but would also eliminate the simple recursive

met hod of solving for the elements of H. A small example is shown in Appendix A

to help illustrate how the above method works in practice.

The time series are obtained by taking the inverse Fourier transform of each

element of V, resulting in a simulated wind speed at every time step for all N points

in space. While this “full-field” representation may be necessary for VAWT applica-

tions, it produces many unused data for HAWT applications. Section 6 outlines how

these extra data can be eliminated for the rotational sampling employed in HAWT

applications.
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3. Turbulence Power Spectral Densities (PSDS)

The basic input to any method of three-dimensional turbulence simulation is

the wind speed PSD, Many models of turbulence PSDS have been proposed, starting

with von Karman in 1948 [9]. Reference 1 used the PSD suggested by Frost [10]

while Powell and Connell [11] suggest (rightly) that the Kaimal spectrum [12] is a

more accurate representation. The Frost (GF( ~)), Kaimal (GK (f)), and von Karman

(Gv(f))models are shown in Fig. 3.1, in the traditional form of logarithmic SPeCtra

(~G(j) vs ~, where .f is the frequency in Hz). The formulas for these l’SDS are:

G=(j) =
12.3tr10z~ln((10 /zO) + l)ln((.z/zO) ~ 1)]-1

1 + 192[(jz/L~10) ln((10/zO) + 1)/ln((~/~0) + @

GK(f) =
lo5zf:z/r

(1+ 33( f2/u))~

10°
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~
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(3.1)

(3.2)

Fkequency (Hz)

Figure 3.1. Turbulence PSD models by Frost [10], Kaimal [12], and von Karman

[9] for ZO= .Olm, L. = 120m,t~lo= 8772/s, and z = 30m.
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Gv(f) =
4(5.7u:)Lz/u

1.339(1+ 39.48(jLz/U)2):
(3.3)

where:
f is the frequency in Hertz

z is the height above ground in meters

.zOis the surface roughness coefficient in meters

Z710 is the Ineall wind speed in In/S at a height of 10 meters

t~ is the mean wind speed in m/s at a height of z meters

Lz is the integral length scale

z~*is the shear velocity, u.= J’;~~O~

(The shear velocity is related to the turbulence variance, u:, in the von Karman

spectrum by a: % 5.7u~. )

Figure 3.1 shows that all three PSDS have the same slope in the inertia~ subrange

(high frequency). The Frost spectrum is significantly different than the other two

because it is derived from the Kaimal spectrum with a stable atmosphere while the

others apply to neutral atmospheres. The Kaimal and von Karman spectra are quite

similar except that the Kaimal spectrum is slightly lower in the important region

below one Hertz and, therefore, results in a turbulence intensity about 15’%0lower

than the von Karman spectrum, for the parameter values used in Ref. 11 (:0 = .Olnz,

L. = 120rn, UIO = 8Tn/s, and z = 307n). These values result in different variances

for all three PSDS, as shown in Fig. 3.1.

A recent review of the wind turbulence literature by Solari [13] highlights the

uncertainty in determining the coefficients of any PSD model of atmospheric turbu-

lence. Solari suggests that a deterministic representation for the turbulence PSD is

dzusory. He suggests that the basic form of the von Karrnan and Kaimal PSDS be

retained, but that the parameter of the PSD be a random variable. Solari’s PSD

(Gs(.f)) is of the form

G.(f) =
2.21u:/32”5z/u

(1 + 3.31(f@”5z/u)):

where

p = Pm + @B

in which

{

7.5 Zo < 0.03

@n = 4.5 – 0.8561n(zo) 0.03< SO<1.0
4.5 1.()<20

(3.4)

{

2.5 20<0.03

A/3 = 2.0– 0.1431n(zO) 0.03< zo <1.0
2.0 1.0< Zo

7
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Figure 3.2. Turbulence PSDS by Solari [13] with the

values of the random variable ~.

and pp is a uniformly distributed random variable on

minimunl and maximum

the interval (-1,1).

When /3 is varied in this way, it represents the scatter that is found in measured
turbulence spectra. The two extremes of the Solari PSD are shown in Fig. 3.2 for

the case of 20<0.03. The variance of the turbulence, tY~,is roughly @u~. It may be

argued that a uniform distribution on pp is artificial; one simple improvement would

be to preserve the mean and standard deviation while substituting a continuous,
one-sided distribution (e.g., I?’eibull). The important change is that ,/3, and therefore

the low frequency part of the PSD, is a random variable. The high frequency part

matches both the von Karman and Kaima.1 PSDS,



4. Coherence

The coherence function is a frequency dependent measure of the amount of

correlation between the wind speeds at two points in space. The usual form of

the coherence function is exponential; the one given by Frost [1O] (and previously

suggested for use in the Sandia method [1]) is

Cohjk = exp
(-%”)

(4.1)

‘where Arjk is the distance (in meters) between points ~ and k.

The constant, C, (called the cohe~ence decrement) has been estimated often for

cross-wind separations without much agreement on any single value. Solari reports

values ranging from 2 to 27’ (Frost suggested C = 7.5 for lateral spacing) with the

larger values of C’ tending to be associated with larger ratios of Ar/z, which suggests

that tlie exponential form may not be capable of representing the full range of possible

spacings of points. The form suggested by Solari is the same as Eq. 4.1 except that.

U = Ujk is defined as the average of the mean wind speeds at points j and k (a minor

revision) and that C = Cjk is a function of the spacing between points, A?’j&, and

the mean height of the two points, .zm= ( ~j + ~’ )/2, given by

()Arj~ 0-25
Cjk=b —

Zm

in which

b=12+5pb

As in the case of the spectral density, the coherence decrement is modeled as a random

variable by defining ~b to be uniformly distributed on the interval (-1,1).

The most important change is that the coherence function has been augmented
0“25 thereby increasing the coherence whenby the dimensionless parameter ( Ar/zn ) ,

(A~/z~ ) <1 and decreasing the coherence at greater spacings, as shown in Fig. 4.1

for four different frequencies. The selection of the 0.25 exponent in Eq. 4.2 provides

a good fit to the data, but seems to be somewhat arbitrary.
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Figure 4.1. The coherence function is plotted as a function of spatial separation

evaluated at four frequencies (~ = .012, .037, .11, and .33 Hz). The

solid lines are the standard exponential form and the clashed lines are

Solari’s suggested form (with U = 8111/s, b = 12, and z = 30m).
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5. Rotational Sampling

The term rotational sampling was born out of an experiment in which anemome-

ters were arranged around a circle in a vertical plane perpendicular to the mean wind

direction. Wind speeds were then sampled successively from each anemometer to

form a composite time series made up of wind speeds as seen by a rotating HAWT

blade [14]. Experiments were later conducted with an anemometer on a rotating

boom and with a Lidar scanner (laser anemometer). Rotational sampling is one

met hod of checking simulations of spatially distributed turbulence. Unlike the P SD

observed at a stationary point, the rotational PSD has peaks at the integer multiples

of the rotating frequency. 1

Rotational sampling with the Sandia method is accomplished by selecting wind

speeds out of the full field at points in space and time that correspond to positions

of a rotating HAWT blade. A rotationally sampled PSD can then be estimated from

the sampled time series with the aid of a Fourier transform.

Simulation techniques have been devised by Pacific Northwest Laboratory,( PNL)

to generate the wind speeds for a point On rotating HAWT [14] and VAWT [15] blades.

The PNL method analytically derives a rotationally sampled PSD and then uses the

inverse Fourier transform to produce a time series. The major shortcoming of this

method is that it can only simulate the wind speed at a single point on one turbine

blade, while structural response is sensitive to the distribution of wind speed over

the entire blade. The Sandia method, by simulating the wind speed at many points

in space for all time steps and then sampling at the moving position of the turbine

blade, can provide wind speed at many points on several blades. The disadvantage

is that wind speeds are also generated at points in space and time that the blades

will never occupy. The cost of obtaining wind speed at many points along the blades

is therefore a large increase in the required storage space for simulation program

execution.

The validity of rotationzd sampling with the Sandia method has recently been

questioned in a PNL report by Powell and Connell [11]. In comparisons with nlea-

sured rotationally sampled wind speeds and with empirically adjusted theoretical

results [16], the Sandia method was claimed to be less accurate. No explanation for

the differences was reported.

llnteger ~UltiP]e~’of the Iotatlng frequency are abbreviated as per revfrequencies — i.e., 1 Per rev

( 1P) is the rotational frequency; 2 per rev (2P) is twice the rotational frequency, etc...

11



The reasons for the reported deficiency, which will be explained below, are listed

here

1.

94,

3.

4.

in order of decreasing importance:

Statistical variations in per rev spectral content were not accounted for in the

PNL report.

Different input turbulence PSDS were used in the two approaches reported by

PNL.

The exponential form of the coherence function previously suggested in the

literature and used in the Sandia method is incapable of matching the measured

rotationally sampled PSDS at all per rev frequencies.

An error in the code supplied by Sandia to PNL decreased the input coherence

decrement by a factor of two.

The discrepancy is not due to any fundamental flaw in the Sandia method, as

will be shown below. By using input turbulence and coherence models based on the

recent synthesis of wind data by Solari [13], a better fit to the measured results can

be obtained using the Sandia method than from other rotational sampling methods

without losing the ability to generate wind speed at several points on the turbine

blades.

To illustrate the effects of changes in turbulence PSD and coherence, simulations

using the Sandia method, with various spectral and coherence inputs, are compared

to the test case of Ref. 11. Rotational sampling is done about a circle with a 20m

radius centered 30m above the ground at a rotational speed of (2/3 )Hz. The sampling

interval is 0.125sec (12 points per revolution) and the record length is 1024 points

(128sec). The mean wind speed is 8m/s and the surface roughness coefficient (ZO) is

O.Olm.

Table 5.1 lists the total variance of the turbulence and the distribution of variance

in the per rev peaks for the ezact PNL results (from Ref. 11) and for several different

inputs to the Sandia method. The ezact results are the PNL method results adjusted

by empirical corrections that make the per rev variances agree with measured data

[16]. Variances are listed in units of meters per second squared and (in parenthesis)

normalized by the ezaci results, which are listed in the first line of the table. (The

ezaci total variance was not published. ) The results flagged with an * are from Powell

and Connell [11].

The Sandia method results reported by PNL in Ref. 11, using both the Frost

and Kaimal P“SDS, have far from the desired distribution of variance, especially at

one per rev (1P), as can be seen in Table 5.1. The SNL estimates using the Sandia

1’2



Table 5.1. The Distribution of variance over the per rev harmonics are shown for

the PNL method (first two rows) and for the Sandia method using

various PSD and coherence models. Variance is in units of (m/s )2; the

numbers in parentheses are the per rev variances normalized by the

exact (corrected) values given in the first row.

PSD Coherence Cob. Dec. Total Per Rev Variance
Model Model c Variance 1P 2P 3P 4p 5p

Exact (corrected) PNL Results* — .263 .097 .054 .038 .033
Uncorrected PNL Results* .837 .359 .111 .055 .034 .024

(1.37) (1.14) (1.02) (0.90) (0.73)

Frost* Standard 3.75 1.10 .152 .089 .060 .052 .047
(PNL) (0.58) (0.92) (1.11) (1.38) (1.42)
Frost Standard 3.75 1.17 .201 .090 .058 .045 .041
(SNL) (0.76) (0.93) (1.07) (1.19) (1.24)

Kaimal* Standard 10.0 .532 .086 .065 .044 .043 .040
(PNL) (0.33) (0.67) (0.82) (1.14) (1.21)
Kaimal Standard 10.0 .607 .129 .070 .049 .040 .038
(SNL) (0.49) (0.72) (0.91) (1.06) (1.15)

von Karman Standard 12.0 .776 .171 .085 .059 .048 .042
(SNL) (0.65) (0.88) (1.09) (1.27) (1.27)

Solari Standard 12.0 1.00 .215 .104 .069 .055 .048
(/3= 7.5) (0.82)(1.07)(1.28)(1.46)(1.45)
Solari (Ar/zm)025 12.0 1.00 .237 .105 .064 .047 .039

(p= 7.5) (0.90)(1.08)(1.19)(1.25)(1.18)
Solari (AT/Z~ )025 Random 1.04 .239 .111 .069 .053 .045

(Random ~) (0.91) [1.14) (1.28) (1.41) (1.36)

Solari (Ar/2rn)0’0 Random 1.04 .259 .111 .064 .046 .038
jRandom ~) (0.98) (1.14) (1.19) (1.22) (1.15)

Solari (Ar/z~)025 Random 1.09 .237 .098 .057 .041 .033
Simulating one sample per rev (0.90) (1.01) (1.06) (1.09) (1.00)

[ * Results taken from Powell and Connell, Ref. 11.

13



method with the Frost and Kaimal PSDS are substantially better. The only appar-

ent difference is that PNL used only one record ( 125 seconds long) to estimate the

rotationally sampled PSD, while the SNL results are the ensemble average of 100

records. The variability in per rev variance from record to record is surprisingly

large; the coefficient of variation (standard deviation divided by the mean) is abollt

0.2 for the higher per revs and 0.25 at one per rev. It is therefore likely that, most of

the difference is due to PNL’s failure to account for statistical variations in the per

rev variances.

The von Karman PSD has slightly more low frequent y variance than the Kaimal

PSD (see Fig. 3.1), which is reflected in a higher total rotationally sampled variance,

and a better fit to the exact results. The von Karman PSD is consistent with the

PNL method for estimating rotationally sampled PSDS. This is another reason that

the PNL method results, which are based on the von Karman PSD, did not match

the Sandia method results, which had been based on the Kaimal PSD, in Ref. 11.

The Solari PSD is about the same as the Kaimal PSD when the random paranl-

eter /3 is at its minimum value of 51 and has more low frequency variance when /? is

high (see Fig. 3.2). Table 5.1 shows the rotationally sampled per rev variances for the

Solari PSD with ~? fixed at the mean value (/3 = 7.5) and with the same exponential

form of the coherence as used in all the above results. The one per rev variance is

still too low anti the higher per rev variances are too high, Augment ing the coherence

by ( Ar/z~ )0”25, as Solari suggests, makes a substantial improvement on the match

between simulated and ezact results. Randomizing the parameters /? and C has a

minor influence on the results. Because augmenting by ( Ar/ ~~ )025 fills the need

to increase the coherence at small separations and increase it at large separations,

while the choice of 0.25 appears somewhat arbitrary, a power of 0.50 was also tried,

resulting in an improved fit to the erect results (see Table 5.1).

The results in Table 5.1 indicate that a wide variety of rotationally sampled

PSDS can be obtained with the Sandia method depending on the input models of

turbulence PSD and coherence. The Solari models produce a good fit to the exact

results, better than the uncorrected PNL method. .$n even better fit is possible by

using ( Ar/z~ )0”50 instead of ( ~T/Z,n )0.25 in the coherence model. However, a better

fit for this one application may not be a sufficient reason to override Solari’s choice of

0.25. It is also not clear that the goal should be to match the ezact results precisely.

There is a great deal of variability in per rev variance in any given wind sample; even

the exact results may not be perfectly representative.

14



6. Efficient Simulation for HAWT Applications

In HAWT applications the wind speed is simulated at points arranged around

the circular path followed by the blades. With the method described above, the time

series at each point is simulated at a rate of the number of points per revolution,

IVP,, times the rot sting frequency in Hertz, 0 (i.e., At = l/lVP,Q). The time series at

each point is only sampled once per revolution by each blade, making the sampling

rate equal to the number of blades, Nb, times fl. Because NP, is always much greater

than Nb, most of the data is wasted. It is therefore more efficient to simulate data

at each point at a rate of ~b~ with the time of the samples shifted to correspond to

the time of blade passage.

The trick is to make each simulated data point correspond to the exact time that

the wind turbine blade occupies that point in space. For evenly spaced points around

a circle and constant rotational speed, there must be an equal time lag between

simulations at each point. The time lag is implemented by shifting the phase of each

frequency component in the PSD by the appropriate amount before transforming

into the time domain.

The method may be illustrated by taking the specific example in Fig. 6.1, which

has NPr = 12, Nb = 2, and only one radial set of points (N = NP, ). The IVPTpoints

are divided into Nb groups with a location index, Zj, ranging from O to (NP,/Nb) – 1

in each group. The blades are initially located at the 13= O points.

Simulating as above at a frequency of Nb~ will produce one wind speed value

at each point in space every time the blades are at the lj = O locations. The wind

speed at the /j > 0 points must be lagged in time to correspond to the time of blade

passage. The time lag is implemented by applying a phase shift, ~j~, that depends

on the location index, Zj, and the frequency component, f~.

“m=’’(;)R) (6.1)

Equation 2.6 then becomes

~

The time domain representation is again

transform of V. The odd samples (1,3,5,... )

obtained by taking the inverse Fourier

in the Group 1 time series belong to
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Figure 6.1. Example of the locations of points for wind simulation with application
to HAWTS.

15=4
p 913=2

Group 1
,12=1

l&3=l Q

●
19=2

Group 2
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Figure 6.2.

Blade 1 and
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.s

4.
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FREOUENCV (HZ)

Rotationally sampled PSD based on the Solari PSD and coherence

using the full field Sandia method.

the even samples belong to Blade 2. The reverse is true of the Group 2

time series. Every data sample in the time series of every point is therefore sampled

by one of the blades so there are no longer any spurious data. The reduction in

storage requirements and Computation time is a factor of ~w /~6.

The rotationally sampled PSD with the full field approach using the Solari model

for turbulence and coherence (with random parameters) is shown in Fig. 6.2. The

PSD estimated with the one sample per Tev method (simulating wind for only one

blade) is shown in Fig. 6.3. The integrated per rev variance is about the same at

1P and is slightly reduced (about 15Yo) at higher per revs, as shown in Table 5.1.

The per rev variance from the one sample per rev method is within 10% of the ezact

results for the first five per revs — a better fit than any other known method.

The greatest difference between simulating the full field and only simulating

those data points that will be sampled is the minimum level of the PSD. Figure 6.2

shows a minimum level of PSD content at about .05 (m/s) 2/llz, while the one sample

per rev PSD has minima around .02 (m/s) 2/lIz. This background level comes from

the high frequency portion of the input turbulence where the coherence is very small

17
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Figure 6.3. Rotationally sampled PSD based on the Solari PSD and coherence

simulating one sample per revolution for each input point.

(see Eq. 4.1 and Fig. 4.1). The high frequency input is therefore nearly uncorrelated,

even at closely spaced points, and shows up as a white-noise background on the

rotational PSD. The one sample per rev method has a maximum frequency (Nyquist

frequency) of one half per rev ( fl/2) so the white background is omitted. The full

field method exhibits a similar decrease in the minimum when the spectral content

at frequencies above 0/2 is set to zero, as shown in Fig. 6.4.

The improved fit to the ezact per rev variances when simulating only one point

per rev is due to the elimination of the background, uncorrelated, high-frequency

input. It is not clear that this is desirable, because the exact results could also be

suffering from a lack of high-frequency input, which could even occur in measurements

(i.e., due to insufficient anemometer frequency response). The full field method

includes all of these high frequencies and may therefore be more accurate. The

uncorrelated input could be added to the one sample per rev simulation by simply

adding white noise with variance equal to the spectral content of the turbulence

above a frequency of fl/2. When simulating wind speeds for IVB blades, the missing

spectral content is above JVBQ/2.

18
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Figure 6.4. Rotationally sampled PSD based on the Solari PSD and coherence

using the full field Sandia method with the turbulence PSD set to zero

at frequencies above one half per rev (0/2).

The structural implications of the missing spectral content between per rev fre-

quencies is not obvious for two reasons: (1) The aerodynamic loads on the blades are

nonlinearly related to the incident wind speed, and (2) the blades may not respond

aerodynamically to fluctuations of such high frequency and small scale. The per rev

spectral content is between 2 times (at 5P) and 40 times (at lp) greater than the

background level (see Fig. 6.2) and is therefore the most important part of the PSD

to match.
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7. Spatial Interpolation

The efficient simulation for HAWT applications in the previous section can not

be used for VAWT applications because of the looping paths that VAWT blades trace

out in the moving field of turbulence. It is therefore necessary to minimize the number

of input points over the swept area of the wind turbine and interpolate wind speed

values between those points. For example, a 4x4 rectangular grid of 16 points was

used to cover the swept area of the 25 meter diameter VAWT in Ref. 6. Obtaining

wind speed values at locations in space lying between simulation points can result

in a loss of variance due to the averaging inherent, in int erpolat ion. Simulating wind

speed for arbitrary locations on a moving VAWT blade therefore requires that this

lost variance be replaced before the aerodynamic loads are calculated.

The wind speed, Y, at a location not at a grid point can be estimated by an

interpolated value, ~, by taking a weighted sum of the n surrounding simulated

values, Yj;
n

(7.1)
j=l

The variance of ~ is the expected value of ~z (assuming a zero mean), given by

E[P2] = ~ ~ l’T’jW~E[YjY~]

j=l A2=l

(7.2)

The actual variance of Y, E[Y2], maybe known a priori, or maybe interpolated from

the grid points by the same scheme as given in Eq. 7.1.

If Yj and Y~ are perfectly correlated (and have the same variance), then E[YjY~] =

E[Y~] = 13[Y~] and there is no loss of variance. However, there will usually be some

difference in variance and lack of correlation in wind speed reflected in the coherence

function and quantified by the cross spectral density, Gj~. (See also Eq. 2.1 and recall

that because Gj~(~) is

is the missing variance

expressed as

real valued, ~O@Gjk ( f )df = ~ [Yj ~7k].) The normalized error

divided by the correct variance, E [Y2], and can therefore be

(7.3)
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Figure 7.1. Potential loss of variance, e, as afunction of the distance between

points for interpolating wind speed (using Solari’s PSDand coherence).

The potential loss of variance for each pair of points can be expressed by defining

the parameter 6jk,

j; G’jk(f)df
6jk=l —

E[Y2]
(7.4)

The potential (or maximum) loss of variance, ~jk. is therefore a function of the

level of correlation between points j and k, which is in turn a function of the distance

“between the points, Ar. The value of ~jk is plotted as a function of the point spacing

in Fig. 7.1 (using the Solari PSD and coherence with average values for the random

parameters). This potential for loss of variance is also the integrated difference

between the PSD and the CSD of any two points, if the points have identical PSDS.

IFigure 7.2 shows how ~jk is distributed over frequency in this case by plotting the

turbulence CSDS for point spacings of 10, 20, and 30 meters. The actual PSD of

the interpolated data will lie between the CSD and the “Original PSD,” shown in
]?ig. ~o~.
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compared with the PSD at

The normalized error is the fraction

Eq. 7.4 into Eq. 7.3.

n

each point ( original PSD ). -

of cj~ actually lost, as shown by substituting

n

Using the fact that ~jj = O and assuming the interpolation weights have the

usual property that

the expression for the error can be reduced to

n—l n

‘“””r = 2E X ‘Jwk ‘,,
j=l k=j+l

(7.6)
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Figure 7.3. Distribution in error (loss of variance), as a fraction of e, for bilinear

interpolation over a square region.

The error therefore depends on the weights used in the interpolation scheme.

For example, consider a square region to be interpolated from the four corner

values wit h a bilinear interpolation. Let c = ~j~, where j and k are adjacent cor-

ners, be the characteristic potential loss of variance for the region. Figure 7.3 shows

approximately how the error, as a fraction of e, will be distributed over the region.

There will be no loss of variance at each corner. The maximum error, about 3c/4, is

at the center. The error at the center of each side is e/2.

The lost variance represents the portion of the process that, is uncorrelated be-

tween adjacent simulation points. To simulate a time series at some location inside

the region, an interpolated time series could first be generated from the corner points.

The missing part could be simulated independently by taking an inverse Fourier trans-

form of a weighted sum of the differences between the PSDS and CSDS in Fig. 7.2

(replace ~j~ with the (PSD - CSD) for each pair of points in Eq. 7.6). The two time
series could then be added together to obtain a result with the correct variance.

For VAWT applications, however, complete time series at intermediate locations
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are not needed, only samples of time series at intermediate locations are needed. Each

wind speed sample on the moving blade is taken from a different location in space

where the missing high frequency variance (see Fig. 7.2 ) is relatively unc,orrelated,

The missing variance can therefore be replaced by adding uncorrelatecl Gaussian

increments (white noise) to the wind speed samples, where the variance of the added

increment is equal to the missing part at that location in space. The effect is the same

as in the previous section where there is missing high frequency content when only iV~

points per revolution of a HAWT are simulated. In both cases, the missing frequency

content is well approximated by white noise when applied to a blade moving through

the turbulence field.

There are two cases in which the white noise approximation maybe in error: (I)

where the blade is moving slowly (near the attachments to the tower), and (2) when

simulating at very closely spaced points on the blade. In case (1), the error may

be neglected because points where the blade is moving slowly are also points where

the aerodynamic loads are small. In case (2), there is potential for slightly underes-

timating the contribution of the resulting aerodynamic loads to the lower modes of

the structure. Care must be taken to avoid refining the spacing of locations at which

loads are calculated beyond the level at which the winds can be accurately sinlu-

lated. Similarly, too small an interval in blade azimuth position can cause case (I)

type errors, even at the equator. A practical limit on the spacing of points on the

blade would be the distance that the blade equator travels between time steps.
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8. Conclusions

1. The Sandia method for three-dimensional turbulence simulation is capable of

matching the best estimates of rotationally sampled PSDS better than any other

simulation method current ly available. The input models of turbulence PSD

and coherence are what cletermine the accuracy of the method (see Table 5.1).

2. Models for atmospheric turbulence PSD and coherence with coefficients that

are modeled as random variables (Eqs. 3.4, 4.1, and 4.2) provide good results

for rotational sampling. The recent paper by Solari [13] provides estimates of

the distributions of these coefficients.

3. A coherence that is exponential in Ar, as previously assumed, is not capable of

mat thing the suggested distribution of variance in rotationally sampled P SDS.

Solari’s suggestion of augmenting by (Ar/.z~ )025 is a definite improvement;

simulations using ( Ar/z~ )0”50give even better results for this one test case. It

is recommended that Solari’s suggestion (Eq. 4.2 ) be followed.

4. An improvement to the Sandia method for full field wind simulation permits

simulation of only those samples that are actually used in rotational sampling.

This reduces the storage requirement and computation time by a factor of

the number of divisions per rev divided by the number of blades. The match

between published rotationally sampled PSDS and the simulation results is

excellent (see Table 5.1 ). This improvement is useful for HAWT analysis, but

not for VAWT analysis.

5. When interpolating simulated wind speeds, there will be a reduction in vari-

ance of the interpolated data. The error is quantified in terms of the cross

spectral density functions, permitting an estimate of the missing variance at

any location in space. Because the missing part is uncorrelated over the re-

gion of the interpolation, simulations of wind speed at a point, on a rotating

VAWT blade can be generated by adding uncorrelated Gaussian variates, with

the appropriate variance for each location, to the interpolated values.
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10. Appendix A — Simulation Example

To illustrate how correlated time series are constructed from uncorrelated inputs,

consider an example where a single frequency component, ~~, is simulated at four

points in space as shown in Fig. 10.1. The distances between points are

Ar12 = Ar13 = Arzd = Ar~A = 1.0

Arz3 = 1.2

Aria = 1.6

For the sake of simplicity, let the coherence be exponential such that,

Cohj~ = e-ArJk

The coherenc.es in this case are

Cohlz = Cohls = Cohzd = Coh3J = 0.37

Cohzx = 0.30

Cohld = 0.20

Let the PSDS at all four points be Gjj (~,n ) = 2/A~ such that the discrete

representation is Sjj(~~ ) = Gjj(~~ )A~/2 = 1.0. The resulting spectral matrix is

S(fm) =

1.0 .37 .37

.37 1.0 .30

.37 .30 1.0
[ .20 .37 .37

Solving for H using Eq. 2.3 yields

H(fm) =

1.0 0 0
.37 .929 0

.37 .176 .912

1.20 .319 .263

The matrixofuncorrelatedinputsiscomposed

x~~(fm)==e’”””

28

.20

.37

.37
1.0

0
0
0

.888

of the diagonal entries
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where the 19~~ are uniformly distributed random variables on the interval from O to

27r. We can let t91~ be zero and select the other three phases randomly without loss
of generality.

9~m = 0.0

9z~ = 0.80

e~m = 5.79

9b~ = 3.58

The product HX then gives

[ 1.0 eoooi 0 0 0

H(fm)X(f,n) =
.37 C“”oi .929 eo.aoi o 0
.37 eo.oi .176 e0.80i .912 e5.79i 0

[ .20e0.0i .319 eo.so~ .263 ~s.7gi .888 e3.58z

Each entry in the vector V is the sum of a row of HX.

V..m= 1.0 f$”oi

v2m = 1.216 e0.58i
V3~ = 1.332 e605i

VJ~ = 0.312 c522i

Figure 10.2 is a phase plane plot of the random inputs for the m ‘~ frequency
component in this example. Notice that the inputs are scattered over the entire

:phase plane. Figure 10.3 shows the resulting correlated outputs in phase space. The

correlation between points has brought the output into closer phase alignment than

the random inputs. If the correlation had been zero, the off-diagonal terms in H
‘would be zero and the phases would have been unchanged. If the coherence had been

unity,only the first column of H would have been nonzero and all of the output

phases would have been equal to t91~. Values of coherence between zero and one
enforce phase alignment at different levels of strictness. For example, points 1 and

2 had an input phase difference of 0.80 radians, but, due to the coherence of 0.37,

that difference is reduced to 0.58 radians.
selection of ol~ = 0.0 was done to simplify
variable just like the other phase angles. )

Notice that the output magnitudes at

The output phases are still random. (The

computations; in practice, (?l~ is a random

points 2, 3, and 4 are no longer exactly 1.0.

The output magnitude depends on the relative phases of the random inputs. Over

many points and frequency components, the variance will average near the specified

level. In this example the average variance of the four outputs is only 9% greater

than the specified level.
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Figure 10.1. Locations of points for the wind simulation example in Appendix A.
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Figure 10.2. Phase plane plot of the uncorrelated random inputs.
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Figure10.3. Phase plane plot of the correlated outputs.
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