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ABSTRACT 

Fatigue crack growth due to random loading is investigated, showing a 
variety of approaches tha t  are tailored to the level of complexity required for the 
application at hand. The emphasis is on creating the simplest models, of both the 
crack growth process and the random loading, tha t  maintain the desired level of 
accuracy. 

models, is introduced and shown to predict several sets of published test results. 
The model provides a means of approximating load sequence effects by continu- 
ously updating the crack opening stress, accounting for both acceleration and 
retardation effects in a simplified manner. This model is used as the standard 
crack growth model t ha t  includes sequence effects. 

necessary to implement the above crack growth model, are outlined. These models 
range from simple random variable descriptions, which are useful in sequenceless 
applications, to random process simulations, which include the relative likelihood 
of various load sequences. Existing random variable descriptions of narrow-band 
loadings are shown to be useful approximations for any Gaussian loading. New 
results t ha t  account for the overall peaks and ranges in wide-band loadings are 
obtained through racetrack f i l t e r i n g .  An efficient sequential simulation method 
uses the random variable results to simulate only the most significant events in a 
random process by breaking the loading into slow (mean variations) and fast 
(amplitude variations) parts. 

Practical methods for calculating crack growth life are presented by applying 
the load models to the above crack growth model, and to an alternative model 
t ha t  neglects sequence effects. Inherent difficulties in the traditional, sampleblock, 
load model can be eliminated with a continuously defined loading, which can be 
obtained by the sequential simulation method. This simulation method is used in 

A new crack growth model, which combines some of the features of existing 

Random load models, which describe the relevant events in the loading 



studies tha t  illustrate the relative importance of including load sequence effects in 
crack growth analysis. For stationary Gaussian loadings, sequence effects can 
often be neglected. Nonstationary random loadings are also simulated and shown 
to produce greater sequence effects. When distinct overloads are present, the  regu- 
larity of the spacing is important; assuming uniform spacing can be nonconserva- 
tive. 

including sequence effects, are examined using diffusion models. The emphasis is 
on simplifying the problem (;.e., scalar diffusion models) so tha t  solutions can be 
obtained with limited computational resources. Solutions for mean and variance 
of the time to failure due to constant amplitude loading with distinct tensile over- 
loads arc presented. The mean time to failure due to stationary Gaussian loading 
is also est iniated. More complete, but computationally expensive, solution 
methods I I ~ I I I ~  vector diffusion models are outlined. 

As an  alternative to simulation, analytical estimates of crack growth life, 
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CHAPTER 1 

INTRODUCTION 

1.1 History 

Structures and machines have been designed and used for centuries without 
any reference to the phenomenon which we now call fatigue. The concept that  a 
structure able t o  withstand a given load level will always be able to  withstand 
tha t  load was a sufficient guide for design. A gradual change in this attitude 
began at the time of the industrial revolution, when structures and machines 
were expected to withstand more and more dynamic loading. In addition, tradi- 
tional construction materials, such as wood and stone, were replaced with 
metals. 

The first suspicion that  the strength of metals can degrade due to  repeated 
loadings was reported in 1829 when Albert noted the failure of welded link hoist 
chains in German mines [Moore and Kommers, 19271. The chains appeared to 
fail due to loadings that were no greater than had been applied repeatedly over 
months of use. This same phenomenon was noticed in other industries where 
metals were being used under cyclic loadings, but was especially troubling to  the 
fledgling railroad industry. Axle failures were expensive and far too frequent. 
The  location of the failures at abrupt changes in diameter was observed early on 
and soon led to the good design practice of minimizing stress concentrations; ])ut 
no explanation of the cause of failure was found. Failure due to repratcd load- 
ing below the static strength of the material was given the name of fatigiic. in 
1839 by Poncelet (Timoshenko, 10531. 

In 1842, Hood interpreted the crystalline appearance of fatigue fracture, SII I ‘ -  

faces as an  indication that  the material inicrostructure had changed diie to cyclic. 

loading [Hood, 18421. Perhaps, he reasoned, the material becomes crystalliiie 
and brittle, which leads to failure under reduced load. This, of course, is entirely 
false. It was refuted in the following year by Rankine [1843] (who is better 
known for his work in thermodynamics). Rankine’s view of the process as the 
formulation and growth of cracks until the stress in the remainiiig material 
exceeds the material strength is remarkably accurate. The  objectives evidence 
tha t  Rankine’s view was the correct one was not obtained until 1903, when 
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Ewing and Humphrey published metallographic observations of fatigue cracks. 
This delay allowed ample time for the crystallization theory to become embed- 
ded in engineering thinking. In fact, the 1939 ASM Handbook still included a 
refutation of the crystallization theory [Fine, 19801. 

Fatigue was first studied in a systematic manner by the German railroad 
engineer, Wghler, beginning in the 1850’s [WEhler, 18671. He conducted tests in 
which rotating axles were subjected t o  bending stresses in a fixed direction, sub- 
jecting each point on the axle surface to a sinusoidally varying stress. The 
results of these tests were plotted with stress amplitude, S ,  on the vertical axis 
and number of cycles to failure, N ,  on the horizontal axis. The resultingls-N 
curve is still the basis for most estimates of fatigue life [Fuchs and Stephens, 
19801. 

WEhler observed tha t  when the cyclic stress amplitude is below a certain 
level, the axle seemed to  have infinite life. The existence of a cyclic stress ampli- 
tude below which fatigue failures will not occur (known as the fatigue limit, or 
endurance limit) is valuable to  the design engineer. With the knowledge that  it 
is possible tha t  the part may fail at stress levels below the static strength, but 
never below the fatigue limit, it is possible t o  once again choose adequate sizes 
for structural components. But because the fatigue limit is often one tenth to 
one fifth of the yield strength, a significant cost in additional material is 
required. When the loading is nearly constant amplitude, as might be expected 
for rolling axles, pressure vessels, or rotating machinery, this additional cost may 
be necessary. 

With the birth of the automotive and aircraft industries, it became much 
more common to have loadings in which the highest stresses are relatively rare 
events. This is true of heavy equipment used in construction, mining and farm- 
ing as well as cars and trucks. Aircraft, including passenger, cargo and military 
planes, experience rare high stress events. These irregular loadings are also com- 
mon in energy extraction applications including well drilling for oil and geother- 
mal energy, in offshore structures and in wind turbines. The need to reduce cost, 
weight, or overall size makes it increasingly unacceptable to base a design on cri- 
teria sufficiently conservative to keep the highest stresses below the fatigue limit. 
Because high stress events are rare, it  should be possible to achieve a sufficient 
life with some stress peaks above the fatigue limit. The difficulty lies in how 
high the stresses should be allowed to go and how many stress cycles above the 
fatigue limit can be tolerated. 
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1.2 Cumulative Damage Estimation 

A simple solution to estimating the life of a material experiencing variable 
amplitude fatigue loading was suggested by Miner [1945]. He assumed that  the 
damage suffered by the material in any given number of cycles at a given cyclic 
stress amplitude is equal to the ratio of the number of cycles applied to  the total 
number of cycles to failure at that  amplitude. The damage, D ,  due to  an irregu- 
lar loading is then the sum of the damages due to each cyclic stress amplitude: 

where ni is the number of applied cycles at cyclic stress amplitude Si and Ni is 
the total number of cycles to failure at the same amplitude. Failure is predicted 
when the total damage is equal to one. The term damage does not have any 
inherent physical meaning; it is a fictitious quantity tha t  is useful in summing 
the damaging effects of loading at different stress levels. 

In addition t o  changes in the cyclic stress amplitude, the mean stress may 
also vary. The Goodman diagram, which plots the stress amplitude for a given 
fatigue life as a linear function of mean stress, was introduced for the purpose of 
estimating the mean stress effect. For a given fatigue life, the allowable cyclic 
stress amplitude decreases from that allowable at zero mean stress to  zero when 
the tensile mean stress equals the ultimate strength. Gerber suggested an 
improvement to this estimate of mean stress effect with a quadratic relationship 
[Forrest, 19621. The test data for most materials lie between the Goodman and 
Gerber estimates [Sandor, 19721. 

The use of constant amplitude, zero mean-stress test data with Miner's rule 
and a Goodman diagram makes it fairly simple to  estimate fatigue life for irreg- 
ular loadings (as long as all of the stress cycles have been defined). Unfor- 
tunately, the simple procedure is not always accurate; at times Miner's rule over 
estimates life, while at other times it under estimates life. 

Miner's rule was first systematically investigated by conducting fatigiie tests 

of smooth (unnotched) specimens with two step loading, low level constant 
amplitude followed by high level constant amplitude and vice versa. These two 
loadings produced markedly different results. It was initially thought that  the 
difference was due to a nonlinearity in the accumulation of fatigue (lamage, 
which was not modeled correctly with Miner's rule. Freudenthal was careful to 
note tha t  a nonlinearity is only a problem when the sequence of loads is 
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specified, and that for random loading, the nonlinear damage accumulation may 
produce no sequence effects [Freudenthal and Gumbel, 19561. Many alternate 
cumulative damage rules were subsequently suggested [Corten and Dolan, 1956; 
Freudenthal and Heller, 1959; Manson, et.al., 1967). These more complicated 
rules did a better job of predicting the results of the two step loading tests, but 
were unable to produce more accurate results for the wide variety of loadings 
found in real applications. 

Another interesting effect is tha t  smooth specimens subjected to constant 
amplitude cycles and occasional overloads have fatigue lives reduced far below 
what Miner’s rule would predict [Freudenthal and Gumbel, 1956). It is even pos- 
sible to have a finite life when almost all the loading is below the fatigue limit. 
The implication is that once the limit has been exceeded, it no longer exists, so 
no cycles with stress amplitudes above the fatigue limit are totally safe. 

It is difficult to sort out the progress of damage in a fatigued material 
because damage is a fictitious quantity that cannot be measured during a test. 
By shifting emphasis to fatigue crack growth, a physical measure of the current 
state of damage (i.e., crack length) is available. 

Many relationships between crack growth rate, da / d N ,  applied stress, AS, 
and crack length, a ,  were postulated in the 1950’s and early 1960’s. Most of 
them took the form 

da - = c a n  
dN 

where C, n ,  and m are material constants [Hoeppner and Krupp, 19741. 

Paris and Erdogan [1963] suggested that the crack growth rate should be 
related to the stress intensity factor by the following relation: 

-- da - C A K b  
dN 

where AK= t / .rraY(a)AS, and Y ( a )  is a function of crack geometry. Eq. 1.3, 
called Paris’ law, is still the fundamental method of predicting fatigue crack 
growth. 

An improvement that accounts for the stress ratio, R (minimum stress 
divided by the maximum stress), as well as improving the prediction of unstable 
crack growth as the stress intensity approaches the critical stress intensity, K c ,  
is given by [Forman, et.al., 19671 

da C A K b  -= 
dN (1 --R )Kc -AIL 
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and is known as Forman’s equation. 

The total amount of crack growth due to  an irregular loading is usually cal- 
culated by simply adding up the increments in crack growth due to each stress 
cycle, which is analogous to  Miner’s rule for adding up the damage due t o  each 
stress cycle in a total life calculation. No memory or sequence e f e c t s  are con- 

sidered (i.e., the increment in crack growth depends only on the current applied 
stress range and crack length, and not on past loading). 

One advantage of crack growth analysis over the fictitious damage esti- 
mates of Miner’s rule lies in the ability t o  monitor the damage level during the 
material lifetime with crack-detection procedures. The residual lifetime of a 

structural member can be estimated by measurements on the member without 
analysis of the prior loading, which is especially important in life critical applica- 
tions (e.g., aircraft). An  inspection can insure that  there are no cracks present 
below the minimal detectable size and a crack growth analysis can then insure 
that  the largest possible crack will not grow to a critical size before the next 
inspection. 

Besides this very practical advantage, it is possible to  monitor the develop- 
ment of damage, in the form of a crack, during fatigue testing, which led to the 
discovery of sequence effects in crack growth rates. Schijve was one of the earli- 
est researchers to  identify the differences in fatigue crack growth rates between 
irregular loadings and both short and long blocks of constant amplitude loadings 
at different levels [Schijve, 19601. A significant difference in time to  failure was 
observed in block type loadings when the order of the blocks was changed 
(decreasing amplitude blocks versus increasing amplitude blocks) [Schijve, 19731. 

Even a single tensile overload inserted in a constant amplitude loading was 
shown to produce a retardation in subsequent fatigue crack growth and t o  
extend the life of the member [von Euw, et.al., 1972; Trebules, et.al., 1973; Var- 

gas and Stephans, 1973; Watson, et.al., 19731. This life extension is exactly 
opposite to the effect of overloads on smooth specimen fatigue life, which is dom- 
inated by crack initiation, where initiation is taken as the appearance of a crack 
of several millimeters in size. The explanation for this different behavior lies in 
the different mechanisms responsible for fatigue crack initiation and fatigue 
crack growth. 
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1.3 Fatigue Mechanisms 

1.3.1 Fracture 

The basic question which gave birth to the field of fatigue analysis is: How 
can a piece of metal end up in two pieces without ever experiencing a load large 
enough to  exceed the initial strength of the piece? The answer was suggested by 
Rankine [1843] and formalized by Grifith [1920] through his study of the 
strength of brittle materials. The answer is that  the strength of a piece of 
material depends on the size of cracks present in the material. 

Grifith used an energy balance to explain the fracture of brittle materials. 
He suggested that when the release of internal strain energy due to a small 
extension of a preexisting crack is greater than the increase in surface energy due 
to the creation of new crack surfaces, the crack will extend in an unstable 
manner. By setting the rate of change of total energy with respect to crack 
length equal to zero, and separating the material constants from the loading and 
geometric parameters, Grifith showed that the criterion for brittle failure is 
reached when the applied stress intensity, K ,  is greater than the critical value, 
K,, which is a material property known as the fracture toughness: 

K, = d E  (1.5) 

where ys is the surface energy per unit area, and E is Young’s modulus. Equat- 
ing the applied stress intensity at fracture to K, in Eq. 1.5 assumes that  all of 
the strain energy at fracture is taken up in surface energy. 

In ductile materials there is a great deal of energy absorbed by plastic defor- 
mation during fracture. Orowan [1950] expanded Grifith’s result to ductile 
materials by adding this plastic strain energy to the surface energy in the frac- 
ture toughness. For most structural materials (steel, aluminum, etc ...) the plas- 

tic strain energy dominates the fracture toughness. 

IC, = v 2  E (7, +Y, ) 

where y, is the plastic strain energy. 

Orowan defined K, as 

(1.6) 

Initial flaws and cracks are often present in materials, produced by inclu- 
sions, machining flaws, thermal cracking, forging, or welding during the 
manufacturing process. These small flaws can grow under cyclic loading, 
increasing the stress intensity due to a given stress level. Eventually the 
strength of the part is exceeded, not by increasing the lead level, but by 
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decreasing the strength of the material. 

Even initially crack free materials are susceptible to fatigue. Metals are 
polycrystalline materials with stacking faults in the crystal lattice. These 

misalignments between atoms in the crystal structure are called dislocations. 
Dislocations move along slip planes in the crystal when shear stresses are applied 
in the slip plane directions. Dislocation motion is responsible for almost all plas- 
t ic  strain. Under cyclic loading, the dislocations form tangles that  make further 
motion more difficult. The tangles tend to form vein-like structures, with veins 
of tangles alternating with veins of dislocation free material [Brown, 19811. 
After some time, the dislocation motion will be restricted to the tangle free 
regions known as persistent slip bands [Forsythe, 19691. Slip on parallel planes 
within a persistent slip band is not homogeneous or equal in both direction. 
This causes planes of atoms to ratchet in different directions, creating surface 
discontinuities by extruding some planes out of the surface and intruding others 
into the surface. Flaws can also develop within the material, especially at grain 
boundaries. These surface irregularities and internal flaws are the nucleation 
points for cracks tha t  continue to grow under cyclic loading until the critical 
stress intensity is exceeded and the material fractures. 

1.3.2 Sequence Effects in Crack Initiation 

Local plastic strain is a necessary component of progressive fatigue damage 
in a metal because without plastic strain there can be no relative motion of 
atoms leading to crack initiating flaws. Dislocation motion is responsible for 
almost all plastic strain; locking of dislocations makes fatigue damage impossi- 
ble. 

One way dislocations are commonly locked in structural steel is by Cotrell 
atmospheres [Cotrell, 19691. The state of stress around a dislocation is tensile 011 

one side, where there is a missing plane of atoms, and compressive on the otliw, 
where there is an extra plane of atoms. When small substitutional atoms diffust, 

into the region of compressive stress and large substitutional, or small i l l 1  <br>ti- 
tial, atoms diffuse into the region of tensile stress, these stresses are reli(~\v(l. 
Movement of the dislocation out  of this local atmosphere of solute atoms 
increases the strain energy in the material. Because the atoms seek t h e  I c ) M &  
energy configuration, the dislocations are effectively locked in place until an 

applied stress large enough to overcome the Cotrell atmosphere moves t h e  ( l i 4 ( +  
cation. Once it has been moved out of the  Cotrell atmosphere, much ~ 1 1 1 : i I l ~ ~ i -  
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loads can continue the dislocation motion. This is the phenomenon responsible 
for the yield point in mild steel. 

Another locking mechanism is present in two phase, or precipitation har- 
dened, alloys where dislocation motion is blocked by phase boundaries and pre- 
cipitate particles. Again, when an applied stress large enough to shear the block- 
ing particle has removed the obstacle, further dislocation motion, and therefore 
plastic strain, is possible under smaller loads. 

In constant amplitude fatigue testing, any barrier to dislocation motion for 
one of the load cycles will be effective for all of the load cycles; plastic straining 
can be locally eliminated. In carbon steels, where dislocations are locked by 
Cotrell atmospheres of carbon atoms, this results in a fatigue, or endurance, 
limit. Stress amplitudes below this limit cannot cause plastic strain and the 
material then exhibits an injni te  life. If, however, the loading is irregular with 
some stress amplitudes above and some below the fatigue limit, the high loads 
will remove the barriers to  dislocation motion and the low amplitude loading 
will be able to cause plastic strain and continue the process of fatigue damage. 
This is a source of sequence e$ects in crack initiation. It has been suggested that  
under irregular loading, the S-N curve should be treated as though the fatigue 
limit does not exist and finite lives are expected at all stress amplitudes [Fuchs 
and Stephens, 1980]. It is possible that  the misapplication of the fatigue limit in 
analysis of irregular loadings has been a great source of error in applying Miner's 
rule and may have led to some of the suggestions that  Miner's rule is inadequate. 

1.3.3 Sequence Effects in Crack Growth 

The nonlinear nature of crack growth is caused by the dependence of' the 
crack growth rate on crack length. Paris' law relates crack growth rate to crack 
length through the stress intensity factor, as shown in Eq. 1.3. The crack 
growth rate increases nonlinearly with crack length because, typically, 2< b <4. 

It is important to notice tha t  for stress intensity ranges, which can be writtcn as 
separable functions of stress range and crack length (as in Eq. 1.3), the sequence 
of application of any set of loads has no effect on the calculated crack growth 
[Freudenthal and Gumbel, 1956; Orringer, 19841. This can be demonstrated by 
separating the load dependent and crack length dependent variables in Eq. 1.3 
and integrating: 
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The number of cycles ( N )  to grow from initial (a , )  to final (a,) crack 
lengths depends on the summation over the applied stress ranges, and not on the 
order of application. The nonlinearity in the crack growth equation is not 
responsible for sequence effects in crack growth. 

The sequence effects that  were observed by Schijve and many other investi- 
gators involve a change in the effective stress intensity range due to crack clo- 
sure, which is qualitatively described as follows: The predicted elastic stress at a 
crack tip is infinite. In reality, there is always a zone of plastic strain at the 
crack tip. A tensile load opens the crack and plastically deforms the material at 
the tip. As the load is released, the material at the crack tip is compressed and 
the crack actually closes, for two reasons. First, the material at the crack tip is 
plastically deformed in tension while the bulk of the material remains elastic. 
When the rest of the material seeks its original shape upon unloading, it acts as 
a clamp on the crack tip. Second, the crack grows by stretching and tearing 
material at the crack tip. This failed material in the wake of the crack tip has a 
residual tensile strain that acts as a wedge behind the crack tip. Both of these 
factors produce a compressive stress at the crack tip that  depends on the past 
loadings. A large tensile load produces a large plastic zone and a large residual 
compressive stress, which does not allow the crack to reopen until a sufficient 
tensile load has counteracted the compression at  the crack tip. The part of the 
stress range tha t  is taken up in overcoming the residual compression does not 
contribute to crack growth. The effective stress range is the difference between 
the maximum stress and the stress at which the crack tip opens [Elber, 19711. 

The crack growth rate following a large tensile overload is therefore 
reduced, or retarded. The retardation usually reaches its maximum after the 
crack has grown a small distance into the plastic zone [Trebules, et.al., 1073; von 
Euw, et.al., 19721, and then gradually dies out as the crack grows beyond the 
influence of this overload induced plastic zone. 

Compressive loads can also influence crack growth by changing the state of 

residual stress at the crack tip. A compressive load large enough to yield the 
closed crack tip will reduce the compressive residual stresses and accelerate thrl 

subsequent crack growth [Stephens, et.al., 19741. This acceleration effect is 1101 

as great as the retardation effect [Trebules, et.al., 19731 and is often neglected in 
crack growth modeling [Chang and Hudson, eds., 19811. 
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1.4 Models for Crack Growth due to Irregular Loading 

In this section, several approaches to calculating crack growth life in an  
irregular loading environment are presented and compared. Equations necessary 
for comprehension are included, but are not intended to supply a sufficient 
description to implement each model. The symbols used in the descriptions have 
been changed to be consistent with those used in the following chapters. 

1.4.1 The Wheeler Model 

Wheeler obtains an empirical approach to estimating the retardation effect 
by multiplying the crack growth rate by an exponential shaping function while 
the crack tip is in the overload induced crack-tip plastic zone [Wheeler, 19721. 
The retarded crack growth rate is defined by 

where 

(1.8a) 

(1.8b) 

and a is current crack length, a, is the maximum extent of the crack-tip plastic 
zone, rY is the crack-tip plastic zone radius due to the current applied stress, and 
m is an  empirical shaping exponent. 

Thus, the retardation is assumed to be greatest immediately following the 
overload and decreases to zero when the crack tip grows beyond the overload 
plastic zone. The shaping exponent depends on both material and type of load- 
ing, and is determined by crack growth testing with a specified irregular load 
block; rn must be reevaluated for each new type of irregular loading. Reported 
values of nz range from 1.3 to  3.4. Although this method can be quite accurate 
when m is tailored to  a specific load block with sufficient test data  [Broek, 19841, 

it can not predict sequence effects without this load spec<fic testing. 

1.4.2 The Willenborg Model 

This approach assumes that  the compressive residual stress at the crack tip 
due to the crack-tip plastic zone is responsible for crack growth retardation [Wil- 
lenborg, et.al., 19711. Like the Wheeler model, the compressive residual stress is 
assumed to be maximum immediately following the overload, and to decrease a s  
the crack grows through the crack-tip plastic zone. The reduction in the crack 
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growth rate is governed by the the stress, S,, necessary t o  create a plastic zone 
tha t  extends beyond its current limits: 

where Sy is the monotonic yield stress and a ,  a, and Y ( a )  are as defined previ- 
ously (plane stress has been assumed). 

The residual stress at the current crack tip is assumed t o  be 
Sred = sr -smax, where Sm, is the current maximum applied stress. The 

effective maximum and minimum stress levels are defined by 
(Sm,),ff = Smax-Sred and (Sm,Jejf = Smln-Sred. If either effective stress is less 
than zero, it is set equal to zero. The effective stress intensity range and the 
effective stress ratio, which are defined in terms of the effective maxima and 
minima, are used in Forman’s equation (Eq. 1.4). 

This method attempts to account for retardation in fatigue crack growth 
but cannot model acceleration effects. I t  has the advantage of only requiring 
data  from crack growth due to constant amplitude loading. 

1.4.3 FGhring 

The Willenborg model has been adapted t o  account for acceleration and 
multiple overload interaction effects [Fihring, 19811. Instead of a residual stress 
estimate, Fihr ing uses phenomenologically based estimates of independent 
acceleration and retardation parameters, Q, and Q,, respectively, such that 

me,, = Qr Q a  m (1.10) 

Q, is calculated from the ratio of current to maximum plastic zone sizes, 

while Q, is estimated from a complicated expression based on an empirical 
parameter. FGhring’s method produced very good results in the original refer- 
ence, but was off by an order of magnitude when applied to  high R-ratio load- 
ings that  showed no sequence effects [Fleck and Smith, 19841. 

1.4.4 Barsom’s Method (AKRMs) 

Good correlation between crack growth rate and AKRMs has been shown 
[Barsom, 1976; Rolfe and Barsom, 19771 for crack growth in mild steels due to 
constant amplitude, prescribed increasing and decreasing sequences, and pseudo- 
random loadings, all at R=“O (zero minimum stress between each stress peak). 
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In this case, A K R M S  is easily defined as the root mean square of the maximum 
stress intensity. 

This method was also used successfully by Hudson [1981] to predict crack 
growth in aluminum 
lar loadings did not 
was defined to be the 

under several specified aircraft flight spectra. These irregu- 
have zero minima between each pair of maxima; AKRMs 
difference between ( K m a x ) R M S  and ( K m i n ) R M S ,  where 

(1.l lb) 

The stress ratio was defined as R R M S  = ( K m l n ) R M S  / ( K m a x ) R M S .  

The crack growth rate was then assumed to be equal to the growth rate 
under constant amplitude loading with AI<= A K R M ~  and R = R R M S .  This 
approach did as well as other more complicated and computationally difficult 
methods in estimating time from initial crack size to failure in an  ASTM round 
robin [Chang and Hudson, eds. 19811. 

The reason for the success of this method is not known. It may be 
significant that  the crack growth exponent ( b  in Eq. 1.3) is close to two for the 
materials used in the studies by Barsom (making the RMS a particularly 
appropriate measure). The load blocks may also have been short enough that 
sequence effects would be minimal [Schijve, et.al., 19701. There is also no reason 
given as to why Hudson chose the somewhat unusual method for calculating 
A K R M S  in Eq. 1.11, except that  it provides a means for estimating a stress ratio. 
The simplicity of the method and its success in the above applications makes it 
an attractive approach. But the lack of any physical basis for its validity 
admits the possibility that  it may be inaccurate in other applications. 

1.4.5 Crack Closure 

Elber [1971] observed the change in compliance of a cracked specimen dur- 
ing the application of a tensile loading, which led to the very important 
discovery that  the crack tip remains closed even after some tensile load has been 
applied. The stress at which the crack tip begins to open is called the crack 
opening stress (reportedly between 35 and 50 per cent of the previous maximum 
tensile stress). Elber suggested that the effective stress range responsible for 
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crack growth is the difference between the crack opening stress and the max- 
imum stress. Because the crack opening stress depends on the residual stress and 
strain around the crack tip, the current effective stress range depends on previ- 
ous loading. This discovery has opened up a whole new way of looking at the 
problem of crack growth due to irregular loading. Crack closure is the basis for 

many of the crack growth models currently in use. 

Elber [1976] also made the discovery that  during block type loadings 
(pseudo-random or programmed), the crack opening stress remains relatively 
constant [Elber, 19761. He used this fact to calculate an equivalent constant 
amplitude loading for accelerated testing. Although the equivalent constant 
amplitude suggestion has not caught on, the idea that the crack opening stress is 
set by relatively rare, high loads, and remains stable over long periods of load- 
ing, has been used effectively, especially in the following approach. 

1.4.6 The Nelson Model 

Nelson [1978] proposed a crack closure based model that  uses only constant 
amplitude, R = 0 crack growth data, The crack opening stress is assumed to be a 
constant fraction of the largest previously applied stress (overload), and is 
assumed to remain at that  level as long as the crack tip is within the plastic 
zone created by tha t  overload. When a load large enough to extend the plastic 
zone is applied, the crack opening stress is reevaluated. The effective stress 
intensity range is 

M e , ,  = Kmax - qKo1 (1.12) 

where KO, is the overload stress intensity and q is a constant between 0 and 1 

(0.35<q <0.5 was suggested by Elber [1971]). 

The crack growth due to this effective stress intensity range is assumed to 
be the same as would be produced by constant amplitude loading at the same 
effective stress intensity range. In constant amplitude loading, where each stress 
peak is equal to the highest, the effective stress intensity range is 

When constant amplitude test da ta  is interpreted in 
terms of this me,,, the value of q can be anywhere in the suggested range 
without a major influence on the estimates of crack growth due to blocks of 

irregular loading. Therefore, without knowing the actual crack opening stress, a 
good approximation for crack growth life can be made with a minimum of test 
data. 

= Kmax-qKmax. 
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1.4.7 Kikukawa, Jono, and Others 

The most valuable work of the research group composed of Kikukawa, 
Jono, and several others [Kikukawa et.al., 1981; Jon0 et.al., 19851 is an experi- 
mental validation of some basic concepts that  have been used in other models. 
They conducted crack growth tests in which stress maxima and minima, crack 
opening stress, and crack growth rate were all monitored. Test loadings 
included both constant amplitude and blocks of random-amplitude loadings. 
Their conclusions include the following: 

With random-amplitude blocks of loading, the crack opening stress is rela- 
tively constant throughout the loading and is equal to the crack opening 
stress in constant amplitude loading with the same largest peak and lowest 
valley. 

The threshold effective stress intensity range (below which crack growth 
ceases in constant amplitude tests) is zero under irregular loading. 

The crack growth rate due to irregular loadings is accurately estimated by 
using AKef = Kmax-Kop, where Kop is the measured crack opening stress 
intensity. 

1.4.8 Overview of Crack Growth Models 

These models are a few of the many approaches that have been proposed in 
the effort to predict fatigue crack growth due to irregular loading. They 
represent a fairly diverse sampling of the available methods. Some comments 
are listed below: 

Validation of all these methods has been with sample blocks of irregular 
loading, which are repeated in a closed loop fashion in testing and analysis. 
The entire loading is not random, but is periodic, and is best described as 
irregular. These loadings are sometimes called pseudo-random. 

There is a group of modelers, including Elber, Nelson and Kikukawa, who 
are quite similar in tha t  they seek to represent the crack closure 
phenomenon by estimating an effective AK for each stress range. 

The Wheeler and Fuunt hring models both require empirical estimates of 
important parameters that  depend on the specific load block. 

The Willenborg and Nelson models both require only constant amplitude 
crack growth data  at R = 0. Willenborg does not model the crack closure 
effect while Nelson approximates it. 
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- Barsom is the only one that attempts to lump the entire loading into a sin- 
gle parameter, A l C R M s .  This avoids the difficulty of calculating crack 
growth cycle by cycle. 

In all the models, except Barsom’s, the maximum stress in a block of load- 
ing is a critical parameter. It is identified as the significant event which 
controls the crack growth retardation. 

It is the central importance of the maximum stress peak that  seriously lim- 
its the ability of all the above methods to model real loadings. As Wei* has 
observed, the maximum stress in any block of real loading is a random variable. 
Even the division into blocks is an artificial one that is only done to simplify 
analysis and testing. Typically, this difficulty has been avoided by selecting a 
representative loading, omitting the highest possible stress peaks, which will usu- 
ally underestimate the retardation and produce a conservative estimate of time 
to failure. The amount of conservatism, however, is not known and cannot be 
obtained from the representative loading. 

- 

1.5 Scope and Organization 

In the following chapters, fatigue crack growth due to random loading is 
investigated, showing a variety of approaches tha t  are tailored to the level of 
complexity required for the application at hand. The emphasis is on creating the 
simplest models, of both the crack growth process and the random loading, that  
maintain the desired level of accuracy. Models that  include load sequence effects 
to achieve greater accuracy can be computationally expensive. Because the 
desired accuracy can vary, approximate models that  are simple to implement 
and require minimal computations are also presented. Examples that  illustrate 
the relative accuracy of the approximations are provided as well. 

In Chapter 2, a new crack-growth model, based on a combination of 
Nelson’s and Willenborg’s models, is introduced and shown to predict several 
sets of published test results. The model provides a means of approximating 
load sequence effects by continuously updating the crack opening stress, account- 
ing for both acceleration and retardation effects in a simplified way. Linear elas- 
tic fracture mechanics and a two-dimensional crack geometry are assumed. This 
model is used in the subsequent chapters as the standard crack growth model 

* written comment by R.P. Wei, following reference by Barsom, 1976 
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that  includes sequence effects. 

Random load models, which describe the relevant events in the loading 
necessary to implement the above crack growth model, are outlined in Chapter 
3. These models range from simple random variable descriptions tha t  are useful 
in sequenceless applications to random process simulations that  include the rela- 

tive likelihood of various load sequences. Existing random variable descriptions 
of narrow-band loadings are shown t o  be useful approximations for any Gaus- 
sian loading. New results tha t  account for the overall peaks and ranges in 
wide-band loadings are obtained through racetrack fiktering. An efficient sequen- 
tial simulation method uses the random variable results to simulate only the 
most significant events in a random process by breaking the loading into slow 
(mean variations) and fast (amplitude variations) parts. 

Chapter 4 describes practical methods for calculating crack growth life by 
applying the load models of Chapter 3 to the crack growth model of Chapter 2, 

and to an  alternative model that  neglects sequence effects. Inherent difficulties in 
the traditional, sampleblock, load model can be eliminated with a continuously 
defined loading, which can be obtained by the sequential simulation method. 
This simulation method is used in studies tha t  illustrate the relative importance 
of including load sequence effects in crack growth analysis. For stationary Gaus- 
sian loadings, sequence effects can often be neglected. Nonstationary random 
loadings are also simulated and shown to  produce greater sequence effects. 

As an alternative to simulation, analytical estimates of crack growth life 
including sequence effects are examined in Chapter 5 using diffusion models. The 
emphasis is on simplifying the problem (i.e., scalar diffusion models) bo hhat 
solutions can be obtained with limited computational resources. Solutions for 

mean and variance of the time to failure due to constant amplitude loading with 
distinct tensilc overloads are presented. The mean time to failure due to ststion- 
ary Gaussian loading is also estimated. More complete, but computationally 

expensive, solution methods using vector diffusion models are outlined. 

The first four chapters do not assume any background in random process 
theory by the reader, but attempt to provide the necessary background as the 
material is presented. Chapter 5 does assume a minimal understanding o f  ran-  

dom processes and, therefore. moves quickly through the introductory mal (.rial. 

The intent is that  the reader without probabilistic training would find t 1 1 ~  early 

chapters accessible and, perhaps, instructive, while Chapter 5 may Le of' tnow 

interest to  the already initiated. 
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CHAPTER 2 

CRACK GROWTH MODEL 

2.1 Introduction 

There are numerous effects of load sequences on crack growth which have 
been documented in the past decades. Most of the test data  are based on con- 
s tant  amplitude loading with well defined overloads. The applicability of the 
results of constant amplitude testing to the case of irregular loading is often not 
well understood. It is therefore not the intent of this crack growth model t o  
quantitatively reproduce all the known responses of crack growth rate to load 
sequences. It is important, however, to model those known material responses 
which will cause the most dramatic changes in crack growth rate. Such a model 
is a useful tool in investigating the relative effects of various combinations of 
loadings and material properties on time to failure. 

The proposed model is capable of accurate fatigue crack growth predictions 
if sufficient material response data  are available, but is also capable of reflecting 
the relative changes in fatigue life due to differing loadings and material choices 
when a minimum of data  are available. The amount of data  required to specify 
the crack growth response to a random loading is kept to a minimum by includ- 
ing only the most influential parameters in the crack growth model. This is 
especially important in the early stages of design when it is impractical to obtain 
test data  for all of the alternative materials and geometries. 

A simple crack growth model is also valuable when the loading is random 
and probabilistic analysis or simulation is required. A complex crack growth 
model could preclude the possibility of an analytical solution. If analytical solu- 
tions are still not possible and simulations must be used, a simple crack growth 
model will reduce the computation time involved in repeated calculations of 
crack growth. 

The intent is to strike a balance between sequenceless analysis and an 
exhaustive inclusion of all known fatigue crack growth sequence effects. The 
emphasis, however, is on a model which can reflect relative load sequence effects 
with a minimum of descriptive parameters. To achieve this, a model is proposed 
that  requires only material properties that  describe the yield stress and the 
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d a / d N  vs AK curve for constant amplitude zero-to-maximum loading. All 
other parameters can be estimated in the absence of test data. 

2.2 A Crack Growth Model for Analysis of Load Sequence Effects 

2.2.1 Preliminary Definitions 

There are a few terms relating t o  sequence effects which must be defined 
before the crack growth model can be described. An explicit definition here may 
help to avoid confusion later. 

The application of a large tensile load results in a subsequent slowing of the 
rate of crack growth known as retardation. Any tensile stress large enough t o  
cause retardation is called an overload and is referred to  by Sffl. There is often a 
time lag between the application of the overload and the maximum retardation, 
called delay. After the retardation has reached its maximum, the crack growth 
rate gradually returns to  the unretarded rate. This is the decay of the retarda- 
t>ion. A large compressive load has the effect of immediately speeding crack 
growth, or acceleration, followed by a gradual reduction in the acceleration, as 
was the case for retardation. 

The region of material immediately in front of the crack tip, in the path of 
crack growth, which is plastically deformed is the crack t i p  plastic zone. 
Although this zone is never perfectly circular, the distance from the crack tip to  
the maximum extent of the plastic zone is called the crack t ip plastic zone radius, 
or usually just the plastic zone radius, r p .  

When the loading is irregular, it may not be obvious which load peaks are 
responsible for retardation. Since the duration of the retardation is associated 
with the plastic zone size, the overloads are taken to be those loads which 
increase the plastic zone radius. The stress level which is necessary to reset the 
maximum extent of the plastic zone is defined as the reset stress, S,. An over- 
load is, therefore, any load peak which exceeds the current reset stress. 

The crack opening stress, S o p ,  is the stress level necessary to physically open 
the crack tip. The crack opening stress is modeled as a fraction of the reset 
stress. The ratio of the crack opening stress to the reset stress is called the crack 
opening stress ratio, q .  

The difference between the peak stress, S,,,, and the crack opening stress is 
The stress intensity known as the eflective stress range, AS,, = Smax-Sffp. 
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associated with it is known as the eflectiwe stress intensity range, Me,, . If the 
stress peak is less than the crack opening stress, the effective ranges are zero. A 
negative stress range has no meaning. 

2.2.2 Description of the Crack Growth Model 

When a tensile overload, Sol ,  is applied to a cracked body such that  the 
stress intensity factor is Ko1= 6 Y ( a ) S o 1  (in which Y ( a )  is a shape factor), a 
plastic zone with a radius of approximately rol is created: 

in which y is the plane strain constraint factor (y= 1 for plane stress and y= 3 
for plane strain), and Sy is the yield stress. 

The extent of the influence of the overload has been suggested t o  be about 
twice T~~ [Johnson, 19811. 

(2.2) 

The distance between the maximum extent of the influence of the previous 
overload, (aol + d o l )  and the current crack length, a ,  is d,, as shown in Fig. 2.1. 
The reset stress at any time is the stress necessary to produce a plastic zone 
diameter equal to d, . 

S,, therefore, instantaneously increases to Sol when an overload is applied 
(no delay is modeled) and then gradually decreases as the crack grows through 
the plastic zone as shown in Fig. 2.2. 

The crack growth rate is assumed to depend on Me,, in a way that is 
analogous to  Paris’ Law: 
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Fig. 2.1 Schematic of crack growth through the overload affected zone from 
a01 to a01 +do1 * 

m 
0 

CR 
\ 
m 

Lc 

1 .o 
0.8 

0.6 

0.4 

0.2 

0.0 
0 0.2 0.4 0.6 0.8 1 

Fig. 2.2 Variation in reset stress, S,, as the crack grows through the overload 
affected zone from a,, to a,[ +do,. 
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Several studies of constant amplitude loading have shown q to be a func- 
tion of stress ratio, R ,  as well as S,,,. The empirical relationship between 
effective stress range and applied stress range is often expressed in terms of the 
parameter U ,  which is the ratio of effective stress range to total stress range 
given by 

(2.6) 

Estimates of U as a €unction of R include forms ranging from linear [Elber, 
U 19711 to fourth order polynomials [Schijve, 1081; Chand and Garg, 19831. 

and q are related by 

q = 1 - U ( 1 - R )  ( 2 - 7 )  

When the relationship is plotted in terms of q instead of U ,  as was done by 
Schijve, the deviations from a straight line are not great over a fairly wide range 
of R .  Figure 2.3 illustrates the assumed dependence of q on R given by three 
authors. The solid lines are linear approximations to the dependence of q on R 
given by 

where qo is the crack opening stress ratio at R = 0 and R,  is the (negative) 
stress ratio at which q becomes zero. Plots for R,  = -2 and R ,  = -5 are shown. 
This range of R,  values allows the linear relationship to adequately represent 

the variation in q for stress ratios near or less than zero. When S,,, is greater 
than S o p ,  it is as if q= R .  Effectively, the crack opening stress ratio is bilinear 
as shown by the solid lines in Fig. 2.3. 

The above stress ratio, R ,  is traditionally the ratio of the niinimuiii tu the 
maximum stress in constant amplitude loading. For a loading defined by a sam- 
ple block, R is defined by the highest and lowest stresses in the block. In il ran- 
dom loading, for which tliere is no block structure, it is not obvious what the 
local stress ratio should be. Since the crack growth rate is dependent> on t,llc> 
changes iii q with stress ratio in a secondary way, any number of methods of 
determining a local R can produce equivalent results. In tlie absence of block 
structure, an  arbitrary block length of one thoiisand cycles is used to update a 
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local R . 
There is a documented tendency for q to decrease as S,, increases [New- 

man, 1981; 1982; Chand and Garg, 19831, but this dependence on s,, is not 

always evident [Jono et. al., 1984; 19851. Dependence of q on the maximum 
stress is not included in this model. 

The threshold stress intensity range is reportedly zero when the effective 
stress intensity range is used to calculate crack growth rate for irregular loadings 
[Kikukawa, et. al., 19811. Even if there is a threshold for crack propagation, it 
would not be a bad approximation to assume zero threshold because for irregular 
loadings, the small amplitude effective stress ranges account for a very small 
fraction of the total crack growth. A zero threshold is assumed in this work. 

2.2.3 Sequence Effects Included in the Model 

The most prominent sequence effect, retardation of the crack growth rate 
due to a tensile overload, is modeled by making the crack opening stress a func- 
tion of the reset stress. This reset stress is set equal to the magnitude of a ten- 
sile overload at the time of application. The magnitude of the retardation effect 
is tied to the size of the overload by making the crack opening stress a fraction, 
q ,  of the reset stress. The crack opening stress governs crack growth rates 
because the effective stress range is the difference between the maximum stress 
and the crack openings stress. 

Decay of the retardation is modeled by reducing the reset stress gradually as 
the crack grows through the overload induced plastic zone. This approach to 
decay is similar to tha t  used in conjunction with other crack growth sequence 
effect models [Willenborg, et. al., 1971; Johnson, 19811. 

Acceleration is modeled in an indirect way by relating q to the stress ratio, 
R .  When a large compressive load is applied, R decreases and q also decreases 
(Eq. 2.8), resulting in an  increased ASefj ,  which yields an  accelerated crack 
growth rate. 

2.2.4 Sequence Effects Neglected by the Model 

The neglected effect that  could have the greatest impact on predictions of 
fatigue crack growth life is the possible dependence of q on maximum stress. 
There is conflicting evidence on this effect. The association between q and S,, 
is neglected here for the sake of simplicity. 
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The delay of retardation after an overload arrival is also neglected. This 
delay accounts for a decrease in life for one very special load history [Larsen and 
Annis, 19801 but is likely to be inconsequential in a random loading. 

The magnitude of the retardation can be increased if a number of overloads 
are applied in one clump [Trebules, et. al., 1973; Gardner and Stephens, 19741. 
Although this effect is well documented for constant amplitude loading with dis- 
tinct clumps of overloads, it is not clear how this would be manifest in a random 
loading environment where each load peak is different. Since the additional 
effect of repeated overloads is smaller than the effect of the first one, and it is 
unlikely that  a large number of overloads will occur in succession during a ran- 
dom loading, no differentiation is made in this model between single and multi- 
ple overloads. 

2.2.5 Crack Growth Rate Constants 

The constants in Eq. 2.5, C and 6 ,  are defined in terms of the effective 
stress intensity range, Me,, . These constants are derived from the relationship 
between crack growth rate fit of the R= 0 test data  to  the usual Paris law equa- 
tion is first obtained: 

-- - C , M b  da 
dN 

The effective stress intensity range when R = 0 is 

(2.10) 

To predict the same crack growth rate from both Eq. 2.5 and 2.9 for R = 0 tests, 
C must be related to C, by 

c = C,(l-q,)-* (2.11) 

The crack growth exponent, b ,  is unchanged. 

Without changing the basic assumptions of the model, it is possible to for- 
mulate other crack growth equations. The prime assumption is that  the crack 
growth rate is determined by the effective stress range which is in turn deter- 
mined by the crack opening stress. The assumption that  has worked well in 
predicting crack growth rates for irregular loadings is that  the crack opening 
stress will be the same as for a constant amplitude loading with the same max- 
imum and minimum stress [Socie, 1977; Jono, et. al., 19841. The crack growth 
rate should be the same as for constant amplitude loading with the same 
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effective stress range. Therefore, alternate crack growth rate equations which 
maintain the equivalence of growth rates for similar effective stress ranges are 
consistent with this modeling approach. One such alternative is t o  apply a 
Forman-like equation [Forman, et. al., 1967). 

(2.12) 

in which R e f f  is the effective stress ratio of each cycle, which depends on the 
crack opening stress: 

SOP 
S m a x  

S m i n  
~ 

S m a x  

Sop > S m i n  

(2.13) 

The crack growth constants are determined as before by fitting to constant 
amplitude R = 0 da ta  using the equation 

C, A K b  
(2.14) 

When R = 0, Ref! = q o ,  As before, b is the same for both equations and CF is 
related to  C, by 

da 
-E 

d N  (I-I?) 

CF co ( l -qo) l -b  (2.15) 

Both of these formulations account for constant amplitude stress ratio 
effects in roughly the same way. Figure 2.4 shows the crack growth rates for 
nonzero stress ratios divided by R = 0 crack growth rates for the two formula- 
tions. The ratio of crack growth rates is almost identical for the two approaches 
as long as the minimum stress is less than the crack opening stress (R  < q o ) .  

The purpose of including the Forman-like variation to the crack growth 
equation is to exemplify the flexibility of this modeling approach and to show 
the effect of such model variations on life predictions. The approach does not 
depend on the exact form of the crack growth equation, but rests on the 
definition of the reset stress, which governs the variations in the crack opening 
stress. 
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b= 3.64) 



- 2 6 -  

2.2.6 Model Assumptions 

It has been assumed that linear elastic fracture mechanics applies to the 
loaded crack. This requires that the loading be nominally elastic with plasticity 
limited to  the vicinity of the crack tip. Mode I crack growth, which is based on 
uniaxial loading perpendicular to the crack surfaces, is also assumed throughout. 
The expressions for the size of the plastic zone are for a two dimensional 
geometry and depend on a homogeneous, isotropic material which is linear elas- 
t ic  up to  the yield stress. No time dependent material behavior is modeled so 
high temperature effects are also excluded. 

2.3 Comparison of Model Predictions with Test Results 

2.3.1 Overview 

The proposed model is applied to several published irregular load histories. 
These loadings consist of blocks of sequential stress peaks and valleys tabulated 
in two special publications, one by the American Society for Testing and Materi- 
als (ASTM) [Chang and Hudson, eds., 19811 and the other by the Society of 
Automotive Engineers (SAE) [Wetzel, ed., 19771. 

The four ASTM histories were computer generated while the SAE loadings 
were selected load measurements from three different automotive components. 
The specimens were aluminum 2219-T851 center cracked tension specimens for 
the ASTM tests and steel keyhole notched plates for the SAE tests. The S A E  
testing was conducted at a number laboratories while the ASTM tests were done 
at a single facility. The SAE and ASTM test and analysis series were published 
in 1977 and 1981 respectively. 

Both test series share the methodology of defining the load history with a 
single block of sequential load peaks and valleys. A fatigue test is conducted by 
repeating the load block in a continuous loop fashion until either the specimen 
fails or the test is suspended. Although the term random is often applied to 
these loadings, a better description might be irregular. The block structure gives 
well defined minimum and maximum stress levels which repeat at time intervals 
equal to the block length. In a random loading, the maximum and minimum 
stress levels in any fixed block of time will be random variables, as will the time 
between local extrema. 
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2.3.2 The ASTM Test Series 

The purpose of the ASTM test series was to ' 'assess whether data f rom con- 
stant amplitude fatigue crack growth tests on center cracked tension (CCT) speci- 
mens  can  be used to  predict fatigue crack growth lives of CCT specimens subjected 
to  random load sequences)' [Chang and Hudson, eds., 19811. 

The ASTM load histories are examples of the types of loadings experienced 
by fighter aircraft wings. The loads were not taken directly from measurements, 
but were derived from power spectral densities (PSDs) which were calculated 
from hours of actual flight data [Dill and Saff, 19771. The load histories were 
divided into three types: Air-to-Air (AA), Air-to-Ground (AG), and 
Instrumentation-and-Navigation (IN). From a combination of these three, a 
fourth type of loading, called Composite Fighter (CF), was generated. 

Simplified versions of the PSDs used t o  generate the time series for the AA, 
AG, and IN load histories are shown in Fig. 2.5. Unique random time series 
were generated by discretizing the PSDs, assigning random phase angles to each 
frequency component and computing the inverse discrete Fourier transform. 
(The topic of simulating random loadings is given more detailed treatment in 
Chapter 3.) 

One sample block of loading was selected for the AA, AG, and IN load his- 
tories. Peaks and valleys were determined by quadratic interpolation and all 
ranges smaller than 10% of design limit stress (DLS) were removed. Valleys 
were replaced with a fixed magnitude compressive load at regular intervals to  
simulate the ground load. A ground load of -5% of design limit stress (DLS) was 
used in the AA and IN histories while -10% of DLS was used in the AG history. 

Sample blocks of sequences of peaks and valleys are tabulated for each load 
type [Chang, 19811. Figure 2.6 contains plots of a sample of the sequential 
peaks and valleys of the AA, AG, and IN histories. The load magnitudes are 
defined as fractions of DLS. The DLS levels used in the test series were 20, 30, 
and 40 ksi for the AA, AG, and CF  histories, and of 30 and 40 ksi for the IN 
history. 

The stress intensity factor for the ASTM specimen includes a finite width 
correction factor in the geometric term Y ( a ) .  

K =G Y ( a ) s  (2.16) 

where 
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Fig. 2.5 Simplified power spectral densities (PSDs) of the ASTM loadings. 
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Plots of a sample of the sequences of peaks and valleys for the ASTM 
test series. 
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and W is the specimen width. 

The relevant material properties (Sy, C , ,  and b ) ,  which are taken from 

Chang, Szamossi and Liu [Chang, et. al., 19811, are listed in Table 2.1. Only 
R = 0 crack growth rate data was used to  calculate C, and b .  

Crack growth testing was conducted by repeating the load blocks until the 
crack had grown from the initial precracked half crack length of about 0.15 
inches to  failure. The precise initial and final crack lengths and the number of 
cycles t o  failure are listed in Table 2.2 for all eleven tests. Only one test was 
conducted for each combination of load history and load magnitude. 

I Table 2.1 - Material constants for the ASTM and S A E  test series. 1 
I Material Specification Yield Stress, ksi b *  co* I 
Aluminum 2219-T851 50 3.64 8.4x10-" 

Steel Manten 48 2.81 4.6x10-'' 
Steel RQC- 100 95 3.03 2.7xlO-'' 

( # 6 ,C,  for crack growth rate in inches/cycle and 
stress intensity range in ksivzn. ) 

- 

I Table 2.2 - ASTM crack lengths and number of cycles of loading. -1 
Load Scale Initial crack Final crack Number of 

Factor length (in.) length (in.) Cycles 

AA 0.2 0.16 0.5125 115700 
AA 0.3 0.15 1.395 58585 
AA 0.4 0.15 0.9175 18612 
AG 0.2 0.175 2.2 268908 
AG 0.3 0.144 1.735 95642 
AG 0.4 0.1525 1.29 36397 
IN 0.3 0.15 1.805 380443 
IN 0.4 0.15 1.5125 164738 
CF 0.2 0.1525 2.03 218151 
C F  0.3 0.15 1.4225 65627 
C F  0.4 0.15 1.1625 22187 
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2.3.3 The S A E  Test Series 

The Society of Automotive Engineers (SAE) initiated this test series to prc- 
vide guidance in "how t o  handle complex load histories" [Wetzel, ed., 19771. The 
selection of the specimen geometry and material as well as the choice of load his- 
tories were intended to make the test series simulate a real life situation. The 
tests, which started with an  initially smooth notch, monitored crack init iation 
and subsequent growth to failure. The portion of the test from crack initiation 
to failure is used here to test the ability of the proposed crack growth model to 
predict test results. 

Many of the tests in the series included substantial plasticity extending well 
beyond the notch root. Since the proposed rnodel is limited to linear elastic frac- 
ture mechanics, those tests are not considered here. In addition, some of the 
tests were either suspended prior to crack initiation or contained insufficient 
documentation of initial and final crack lengths. Twenty one of the tests, eleven 
using Manten and ten using RQC-100, are applicable for comparison with model 
predictions. 

The material properties for these two steels, taken from published estimates 
[Socie, 19771, are included in Table 2.1. The only material properties which are 
required to implement the crack growth model are the ones listed in the table. 

The load histories are sample measurements made on three different ground 
vehicle components. The suspension history (SP) is a record of the load in a 

vehicle suspension component when driven over an accelerated durability course. 
This loading has a large compressive mean. The bracket history (BR), measured 
on a mounting bracket while the vehicle was operated on a rough road, is an 
almost classic narrow band random vibration with near zero mean stress. The 
transmission history (TR) is a torque measurement on the transmission of a 
front-end loader equipped tractor during heavy duty operation. A portion of 
each loading is shown in Fig. 2.7. Tables of peaks and valleys are published in 
the special SAE publication [Tucker and Bussa, 19771. Condensed tables of 
extrema are given by Nelson [Nelson and Fuchs, 19771. The number of cycles in 
each block was reduced to 10 percent of the original using the racetrack filtering 
technique [Fuchs, et. al., 19771. (An examination of the racetrack filtering algo- 
rithm is included in Chapter 3.) The condensed load history is used for the 

bracket history. All tensile peaks are included in the suspension loading. The 
entire set of peaks and valleys are used to evaluate the transmission load history. 
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Fig. 2.7 Plots of a sample of the sequences of peaks and valleys for the SAE 
test series. Only the peaks used in the crack growth analysis are plot- 
ted. 
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Table 2.3 
SAF: crack lengths and number of blocks of loading in crack growth. 

Test ID Max. load Initial crack length Final crack length Number of 
(kips) (ai I W >  ("f I W )  Blocks 

SM3-I-FS -6.0 .3777 .7669 22402 
SM3- 2-F S -6.0 .3723 .7669 28448 

23932 SM3-3-W -6.0 .3524 .6831 
SM4-2-MTS -4.5 .3501 .7026 19100 
BM3- 1-MTS -3.5 .3507 3263 3262 
BM3-2-MTS -3.5 .5993 .7169 32 
BM3-3-F S -3.5 .3507 .7669 2062 
BM4-2-FS -3.0 .3669 .4209 6543 
BM4-3-MTS -3.0 .3561 .7777 1306 
TM3-2-FS +3.5 .3858 .6764 979 
TM3-3-MTS +3.5 .3507 .6418 2137 
SR2-2-GM -9.0 .3520 .3696 3490 
SR3-2-FS -7.0 .3608 .7804 38053 
BR2-I-FS -8.0 .3561 .5264 80 
BR2-2-FM -8.0 .3547 .6545 59 
BR2-3-JD -8.0 .3520 .7318 94 
BR3-1-MTS -3.5 .3507 .5966 4901 
BR3-3-FS -3.5 .4520 .7709 774 
TR2- 1-FM +8.0 .3677 .5494 27 
TR2-2-JD +8.0 .4G28 .6561 11 
TR2-3-GM +8.0 .3547 .5588 43 

The test specimen is the keyhole notched plate shown in Fig. 2.8. The 
stress in the test section is a combination of axial and bending with a stress con- 
centration at the notch. The loadings selected for analysis have notch root yield 
zones tha t  do not extend to the crack tip. The initial crack length is 0.35 times 
the width, W (crack lengths are measured from the load line). For purposes of 
comparison with predictions, the exact initial crack length at the time of a meas- 
urement was used; this usually does not correspond to  exactly 0.351V. The ini- 
tial and final crack lengths as well as the material a n d  num1)er of blocks to grow 
from initial to final crack length are listed in Table 2.3.  

The stress intensity factor for the keyhole notch specimen is defined 
separately over segments of the crack length domain while maintaining con- 
tinuity of the function and its first derivative [Nelson, 19781. The  stress inten- 
sity factor is defined in terms of the applied load, P (in Ibs.), by 
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Fig. 2.8 Keyhole notched specimen used in the SAE test series [from Tucker 
and Bussa, 19771. 
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Ii' = P Y ( u )  

where 

(2.17) 

a U .350 < - < ,525 
W 

.525 < - < .730 

6.35[7.13 - 38.44(-) + 63.31(Q)2]' /2  

6.35[97.10 - 3 8 1 . 1 7 ( d )  + 389 .72(d)2 ]1 /2  

W W 
U 

Y ( u )  = I W W W 

73 < -2- < 1.0 
W 

2.3.4 Comparison of Model Predictions with Test Results 

The only required material properties are the crack growth rate constants, 
C, and 6 ,  and the yield stress, Sy, which are given in Table 2.1 for the ASTM 
and S A E  test materials. The other quantities that  must be specified are: y, the 
plane strain constraint factor; q,, the R =  0 crack opening stress ratio; and R,,  
the q= 0 intercept of q us R . Each of these quantities can be determined by 
testing or by elastic-plastic analysis of the crack tip stress field. In the absence 
of such information, some simple approximations can be made. 

For  plane strain conditions y is equal to 3, while for plane stress y is 1. 

Plane stress prevails when rp is greater than the specimen thickness. The ASTM 
guidelines for determining the plane strain fracture toughness require a specimen 
thickness of about four times the plane stress rp  before plane strain is fully 
developed. For thicknesses between one and four r P ,  y can take on values 
between 1 and 3, with y= 2 being a good intermediate approximation. 

Values of q, have been reported ranging from 0.2 [Jono, et. al., 19851 to 
0.5 [Elber, 19701. As mentioned previously, q, may also depend on the max- 
imum stress. The value of q, can have substantial influence on the crack growth 
estimates when the loading is nearly constant amplitude with occasional over- 
loads. But when variations in load amplitude are less distinct, q, can be fixed in 
the middle of the range at  about 0.35 as a simplification that  recognizes realistic 
uncertainties in knowledge of qo while preserving reasonable accuracy [Nelson, 
19781. 

The change in crack opening stress ratio, q ,  with stress ratio, R ,  has been 
given many representations including dependence on maximum stress as well as 

stress ratio. Test da ta  would be valuable in defining the relationship, but in the 

. . .  
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absence of test data  a linear decrease in q with decreasing R ,  independent of 

maximum stress (Eq 2.8), can be used. de Koning suggests R,= 2.25 when 
q,= .45 [de Koning, 19801. Values of R,  between -2 and -5 cover most of the 
published range of q us R [Schijve, 1981; Newman, 19821. q would be practi- 
cally constant if R ,  < -5 which would minimize the effect on the model of crack 

growth acceleration due to compressive loading. Different choices of R,  have a 
minor effect on crack growth predictions except at relatively large negative stress 
ratios ( R  near R,).  

The values of y, q,, and R ,  for the ASTM test series are taken from the 

crack tip plastic zone analysis done by Newman [1981]: y= 2.3, qo= 0.3, and 
R,= -3.5. For the SAE test series, there were no estimates of these parameters 
available so the midrange values were selected for each: y= 2.0, q, = 0.35, and 
R,  = -3.5. 

Predicted cycles to failure are plotted against test cycles to failure for the 
ASTM test series in Fig. 2.9. Predictions using both the Standard model and 
the Forman crack growth equation are included. All predictions are within a 
factor of two of the test results and most are much closer. There is a tendency 
for the model to overestimate life at lower stress levels (long lives). This is con- 
sistent with other predictions for these data  [Chang and Hudson, eds., 19811 and 
has generally been attributed to an insufficient fit to the R = 0 crack growth 
data  at low stress intensity levels [Chang, 19811. 

Predictions of the number of blocks of loading to failure for the SAE test 
series are shown in Fig. 2.10. This figure shows a great deal more scatter than 
the ASTM test series. The major source of variability can be found by compar- 
ing the scatter in prediction ratios (ratios of predicted life to test life) within 
each load/material grouping to the prediction ratios of all the tests. The group- 
ings with the most replicates are: four tests with the SP loading of Manten, five 
tests with the BR loading of Manten, and five tests with the BR loading of 
RQC-100. The coefficients of variation (standard deviation divided by the 
mean) of the prediction ratios for these three groups are 0.90, 0.76, and 0.53, 
respectively. The coefficient of variation of prediction ratios for the entire SAE 
test series is 0.76. This indicates that  the variability from specimen to specimen 
within a grouping is the source of most of the scatter in Fig. 2.10. 
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Fig. 2.9 ASTM test results and model predictions. 
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Fig. 2.10 SAE test results and model predictions. 
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2.4 Discussion 

When one load peak in a block type loading is much higher than all the 
others, i t  will be the only load to set the reset stress, which governs the crack 
opening stress. This is true of the ASTM IN loading where one load peak is 
70% of DLS and all other peaks are much lower. All the other test cases have 
many peaks near the maximum. The IN history is the most sensitive to varia- 
tions in the crack growth parameters, especially q,. Reducing q, decreases life 
and increasing q, increases life. If qo is varied between the practical limits of 0.2 

and 0.5, the predicted IN life changes by a factor of 4.1. The change for the AA 
loading, for example, is only a factor of 1.8. The IN loading sensitivity is caused 
by the one large overload which creates a crack opening stress very near the 
mean of the rest of the ranges. Small changes in q, produce large changes in the 
crack opening stress relative to the size of the smaller stress ranges. The IN 
loading most closely resembles the constant amplitude with occasional overload 
testing which has been used so often t o  demonstrate retardation effects. 

Even when there are several load peaks near the highest one, it is the 
highest peak that will determine the reset stress for some time during the block. 
When y and Sy are both small, the plastic zone will be large and the one highest 
stress will determine the reset stress for the entire block. This will lead t o  some 
sensitivity in the choice of q,. When the plastic zones are small, the reset stress 
will decay rapidly and will be reset often leading to  less sensitivity to the choice 
of parameters. 

The acceleration effect is negligible in all but the SAE suspension and 
bracket histories. R is about -3 for the suspension loading and about -1 for the 
bracket loading. All the other test cases have near-zero minimum stresses that 
make R close t o  zero. When R is close t o  R,  (-3.5 in this case) the model 
predicts a near-zero crack opening stress regardless of the maximum or minimum 
stresses. This acceleration may be too great as can be seen by the underes- 
timated life for the RQC-100 specimens under the suspension loading. 

Another possible explanation for underestimating life for the suspension his- 
tory is the maximum stress influence on q .  The maximum stress in the suspen- 
sion history is lower than any other SAE loading. If low maximum stresses tend 
to increase q ,  then the crack opening stress would have been higher and the 
predicted life would also be longer. The mild tendency in the SAE test cases for 
over-predicting at high stresses and under-predicting at low stresses is also con- 
sistent with this explanation. For the ASTM test series, q was shown to  be 
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insensitive to variations in maximum stress [Newman, 19811. This would not 
have been true if there had been plane stress conditions for the ASTM tests. It 
is aiso interesting that the SAE tests were close to plane stress conditions during 
most of the crack growth. 

The two crack growth equations, the Standard and the Forman, are quite 
close in their predictions. The main difference is in the way tha t  they treat 
crack growth when the minimum stress is greater than the crack opening stress. 
The Standard model has a limit on the crack growth rate while the Forman 
equation continues to predict higher growth rates as the maximum stress 
increases (for a fixed AK). When the minimum stress is almost always negative 
(as in the bracket history) the two predictions are almost identical. 

When sufficient analysis has been done to  determine all the input parame- 
ters, as was provided by Newman for the ASTM test series, the predictions can 
be quite accurate. Even when these parameters, q o ,  R,,  and y, are not known, 
reasonable choices from the middle of the practical range of values can also yield 
reasonable life predictions as shown by the SAE test series results. This 
simplified crack growth model may not be quantitatively correct in all instances, 
but it contains the appropriate effects to model the qualitative behavior of the 
crack growth and produce est,imates of life which are within the band of uncer- 
tainty inherent in fatigue testing. 
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CHAPTER 3 

MODELS OF RANDOM LOADING 

3.1 Introduction 

Although crack growth rates are generally defined in terms of constant 
amplitude loadings, service loads on fatigue-susceptible structures are rarely con- 
stant amplitude. Variable amplitude loads can be described by an actual 
sequence of peaks and troughs or by a limited number of statistics that  reflect, 
on average, various load characteristics. The statistical description may be both 
more efficient and more consistent with the extent of knowledge of the loading. 
The purpose here is to find a minimally sufficient set of load statistics for fatigue 
crack growth applications. Random load models are provided here (1) for 
analytical life estimates that  ignore sequence effects, and ( 2 )  for numerical life 
estimates based on load simulation methods that  reflect the likelihood of various 
load sequences. 

One common way to represent variable amplitude loads is to list the precise 
sequence of peaks and valleys in a sample block. This sample may be derived 
either from actual load measurements, as was done for the SAE test series 
described in Chapter 2 ,  or from a load simulation technique, as was done for the 
ASTM loadings. The sample block is used in both analysis and testing by 
repeating the block until failure. This method has the advantage of providing 
an accurate sample of load sequences, but the disadvantage that  only a single 
sample of all possible load sequences is represented. It has the additional draw- 
back tha t  an  artificial sequence effect may be introduced by the periodic repeti- 
tion of the largest loads in the sample block. 

Another way of specifying a random loading is through a frequency of 
esceedance diagram, which defines the number of times within a block that the 
load will exceed any given level. This is equivalent to describing the peaks of a 

loading as a random variable. Simple random variable models of various useful 
load parameters (peaks, ranges, mean stresses, etc.) are shown here. This type of 

model provides a more complete description of the relative frequency of peak 
amplitudes than does the sample block, but at the expense of all information on 
load sequences. For crack growth analysis without sequence effects, these 
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random variable models provide an efficient method of calculating crack growth 
by summing contributions from all cycles at each specified stress level, avoiding 
the need for cycle-by-cycle integration. 

To retain a complete description of both (1) the load peaks and ranges and 
(2) the possible load sequences, the loading dynamics must be described. Model- 
ing load dynamics requires the description of the load as a random process [Mad- 
sen, et.al., 19861. Random loadings are often specified by their frequency content 
through the power spectral density (PSD) and simulated by fast Fourier 
transform (FFT) methods. This method was suggested for generating test load- 
ings soon after the discovery of sequence effects in crack growth [Swanson, 19681. 

This FFT based approach was used to generate the sample loading blocks used 
in the ASTM test series. Because published data  for the ASTM test series 
includes both illustrations of the PSDs, and tables of the peaks and valleys, 
these loadings will be used as examples of load generation techniques in this 
chapter. 

The full specification of a random process load model is often unnecessary 
for fatigue analysis, which is most sensitive to the overall behavior of load peaks 
and troughs. Minimal load statistics are suggested here to reflect this dynamic 
behavior. An efficient sequential load simulation method is also presented to 
preserve these important dynamic aspects, while avoiding the computational 
expense of PSD based random process simulation. 

3.2 Definitions of Random Loading 

In common, nontechnical usage, the term random implies completely 
unpredictable, haphazard and patternless. Technically, if a process is random it 
means simply tha t  it is not possible to predict the value of the process with cer- 
tainty at any time in the future. Many loadings tha t  are technically random are 
treated deterministically because, even though foreknowledge of the loading is 
not certain, it is sufficiently complete for the desired purpose. Loadings that are 
typically called random are those in which the amount of uncertainty is 
sufficient to cause difficulty in predicting the effect of the loading on a structure. 
Estimating the effect of a random loading requires knowledge of both the 
appropriate loading statistics and analysis techniques that  make use of these 
statistics. Random loading statistics are presented here that  describe the loading 
at the level of complexity necessary for crack growth analysis either with or 
without sequence effects. A brief discussion of random variables and random 
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processes is included first. 

For the purpose of the following discussion, it is assumed that the random 
process is both stationary and ergodic. A stationary process is said t o  be in a 
steady-state condition, i.e. the mean, variance and other statistics are constant in 
time. Also, the correlation between the process at any two points in time 
depends only on the time between the points and not on the absolute time. It is 
rare tha t  any real process is stationary in a strict sense, but loading processes 
can often be divided into time segments with stationary behavior in each seg- 
ment. The ergodic property is that ensemble averages are equivalent to time 
averages, which means that  averaging the value of different realizations of the 
process at a single time is the same as averaging a single realization over time. 

3.2.1 Random Variables 

Two basic descriptors of a stationary, ergodic, random loading, X ( t ) ,  are its 
average or mean value, mx, and standard deviation or RMS, ox. The mean is 
the central tendency and the RMS is the spread about that  central value. 
(Strictly speaking, the RMS, as the root m e a n  square, includes the squared mean 
while the standard deviation measures the variation about the mean. The term 
RMS will be used here as the root mean square of the process with the mean 
removed, making it equivalent to the standard deviation.) 

The magnitude of a stationary random loading at any point in time is a 

random variable. The probability tha t  X ( t )  is between X and X+dX at any 
time is p ( X ) d X  where p ( X )  is the probability density function (PDF) of X .  
(Here, the notation is employed that  uses X as both the random variable and 
the value of the random variable.) The PDF shows the distribution of probabil- 
ity as a function of load magnitude. Actual probabilities of any event depend 
on the integral of the PDF over the range of magnitudes in the event. The 
cumulative distribution function (CDF) of X ,  P ( X ) ,  is the integral of the PDF 
from minus infinity up to  the argument of the CDF: 

Thus, the CDF is the probability that  the random variable is less than the argu- 
ment at any time, as well as the average fraction of time for which the load is 
less than the argument (by the ergodic property). 
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While it would be very helpful to know the exact distribution of the load- 
ing, it requires more information than is usually available. In practice, the best 
that  can be done is to estimate some statistics of the distribution. Moments of 
the distribution are useful descriptors; for example, the first moment of the dis- 
tribution is the mean, mX: 

co 

mx = J X p ( X ) d X  
--oo 

which can also be written as mx= E [ X ]  where E [ . ]  is known as the expectation 
operator. Expectation is a linear operator defined as the integral of the operand 
times the PDF. The nth moment of the distribution of X is therefore E [ X n ] .  

The variance, o$, is the expectation of (X-mx)2 or, equivalently, the 
second moment of the distribution minus the squared mean: 

00 

cT$ = J X2p(X)dX - m$ = E[X2]  - ( E [ X ] ) 2  (3.3) 
-00 

The RMS, ox, is the square root of the variance. 

Two random variables, X and Y ,  have a joint PDF, p ( X , Y ) .  The proba- 
bility that  X ( t )  is between X and X+dX,  and tha t  Y ( t )  is between Y and 
Y+dY is p ( X , Y ) d X d Y .  If X and Y are independent, then the joint PDF is 
equal to the product of the individual PDFs, p (X, Y)= p ( X ) p  ( Y ) .  Expectation 
of an operand which contains both X and Y is done by integrating the product 
of the operand and the joint PDF over both variables. For independent random 
variables, the expected product is the product of the expectations; 
E [ X Y ] =  E [ X ] E  [ Y ] .  

If a usual functional form for the PDF is assumed, only a few moments of 

the distribution are needed to complete the specification. For example, if the 
process is the linear structural response to  Gaussian forcing, the process will be 
Gaussian as well. The Gaussian distribution is completely defined by the first 
two statistical moments or, equivalently, by the mean and RMS. The Gaussian 
model is both simple to implement and often accurate so it is usually assumed 
until there is evidence that shows otherwise. It is assumed that X ( t )  is Gaussian 
for the remainder of this chapter. 
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3.2.2 Dynamic Behavior 

The dynamic, or time varying, nature of the loading is described by the 
correlation between the load at any two (or more) times through the autocorrela- 
tion function, R (7). The autocorrelation of a stationary process depends only on 
the time lag, T,  and is defined by 

R ( 7 )  = E [ X ( t ) X ( t + r ) ]  (3.4) 

Notice tha t  when T= 0, the autocorrelation is equal to the mean square, E [ X 2 ] .  
When T is very large, X ( t )  and X ( ~ + T )  are usually uncorrelated so the auto- 
correlation equals the squared mean; R (T)= E [X( t ) ] E  [S( t +-T)]= E [XI2. A nor- 
malized correlation function, p ( ~ ) ,  which takes on a maximum value of unity at 
T= 0 and decays to zero for large time lags, can be defined as 

2 n (7) - nZAy 

CT; 
4 7 )  = ( 3 . 5 )  

The integral of this normalized correlation function provides a measure of the 
duration of significant fluctuations in the random process called the f luctuation 
scale, 8, [Winterstein and Cornell, 19851. 

The PSD, S(f ), is defined as the Fourier transform of R (r)-m?. Since the 
autocorrelation is a real valued function which is symmetric about T= 0, the 
PSD is also real and symmetric. To avoid negative frequencies, a one-sided PSD, 
G ( f ) ,  is often defined for positive frequencies only, with twice the magnitude of 
the two-sided PSD ( G ( f  )= 2 S ( f  ); f > - 0). The integral of the PSD is equal to 
thk variance of the process. In this way, the PSD shows the distribution of vari- 
ance as a function of frequency in the same way that  the PDF shows the distri- 
bution of probability (i.e., the variance between frequencies f and f +df  is 
equal to G(f ) d f  ). 

Although it is mathematically expedient t o  define the PSD as the Fourier 
transform of the autocorrelation, it is more insightful to think of the PSD as the 
normalized, squared magnitude of the Fourier transform of the time history. 
PSDs are usually estimated from time series by just siich a procedure. The PSD 
can thus be visualized as the variances of sine waves at different frequencies that 
when added together yield the original process. 

Wide-band processes are composed of frequency components from a wide 
band of frequencies. Figure 3.1 shows a sample PSD and time series of a wide- 
band loading. Narrow-band processes have most of their variance concentrated 
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in a narrow band of frequencies, as shown in Figure 3.2. 

Some useful measures of load bandwidth can be calculated as weighted 
averages of G ( f )  [Winterstein and Cornell, 19851. For example, the spectral 
moments, 

00 

A, = J f f l  G(f  )df 
0 

can be combined to form the quantity 

a, = m (3.7) 

Various measures follow from different choices of n. In general, a, is a unitless 
quantity varying between zero (wide-band limit) and unity (narrow-band limit). 
For relatively narrow bandwidths, the a, values become proportional: 
a,% rial% na2 /2  ' . . . 

The closer a process is to being sinusoidal, the more regular the process is 
said to be. As Figures 3.1 and 3.2 show, the narrow-band process is more regu- 
lar in that  it is nearly sinusoidal with slowly changing amplitude while the wide 
band process is far from sinusoidal. The more peaks (local maxima) in a process 
between up-crossings of the mean, the more wide band the process. For a Gaus- 
sian process, the rate of peaks, f p ,  and the rate of mean up-crossings, f,, are 
related to the spectral moments [Rice, 1944; 1945): 

In fact, a regularity measure 
exactly a2, which can also be 

equal to the ratio of mean up-crossings to  peaks is 
expressed as 

(3.10) 

For this reason, cy2 is sometimes called the regularity of the process. 

Another way t o  visualize the regularity of the time history is to pass an 
envelope over the process through all the peaks, as shown in Figure 3.3. A wide 
band process has an envelope almost as irregular as the process itself while a 
narrow-band process has an envelope, A ( t ) ,  which varies slowly in time. 
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Fig. 3.1 Example of a time series (top) and a PSD (bottom) of a wide-band 
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Therefore, the wide band envelope is uncorrelated even for short time lags while 
the narrow-band envelope is highly correlated for several cycles. The bandwidth 
measure 8, is the fluctuation scale of the squared envelope, E(.!)= A 2 ( t ) .  
Because the correlation function of this envelope, p E  ( T )  is likewise the squared 
envelope of the original correlation function, p(r) ,  BE can be defined by any of 
the following relationships [Winterstein and Cornell, 19851: 

00 00 00 

(3.11) 

Physically, 8, is the time duration over which the envelope (and therefore the 
peaks) has significant correlation. As bandwidth decreases, SE increases because 
the duration of envelope correlation is increasing (i.e., the  envelope becomes 
smoother). 

1 
8, = p ~ ( T ) d r  = 2 s p2(r)dT = - s G 2 ( f ) d f  

-03 -00 03 0 

3.2.3 Distributions of Peaks and Ranges 

The PDF of peaks, p ( P ) ,  of a Gaussian process can be written in terms of 
the bandwidth of the process through the regularity, cy2 [Rice, 1944; 19451: 

and the CDF of peaks, P ( P )  is 

P(P)=l[  P-mX ] 

( 3.1 3a) 

(3.13b) 

where +(.) is the standard Gaussian CDF. 

It is more illuminating to view the peak of each cycle by an equivalent 
representation, as the sum of two independent random variables; a Gaussian 
mean value, X , ,  and a Rayleigh distributed amplitude, A [Madsen, 19821. The 

PDFs are 



- 51 - 

A 2 0  

(3.14) 

(3.15) 

In the narrow-band limit, a2 approaches unity, the mean of each cycle, X , ,  
becomes fixed at the mean level, m X ,  and the PDF of peaks becomes Rayleigh. 
The ranges of a narrow-band process are approximately equal to twice the peak 
value and are therefore Rayleigh distributed as well. Even when the loading is 

wide band, the ranges, R ,  between adjacent peaks and valleys (local ranges) are 
approximately Rayleigh distributed [Winterstein, 19841, as is suggested by Eq. 
3.15, with ax replaced by 20x: 

There are other more complicated models of range distributions, which depend 
on more than one bandwidth measure and are therefore less tractable [Yang, 
19741. The Rayleigh distribution of ranges gives an exact first moment and is 
conservative with respect to rainflow-counted ranges for higher moments (using 
Eq. 3.16 with a,= 1 and the rate of cycles equal to 1,) (Wirsching and Light, 
1980; Madsen, 19821. 

The distributions in Eqs. 3.13-3.16 are not always directly applicable to 
fatigue analysis. Because they reflect all of the peaks, valleys, and ranges 
between adjacent peaks and valleys, the numerous small amplitude excursions in 
a random loading can obscure the more important, slower cycles, especially in 
wide-band loadings. If these overall cycles are neglected, fatigue damage can be 
significantly underestimated [Socie and Murath, 19831. Rainflow counting is a 
method of accounting for both the small excursions and overall cycles. Unfor- 
tunately, there is no known method for predicting the distribution of rainflow- 
counted ranges in a random loading. In addition, rainflow counting does not 
preserve the sequence of the load peaks. Racetrack filtering provides a solution 
by removing small amplitude ranges from the time series without disturbing the 
sequence, mean, or range of the significant load excursions. In this way, the dis- 
tribution of racetrack-filtered ranges, which can be estimated, becomes an 
approximation for that  of rainflow-counted ranges. 
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3.3 Racetrack Filtering 

3.3.1 Definition of Racetrack Filtering 

Racetrack filtering [Fuchs, et.al., 1977; Nelson and Fuchs, 19771 was created 
to condense load histories, for analysis or testing, without unduly sacrificing 
fatigue-damaging characteristics. The method works as follows. Suppose that a 

segment of loading, as shown by the lower set of peaks and valleys in Fig. 3.4, is 
converted into a racetrack by offsetting its profile by a selected' track width or 

threshold level, Rth. A race car driver, taking the shortest line through this 

course would follow the dashed line in Figure 3.4. Peaks and valleys on the ori- 
ginal segment of loading, corresponding to locations where turns are made 
involving a change in direction from northerly to southerly, or vice versa, are 
identified by letters. For the value of R t h  used in Fig. 3.4, a condensed segment 
of loading is created by a line from valley A to peak B to valley C to peak D to 
valley E. Smaller load fluctuations are fifiltered out. Peaks and valleys that were 
separated by smaller ranges in the original loading become adjacent, creating 
larger local ranges such as the one from D to E. Because it preserves the 
sequence of important loads, racetrack filtering can be followed by an analysis 
that  either includes sequence effects or not. 

The most extreme points in the random loading are always retained after 
racetrack filtering. If a very small threshold had been selected, all the peaks 
shown in the figure could have been retained. If a larger threshold had been 
selected, points C and D would also have been filtered leaving only A, B, and E. 
If only adjacent peaks and valleys (local ranges) are used, the larger filtering 
level would have identified a larger range from B to E while eliminating the 
three smaller ranges from B to C, from C to D, and from D to E. The tradeoff 
is between small thresholds that save all the ranges and miss the overall ranges, 
or large thresholds that  capture the large ranges at the expense of the small to 
medium size ranges. Some guidelines are provided in Section 3.3.3 for selecting 

the appropriate threshold. 

3.3.2 The Effects of Racetrack Filtering 

Racetrack filtering reduces the number of load peaks and makes the load 
more regular (i.e., more nearly narrow-band). This reduction in f, and increase 
in a2 is estimated below for Gaussian loadings, as functions of load bandwidth 
and R,, , from simulation results. Significantly, Eqs. 3.13-3.16, with these 
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Fig. 3.4 Schematic of racetrack filtering a segment of wide-band loading. 

-. . . . . - . .. . . . . . . . . . _-_.- .. . ~.. ~ . - 



- 54 - 

adjusted parameters, are found to still give useful models of the post-filtered 
stress cycles. (It may be argued that  because racetrack filtering is similar to the 
linear operation of time-averaging, the post-filtered process may be nearly Gaus- 
sian and Eqs. 3.13-3.16 still appropriate.) 

As an example of the effect of racetrack filtering on the statistics of peaks 
and ranges, the ASTM data  sets are examined. Each of those data  sets was 
filtered at a threshold level of 0.1 times the design limit stress (DLS). The exact 
filtering algorithm is unknown, but the result is very similar to racetrack filter- 
ing [Chang, 1981). In terms of the RMS level, this results in thresholds of 
0 . 6 1 ~ ~  for the AA loading, 0.67aX for the AG loading, and 1.330~ for the IN 
loading. 

The statistics of the pre-filtered loadings are calculated using the published 
PSDs [Dill and Saff, 19771 in Eq. 3.7. The regularities, a,’s, are 0.54, 0.60, and 
0.59 for the AA, AG, and IN loadings, respectively. The tabulated data  sets 
(which are filtered at the above levels) have h 2 ’ s  of 0.80, 0.86, and 0.95, respec- 
tively. (All post-filtered statistics are designated by the symbol.) Clearly, 
racetrack filtering makes the loading more regular (i.e., more narrow band). The 
higher the threshold with respect to the RMS of the loading, the more regular 
the filtered loading will be. This is especially important because the more regu- 
lar the loading, the less important the effect of the cycle counting method on the 
fatigue analysis. A perfectly narrow-band process will produce the same result 
whether rainflow-counted ranges or local ranges are used. Therefore, the more 
narrow band the loading, the more useful statistics of local ranges become. 

11 A 11 

The CDFs of peaks are plotted in Figure 3.5a for the tabulated data  
together with theoretical results from Eq. 3.13b using regularities that  are both 
pre-filtered (a2) and post-filtered ( h,). Notice that  the observed distributions are 

well represented by the theoretical results when &2 is used. 

Figure 3.5b shows the filtered range distributions with the Rayleigh approx- 
imations, again using both a2 and b2. The theoretical distribution is a trun- 
cated Rayleigh; all ranges below the threshold level, R t h ,  are eliminated. The 

truncated Rayleigh CDF is given by 

P ( R )  = 

0 

1 - exp 



0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

- 55 - 

Tabulated Data 
The ore t i c a 1 (Fi 1 t e r e d Reg u 1 a ri t y ) 

- - - - - - - - - -  Theoretical (Original Regularity) 
---- 

-0.2 0 0.2 0.4 0.2 0.4 0.6 
a. Peak (DLS) b. Range (DLS) 

Fig. 3.5 Comparison of CDFs of the tabulated ASTM loadings to  the theoret- 
ical results for (a) peaks and (b) ranges using the pre-filtered regular- 
ity (a2) and post-filtered regularity (h2). 
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A good approximation to the post-filtered range distribution is also 
obtained using b2. The approximation becomes conservative as the filtering level 
increases. This is more readily demonstrated by filtering the A A  history at suc- 
cessively higher thresholds, as shown in Figure 3.6 for filtering levels of 1.0, 1.5, 

and 2.0 times the RMS. 

Obtaining a satisfactory fit to the distributions of both peaks and ranges 
depends on h,, and not the original a,. The regularity, in turn, depends on the 
threshold level, Rth. Finally, Rth must be selected to balance the loss of small 
ranges with concatenation of larger ranges so that the damaging potential of the 
process is best preserved. The effects of racetrack filtering on loadings with vari- 
ous spectral bandwidths are examined in the next section with the aid of simula- 
tions. 

3.3.3 Simulations of Racetrack Filtering 

To investigate the effects of racetrack filtering, simulations of loadings with 
a wide variety of spectral shapes are racetrack filtered at several threshold levels. 
The necessary statistics of the loading before and after filtering are calculated so 
that empirical estimates of these statistics, based on threshold level and 
bandwidth, can be generated. 

The spectral shapes are obtained by varying the sizes and shapes of the two 
boxes that form the PSD illustrated in Figure 3.7. The PSD is defined by six 
parameters: low frequency variance V, , high frequency variance Vh (these vari- 
ances are the areas of the boxes), f 1 and f h  (the center frequencies of the boxes), 
2L and 2H (the width of each box). After fixing both total variance and mean 
frequency, there are four dimensionless quantities that  can be selected to achieve 
a variety of spectral shapes: V h / V , ,  f h / f l ,  L / f l ,  and H / f h .  Table 3.1 gives 
the values of these parameters used in the simulations. The spectral densities 
are summed wherever the boxes overlap. These variations result in almost 400 
different spectral shapes (there are a few redundant shapes when f h / f l  = 1). 
Each simulation was filtered at  eight different thresholds in increments of 
0 . 2 5 0 ~ .  Each spectral shape was simulated ten times to obtain an estimate of 

the spread in the calculated statistics, which indicated tha t  the variability from 
one simulation to another is negligible compared to  the variability from one 
spectral shape to another. 
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Fig. 3.6 Comparison of CDFs of the AA load history ranges to the theoretical 
predictions at three racetrack filtering thresholds. 



- 58 - 

f I f h  

Frequency 

Fig. 3.7 Spectral shape parameters used in the simulations with racetrack 
filtering. 
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Table 3.1 
Values of the dimensionless parameters used to define the 
spectral shapes for the simulations with racetrack filtering. 

vh / ‘ 1  f h l f l  L l f l  H / f h  

0.25 I !2{ ii! 0.5 :? 
0.75 0.75 

2.0 4 .O 1 .o 1 .o 
4 .O 5 .O . . .  . . .  

The central purpose of the simulation study is to estimate h2 and 1, based 
on the statistics of the pre-filtered process. The original a2 can be calculated 

from the PSD by Eq. 3.10. Figure 3.8 is a plot of h2 vs the original a2 when 

&h= ax. The scatter in this plot is a reflection of the way tha t  racetrack filter- 
ing removes all high frequency content that  does not produce oscillations larger 
that  Rth. When a2 is estimated from the PSD, it is based on the second and 
fourth moments of the PSD (Eq. 3.10). The fourth moment is very sensitive to  
high frequencies that  produce many peaks with small local ranges, which are 
subsequently filtered. The net result is a poor correlation between initial and 
filtered a2’s. 

The regularity measure, cyl, is based on the first and second spectral 
moments and is therefore less sensitive to high frequencies than a2. The fit 
between pre- and post-filtered parameters is also enhanced by defining irregubar- 
i ty  factors, x1 and z 2 ,  which are zero for perfectly narrow band loadings and 
increase as bandwidth increases. In general terms, z, is related t o  a,, and there- 
fore the spectral moments, by 

(3.19) 

For narrow-band processes, z 2  is approximately the conventional spectral 

bandwidth measure E = d 3 ,  and z1 is roughly equal to  6 = d m - ,  
the lower-order bandwidth parameter of Vanmarke (19701. Unlike these conven- 
tional parameters, z1 and z2 can increase beyond unity as the bandwidth grows. 

The filtered regularity, h2, is obtained from i 2  by inverting Eq. 3.19. 

(3.20) 



- 60- 

1 .oo 
h 
4 

k 
cd 

*A 

3 0.95 

I 
0.85 

crl 
0 
L 

0.80 

X 

I I I I I 

i X X 

0.4 0.6 0.8 1 

Pre -filtered Regularity 

Fig. 3.8 Pre-filtered regulatity ( c y 2 )  vs. post-filtered regularity (b2) for a 
racetrack-filtering level of ax. 
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The irregularity of the filtered time series, i,, is plotted against the original 
z1 (calculated from the PSD) in Figure 3.9 for three filtering threshold levels. By 
eliminating the sensitivity to high frequencies in the PSD, a much better fit to 
the filtered irregularity is obtained. Also shown is a linear fit between z1 and Z 2  
given by 

i 2  = M ( R t h  >zl + (&th (3.21) 

The slope, M(R,,) ,  and intercept, B(R,,), depend on Rth in a way that is 

approximated by the following functions; 

Rth M(Rth) = 1.7 - 0.8- 
OX 

(3.22a) 

(3.221)) 

There is low correlation when Rth 2 1.5aX, but when the threshold is that  
high, all of the filtered processes are essentially narrow band (22<0.4, 6!2>0.%?) 

regardless of the original regularity. 

Another factor that  determines the fatigue damaging potential of a loading 
is the rate at which ranges occur, which is equal to the rate of peaks, j , .  The 
post-filtered rate is significantly reduced, to j , ,  by filtering. Fig. 3.10 shows the 
average reduction in the rate of peaks, jP / f , ,  as a function of for initially 
narrow-band (zl <0.2), moderately wide-band ( z  l% 0.5), and very wide-band 
(zl>0.9). Plus and minus one standard deviation error bars are shown on the 
simulation results. Also included are the approximations for f, / j ,  as functions 
of z1 and R t h ,  which are given by 

In summary, starting with a PSD of a random loading, the distributions of 
local ranges and range means after racetrack filtering can be estimated using the 
above relationships. The regularity, h2, which is a necessary statistic of the dis- 
tributions, depends on & ,  as does the rate of ranges, 1,. Therefore, it is 
important to select the appropriate threshold for the filtering in order to produce 
the distribution and frequency of local peaks and ranges that  best approximates 
the damaging potential of the loading. If Rth is too small, small ranges can split 
up larger overall ranges and too little damage might be predicted. If Rth is too 
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three threshold levels. 



- 6 3 -  

0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

Simulation Result 
---- Empirical Fit 

L 1 
t 1 

t -I z1 < 0.2 

0.4 < z1 < 0.6 1 k 

0 i I 
0.5 

z1 > 0.9 

1 1.5 2 
Threshold/RMS 

Fig. 3.10 Reduction in frequency of peaks as a function of racetrack filtering 
threshold. 

. .. .- . . 



- 64 - 

large, many significant ranges will be removed and damage can again be under- 
predicted. 

To illustrate the effects of racetrack filtering on damage,  a damage measure, 
D ,  is defined as 

N 

i = l  
D = C R /  (3.24) 

This is equivalent to a Palmgren-Miner damage summation neglecting mean 
stress effects. A normalization factor, D,,,,, is the average damage that would 
be calculated from a narrow-band process (a,= 1) with the same RMS and mean 

up-crossing frequency. D,,,, is the sum of the Rayleigh distributed ranges 
raised to the b th  power. In this case, in N cycles one expects N.p  ( R  )dR ranges 
between R and R+dR so that ,  for large values of N ,  the damage is well 
approximated by 

co N 
Dnorm = M J R * [ N . p ( R ) d R ]  = T f , ( 2 f i 0 x ) ~ ( b / 2 ) !  (3.25) 

i=l 0 

for a load duration of T and number of cycles, N= TI , .  If b/2 is not an 
integer, ( b  /2)! can be evaluated through the widely tabulated Gamma function 
[Abramowitz and Stegun, 10641. D,,,, is the theoretical maximum damage 
from a Gaussian random vibration loading [Powell, 19581. 

Plots of damage, D /D,,,, , from the simulations are shown in Fig. 3.11 for 

b equal to 2, 4, and 8. Plus and minus one standard deviation error bars are 
included on the simulation results. Damage estimates derived from the theoreti- 
cal distribution of filtered ranges in Eq. 3.18 with the adjustments to a2 and f, 
given by Eqs. 3.20-3.23 are shown in Fig. 3.12. Both damage estimates depend 
on load bandwidth and racetrack threshold level as shown in the figures. The 
difference between the simulation results and the empirically adjusted analytical 
estimates is mostly due to the conservatism in assuming that  the range distribu- 
tion is the truncated Rayleigh. Also, the empirical estimates of the post-filtered 
statistics begin to deteriorate as Rth approaches twice the RMS. 

In the narrow-band case, there is virtually no change in damage with R l h  

because filtering the already regular loading only removes small amplitude 
ranges; it does not concatenate small ranges into larger ones. In fact, damage 
decreases when b =  2, because the low exponent makes small ranges relatively 
more important. In the wide band case, as Rth is increased from zero, there is 
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more concatenation of local ranges resulting in increased damage, in spite of the 
fact tha t  the total number of ranges is greatly decreased. 

The theoretical estimates of this damage measure are conservative with 
respect to local ranges over most combinations of bandwidth and threshold. It 
should be observed that the damage measure plotted in Figs. 3.11-3.12 is a 

measure of the accuracy of the range distribution. The curves in Figs. 3.11-3.12 

are based on full ranges while fatigue crack growth is often based on tensile 
ranges or peaks, which generally fit the theoretical distributions better than full 
ranges (see Fig. 3.5). 

I t  is also important to know how damage calculated using local ranges com- 
pares to damage calculated from rainflow-counted ranges. The simulated load- 
ings were used to estimate damage in two ways: first, by rainflow counting the 
ranges and, second, by using the local ranges after racetrack filtering at several 
threshold levels between 0 and 20x. Fig. 3.13 shows the ratio of estimated dam- 
age based on local ranges t o  damage based on rainflow-counted ranges. For 
narrow-band loadings (z1<0.2)  there is little difference, even for large b .  Again, 
for wider-band loadings, the joining of smaller amplitude ranges, accomplished 
by filtering the intervening sub-threshold size ranges, results in a better match 
between local and rainflow-counted ranges. When 6 is small (5 4) as in fatigue 
crack growth applications, local ranges can account for over 80% of the damage 
that  rainflow counting identifies if the appropriate racetrack-filtering threshold is 
used. When 62 8, as in high cycle crack initiation, the thresholds investigated 
here will only produce local ranges about half as damaging as rainflow-counted 
ranges when the loading is wide-band. 

To get the most conservative analytical estimate of damage or crack growth 
from a wide-band loading, the adjustments t o  the loading statistics should be 
calculated using R t h z  1 . 0 0 ~  when b= 2 and RthX 1 . 5 0 ~  when b= 4. These 
analytical estimates should be used with caution for wide-band loadings when 
b > 4  both because errors in the distributions are magnified and because local 
ranges can underestimate damage by a factor of about two (which may still be 
acceptable in view of other uncertainties in estimating life). 

3.4 FFT Simulations of Random Loading 

In the previous section, limited information on the random process (A, and 
A,) was used to  produce random variable models of load peaks and ranges for 
use in crack growth analysis where sequence effects may be neglected. In this 
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and the next section, methods of simulating random loadings are described for 
the situation in which sequence effects are important and crack growth must be 
calculated cycle-by-cycle. 

3.4.1 Generating a Time Series from a PSD 

The PSD defines the distribution of variance in a random process as a func- 
tion of frequency. A time domain realization of the random process can be gen- 
erated by discretizing the PSD into frequency bands and summing sine waves at 
frequencies corresponding the center frequency of each band. The random nature 
of the process is preserved by making the relative phase of each sine wave an 
independent, uniformly distributed, random variable on the interval from zero to 
27r. The resulting time domain realization will approach a Gaussian process as 
the number of frequency components becomes large [Shinozuka and Jan, 19721. 

In practice, actual sine waves are rarely added together to simulate a time 
series. The fast Fourier transform (FFT) does the same calculations much more 
efficiently provided the frequency spacing is constant from zero to the maximum 
frequency. (The fastest algorithms also require the number of frequency com- 
ponents to be an integer power of 2.) The Fourier series representation, X ( f j ) ,  is 
found by equating the variance in each frequency band with the variance of a 

single complex component of the Fourier series and splitting it into real and ima- 
ginary parts with a random phase angle. 

where Af is the frequency spacing, 4j is the j t h  random phase, and i is the 
square root of -1. To produce a real time series, negative frequency components 
in the Fourier series must be defined to be the complex conjugates of the positive 
frequency components. 

The time series is generated by inverse Fourier transforming the above 
Fourier series. This time series will have exactly the same variance and fre- 
quency content as the original PSD. Each new set of random phase angles will 
produce a unique realization of the process. The maximum and minimum values 
of each sample will themselves be random variables just as they would be if the 
samples were taken from measured data. 

One of the difficulties with using FFT’s to generate time series for use in 
fatigue analysis is the stringent resolution requirement caused by the need to  
raise ranges to a power that  is usually greater than 2 (Eq. 3.24). Since the FFT 
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creates a time series that  is composed of samples of the process at discrete times, 
it always underestimates the magnitudes of peaks and ranges. For example, if 
damage is defined as CRP, where R is a rainflow-counted range, many points 

per cycle must be simulated to accurately simulate the damage. Figure 3.14 
shows how the estimated damage from a narrow band random time series 
increases with the number of points per cycle for three values of b .  This error is 
reduced by fitting a parabola to  the three points nearest each peak and extrapo- 
lating to the true peak value. Figure 3.14 also shows that  about sixteen points 
per cycle are required to accurately estimate the damage from FFT generated 
time series, even with a parabolic extrapolation. This need for high resolution 
requires tha t  the PSD be prescribed out to frequencies eight times the natural 
frequency of a narrow-band loading to simulate sixteen points per cycle. 

An accurate representation of the PSD shape requires that the Fourier series 
be defined with a small A f .  The net result is tha t  a very large data  array is 
required to  accurately capture both the shape of the PSD and the peaks of the 
time series. It can be much more efficient to simulate the peaks and ranges of 
the process directly, as outlined in section 3.5. 

Another difficulty with FFT simulations is that each FFT generates a 
separate block of data. If a very long continuous realization of the process is 
desired, several blocks of data  may need to be joined. The mismatch between 
adjacent blocks can be eliminated by tapering and overlaying a small portion of 
each block [McNerney and Veers, 19841. 

3.4.2 ASTM Simulated Time Series 

The ASTM test series [Chang and Hudson, eds., 19811 was based on loading 
blocks which were generated with the FFT technique. The estimated shapes of 
the PSDs for the three types of loading (AA, AG, and IN) are shown in Figure 
2.5. The PSDs were estimated from figures in the reference; exact definitions are 
not available. Samples of the tabulated sequences of peaks and valleys are 
shown in Figure 2.6. Since these loadings will be used as example cases for 
future simulations, these loadings have been resimulated with the FFT method 
as a check on the accuracy of the estimated PSDs. For purposes of comparison, 

it is useful to  work with the Gaussian process which is obtained directly from 
the inverse FFT of the PSDs. 

The ASTM load histories contain modifications to the FFT-generated time 
series, which either provide better simulations of several observed phenomena or 
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make testing easier. The small amplitude ranges (below 10% of design limit 
stress, DLS) were filtered from the time series to reduce the number of peaks and 
valleys necessary to define each load block. The peaks and valleys were also 
skewed to match a non-Gaussian frequency of exceedance diagram. The skewing 
was accomplished by raising the absolute value of each peak and valley (in units 
of DLS) to the power of 1.128 [Dill and Saff, 1977). The other modification was 
the introduction of ground loads at regular intervals after all other alterations 
were completed.* 

Another addition to  the ASTM tabulated loads was a single peak of 0.7DLS 
included as the first peak in each load history. This peak is not the highest in 
the AA or AG loadings, but it is by far the highest peak in the IN loading. The 
major significance of this peak lies in its effect on crack growth life as observed 
in Chapter 2. 

The first step backward to the FFT generated time series is to remove the 
ground cycles. The remaining peaks and valleys were then un-skewed to return 
the tabulated peaks and valleys t o  the original Gaussian state. The mean and 
standard deviation were then estimated. These estimates apply to the Gaussian 
process tha t  results from using the FFT simulation technique. Table 3.2 lists 
the mean, RMS, and a few other parameters (discussed in the next section) for 
the three load types. 

The distributions of peaks and ranges in the unskewed tabulated data (with 
ground loads extracted) are compared with FFT simulation results in Figure 
3.15. Differences between the tabulated data  and the FFT simulations are due 
to inaccuracies in the estimates of PSD shape and magnitude (RMS) and must 
be tempered by the knowledge that the tabulated results are a single sample of 
the loading. 

* Saff, C.R., private correspondence, 1986. 
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Load Type 

AA 
AG 
IN 

Table 3.2 
Parameters of the ASTM loadings and statistics for sequential simulations. 

m X  OX OS OF I n  OX 0, 
(DLS) (DLS) (DLS) (DLS) (hz) (sec) (sec) 

.3733 .163 .0904 .1356 .0196 76.5 29.3 

.27 12 .150 .0774 .1285 .0246 51.5 20.6 
22.2 .2615 .075 .0391 .0640 .0230 63.3 

3.5 Sequential Simulation of Random Loading 

To predict fatigue crack initiation or growth, only the correlated set of load 
peaks and troughs needs to  be accurately simulated. To  adopt conventional 
FFT simulation techniques for these purposes, the load must first be simulated 
with high resolution and then searched to find the significant peaks and ranges. 
A more efficient sequential simulation method, which simulates the sequence of 
load peaks and troughs directly (two points per cycle) is outlined here [Winter- 
stein, 19841. This method simulates the sequential random variables which make 
up successive load peaks and valleys, which means that the significant peaks and 
ranges (identified by racetrack filtering) can be generated directly. 

A correlated sequence of Gaussian random variables with one step memory 
(each element in the sequence depends only on the one previous element), called a 
Gauss-Markov process, is the basic building block of this method. The wide- 
band process in Figure 3.1 is very similar to  a Gauss-Markov process. 

A Gauss-Markov process can be generated from uncorrelated unit-variance 
Gaussian random variables, tn, by 

(3.27) 

in which At is the time step between simulated values and Ox is the length of 

time over which the process is significantly correlated (the fluctuation scale). Ox 
can be calculated from either the spectral density, G(f ), or the correlation func- 
tion, p(r) ,  of the Gauss-Markov process [Vanmarke, 19791: 

(3.28) 

Several Gauss-Markov processes, each simulated as in Eq. 3.27, can be com- 
bined to directly simulate peaks and troughs of both narrow- and wide-band 
loads. 
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3.5.1 Narrow-Band Sequential Simulation 

The peaks of a narrow-band random loading can be defined in terms of the 
envelope of the process, A ( t ) ,  as shown in Figure 3.16a. The envelope can be 
thought of as the square root of the energy, E ( t ) =  A 2 ( t ) ,  in the loading. The 
form of the energy changes from potential (large displacement) to kinetic (large 
velocity) in each cycle while the total energy varies slowly in time (see Fig. 3.3). 

Values of the envelope can be generated from two Gauss-Markov sequences, 
U, and V,, through the relation 

A ,  =(U," + V,)  2 112 (3.29) 

The underlying values of U: and V: are somewhat analogous to the potential 
and kinetic components of the energy, and A: to the total energy. If the load 
standard deviation is ax, consistent levels of amplitude correlation are ensured 
by generating U, and V,  from Eq. 3.27 with Ox= 20E, in which O,, the energy 
f luctuation scale, is the correlation time of the energy envelope, E ( t ) ,  as defined 
in Eq. 3.11. For a lightly damped single degree of freedom oscillator with 
natural frequency f,, and damping coefficient, s, 0, can be approximated by 

(3.30) 

Taking At as half the period of load cycles, successive amplitude values 
from Eq. 3.29 can be alternately added and subtracted from the mean, m X ,  to 
simulate peaks and valleys of a narrow band loading. Significantly, this sequen- 
tial simulation technique leads to accurate damage estimates, which the FFT 
method approaches only asymptotically as the number of points increases (Fig. 
3.14). The sequential approach, which needs to simulate only two points per 
cycle, has been found to require less than one fifth of the computation time of 
the FFT method when sixteen points per cycle are generated. 

3.5.2 Wide-Band Sequential Simulation 

Wide-band loadings can be simulated in a similar sequential fashion. The 
key is to split the wide-band process into a slowly varying Gaussian part, X,( t ) ,  
which gives the mean of each cycle, and a quickly varying narrow-band part, 
with envelope A ( t ) ,  to produce the wide-band envelope shown in Fig 3.16h. 

Three Gauss-Markov sequences are now required to simulate the peaks and 
troughs: one to simulate X , ( t )  and two, as in Eq. 3.29, to simulate A ( t ) .  The 
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Fig. 3.16 Schematic of (a) narrow-band and (b) wide-band loadings showing 
the range amplitude, A ,  and mean, X ,  (from Madsen, 1982). 
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A ’ s  are again added and subtracted from the cycle mean, X,, at intervals of half 
the cycle period to obtain peaks and troughs. Because the mean process varies 
slowly, it is sufficient to simulate X ,  values only once per cycle, taking At as the 
total cycle period in Eq. 3.27. 

There are two additional considerations in wide-band sequential simulation: 
(1) The total variance, o$, must be split between slow variance, ai, and fast 
variance, 0; (where o$= ai++a$). ax should be replaced, in Eq. 3.27, with as 
when simulating X,, and with aF when simulating both U, and V,  values that 
comprise the amplitude, A .  In view of Eqs. 3.14-3.15, the simulated peaks and 
valleys will have the correct probability distributions if we take aF= a2aX and 

as= dgox.  (2) Although Ox is inherently related to the low frequency 
(slow) part of the PSD through G(0) in Eq. 3.28, 8, should reflect the correla- 
tion in only the high frequency (fast) part of the PSD, rather than the entire 
PSD as suggested by Eq. 3.11. 

To simulate a racetrack-filtered loading, the filtered regularity, b2, and 
filtered frequency of peaks, f p ,  should be used. Also, simulated amplitudes 
smaller than half the racetrack threshold should be censored to approximate 
racetrack filtering of small ranges. 0, of the fast process can be approximated 
from Eq. 3.11 if the PSD of tile fast process, GF(f), with variance a;= (&20x)2 

is used. The exact shape of GF(f) is somewhat arbitrary; the original PSD can 
simply be truncated from below, or an averaging filter can be applied (see Eq. 
3.31 below). 

The d s  and 8’s for a simulation of a wide band process that has not been 
racetrack filtered can be derived from the shape of t,he PSD. Since the sequential 
simulation is composed of samples of a process tha t  is the sum of a Gauss- 
Markov slow part and a modulated-Markov fast part, the simulated PSD can be 
viewed as the sum of Gauss-Markov and modulated-Markov PSDs. The neces- 
sary parameters for the simulation, as and aF,  can be chosen to preserve the 
total variance, zero frequency intercept (G(O)), and some central frequency meas- 
ure (e.g., median frequency). Although there is no unique way to satisfy these 
constraints, a practical way of deriving the necessary parameters is illustrated 
below. 

The total variance, a$ and median frequency must first be calculated from 
the PSD. The low frequency (slow) part is obtained by low pass filtering the 
process with an averaging filter, defined in the time domain by 
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t + T,  
1 

X , ( t )  = - J X ( T ) d T  
Tn 2 

and in the frequency domain by 

(3.31a) 

(3.31b) 

where f,= 1/T,  is the fast process natural (or modulating) frequency. The 
PSD of the fast process is the difference between that of the total process and 
the slow part; G F ( f ) =  G ( f ) - G s ( f ) .  Ox can be estimated from Gs(0) by Eq. 
3.28. Once the PSD has been split into slow and fast parts, all the simulation 
model parameters (as, g F ,  Ox, and B E )  can be calculated. The difficulty is that 
f , ,  which controls the filter in Eq. 3.31, is not uniquely defined. The following 
iterative method can be used to find appropriate values for the above parameters 
and f , such that the correct median frequency is obtained. 

To start ,  approximate f, by the median frequency of G(f  ). Then: 

(1) Low pass filter the original process, splitting it into slow and fast parts 
using H 2 ( f  ) from Eq. 3.31 to calculate the resulting PSDs. 

Calculate os and aF for the slow and fast parts, respectively, by integrat- ( 2 )  
ing G S ( f  ) and G F ( f  ). 

(3) 

(4) 

Calculate 0, from GF(f ) using Eq. 3.11 and Ox from Gs(0) using Eq. 3.28. 

Estimate the simulation PSD, G'(f ) = G i ( f  ) + G:(f ), where 

(3.32a) 

is the PSD of the Gauss-Markov slow part, and 

is the PSD of the modulated-Markov fast part. (The ' superscript distin- 
guishes the simulation model PSDs from the original process PSDs.) 

Calculate the median frequency of the simulation from G '(f ). (5) 
(6) If the median frequencies of the simulation and original PSDs are 

significantly different, select a new modulating frequency, f , ,  and go back 
to step ( I ) .  As a first step, f , / 2  can be added or subtracted from the ini- 
tial guess to bracket the desired modulating frequency. A Newton-Raphson 
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iteration afterward usually converges in about four to six iterations. 

The simulation parameters derived from the above iterative method are 
listed in Table 3.2 (see Section 3.4.2). The original and simulation PSDs for the 
AA, AG, and IN ASTM loadings are shown in Figure 3.17. Most of the details 
of the PSDs are lost in the sequential simulation; only the overall distribution of 
frequency content is preserved. 

The AA, AG, and IN load peaks and valleys were sequentially simulated 
repeatedly using the parameters in Table 3.2. These simulations were then 
racetrack filtered at the same levels as the tabulated ASTM loadings so that 
CDFs of load peaks and ranges could be compared as shown in Figure 3.18. It is 
apparent that  the sequential simulation sometimes does not produce as many 
small amplitude peaks and ranges. Fortunately, fatigue damage is heavily 
dependent on the larger peaks and ranges, which are accurately simulated by 
this sequential technique. 

3.6 Summary 

The type of fatigue crack growth analysis that  is required for each applica- 
tion determines the level of complexity of the load model needed to  supply the 
necessary information. There are two fundamentally different types of crack 
growth analyses, depending on whether load sequence effects must be included or 
not. Investigations of when sequence effects are likely to be important are 
included in Chapter 4. 

For fatigue analyses in which load sequence effects can be neglected, random 
variable models for both narrow- and wide-band loadings provide all the neces- 
sary loading information. Analytical results from the narrow-band model are 
conservative for most cmes of practical interest, regardless of the actual 
bandwidth of the Gaussian loading. 

Adjustments to  the theoretical distributions of load peaks and ranges are 
provided, through racetrack filtering, t o  make the theoretical distributions more 
accurate models for fatigue analysis. Basic analytical results from the Gaussian 
model can still be used; it is necessary only to modify the regularity (&2) and the 
frequency of peaks (f, ) t o  reflect the racetrack-filtering threshold and initial 
bandwidth (Eqs. 3.20-3.23). These adjusted theoretical distributions account for 

over 80% of the damage that  is identified by rainflow counting, for small fatigue 
exponents (2 5 b 5 4), which is the usual case in crack growth applications. 
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Fig. 3.17 PSDs of the ASTM loadings with the approximate PSDs from the 
sequen ti a1 simulations. 
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the sequential simulations for (a) peaks and (b) ranges. 
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When sequence effects must be included in the analysis, the loading dynam- 
ics must also be modeled, and simulation is usually required to  track the history 
dependence of the crack opening stress. Traditional FFT simulation methods 
can be used, but a more efficient method directly simulates a sequence of load 
peaks and troughs for either narrow- or wide-hand loadings. Narrow-band peaks 
are generated by simulating the process envelope at intervals of half the natural 
period. Wide-band simulations require splitting the process into high frequency 
(fast) and low frequency (slow) parts; the slow process and the envelope of the 
fast process represent the mean and amplitude, respectively, of each load cycle. 
An iterative technique is provided to  estimate the parameters of the sequential 
simulation from the PSD. If the parameters of the simulation reflect the results 
of racetrack filtering (b2 and 1, ), this sequential simulation technique reproduces 
those peaks and ranges in the loading that are most important in fatigue crack 
growth. 
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CHAPTER 4 

CALCULATING CRACK GROWTH 
WITH RANDOM L O D  MODELS 

4.1 Introduction 

The purpose of this chapter is to use the crack growth model of Chapter 2 
to show the appropriate applications and relative accuracies of the random load 
models of Chapter 3. The level of complexity of the random load models varies 
from the simple use of a sample block of the loading, t o  random variable models 
that  neglect sequence effects, to the use of simulations that  reproduce both distri- 
butions of load peaks and ranges as well a s  the most probable sequences. The 

specific application will determine which model is appropriate (How much accu- 
racy is needed? Are load sequences important? etc ...). Efficient methods of calcu- 
lating crack growth life are shown here, matching crack growth models with and 
without sequence effects t o  the appropriate load model. Simulation results are 
then used to illustrate the relative importance of including sequence effects in the 
crack growth calculation. The fatigue analyst may find these comparisons useful 
in deciding which analysis/load model is appropriate for the individual applica- 
tion. 

The order of the presentation of topics is as follows: 

(1) Block loading retains sequence effects by specifying a sample of the loading 
peaks and valleys. While this accurately describes load sequences within the 
sample, it provides an incomplete description of all load statistics because it 
is only a single sample out of all possible loadings. The crack growth model 
of Chapter 2, which includes sequence effects, is used to  evaluate the impli- 
cations of block loading on crack growth calculations and testing. 

The simplest statistical model describes the load peaks and valleys (or, 
equivalently, cycle means and amplitudes) as random variables which 
neglect sequence effects. A sequenceless crack growth model is introduced to  
show how crack growth can be calculated from random variable load 
models when sequence effects are negligible. Both narrow- and wide-band 
random loadings can be modeled in this way, as described in Chapter 3. 

(2) 
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(3) 

(4) 

(5) 

The question of when sequence effects can be neglected is treated by simu- 
lating random loadings and calculating crack growth, cycle-by-cycle, with 
and without sequence effects. Gaussian random loadings are simulated with 
the sequential algorithm, introduced in Chapter 3, which creates a series of 
peaks and valleys directly, without the need for extrapolation to find 
extrema. Regions of applicability of sequenceless crack growth models are 
suggested by the simulation results. 

If the intensity (RMS) of the loading is also varying in time, the highest 
peaks can be even more rare than for a stationary random loading. Simula- 
tions that  include variations in RMS level show how these intensity fluctua- 
tions influence crack growth predictions. 

Sequence effects in crack growth have long been demonstrated when there 
are large tensile overloads present in the loading [von Euw, et.al., 1972; Tre- 
bules, et.al., 19731. This can be the case, for example, when the overloads 
are caused by a different source than the loading responsible for most of the 
crack growth. If these loadings are defined as sample blocks, the overloads 
occur at regular intervals of the block size throughout the crack growth life. 
Simulation studies showing the influence of the regularity of overload spac- 
ing on cycles to failure are included here. Analytical results for cycles to  
failure due to  simple loadings with randomly occurring overloads are also 
possible, and will be presented in the following chapter. 

4.2 Block Loading Effects 

4.2.1 Definition and Purpose of Block Loading 

One common way to represent a random loading is to list the precise 
sequence of peaks and valleys in a sample block, as was done for both the ASTM 
and SAE test series introduced in Chapter 2. This load block is used in both 
testing and analysis. Testing is easily programmed by repeating the load block 
until failure. Calculation of the crack growth life is possible cycle-by-cycle, again 
repeating the block until calculated crack growth exceeds the final crack length. 
The loading that  results from the block approach is no longer random, but  has 
peaks that  repeat periodically at intervals of the block length. 

Analysis is also simplified by calculating the increment in crack growth, 6 a j ,  

due to one block of loading at a crack lengths of ai [which can be chosen to be 
an integration point). Thus, an estimate of the crack growth rate per block at 
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each integration point is ( d a / d B )  I,= a,= Sa i .  The number of blocks to failure, 

NB,  is then estimated by summing over the integration points: 

where Aai is the size of the interval associated with the ith integration point 
and n is the number of integration points between initial and final crack lengths 
(a, and a f  ). By selecting ten to twenty uniformly spaced integration points and 
calculating crack growth at those selected crack lengths, the number of blocks to 
failure can be estimated without cycle-by-cycle integration over the entire life. If 
failure is predicted after thousands of blocks, this represents a tremendous sav- 
ings in computation time. The number of integration points can be further 
reduced (to from three to six) if the intervals are logarithmically, rather than 
uniformly, spaced between a,  and a f  (for a i  about 10 times a,). 

4.2.2 Implications of Block Loading 

The ASTM AA load history is an example of block loading, which is com- 
posed of 1300 tabulated peak-valley pairs produced by the FFT simulation 
method (see Section 3.4) [Dill and Saff, 19771. One hundred more statistically 
equivalent blocks have been simulated here using the same procedure and input 
data  as was used to create the tabulated M block. The highest peak in the 
tabulated M block is 92.5% of design limit stress (DLS) while the highest peak 
in the 100 simulations varies between 87% and 115% of DLS with a mean of 
101% of DLS. Assuming that  each of these blocks is repeated in a closed loop 
fashion, the resulting crack growth life is predicted using the crack growth model 
of Chapter 2, Predicted lives for each block are plotted in Fig. 4.1 versus the 
highest peak load in the block. The highest peak, which is a random variable, 
has a substantial influence on the predicted life for sample block type loading. 
The life estimates have an overall mean of 19200 cycles and a coefficient of varia- 
tion (COV) of 0.13. Because the highest peak in the ASTM tabulated block is 
smaller than the highest peak in the average block, the predicted life (18000 
cycles) is below the average predicted life. 

When the AA loading is simulated continuously for the entire crack growth 
life, the mean life is 20400 cycles and the COV is just 0.03. This suggests that  
the artificial block structure, while not significantly influencing mean life in this 
case, is responsible for a four fold increase in the COV of the life estimate. 
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Fig. 4.1 Predicted life vs highest peak in the simulated ASTM AA load block 
for repeated block loading. 
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Simulations of the other ASTM load histories show similar results. These esti- 

mates neglect material variability, which can be much greater than load induced 
variability (as can be seen from Section 2.3.4 and Fig. 2.10). However, it  is espe- 
cially important in testing that the loading be representative of the actual 
environment so tha t  the resulting test lives do not contain an important and 
possibly nonconservative bias due solely to the block structure. 

4.3 Random Variable Models and Sequenceless Crack Growth 

Random variable models have been used extensively for Palmgren-Miner 
fatigue analysis of narrow-band loadings [Miles, 1954; Yang, 1974; Wirsching 
and Light, 19801. In this case, each range, Ri causes damage, cRP. The total 
damage in N cycles, D N ,  may be calculated in one of two ways: (1)  by summing 
contributions cycle by cycle, so that  DN= c El?:; or (2) by summing average 
contributions to D ,  from each possible range level R .  In the latter case, in N 
cycles one expects N . p ( R ) d R  ranges between R and R +dR so that  

00 N 
DN C E R ;  J CR [N.p ( R ) d R ]  = CN (2V50x)~ (b/2)! (4.2) 

i -1 R =o 

Thus, D N  can be approximated by the random variable model ( p ( R )  given by 
Eq. 3.16 with a2= 1) without the need for cycle-by-cycle summation. Actual DN 
values will vary negligibly from this result in most high-cycle (large N )  cases of 
practical interest [Crandall and Mark, 19631. Equation 4.2 is a well known 
result for fatigue under random loads [Miles, 19541. 

This random variable model can also be applied to crack growth if sequence 
effects are neglected and the crack growth equation is a separable function of 
stress and crack size. For example, the crack growth rate can generally be 
described in terms of an equation in the following form: 

-- - C A e f ,  
da 
dN (4.3) 

where = 6 Y ( a ) A S e f f ,  as in Chapter 2. Whether the crack growth 
analysis contains sequence effects or not depends on the definition of AS,,, . In 
Chapter 2, a crack growth model with sequence effects is created by relating the 
effective stress range to a reset stress that  depends on past loading. A sequence- 
less crack growth model is formed by defining the effective stress range in terms 
of the maximum, S,,,, and the minimum, S,,,, of the current stress cycle only 
[Nelson and Fuchs, 19761: 
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Srnax-qo Srnax S r n i n < q o  S m a x  ; S m a x > O  

S m ax -S rn in 

0 S r n a x < O  

S m i n >  Qo S m a x  ; S m a x > O  (4.4) 

Eq. 4.3 can then be integrated after separating stress and crack length terms: 

in which N is the number of cycles needed for crack growth from a, to a ! .  

4.3.1 Narrow-band Model 

To use the narrow-band random variable model (a,= l), Smax and Smin are 
replaced in Eq. 4.4 with mx f A ,  where m X  is the mean stress and A is the 
stress amplitude of Eq. 3.15. AS,,, thus becomes a function of amplitude and 
mean stress, AS,, ( A  ,mx). The sum in Eq. 4.5 is then approximated as in the 
Palmgren-Miner case, 

and solved for N .  For certain forms of Y ( a )  and large values of mx (so that  
Smin is always greater than qoSrnax), the integrations can be done analytically. 
While numerical integration is generally required, this integration is considerably 
faster (e.g., using quadrature points) than cycle-by-cycle crack growth calcula- 
tion. 

For loads with arbitrary bandwidths, the narrow-band model in Eq. 4.6 

remains useful when a rough (and generally conservative) estimate of life is 
required. For example, analytical life estimates using the Rayleigh PDF are 
compared to test results for the ASTM test series (which are not narrow-band) 
in Fig. 4.2. Also shown are sequenceless predictions based on the tabulated load 
histories. The narrow-band life estimates are conservative with respect to the 
predictions using the actual test loads, under predicting life by less than a factor 
of two. 
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Fig. 4.2 Comparison of test life t o  predicted life for the ASTM test series. 
Predictions are made using the sequenceless crack growth model and 
both the actual (Tabulated) loading and the narrow-band (Rayleigh) 
approximation. 
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4.3.2 Wide-band Model 

Less conservative estimates of wide-band crack growth life are available by 
including a measure of load bandwidth, such as b,. As shown in Chapter 3, 
good estimates of the distributions of peaks and ranges are obtained with the 
theoretical distributions if the parameters are adjusted for racetrack filtering. 
To accomplish these adjustments, a racetrack filtering level, Rth, should be 
selected based on the crack growth exponent (R,h 1.00x when b =  2 and 
Rth zs 1 . 5 0 ~  when b= 4). Next, cul can be calculated from the load PSD, and 
hY2 can be estimated using Eqs. 3.20-3.22. The reduced rate of peaks can be 
estimated using Eq. 3.24 with the original f, and z1 both calculated from the 
PSD. 

The effective stress range, AS,,, , is written as a function of the cycle mean, 

X,, and amplitude, A ,  by letting Smln= Xo-A and Smax= Xo+A in Eq. 4.4. 
The value of N is calculated as in the narrow-band case, except that the joint 
distribution of cycle mean and amplitude is required and integration is over both 
mean and amplitude: 

where p ( X , )  and p ( A  ) are taken from Eqs. 3.14 and 3.15, respectively. 

When this random variable model is applied to the sequenceless 

(4.7) 

crack 
growth analysis of the ASTM test series (using the post-filtered regularity, &, 

and solving for N in Eq. 4.7) the results are almost identical to the cycle-by- 
cycle sequenceless summation of crack growth due to the tabulated loadings. 
The difference in predicted life is less than 10% for the AA loadings, less than 
1% for the AG loadings, and less than 25% for the IN loadings, a s  shown in 
Table 4.1. Because the tabulated loadings are a single sample of the loading 
process, it may be argued that  the random variable results are more representa- 
tive of the actual service loading than the tabulated blocks, especially for the IN 
loading, which is a sample of only 300 cycles with an added overload in each 
load block. 

This random variable approach to crack growth calculations, however, con- 
tains no information on load sequences. If load sequences are important, the 
random variable definition will be insufficient and the loading must be described 
as a random process. Methods of simulating loadings for cycle-by-cycle analysis 
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Load Scale 
Type Factor 
AA 0.2 
AA 0.3 
AA 0.4 
AG 0.2 
AG 0.3 
AG 0.4 
IN 0.3 
IN 0.4 

Test Predictions 
Cycles Tabulated Random Variable 

115700 119171 108225 
58585 38080 34383 
18612 12470 11341 

268908 260841 259546 
95642 65000 63352 
36397 20730 20763 

380443 240000 294030 
164738 82370 101970 

with sequence effects are outlined in Chapter 3. Simulated loadings are used to 
calculate crack growth lives, with and without sequence effects, in the following 
sections to provide guidance in determining when sequence effects must be 
included in the analysis. 

4.4 Simulation Study of Sequence Effects 

Some advantages of the simulation approach over testing are that several 
parameters can be easily varied (and material property values assigned at  will) 
and the calculations can be repeated with different samples of the random load- 
ing until the average life is determined (to within prespecified accuracy). It 
would be extremely expensive to  duplicate such an extensive parameter study 
with test data. However, since this study is based on simulations instead of test 
data,  the results can only be trusted to indicate relative sequence effects in 
predicted crack growth lives. 

Stationary Gaussian random loadings were simulated and subsequent crack 
growth was calculated with and without sequence effects to  determine the 
number of cycles to failure in each case. Selected loading, material, and model- 
ing parameters were varied about two baseline cases: the ASTM AA and SAE 
BR loading histories and test specimens. The baseline parameters are listed in 
Table 4.2. Simulation results are plotted in Figs. 4.3-4.7. The Rat ios  shown are 
the sequenceless predictions divided by predictions that  included sequence effects 
(prediction ratios). The prediction ratio is 0.68 for the ASTM base case and 0.48 
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~~ 

ASTM 0.6 0.8 O.lin l.Oin 0.23 

* Recall that  C= Co(l-qo)-b. 
~ SAE 1 .o 1 .o 0.35 W" 0.7 W s s  0.20 

#* W is the width of the test specimen. 

I Table 4.2 - Baseline case parameters for the sequence effect simulations. I 
Qo m x b x  CO* b S,/(mx+30x) Parameter 

ASTM 0.30 2.3 8 . 4 ~  lo-'' 3.64 1.45 
SAE 0.35 0.0 1 . 5 ~ 1 0 - ~ ~  3.25 4.96 

Parameter Rth /ax a2 a0 af Y 

for the SAE base case. The solid lines in the figures are for variations about the 
ASTM base case and the dashed lines are for variations about the SAE base 
case. 

Plus and minus one standard deviation error bars are included to show the 
relative variability in time to failure due to different realizations of the random 
loading. Predictions without sequence effects have negligible variability so the 
deviations about the mean ratio are a result of the variability in the prediction 
that includes sequence effects. In general, the greater the influence of sequence 
effects, the greater the variability in the time to fail, because when sequence 
effects are significant, the time to fail depends heavily on relatively rare, high 
peaks. 

The loading parameters that  were varied include the ratio of the mean 
stress to the RMS stress (mx/ax), regularity (a,), and the normalized racetrack 
threshold ( R t h / o X ) .  Of these, only the mean stress, in Fig. 4.3, had a significant 
impact on the ratio of life predictions with and without sequence effects. The 
maximum difference (minimum ratio) occurs at mean stresses between zero and 
three times the RMS. A very high mean stress keeps the crack from closing, so 
the effective stress range is unaffected by crack closure. Sequence effects are 

likely to be minimal when the mean stress is greater than about 
3ax(l+q0 )/(l-qo),  which keeps over 95% of the stress valleys in a Gaussian 
loading above the crack opening stress. At  zero or negat,ive mean stresses, 
acceleration and retardation effects begin to balance, resulting in a reduction in 
the difference between the two prediction methods (the ratio a.pproaches unity). 

The material parameters that  were varied include q o ,  C,, and 
Sy/(mx+30x)  (yield stress divided by the mean plus three times the RMS, a 

crude estimate of maximum applied stress). Variations in each of these 
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Fig. 4.3 Ratio of crack growth life predictions without sequence effects to predic- 
tions with sequence effects vs mean stress. 
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Fig. 4.4 Ratio of crack growth life predictions without sequence effects to predic- 

tions with sequence effects vs crack opening stress ratio. 

1 .o I " " I " " 1 " "  

---%---I / 

ASTM 
0 0.6 1 
(d 0.4 SAE 

P= 
T?- 

.A 
-4 

o*2 0.0 * 10 15 20 
0 5 

co x 1o'O 

Fig. 4.5 Ratio of crack growth life predictions without sequence effects to predic- 
tions with sequence effects vs crack growth rate coefficient. 
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Fig. 4.6 Ratio of crack growth life predictions without sequence effects to predic- 
tions with sequence effects vs yield stress. 
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Fig. 4.7 Ratio of crack growth life predictions without sequence effects to predic- 
tions with sequence effects vs plane strain constraint factor. (The f a  
bounds for the ASTM case are small and have been omitted.) 
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Fig. 4.8 Ratio of crack growth life predictions without sequence effects to predic- 
tions with sequence effects vs correlation time in RMS variations for 
nonstationary loading. 
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parameters showed some influence on sequence effects, as can be seen in Figs. 
4.4-4.6. Sequence effects become more important as C, and Sy decrease and as 

qo increases. In general, the greatest sensitivity appears to be to the crack open- 
ing stress ratio, q,  , except for the SAE base case which is very sensitive to reduc- 
tions in yield stress. 

Variations in the plane strain constraint factor, y, result in a small increase 
in sequence effects as y is decreased, as shown in Fig. 4.7. 

The SAE base case shows more sensitivity to  sequence effects than the 
ASTM case in most instances. The parameter with the largest difference 
between the SAE and ASTM base cases is the crack growth rate coefficient, C,, 
which is 5.6 times greater for the ASTM material. The higher crack growth rate 
allows the crack to grow through the overload induced crack-tip plastic zone 
much faster, reducing the duration of the effect of each overload. When the SAE 
crack growth rate coefficient is increased to that of the ASTM base case, the 
prediction ratios, shown in Fig. 4.5, are about the same (although the reverse is 
not true; reducing the ASTM crack growth rate coefficient does not lower the 
prediction ratio as far as the SAE base case level). 

Variations that  increase the size of the crack-tip plastic zone (decreasing Sy 
and 7)  also cause greater differences between life predictions with and without 
sequence effects. 

The above sensitivity to C,, Sy, and y point to  a common effect. The 
greater the number of cycles required to grow the crack through the crack tip 
plastic zone, the greater the influence of sequence effects. 

These simulation results indicate that sequence effects will not produce a 

significant difference in crack growth life estimates when the mean stress is 

sufficiently high, mX greater than about 3ax(l+q, )/(l-q,  ), independent of the 
other parameters. This is consistent with a reported lack of sequence effects in 
high tensile mean stress tests [Fleck and Smith, 19841. When the mean stress is 
low enough tha t  sequence effects are more important, the magnitude of the pred- 
iction ratio depends on the material parameters tha t  act together to determine 
the duration of the effect of an overload, which is governed by the size of the 
crack-tip yield zone and the rate of crack growth through it. In addition, the 
higher the crack opening stress ratio, q,, the greater the differences between life 

predictions with and without sequence effects. 
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The standard deviation of the time to  fail is consistently greater (compared 
to the mean) for the SAE simulations, which also show the greatest influence of 
sequence effects. The COV (standard deviation divided by the mean) almost 
always increases as the prediction ratio decreases, reflecting the greater sensi- 
tivity to relatively rare, high peaks. The increasing variability acts to  negate 
some of benefit of the additional crack growth life that  results from the retarda- 
tion effect of the highest peaks. 

4.5 Nonstationary Loading 

A random loading is called stationary if the statistics of the loading (mean, 
RMS, etc ...) do not change in time, i.e., a sample of the loading taken at  one 
time will have identical statistical properties to  samples taken from any other 
time. Although loadings are often nonstationary, they can usually be divided 
into segments with stationary behavior in each segment. Sequenceless crack 
growth predictions can then be done by calculating the crack growth rate in each 
segment and summing over the relative amount of time spent in each type of 
segment. I t  is highly probable, however, that  the transition from one stationary 
segment to another can introduce crack growth sequence effects, especially if the 
transition involves a change in the overall magnitude of the load peaks. 

Simulations of loadings with time varying RMS levels are used in this sec- 
tion t o  illustrate the influence of such nonstationarity on crack growth. This 
type of variation in the loading intensity is prevalent for structures exposed to  
wind and wave excitation, as well as for automotive and aircraft components 
that  are exposed to  variable road and runway roughness, or changes from nor- 
mal roughness to maneuver loads. No single model will represent the wide 
variety of possible variations in loading intensity (RMS); as a simple approxima- 
tion, it is assumed here that the RMS is a random process with a Rayleigh mar- 
ginal distribution (PDF) and a duration of significant correlation given by OR,. 

This loading is simulated in the same way as the stationary loading, with 
the sequential simulation technique, except that  the RMS, OX, is also simulated 
each cycle. Because the RMS must be non-negative, the Weibull family of distri- 
butions (of which the Rayleigh is a special case) will often be a good approxima- 
tion t o  the real RMS distribution. A correlated sequence of Rayleigh distributed 
RMS values can be simulated just as the load amplitudes ( A  's) were simulated 
in Section 3.5. The general case of a Weibull distributed sequence is simulated 
in a similar fashion [Winterstein, 19841. The standard deviation of the RMS is 
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denoted by oRMS and the correlation time is 6 R M S .  

Because the correlation time for RMS fluctuations is usually much greater 
than the period of the cycles, the RMS can be simulated at relatively few points 
(about twice per O R M s )  and linearly interpolated between them. 

Simulations were conducted about the two base cases of the previous sec- 
tion, with 0 . 7 5 0 ~  (see Table 4.2 for parameter values). The prediction 

ratios (ratios of predicted life without sequence effects to predicted life with 
sequence effects) are shown in Fig. 4.8 as functions of the correlation time of 
RMS fluctuations, O R M s .  The two extremes are: (1) a very long correlation time 
for which the RMS remains nearly constant a t  some randomly chosen value 
throughout the crack growth life and (2) a very short correlation time that 
makes the loading appear to be stationary, but no longer Gaussian, so that  the 
peaks and ranges are no longer Rayleigh distributed. 

The first extreme, long correlation time, asymptotically approaches the sta- 
tionary Gaussian case. The starting value of the RMS is different for each sam- 
ple (which makes the asymptotic limits differ from the baseline values of 0.48 for 
the SAE case and 0.68 for the ASTM case), but because of the high correlation, 
the RMS remains virtually constant for the duration of the crack growth life. 
This is an example of nonergodic behavior, where one sample is not representa- 
tive of the entire random process. In both the SAE and ASTM cases, the sta- 
tionary Gaussian loading shows less sensitivity t o  sequence effects than loadings 
with variations in RMS level. 

The other extreme, rapidly varying RMS level, shows the most sensitivity to  
sequence effects in this study. Because RMS variations are so rapid, this case 
can be thought of as a stationary loading with non-Gaussian behavior. For a 
narrow-band loading, the distribution of peaks can be calculated from the joint 
PDF of peaks and RMS, p(P,ax), which, equals the product of the PDF of 
RMS, p (ax), and the conditional PDF of peaks given RMS, p ( P  lax): 

P ( P P x )  = P b X )  P(P lax) (4.8) 

The marginal PDF of peaks is the integral of the joint PDF over all possible 
RMS values. In this example, p(ax) is taken to be Rayleigh with parameter 
aRMS and the conditional distribution of peaks is Rayleigh with parameter ax 
(narrow-band loading). The resulting marginal PDF of peaks is; 
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where KO(.)  is the zero order modified Bessel function [Abramowitz and Stegun, 
19641. (The more general case of non-Rayleigh, Weibull distributed RMS varia- 
tions does not have a closed form solution for the distribution of peaks.) 

The values of BRMs that  are between the above two extremes have sequence 

effects that  are bounded by these two cases. In general, the more rapid the 
fluctuations in RMS, the greater the influence of sequence effects on fatigue crack 
growth. 

The mean life can be greatly under estimated by neglecting sequence effects 
when the RMS level fluctuates, as shown in Fig. 4.8 by the factor of five 
difference (ratio of 0.2) between the two prediction methods for the SAE case 
when the RMS correlation time is short. The equivalence of this case to  a sta- 
tionary, but non-Gaussian, loading indicates that  similar errors are possible due 
to significantly non-Gaussian behavior. In addition, the COV of the time to  
failure is greatest when the correlation time is in the midrange of the two 
extremes (see the SAE results in Fig. 4.8 with 104<ORMS <lo6). The ASTM 
case, which showed relative insensitivity t o  sequence effects under stationary 
Gaussian loading, has a maximum difference, in the mean, of a factor of two, 
and retains relatively low COV over the entire range of RMS correlation times. 
Although neglecting sequence effects can under estimate life, a crack growth esti- 
mate that includes sequence effects must also consider the variability in the time 
to fail, because the COV can be quite large. 

4.6 Distinct Overloads 

The above simulations represent a general class of loadings where the max- 
imum stresses are caused by the same source as  the rest of the cyclic loading. If 
the overloads are caused by some other source or are due to very brief periods of 
increased load intensity, their magnitude may be much greater than that  of the 
loading responsible for most of the crack growth. This case of exogenous over- 
loads is the one that  has been used most often in laboratory tests to  demonstrate 
sequence effects in crack growth. 

As an example of the way tha t  variations in the size and spacing of over- 
loads affect crack growth life, consider a loading that  is constant amplitude 
between a minimum of zero and a maximum of S, with occasional tensile over- 
loads equal to  So l ,  as shown schematically in Fig. 4.9. This is the simplest and 
most often investigated situation in which retardation effects are evident. Also, 

for simplicity, assume that  the reset stress, S,, remains qiial to  Sol until one of 
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Fig, 4.9 Schematic of background stress peaks, S ,  overloads, So l ,  and reset 
stress, S,, for distinct overloads simulation. 
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the background stress peaks extends the crack tip plastic zone, at which time the 
reset stress drops to S .  This revision of the crack growth model of Chapter 2 
retains the qualitative retardation effect and helps to visualize the state of the 
crack opening stress (So,= qS,) because there are now only two possible states: 
high crack opening stress following an overload, and low crack opening stress 
after the crack has grown through the overload affected zone. This simplified 
model is not, however, recommended for quantitative life estimates. 

If both the number of cycles between overloads and overload magnitudes 
are constant, there is no variation in the predicted number of cycles to failure, 
and an increase in crack growth life is always predicted due to retardation 
effects. If, however, the number of cycles between overloads is random, the effect 
of one overload can sometimes overlap another, and the number of cycles to 
failure becomes random as well. 

Simulations were done for a few values of both mean and COV of overload 
interarrival cycles. Evenly spaced overloads have an interarrival COV of zero. 
As the interarrival COV increases, the number of cycles between overloads can 
vary increasingly from the mean. A COV of unity is consistent with overloads 
with equal probability of arrival in every time interval, independent of past 
overloads (the Poisson model of memoryless random arrivals). COV values in 
excess of unity suggest that  the overloads may cluster; e.g., several closely spaced 
overloads followed by a large number of cycles without an overload. 

The results of this simulation study are presented in terms of the life exten- 
sion due to the overloads; i.e., ratio of life with overloads to life without over- 
loads. Fig. 4.10 shows the mean and COV of this ratio as a function of the 
average number of cycles between overloads. The average increase in life due to 

overloads is reduced as the interarrival COV, and hence the clustering, increases. 
Even spacing between overloads allows each to have maximum effect, while irreg- 
ularly spaced overloads allow more gaps between periods of retarded growth. It 
takes more frequent overloads, on average, to achieve a given state of retarda- 
tion when overloads cluster. 

In addition, the COV of the time to failure increases as the number of 
interarrival cycles becomes more irregular. In general, it is not the mean life 
that  is of interest but rather some percentile confidence level that  is important. 
The combination of decreased mean life and increased COV of life due to 
increasing variability in overload interarrival cycles makes it much more likely 
that  the crack growth life will be significantly lower than for evenly spaced 
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Fig. 4.10 Mean and coefficient of variation (COV) of the predicted increase in 
crack growth life (ratio of life with retardation to  life without retar- 
dation) due t o  tensile overloads. 
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overloads. Assuming a constant number of cycles between overloads is therefore 
almost always nonconservative. 

If a random loading has such dist,inct overloads, the distribution of load 
peaks (relative number of overloads t o  background loads) is insufficient informa- 
tion to accurately estimate crack growth life. The stochastic dynamics of the 
overload arrivals must also be modeled when sequences matter. 

Analytical solutions for the mean and variance of time to fail due to loading 
with distinct overloads are possible using difusion models when the overload 
interarrival time is memoryless, as is the case when the interarrival COV equals 
one. Diffusion modeling of fatigue crack growth is explored in the next chapter. 

4.7 Summary 

When a random loading is specified by tabulating a series of load peaks and 
valleys for the purpose of correctly representing sequence effects, the resulting 
crack growth can have an artificial sequence effect due solely to the block struc- 
ture. The predicted crack growth life is highly sensitive to the highest peak in 
the tabulated block and may be nonconservative if this highest peak is larger 
than on average. This difficulty can be avoided by representing the loading as a 
continuous random process without the block structure. The crack growth life 
can then be calculated in one of two ways: (1) by integrating the random vari- 
able descriptions of the effective stress range when sequence effects are negligible, 
and (2) by sequentially simulating peaks and valleys and calculating crack 
growth cycle-by-cycle when sequence effects must be included. 

Sequenceless crack growth analysis is accomplished without cycle-by-cycle 
summation by using the random variable models introduced in Chapter 3 (Eqs. 
3.14-3.16) with parameters adjusted for racetrack filtering (Eqs. 3.21-3.25). The 
crack growth equation is separated into crack length and stress variables and 
integrated as in Eq. 4.6 for narrow-band loadings and as in Eq. 4.7 for wide 
band loadings. Assuming a Gaussian loading of arbitrary bandwidth to be 
narrow-band results in a rough (within a factor of two) and generally conserva- 
tive life estimate compared to sequenceless life predictions tha t  use the actual 
loading. 

Simulations of crack growth life calculated cycle-by-cycle both with and 
without sequence effects indicate that  in many Gaussian loading cases the 
difference between the two life predictions is less than a factor of two. This will 

be the case when the mean stress is higher than about 3a~(l+q,)/(l-q,), 
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independent of other factors. When the mean stress is lower than this, sequence- 

less life predictions may still be relatively accurate when the yield stress, crack 
growth rate coefficient, and plane strain constraint factor are all sufficiently large 
that  the crack grows through the overload induced crack-tip plastic zone rela- 
tively quickly. The difference between sequenceless and sequence predictions is 
small when the crack opening stress ratio, q o ,  is in the lower half of the usual 
range (0.2<q0 <0.5). These results were shown for variations about two base 

cases and may not be universally applicable. 

When the loading intensity (RMS) varies with time, sequence effects are 
shown to be more important than for stationary Gaussian loadings. Neglecting 
sequence effects can lead t o  errors in life estimation of up to  (and perhaps greater 
than) a factor of five when RMS fluctuations are rapid (compared to the total 
lifetime). Similar errors are possible for significantly non-Gaussian, stationary 
loading. The variability in crack growth life increases due to fluctuations in the 
RMS level, and must therefore also be estimated when calculating crack growth 
by including sequence effects. The possibility of lives much shorter than the 
mean removes some of the benefit of the increase in life (retardation) caused by 
RMS fluctuations. 

Sequence effects have been repeatedly demonst rated for exogenous tensile 
overloads. Because of the sequence effect, a load model that  includes only over- 
load magnitude and frequency of occurrence is insufficient for crack growth esti- 
mation. The regularity of the spacing between the overloads must also be 
included. The assumption of regularly spaced tensile overloads is usually non- 
conservative. 
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CHAPTER 5 

MODELING CFUCK GROWTH 
AS A DIFFUSION PROCESS 

5.1 Introduction 

A random process can be completely described if the joint probability distri- 
butions between values of the process at all different times are known. This, of 
course, requires more information than can be verified for any real process, 
including crack growth due to  random loading. Analyses of random processes 
therefore usually model only certain aspects of the process exactly. Traditional 
random vibration analysis uses an exact description of the correlation of the pro- 
cess at any two times through the autocorrelation function or the power spectral 
density (PSD). This is sufficient information to provide the exact solution for all 
statistics of the response of a linear system to  Gaussian input. A diffusion pro- 
cess model, on the other hand, can reproduce nonlinear, non-Gaussian behavior, 
but at the expense of the exact description of the joint statistics of the process. 
The diffusion model restricts probabilistic memory t o  one step, in the discrete 
case, and to the current time, in the continuous case. 

This one-step memory, (also called the Markov property) of a diffusion pro- 
cess means tha t  the probability of a value of the process in the future depends 
only on the value of the process at the present and not on how the process 
arrived at the present value. A discrete example is the random walk in which a 
step is taken either to  the right or to  the left at each discrete time. The proba- 
bility of stepping to  the right or left may be a function of current position, but 
it is independent of the direction of past steps. 

A continuous diffusion process results from the limiting case of the random 
walk as the time increment between steps goes to  zero (the size of the steps being 
reduced as the square root of the time increment). When the size of each step 
has zero mean and has variance proportional to  the time step (RMS proportional 
to a), one-dimensional Brownian motion (a special case of a scalar diffusion 
process) results. Originally, the term Brownian motion was used to describe the 
physical motion of a pollen grain suspended in a fluid. The mathematical ideali- 
zation of this motion as a diffusion process is only accurate up t o  a certain point. 
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A diffusion process is so irregular that  even though it is continuous, it is never 
differentiable. No physical process is capable of such irregular motion with a 
finite amount of energy. Even the pollen grain would be seen t o  have some 
differentiable displacements if the time resolution of the observations were fine 
enough . 

The usefulness of the diffusion model lies in the fact that  in many practical 
applications we are not interested in the small, micro-scale behavior of the pro- 
cess, but are only interested in time increments large enough that  the increment 
truly does depend on only the current value of the process and is conditionally 
independent of past increments [Lin, 19861. This Markov property, tha t  the 
change in the process can be predicted by the current value of the process alone, 
is the one tha t  makes a diffusion model tractable. The long term behavior of the 
physical process can be identical to  the idealized mathematical diffusion model 
even though the process is not ideally diffusive within each time increment. 

This random process is called a diffusion process because the time variation 
of the distribution of probability obeys the diflusion equation, which governs 
both diffusive heat transfer and diffusion of contaminant. The connection 
between these physical processes and the diffusion of probability may be illus- 
trated with an example. Suppose a quantity of contaminant is injected into an 
originally homogeneous medium. Particles of contaminant are transported by 
two mechanisms, drift of the medium and diffusion of contaminant through the 
medium. Some time after the initial injection, the contaminant will be spread 
throughout the medium and the concentration will be a function of position 
depending on the drift and diffusivity. 

The path of each particle injected into the medium is one possible path for 

any single particle injected at the same time and place. Injecting millions of par- 
ticles at one time and observing the concentration at some future time is 
equivalent to running millions of experiments with a single particle injected each 
time and observing the destination of that  particle at the same time lag. The 
probability tha t  a single particle ends up in any designated zone of the material 
after a given time lag is equal to the relative frequency that  lone particles in mil- 
lions of repeated experiments end up in that  zone, which is in turn proportional 
to the concentration of contaminant in the zone after millions of particles have 
been injected all at once. Just as the total amount of contaminant summed over 
the entire medium must remain equal to what was initially injected, the total 
probability of the destination of a single particle must sum to unity. 
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Concentration of contaminant is therefore analogous to  the probability density 
of the destination of a single particle. A more extensive, non-mathematical 
description of diffusion processes is presented in the February, 1985 issue of 
Scientific American [Lavenda, 19851. 

The diffusion equation for the probability density at location X at time t ,  

P ( X , t ) ,  is 

where q ( X , t )  is the drift and d ( X , t )  is the diffusivity. (Eq. 5.1 is known as the 
Fokker-Plank equation, or Kolmogorov’s forward equation.) If X(O)= 0 and the 
drift and diffusivity remain constant, the solution, p ( X , t ) ,  is the Gaussian PDF, 
where the mean is (7 t ) and the variance is ( d  t ) .  

Diffusion models are possible for many physical processes, including those 
that  can be described by a differential equation of the form 

d X ( t )  = g ( X )  + h ( X ) F ( t )  
d t  

in which g ( X )  and h ( X )  are functions of state and F ( t )  is the (random) exter- 
nal excitation. The form of the solution will depend on g ( X ) ,  h ( X ) ,  statistics of 
F ( t ) ,  and the boundary conditions. From here on, g ( X )  and h ( X )  (and hence 
and d )  are assumed to be homogeneous, i.e., they do not depend explicitly on 
time. 

The crack growth equation fits the form of Eq. 5.2 and is therefore amen- 
able to diffusion modeling. The basic form of the crack growth equation is 

~- da ( t  ) - C ( G Y (  a )AS,,, ( t ) )’ 
dt (5.3) 

The change from d a / d N  t o  da/dt is merely notational because time can be 
measured in cycles; time and cycles will be used interchangeably throughout this 
chapter. Each possible sample of crack length as a function of number of load- 
ing cycles (time) is like each of the possible paths of a particle of contaminant. 
The probability of reaching the critical crack length within a given number of 
cycles is analogous to  the fraction of the total contaminant which has passed 
some barrier at a given time. 

Defining an equivalent random forcing function for the diffusion model of 
the crack growth equation (Eq. 5.3) will depend on what random aspect of the 
crack growth problem is to be modeled. Lin and Yang [1983] model randomness 
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in material properties by defining the crack growth as a Poisson pulse process 
tha t  produces a mean drift (which is a function of crack length) and a diffusive 
effect due to material variability. Oh [1980] models both random material pro- 
perties and random loading to solve the (sequenceless) crack growth problem. 
Dolinski [1986] estimates crack growth with sequence effects using a Wheeler 
retardation model. No comparisons of Dolinski's results with either tests or 
simulations are available. 

In this chapter solutions for the time to grow a crack from initial t o  final 
lengths are investigated with diffusion models that  include load sequence effects. 
The case of constant amplitude loading with random overloads is analyzed using 
the backward equation, which is the adjoint to Eq. 5.1. The steady-state distri- 
bution of the reset stress (defined in Chapter 2) is approximated for stationary 
random loading using the forward equation (Eq. 5.1). Vector diffusion models of 
crack growth due t o  random loading, with sequence effects, are also discussed. 

5.2 Drift and Diffusivity 

Solutions for the possible outcomes of a diffusion process depend on the 
specification of the drift, v ( X ) ,  and diffusivity, d ( X ) .  In the contaminant exam- 
ple, the drift is analogous to the flow of the medium into which the contaminant 
has been injected and the diffusivity is analogous to the diffusion of the contam- 
inant through the medium. Each may be a function of position if, for example, 
the medium is a fluid flowing in a nonuniform channel (which varies the drift) 
while the temperature is changing (varying the diffusivity). In terms of the flow 
of probability, the drift represents the average increment in the process while the 
diffusivity represents the variance in the increment in the process. 

For physical processes that can be described by differential equations with 
the form of Eq. 5.2, an equivalent diffusion process is obtained by defining 
q ( X ) A t  to be the average value of AX= X ( t + A t ) - X ( t )  given the current 
value of X ,  and d ( X ) A t  to be the expected value of AX2 given X :  

E[AX 1x1 

E AX2 Ix Vur[AX 1x1 d ( ~ )  = lim [I= lim 

At v ( X )  = lim 
At 4 0  

At At 4 0  At At -0 

(5.4) 

(5.5) 

The expected value of AX2 is equal to the variance of AX (which is of order A t )  
plus the squared mean of AX (which is of order At'). In the limit, the mean 
square contribution goes to zero and d ( X ) A t  is equal to the variance of AX 
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given the current value of X .  

A random process has the Markov property, and is therefore a difusion pro- 
cess, only if the external excitation is uncorrelated in time, i.e., a white noise 
excitation. White noise is a mathematical abstraction that  does not exist in 
nature. Any real excitation will have to be represented by an equivalent white 
noise process model which can be obtained from the true process by 
Stratonavitch’s method of stochastic averaging [Stratonavitch, 1963; Lin, 19861. 

The equivalent white excitation must have the same intensi ty  as the real forcing 
function, whose intensity, I F ,  is defined to be the integral of the autocorrelation 
function, R F  (T):  

00 

IF  = J R F ( T ) ~ T =  0; eF = sF(o) (5.6) 
-m 

where cr; is the variance of F ( t ) ,  OF is (as defined in Chapter 3) the correlation 
time of the real F ( t ) ,  and S F ( 0 )  is the PSD of F ( t )  at zero frequency. Thus, the 
equivalent white noise model for F ( t  ) preserves its intensity and, therefore, 
preserves the product oj8F although 0; and OF go to infinity and zero respec- 
tively for white noise. By matching the actual intensity of the excitation, the 
white noise model preserves its low frequency content, which governs the long 
run behavior of Eq. 5.2. The exact description of R F ( T )  is not required, only the 
variance and the correlation time of the excitation are needed. This approxima- 
tion restricts the validity of the diffusion model to time intervals greater than 

SF * 

The equivalent diffusivity, d ( X ) ,  is given by the variance of the right hand 
side of Eq. 5.2 with the equivalent white excitation, 

d (x) = h 2(x)  A?, (5.7) 

The equivalent drift is given by the expected value of the right hand side of Eq. 
5.2 

where the prime denotes differentiation with respect t o  the argument of the func- 
tion. The last term in Eq. 5.8 is a correction for feedback due to diffusive 
changes in the process within At ,  called parametric excitation by Lin [1986]. 

Armed with the appropriate drift and diffusivity, it  is possible to solve the 
forward equation (Eq. 5.1) for the distribution, p ( X , t ) ,  as will be shown in 
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section 5.4. In the next section, the adjoint to  the forward equation, known as 

the backward equation, will be used to determine statistics of first passage times, 
such as the first passage of crack length beyond the critical length. 

5.3 First Passage Statistics and the Backward Equation 

The adjoint to the forward equation is the backward equation, which is 
given by 

where p ( X , t  IX, , t o )  is the PDF of the value of the process at time t given that 
the value of the process was X ,  at time t o .  The integral of p ( X , t  IX, ,to ) over 
all X inside the boundary yields the probability that the process has not passed 
out of the boundary before t ,  (assuming X ,  is inside the boundary and the 
boundary is absorbing, i.e., the process does not leave the boundary once it 
reaches it). Upon integrating Eq. 5.9 with respect to  X ,  the CDF, P ( t  IX, , t o )  

and complimentary CDF, G ( t  IX,,t,)= l-P(t IX,,t,), of the first passage 
time, t ,  given the initial state, X, ,  at time , to ,  are shown t o  be solutions to the 
backward equation as well (with appropriate adjustments to the boundary con- 
ditions). Integrating again with respect to the first passage time, t ,  and apply- 
ing the boundary condition that the time to  the boundary is zero if the process 
starts on the boundary, yields [Sahay and Lennox, 19741 

where pn(Xo) is the nth moment of the time t o  first passage starting from X ,  
given by 

cy) 00 

pn = J t n p ( t ) d t  = J tn - 'G( t )d t  (5.11) 

(The latter form is obtained through integration by parts.) Since po= 1 by 
definition, the average time to first passage, pl ,  can be found first from Eq. 5.10. 
The higher moments of the first passage time can then be calculated recursively 
from the lower moments. 

0 0 
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A differential equation for the variance, V= p2-p:, is produced by multi- 
plying Eq. 5.10 with n= 1 by 2p1 and subtracting it from Eq. 5.10 with n =  2. 
The result is (dropping the explicit statements of functional dependence on X ,  
for brevity) 

(5.12) 

Substituting V' = ( p i  -2/.11pl' ) and V' ' = p2' ' -2(pl' 2+p1p1' ' ) into Eq. 5-12 
yields 

-d (p1 ' )2  = vV' + - d V" 
2 

(5.13) 

which has the same form as Eq. 5.10. Eqs. 5.10 and 5.13 (for mean and vari- 
ance) will therefore often have very similar solutions. 

The nature of the first passage problem will determine the type of boundary 
conditions on the differential equations. All moments of the time to reach a 
boundary are zero if the process starts at a boundary. In many first passage 
problems, there are boundaries to  the left and to the right, which provide the 
two boundary conditions necessary t o  define the solution to the second order 
differential equation (Eq. 5.10). For the crack growth problem, there is only one 
boundary at the final crack length, a = a f  . The other boundary ( a  = 0) is phy- 
sically inaccessible, Le., even though the diffusion model allows small increments 
of negative crack growth, the time required to grow to negative crack lengths is 
infinite [Karlin and Taylor, 19811. These two boundary conditions are 

n =1,2, (5.14) 

in which e u ( a )  is the integrating factor for Eq. 5.10 and 

U ( a ) =  S ( S y ( u ) / d ( u ) ) d u .  The limit is necessary because while the integrating 
factor will be zero at a= 0, the derivative of the time to first passage may be 
infinite, as it is in this case. The limit of the product of the two as a 
approaches the boundary will determine the boundary behavior. 

a 

In first passage problems (like crack growth) where the time to the boun- 
dary is highly sensitive to  the starting value (initial crack length) and much less 
sensitive to  the boundary value (final crack length), some useful approximations 
can be made. The mean and variance of the time to first passage are approxi- 
mated by 
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(5.15) 

(5.16) 

where q0 is the drift without the parametric excitation term; q= q,+(d' /4). 
These approximations are especially useful when closed form solutions to the 
first passage moments are not possible and numerical methods must be 
employed. Also, Eqs. 5.15 and 5.16 are exact when the g ( X )  term in the drift 
(Eq. 5.8) is zero. 

Sequenceless Crack Growth Example: As an example of the diffusion 
modeling approach for calculating the statistics of the time to fail due to fatigue 
crack growth under random loading, consider sequenceless crack growth due to  
narrow-band random loading with zero mean stress. A sequenceless crack 
growth equation is given by Eq. 5.3 with AS,ff = (1-q)S, where S= S,,, is the 
stress peak (see also Eq. 4.4) [Nelson, 19781. For simplicity, let Y(a)=  1 and 
define C= C ( 6 ( l - q ) ) b .  The mean time t o  failure for this case can be 
obtained from previous results; the sequenceless random variable model of 
Chapter 4 yields a closed form solution by integrating Eq. 4.6: 

(5.17) 

where p =  (6/2)-1 is a commonly occurring term in the solution of the crack 
growth equation. 

The crack growth equation that  fits the form of Eq. 5.2 for this case is 

The coefficients in Eq. 5.2 in this case become 

(5.18) 

(5.19a) 

(5.19b) 

(5 .19~)  

The drift and diffusivity are determined by substituting Eqs. 5.19 into Eqs. 
5.7 and 5.8: 

q , ( a )  = (5.20a) 
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d ( a )  = C 2 I S b U b  (5.20b) 

The intensity of the forcing function in Eq. 5 . 1 9 ~  is calculated from the 
Rayleigh distributed stress peaks raised to the b t h  power, Ish= Var[Sb]Osb. For 

crack growth applications, b is typically between 2 and 4. When b =  2, the 
intensity is the same as that of the energy envelope discussed in Chapter 3, 

which has an exponential marginal distribution. The correlation time is then 
Os2= OE. For the exponentially distributed S 2 ,  the COV equals one and the 
variance is equal to the squared mean, Vur [S2]= E[S2I2. When 6 is not equal 
to  2, the correlation and variance can be estimated by a modal expansion of 
S b ( t )  [Winterstein, 19841. Retaining the first two modes, the intensity is 
approximated by 

(5.21) 

Eq. 5.21 is exact for b= 2 and 6 =  4 and underestimates the exact intensity by 
less than 10% for bL 8. The expected value of Sb is 

E [Sb] = (v%x)b ( b  /2)! (5.22) 

which is the same as was stated in Chapters 3 and 4 except for a factor of 2b 
because S is a stress peak here while the earlier results were for stress ranges. 

Substituting the drifts and diffusivities into Eq. 5.10 yields the differential 
equation for the mean first passage time. The independent variable is the initial 
crack length, a,. 

b 1 
4 

-1 =(CE[Sb]~,b/2 + -C21sb~,b-1)pI’(~,) + y C 2 I s * ~ : p l ” ( u O )  (5.23) 

The previously obtained solution (Eq. 5.17) satisfies the boundary condi- 
tions (Eq. 5.14) and can be shown by direct substitution to satisfy the 
differential equation (Eq. 5.23) for the mean first passage time of the diffusion 
model. The diffusion model therefore gives the same result as the random vari- 
able model for the average time t o  failure. Because g ( a ) =  0 in this case, Eq. 
5.15 could alternatively have been used (with qo from Eq. 5.20a) t o  obtain the 
exact result, i.e., Eq. 5.17. 

The variance of the time to  reach the final crack length, V(a,), is governed 
by Eq. 5.13. After substituting the appropriate terms into Eq. 5.13, the 
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differential equation for the variance is 

(5.24) 

which is identical t o  Eq. 5.23 except for the left hand side, which reduces to  
- ISb/E[Sbl2.  The boundary conditions on the variance are the same as for the 

mean time to  fail. 

The solution of Eq. 5.24 for the variance has the same form as the solution 
for the mean (Eq. 5.17) and can be written in terms of pl:  

Once more, because g ( a ) =  0, Eq. 5.16 also gives an exact solution. 

The variance of the time to  fail increases linearly with the mean time t o  fail 
which makes the COV (ratio of standard deviation to mean) decrease as the 
square root of the time to fail. The relative variability in the time to  fail due t o  
the randomness in the loading goes t o  zero as the mean life increases when 
sequenceless crack growth analysis is employed. The same phenomenon occurs in 
Palmgren-Miner fatigue damage [Crandall and Mark, 19731. 

5.4 Crack Growth with Distinct Overloads 

The most clearly identified and often investigated situation in which retar- 
dation effects in fatigue crack growth are evident is the case where there is a sin- 
gle overload, or a cluster of overloads, in the presence of smaller amplitude load- 
ing. Examples include aircraft that  experience overloads during landings after 
random flight lengths, or off-shore structures that  experience brief periods of 
intense loading during hurricanes or other storms. This is the case of distinct 
overloads, which was the basis of the simulation study in Section 4.6. In this 
section, a scalar diffusion model is used to  determine the mean and variance of 
the time to failure for the distinct overloads case. 

As in Chapter 4,  suppose tha t  the background stress is a constant ampli- 
tude loading between zero and S and that  overloads with a tensile magnitude of 
Sol arrive at an average rate X, as shown in Fig 5.1. The probability of an over- 
load arriving in any small time interval is constant and independent of the time 
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Time (not t o  scale) 

Fig. 5.1 The time between overload arrivals is split into retarded (S,= Sol) 
and unretarded (S,= S) parts. The duration of the retarded part is 
W and the duration of the unretarded part is 2. (Actual numbers of 
cycles between overloads would be much greater than illustrated.) 
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since the last arrival, which implies tha t  the times between arrivals will be 
independent and exponentially distributed (i.e., the overload arrivals follow a 
Poisson process with a COV of overload interarrival times equal to 1.0). The 
reset stress in the absence of overloads equals the maximum stress, S. At the 
time of an overload, the reset stress increases to Sol and is assumed to remain 
there until the background loading causes the crack tip plastic zone t o  extend 
beyond the overload induced crack tip plastic zone (see Fig. 2.1). The distance 
the crack must grow between the time and the time the reset stress increases to  
Sol and returns to  S equals the difference in the sizes of the crack tip plastic 
zones created by stress peaks Sol and S. This distance, (shown in Fig 5.2) is 

defined as Au,, ; 

(5.26) 

where Sy is the yield stress, y is the plane strain constraint factor, and Y ( u )  is 
the geometric correction to  the stress intensity factor. 

After an overload occurs, the crack growth rate, given by Eq. 5.3, is 
retarded and AS,,, = S-qSol. In the absence of overloads, the crack growth 
rate is unretarded and AS,,, = S-qS. This simplification to  the more general 
crack growth model of Chapter 2 allows the crack growth rate to  be expressed as 
in one of two states; retarded when ( d a  / d t  )= C, Y b  ( a ) .  b / 2  or unretarded when 
( d a / d t ) =  C, Y b ( a ) a b / 2 ,  where 

c, = c7r*/2(S-qS)*  (5.27 a) 

c, = C7r/2(S-qso~)b (5.27b) 

It is assumed here that qSol <S, i.e., the crack opening stress is less than the 
background stress peaks (no crack arrest). 

The duration of the retarded crack growth is N ( a )  cycles of background 
loading (see Figs. 5.1 and 5.2), which is a function of current crack length. If a 
second overload arrives before N ( a )  cycles of background loading, the reset 
stress remains at Sol for N ( a )  cycles following the second overload. N ( a )  is 
approximated by dividing (Eq. 5.26) by the retarded crack growth rate: 

(5.28) 

where, as before, p = ( b  /2)-1. 
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Fig. 5.2 Schematic of modeling assumption that  lumps the entire retardation 
effect of an overload at the time of application, t i .  Top: actual and 
unretarded crack length vs time. Center: crack length vs time show- 
ing the modeling assumption of subtracting the retardation effect at 
the time of application. Bottom: indication of how the crack growth 
rate is modeled by a Dirac delta function corresponding to the step 
change in crack length. 
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The distance tha t  the crack would have grown in N ( a )  cycles at the unre- 
tarded rate is approximately 

h a ,  = N ( a )  C, Y b ( u )  (5.29) 

The difference between the distance the crack would have grown, A a ,  and the 
actual distance the crack grew, Aa,,,, is the crack growth which is lost due t o  
retardation effects, as shown in Fig 5.2; 

= N(a) (C , -Cr )Yb(a )  ab/:! 

If overload affected zones rarely overlap (XN(u)>>l), the crack growth 
process can be modeled by lumping the full effect of each overload at the time 
the overload arrives. The modeling assumption is that the crack always grows 
at the unretarded rate except at the arrival of each overload when there is a step 
change equal to -Aalost. The crack growth rate is expressed mathematically by 
inserting a delta function (infinite rate) with a magnitude equal t o  the length of 
the step at the arrival of each overload; 

(5.31) 

where S ( t - t i )  is the Dirac delta function and ti is the time (cycle) at which the 
i th  overload occurs (see Fig. 5.2) .  This equation neglects the contribution of the 
overloads to crack growth, which is negligible in most cases of interest, as will be 
shown below. 

The restriction that  the overload affected zones not overlap is an important 
one because overload effects are not additive. When the overload affected zones 
do overlap, the net retardation is less than would be predicted by simply sub- 
tracting Aalost when each overload arrives. Therefore, the amount of crack 
length subtracted at the arrival of each overload must be adjusted t o  reflect the 
actual crack growth until the next overload. 

There are two limiting cases that will be investigated here. The first case, 
which builds on the above discussion, assumes that the crack growth rate is usu- 
ally unretarded and that  the overloads are relatively rare. The other case 
assumes the crack growth rate is usually equal to the retarded rate. In this case, 
overlapping is taken to  be the standard event and the delta functions are used to  
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add crack growth to account for the time between overload affected zones when 
the crack growth rate is unretarded. 

5.4.1 Case I - Rare Overloads. 

In this case it is assumed that  the background crack growth rate is unre- 
tarded. The retardation due to  overloads is accomplished by subtracting incre- 
ments of crack length at the arrival of each overload. The simple subtraction of 
an increment of crack length equal t o  Aalost will be correct if the durations of 
overload effects do not overlap, but it will overpredict retardation if overlaps do 
occur. This is corrected by introducing a random variable, W ,  which is the 
number of background cycles of retarded crack growth before the arrival of the 
next overload, as shown in Fig. 5.1. W will equal T if the overload arrives 
before the effect of the previous overload has died out and will equal the dura- 
tion of the overload effect, N ( a ) ,  if there is no overlap: 

(5.32) 

For Poisson overload arrivals, the PDF of interarrival times is exponential 
with mean equal to  1/X; 

p ( ~ )  = (TY 0 )  (5.33) 

The PDF of the random variable, W ,  is the same as for T except for a probabil- 
ity mass at W= N ( a )  and zero probability of W > N ( a ) .  The probability of 
W= N (  a ) equals the probability tha t  T > N (  a ); 

co 

 rob [ T > N ( ~ ) I  = J X e V X T d T  = (5.34) 
N ( ' )  

The PDF of W is therefore 

The size of the crack 

W > N ( U )  

0 5  W < N ( a )  
(5.35) + e - X N ( a ) 6 (  I/v-N(~ )) 

growth increment associated with the arrival of an 

overload for Case I (Aa') is equal to the difference in the unretarded background 
crack growth and the retarded crack growth during the W cycles that  the over- 
load has an effect. The (negative) crack growth increment is therefore 

Au' = W ( C , - C U ) Y b ( a )  (5.36) 
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The crack growth rate equation which accounts for overlaps is 

The overlapping of overload affected zones is modeled here by associating 
the retardation effect of each overload with its actual duration Wi , the minimum 
of the time to grow through the overload affected zone, N ( a ) ,  and the time to 
the next overload, T .  

5.4.2 Case I1 - Frequent Overloads. 

In this limiting case, the overloads are assumed to be frequent enough that 
the usual, or standard, crack growth rate is the retarded crack growth rate. 
Discrete increments of crack growth are added to account for the time between 
overload affected zones when the crack growth rate returns to the unretarded 
rate. 

It is useful to define a random variable, 2 ,  equal to the time between the 
end of one overload effect and the arrival of the next overload; 

(5.38) 

Z is related to W from Case I by T= W+Z. Like W ,  2 has the same PDF as 
the interarrival time, T ,  except that  there is a probability mass at Z= 0 which 
accounts for the times when T < N (  a ). 

- ( T - N W  T 2 N ( a )  
T < N ( U )  2 = maz(T-N(a),O) - 

Prob [T  < N ( a ) ]  = 1 - Pro6 [T  2 N ( a ) ]  = 1 - e -  W a )  (5.39) 

The added increment in crack growth, Aa", is equal to the difference 
between the retarded crack growth (which is the norm in this case) and the 
actual unretarded growth during the time, Z ,  when the retardation is not in 
effect. 

Aam = Z(C,-C,)Yb ( a )  a b I 2  (5.41) 

The crack growth rate is again given by the sum of a continuous function 
of crack length and delta functions in crack growth rate associated with each 
step change in crack length. 
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[SI" = C, Y b ( u )  u b / 2  + (C,-C,)Yb(a)  ab/2zZi6( t - - t i )  (5.42) 
1 

No overlaps need to be considered in this case because the overlap is the 
standard event. It is only the spaces between overload affected zones that lead 
to incremental perturbations to the standard crack growth. 

5.4.3 Diffusion Model of Discrete Overloads. 

By lumping the entire retardation effect at the time of the overload, the 
model of the crack growth process is independent of the past, allowing the crack 
growth to be approximated as a diffusion process. Both of the above limiting 
cases result in crack growth equations that  are in the form of Eq. 5.2. The drifts 
and diffusivities depend on the non-constant coefficients of this equation, which 
are given for each of the limiting cases as follows (recall that  C, >C, because 
the unretarded growth rate is greater than the retarded growth rate): 

Case I - 

g l ( a )  = ab/2Yb(u)Cu (5.43a) 

h ' ( a )  = -u*/2Y*(a) (cu-c , )  (5.43b) 

F q t )  = Cyqt-t i)  (5.43c) 
i 

Case I1 - 

(5.44c) 

The delta function representations of the forcing functions are similar to 
shot noise [Lin, 19671, which is the type of impulsive random loading that results 
from the continual impacting of shot on a structure. The mean effect of shot 
noise is equal to the product of the mean rate of arrivals and the average effect 
of each arrival: 

00 

E [ F ' ( ~ ) ]  = A E [ w ]  = A ! w P ( w ) ~ w  = 1-e - ~ N ( u )  (5.45a) 
0 

00 

E [ F " ( t ) ]  = XE[Z] = A J Z p ( 2 ) d Z  = 
0 

(5.4513) 
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The intensity of shot noise is equal t o  the product of the mean rate of arrivals 
and the mean square of the effect of each arrival: 

In accordance with conventional stochastic averaging procedures [Stratonavitch, 
19631, the expected values and intensities of F ( t  ) are evaluated conditional on 
the current state, a .  

The non-parametric drifts and diffusivities for Cases I and I1 are 

d " ( a )  = a b Y 2b (a)(C,-C,)2- 2 e-XN(a) 
x (5.48b) 

(Only the non-parametric drift is included here because it is the only part that  is 
needed t o  use the approximations for the mean and variance of the first passage 
time given by Eqs. 5.15 and 5.16., which are applicable here because the solution 
depends most heavily on the initial crack length.) 

The above drifts are exactly the same for each of the two formulations. In 
both cases, the drift reflects the relative amount of time that  the crack growth 
rate is retarded or unretarded. Since tha t  has been consistently formulated in 
both approaches, it is natural for the drifts to  be equivalent. The different 
diffusivities reflect alternative ways of modeling the random contribution of 
increments in retardation, for Case I, or increments in growth, for Case 11. 

The mean and variance of the time required for a crack to  grow from initial 
t o  final crack to lengths, a,  to a ! ,  are approximated by Eqs. 5.15 and 5.16, and 
plotted in Fig. 5.3 for a wide range of mean overload interarrival times. Also 
plotted are the results of the numerical simulations from Section 4.6. The Case I 
and Case I1 solutions are identical in the mean because of the equivalence of the 
drifts. The agreement between the diffusion model and simulation for the mean 
time to  fail is excellent for all except very short interarrival times. 

The simulations included crack growth due t o  the overloads while this con- 
tribution was neglected in the diffusion model. As Fig. 5.3 shows, this 
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Fig. 5.3 Comparison of the mean time to failure, for constant amplitude load- 
ing with Poisson overloads, from simulation and from the scalar 
diffusion model. 
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contribution is negligible except a t  very frequent overloads where the crack 
growth rate is always retarded and the sequence effect is easily modeled. The 
diffusion solution can be adjusted to account for overload induced crack growth, 
in both cases, by adding C(nn) ' / "Y '  ( U ) ( S ~ ~ - ~ S ~ ~ ) ~  C6(t-ti) to both Eqs. 5.37 

and 5.42. 

The COVs of the first passage time, from the simulations and from both of 
the diffusion models, are plotted in Fig. 5.4. The two models differ in predicted 
variance, and hence in the predicted COV of time to fail. Each method matches 
the simulation COV in the region where deviations from the assumed back- 
ground crack growth are not too frequent. Recall that  Case I assumes unre- 
tarded crack growth with rare overloads; it matches the simulation where the 
mean interarrival times are long (rare overloads). Case I1 assumes frequent over- 
loads with rare intervals of unretarded crack growth and matches the simulated 
COV in that  region. Both methods overpredict the variance when the random 
step changes in crack length become the dominant contributor to crack growth. 

The increments in crack growth in each case are carefully tailored to 
account for the appropriate amounts of retarded and unretarded crack growth. 
The Markov property of the diffusion model requires that  there be no correlation 
between the size of one overload effect and the duration to the next overload. 
This condition is violated when the random variables W and 2 are defined in 
terms of the next interarrival time, T ,  as shown in Fig 5.1. The results for the 
mean are still excellent, but the results for the variance are only good in regions 
where the solution is not dominated by incremental effects. 

A good approximation to the COV can be obtained by combining the two 
cases so that  each controls the COV in its own region of accuracy and a smooth 
transition is made in between. The combined COV, COV'+", is taken to be 

(5.49) 

The combined COV estimate remains accurate over the entire domain of interar- 
rival times, as shown in Fig. 5.4. 

5.4.4 Conclusions. 

Based on analyses and simulations of cases with various overload sizes and 
material properties, a few rules of thumb can be stated: 
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Fig. 5.4 Comparison of the COV of time to failure, for constant amplitude 
loading with Poisson overloads, from simulation and from each scalar 
diffusion model a s  well as a combination of the two. 
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If qSol <S (no crack arrest), the maximum life extension due to retardation 
effects is ( C, / C, )= [(s -qS ) / ( s  -qS,, )] . 
The maximum life extension occurs at a mean overload interarrival time, 
l / X ,  between roughly N (  af ) and N ( a f  )/2. More frequent overloads do not 
add significant retardation, but they do begin to  produce significant addi- 
tional crack growth. 

The maximum COV of time to  failure occurs at l / X  between roughly N ( a , )  
and N(a,  )/2. 

By modeling the retardation effect of tensile overloads in fatigue crack 
growth as step changes in the crack length, a process that  has an inherent 
memory effect can be modeled as a memoryless diffusion process. By appropriate 
bookkeeping, the equivalent drift and diffusivity are derived for use in the scalar 
backward equation. The statistics of the time required for the process to reach 
the final crack length can then be determined. 

The primary assumption in this scalar model of crack growth is that  the 
basic constant amplitude load model can be corrected by including simple addi- 
tive corrections, namely: (I) corrections for rare overloads tha t  cause retardation 
effects that  rarely overlap; or (11) corrections for the rare times when there is no 
retardation, if overloads are frequent. Solutions for the mean first passage time 
are quite good even when these assumptions are not met, but solutions for the 
variance (and hence COV) are only accurate when the assumptions are reason- 
ably accurate. By combining the two COV predictions, an approximate solution 
for the COV over the entire domain is possible. 

Higher dimensional models (2D, 3D, etc ...) can, in principle, model more 
general types of probabilistic memory and sequence effects with state variables 
that  reflect the condition of the reset stress. In the next section, another scalar 
diffusion model is formulated to  describe the variations in reset stress at any 
given crack length. Other states could include information on the loading mak- 
ing i t  possible t o  model more complex load processes. These vector diffusion 
models of first passage times are discussed in Section 5.7 

5.5 Steady-State Distributions and the Forward Equation 

In general, a crack growth prediction that  includes sequence effects requires 
knowledge of both the current crack length and the current state of retardation 
as described by the reset stress. In the last section, a scalar diffusion model was 
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obtained by treating the retarded crack growth as negative increments in crack 
length. For the special case of Poisson (memoryless) arrivals of tensile overloads, 
the reset stress does not need to appear explicitly in the formulation and a scalar 
diffusion model is obtained. 

Diffusion models can also be used t o  calculate statistics of steady-state 
processes. A random process is said to be in a steady-state condition when the 
PDF is independent of time, p ( X , t ) =  p ( X ) .  Equation 5.1 can then be reduced 
to a first order ordinary differential equation by integrating once with respect to 
X :  

(5.50) 

The general solution for the steady-state distribution, p ( X ) ,  of a scalar diffusion 
process depends on the integrating factor, exp[ U ( X ) ] ,  introduced in Section 5.3: 

where the integrating factor is the exponent of U ( X )  given by 

(5.51a) 

(5.51b) 

The constant of proportionality, c ,  is determined by the constraint that  the 
total probability (area under p ( X ) )  must sum to  unity. 

With the drift and diffusivity defined for all X ,  the steady-state distribu- 
tion, p ( X ) ,  can be determined by Eq. 5.51. When the drift is linear in X and 
diffusivity is constant, p ( X )  is Gaussian. When both drift and diffusivity are 
linear in X ,  p ( X )  is exponential. A s  a practical matter, for more complicated 
drifts and diffusivities, numerical integration may be required t o  estimate the 
steady-state distribution. 

In the next section, a scalar diffusion model of the reset stress is obtained by 
eliminating explicit dependence on crack length. Thus, the more general case of 
a stationary Gaussian random loading can be investigated by examining the pro- 
cess only at fixed crack lengths. By formulating the drift and diffusivity of the 
reset stress as it was defined in Chapter 2, a solution for the steady-state reset 
stress is obtained from the forward equation (Eq. 5.1). The steady-state reset 
stress distribution can then be calculated at integration points in crack length 
and the time to  failure estimated by a double integration over reset stress and 
crack length. 
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5.6 Crack Growth due to Stationary Narrow-band Gaussian Loading 

The reset stress is defined in Chapter 2 as the stress level necessary to pro- 
duce a crack-tip plastic zone extending into material that  had not previously 
been plastically deformed. Here, a, is defined to be the maximum extent of the 
crack tip plastic zone so the reset stress plastic-zone diameter is d, = a, - a ,  The 
reset stress is given by substituting this expression for dp into Eq. 2.2: 

(5.52) 

(The stress intensity shape factor, Y ( a ) ,  has been set to  unity for simplicity.) 
For purposes of determining the rate of decay of reset stress due to  crack growth 
through the plastic zone, a, can be considered constant. The reset stress is 
assumed to instantaneously increase t o  the value of the applied stress whenever a 
stress peak greater than the current reset stress is applied. The total rate of 

change of the reset stress is equal t o  a gradual reduction (decay) due t o  crack 
growth through the plastic zone plus positive increments (delta functions) due to  
large applied stress peaks. 

The gradual reduction in reset stress, dS,-/dt ,  is determined by taking the 
derivative of Eq. 5.52 with respect to time, which gives the change in reset stress 
as a function of crack length, a ,  and the crack growth rate, da / d t  (Eq. 5.3): 

dS,- -- 
dt  d t  

Substituting for a, in terms of S,  and a yields 

(5.53) 

(5.54) 

The reset stress is assumed to  increase instantaneously when a larger stress 
peak is applied. The positive rate of change of reset stress is therefore 

(5.55) 

where ti is the time of arrival of a stress peak greater than S,, S(.) is the Dirac 
delta function, and (AS,)i  is the difference between the stress peak, S,,, and 
the reset stress, S,, given that the peak is above the current reset stress; 
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The total rate of change of reset stress is the sum of Eqs. 5.54 and 5.55: 

Equation 5.56 has the form of Eq. 5.2 where the first term is the g(S,) con- 

tribution and the second term is the h ( S , ) F ( t )  contribution. Because many 
cycles of loading with peaks less than the reset stress will grow the crack 
between each time the reset stress is increased, the gradual decrease in reset 
stress (Eq. 5.54) 

applied stress 

can be treated as deterministic, given S,, by averaging over the 

(5.5713) 

(5.57c) 

where E,[.] represents the expectation over applied stress. The drift and 
diffusivity are given by substituting Eqs. 5.57 into Eqs. 5.7 and 5.8. 

The increases in reset stcress (Eq. 5.55) can again be treated as shot-noise 
[Lin, 19671. An estimate of the rate of arrivals is simply the probability that  the 
next peak is greater than the current reset stress, which is (for Gaussian load- 
ings) 

(5.58) 

When the peaks of the process are correlated, occurrences of peaks above 
any given level of reset stress tend t o  cluster making the average rate of arrival 
of clusters less than X. Adjustments for clustering in stationary narrow-band 
Gaussian processes have been given [Vanmarcke, 1975; Winterstein, 19841 with 
non-Gaussian modifications [Winterstein, 19871. 

The size of the increase, AS,, can be determined by comparing the relative 
frequency that S, and higher levels are crossed. Given that  S, has been 
exceeded, the probability that some level, S, +AS,, is also crossed is equal to  the 
fraction of times that  the process also crosses S, +AS,. Therefore, the rate that  
level S,+AS, is crossed divided by the rate that  level S, is crossed is the 
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probability tha t  the reset stress increment is greater than  AS,: 

(as, > 0) (5.39) X(Sr +fw ) 
V S r  1 Prob [increment >AS,] = G(AS,) = 

where G(AS,) is the complementary CDF of AS,. 
The expected size of an increase in reset stress is the integral of AS, times 

the PDF, p ( A S , ) ,  which, after integration by parts, becomes the integral of %he 
complementary CDF: 

00 00 
1 EIAS,.] = J G(AS,) dAS ,  = --JX(S)dS 

0 Y S r )  s, 

The expected value of the squared increment in the reset stress is similarly 
defined in terms of the complementary CDF through integration by parts: 

00 00 

1 
= J2 AS, G(AS,) d A S ,  = -J2(S-Sf)X(S)dS (5.61) 

0 X(SJ s, 

The upward drift and diffusivity involve the product of X(S,) and either Eq. 
5.60 or 5.61, which results in the cancellation of the X(S,) term in both cases. 
Using Eq. 5.58 to model the rate of overload arrivals, the drift and diffusivity for 
Gaussian loadings are (defining superscripts (+) and (-) to be upward and 
downward contributions %,in Eq. 5.54 and 5.55): 

d 

(5.62d) 

where a(.) is the standard Gaussian CDF. The total drift is q= q,+q$+q,, 
which reduces to r]= 7,+77:/2 in this case. 

The steady-state distribution of reset stress is determined by substituting 
Eqs. 5.62 into Eq. 5.51 and calculating the integral for U(S , ) ,  which, in general, 
must be done numerically. 

- . ." ____ . . . . . 
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Fig. 5.5 shows the predicted steady-state reset stress distribution compared 
with the steady-state distribution obtained by simulation (with the crack length 
artificially fixed). The diffusion prediction matches the mean of the distribution, 
but has different behavior in the tails. This may be due to the fact that  the 
diffusion model includes the correct average rate of overload arrivals and distri- 
bution of overload amplitudes, but the non-Poisson arrival of overload clusters is 
not correctly represented. Results obtained using the adjustments tha t  account 
for overload clustering produced PDFs with roughly the same shape as the 
diffusion result in Fig. 5.5 but with a slightly reduced mean reset stress. 

The average rate of crack growth can be calculated, at any given crack 
length, by integrating over both applied stress and reset stress. The effective 
stress intensity range, as defined in Section 2.2.2, depends on Smax, Smin, and Sr. 
The stress maxima and minima can now be defined in terms of the random vari- 
able models of Chapter 3, because the loading dynamics have been included in 
the steady-state reset stress distribution. For a narrow-band Gaussian loading, 
Smm= mx+A and Smin= mx-A,  where A is the Rayleigh distributed cycle 
amplitude. The effective stress range is defined as the (positive) range from the 
crack opening stress, qS,, to  the maximum stress, S,, (as in Eq. 2.4). The 
expected crack growth rate is 

0 0 0 0  

~ [ ( d a / d t )  l a ]  = c ( x ~ ) ” *  J J ( u , b , j  I s r , ~ ) p ( A ) p ( ~ , ) d A  dSr (5.64) 
S, -0 A -0 

An approximation t o  the expected crack growth rate is obtained by fixing - 
the reset stress at the mean value, S,, and only integrating over applied stress: 

00 

The expected time to grow to the final crack length (which is equivalent to 
the number of cycles because time has been measured in cycles) is estimated by 
integrating the reciprocal of the expected crack growth rate over all crack 
lengths. This integral is approximated by discretizing the crack length into n 
intervals with sizes Aui, and summing the expected number of cycles to grow 
through each interval at the expected growth rate associated with each interval: 

n A u ~  
E [ N 1  = i -1  = E [ ( d a / d t )  l a=u i ]  

(5.66) 
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Fig. 5.5 Steady-state reset-stress distributions obtained from simulation (at a 
crack length of 0.1 in.) and from the scalar diffusion model. 
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Fig. 5.6 Steady-state reset-stress distributions calculated using the diffusion 
model at three crack lengths associated with the three logarithmically 
selected integration points for crack growth from 0.1 to  1.0 in. 
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in which ai is the integration point in the ith interval. If the intervals are 
chosen logarithmically, as few as three integration points can estimate the 
integral to within an accuracy of a few percent (for crack growth from 0.1 inch 
to 1.0 inch). 

Because the reset stress distribution is relatively narrow, the two methods of 
calculating the average crack growth rate (Eqs 5.64 and 5.65) give approximately 
the same result. Although Eq. 5.64 theoretically provides a better estimate of 
crack growth rate, the poor behavior in the tails of the predicted reset stress dis- 
tribution makes that method slightly less accurate. Both methods were within 
10% of the crack growth life calculated by simulating the crack growth cycle- 
by-cycle, using the same crack growth model, with a variety of material and 
loading parameters, as shown in Table 5.1. 

Use of Eq. 5.58 for X neglects bandwidth effects, and is most accurate for 
larger values of the damping ratio, < (<>2%). The adjustments that  account for 
clustering lead to more accurate predictions for very lightly damped narrow- 
band loadings (<<a%). Simulation results for fatigue crack growth life showed 
differences due to bandwidth to be typically less than about 20%. 

Simulation 

(cycles) 
0.0 3.2 3.5 1x10-9 0.35 

0.0 3.2 3.5 lxlo-lo 0.35 

0.0 16.0 3.5 1 x 1 0- 1' 0.35 

0.0 3.2 3.5 5x 10-l' 0.35 

40.0 3.2 3.5 lxlo-lo 0.35 
40.0 8.0 3.5 lxlo-'o 0.35 

20.0 3.2 3.0 5x10-lo 0.30 
20.0 16.0 3.0 5x10-lo 0.30 

1 . 0 7 ~ 1 0 ~  1 . 1 2 ~ 1 0 ~  1.11~10~ 

2 . 0 4 ~ 1 0 ~  2 . 1 0 ~ 1 0 ~  2.2iX1o5 

2 . 0 4 ~ 1 0 ~  2 . 1 0 ~ 1 0 ~  1 .91x105 

2 . 6 3 ~ 1 0 ~  2 . 7 4 ~ 1 0 ~  2 .75x104 

7 . 4 ~ 1 0 ~  7.1 5x103 7 . 2 ~ 1 0 ~  
7 . 4 ~ 1 0 ~  7.1 5x103 7 .Ox 1 O3 

4 . 3 0 ~ 1 0 ~  4 . 2 9 ~  lo4 4 .35x104 
4 . 3 0 ~ 1 0 ~  4 . 2 9 ~ 1 0 ~  3 . 9 2 ~ 1 0 ~  
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Calculating a steady-state reset stress distribution assumes that  a steady 
state has been obtained. In the above derivation, the reset stress clearly depends 
on the crack length, which is constantly changing. The method works only 
because the reset stress distribution changes slowly with crack length. Figure 5.6 
shows the predicted reset stress distribution p (S,) for three different crack 

lengths associated with three logarithmically selected integration points between 
a, = 0.1 in. and af = 1.0 in. 

Estimates of the variance of the time to fail require information on the 
dynamic interaction of reset stress and crack length. A vector diffusion model, 
which treats each quantity as a component of the state vector, could be used to 
calculate the variance of time to fail. 

5.7 Vector Diffusion Crack Growth Models 

In principle, the modeling capabilities of diffusion processes can be greatly 
extended by expanding their state space from a scalar quantity, such as crack 
length alone, to a vector of related quantities (e.g., current values of reset stress 
and applied stress as well as crack size). The dynamics of this set of state vari- 
ables would then be defined by a vector governing equation analogous to Eq. 5.2: 

(5.67) 

where X is the vector state, {g(X)} and { F ( t ) }  are both vectors, and H(X) is a 
square matrix. This leads to a set of drifts and diffusivities describing the rates 
of change of all the state variables, analogous to Eqs. 5.4 and 5.5: 

1 dij(X) = lim - E[uiAXj 1x1 
nt+o At 

(5.68) 

(5.69) 

where X j  and X i  are components of the state vector, X. 

These drifts and diffusivities can be used in vector analogs of the forward 
and backward equations to obtain various useful fatigue statistics. For example, 
moments of fatigue life satisfy the vector analog to Eq. 5.10 given by 

where Xo is the initial state vector and pn is the nth moment of the time to 

reach the final crack length boundary in state space. 
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A two dimensional model that  accounts for load sequence effects is created 

by including both S, and a in a vector diffusion process. The same drift and 
diffusivity in reset stress derived in Section 5.6 apply to the vector model. 
Applied stress is again treated in expectation because of its relatively short corre- 
lation time. The drift in crack length is the expected rate of crack growth condi- 
tional on the current state, which now includes instantaneous crack length and 
reset stress. The model contains no diffusive changes in crack length. Estimates 
of crack growth life again match the mean simulation results, but the variance is 
underestimated due to the same approximations that caused the scalar model to 
misrepresent the tails of the steady-state reset stress distribution. 

The most general diffusion models of crack growth would include not only 
a and S, in their state spaces, but also the applied stress. A three dimensional 
model is created by including the scalar stress envelope as a third vector state. 
Randomness in the loading is modeled as a white noise excitation on the stress 
envelope; there need not be any diffusive changes in crack length or reset stress. 
Although this formulation is more direct, inaccuracies in the mean time to fail 
are possible because the envelope does not follow all of the stress peaks. Also, 
the rate a t  which the reset stress should increase when the applied stress 
envelope is greater than S, is somewhat arbitrary. 

By modeling the stress process as t,he response of a linear oscillator to white 
noise excitation and using the traditional linear system formulation of including 
the response and its first derivative in the state vector, a four dimensional model 
is created. This provides a smoother, more realistic model of changes in applied 
stress (and hence reset stress and crack growth) than the lower-dimensional 
models afford. In particular, the increase from three to four dimensions provides 
an unambiguous means of defining the rate of change of the reset stress (setting 
it equal to the stress velocity) when a stress peak exceeds the current reset stress. 

Fatigue life statistics can be estimated from these models by numerically 
solving Eq. 5.70. One may, for example, expand the unknown moments as 

weighted series of specified trial functions of the initial state variables, and deter- 
mine the weighting coefficients by standard weighted residuals techniques (e.g., 
Galerkin’s method). Based on limited numerical experience, it appears that  for 

four or more dimensions the needed computational effort may be comparable to 
what is required for accurate estimates from simulation, particularly with the 
efficient sequential simulation of Section 3.5.  One advantage of the analytical 

result is that  because only the left-hand-side of Eq. 5.70 (the load term) changes 
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with the order of the moment, the extra effort required to  estimate higher 
moments is rather small (the stiflness matrix relating the weighting coefficients 
to  the load need not be recalculated). Of course, because the lower moments 
appear as their loading in Eq. 5.70, these higher-order moments may deteriorate 
in accuracy (although perhaps less rapidly than higher moments of simulated 
fatigue lives). If one wishes to estimate moments of state variables, such as 
crack size, after a given number of cycles of applied stress, the forward equation 
(Eq. 5.1) can be similarly generalized to  include multiple state variables. 

5.8 Summary 

Scalar diffusion models of physical processes are possible when the process 
can be described by the evolution of a single variable in a way that  is indepen- 
dent of the past behavior, but may depend on the current state. Mathemati- 
cally, a diffusion process is so irregular (not differentiable anywhere) that  no phy- 
sical process is similar on a micro-time scale. Longer term behavior, however, 
can often be accurately predicted with the use of diffusion models. Solutions for 
moments of the time t o  reach a boundary are obtained through use of the back- 
ward equation (Eq. 5.9). Solutions for steady-state distributions are possible 
using the forward equation (Eq. 5.1). 

The crack growth model introduced in Chapter 2 can be formulated in ways 
tha t  lend themselves to  diffusion modeling. In general, calculating crack growth 
due to  random loading depends on three variables: crack length, applied stress, 
and reset stress (a variable that accounts for the history dependence of the crack 
opening stress). If any two of these variables can be treated separately (e.g., in 
expectation or held fixed) a scalar diffusion model can be created. The example 
of crack growth due t o  narrow-band loading without sequence effects eliminates 
reset stress dependence and absorbs the applied stress into the white noise forc- 
ing function, resulting in dependence on crack length only. 

Constant amplitude loading with discrete tensile overloads is treated as a 
scalar diffusion process by modeling abrupt changes in effective stress range 
(from unretarded t o  retarded growth) as a memoryless Poisson event. The retar- 
dation effect of the overloads is included in the forcing function its a shot noise 
excitation. Solutions for both mean and variance of the time to fail are shown 
t o  match simulation results for this special loading case. 

Crack growth due to  narrow-band Gaussian loading is predicted by solving 
the forward equation for the steady-state distribution of reset stress a t  selected 
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crack lengths. The applied stress is treated in expectation (averaged) because its 
correlation time is much shorter than the correlation time of the reset stress. 
The solutions for the mean time to fail, calculated from steady-state reset stress 
distributions at each integration point in crack length, are within 10% of simula- 
tion results for a wide variety of material and loading parameter values. This 
provides a useful alternative to crack growth simulation when only the mean life 
is required. The variance of the time to fail due to random loading depends on 
the dynamic interaction between reset stress and crack length, which can not be 
predicted by this scalar model. 

By increasing the dimension of the state space, a more refined dynamic 
model is obtained. Unfortunately, the amount of computational effort needed to 
analyze a diffusion process increases quickly with its dimension. The optimal 
model dimension depends on both the analyst’s goal and the available computa- 
tional resources, as well as on the particular problem at hand. For example, the 
above scalar diffusion models are appropriate for particular loading cases, or 
when limited statistics of time to fail are required (i.e., only the mean). Two- 
dimensional models accurately predict the mean life, but underestimate the vari- 
ance. Higher-dimensional models, which follow reset stress changes less ambigu- 
ously, provide a means of estimating variability in crack growth life due to ran- 
dom loading, but can be computationally expensive (rivaling simulation compu- 
tation time in many cases). The simulation results from Chapter 4, however, 
indicate that variability due solely to the randomness in a stationary Gaussian 
loading is often small (observe the f one standard deviation error bars in Figs. 
4.3-4.7) when compared to overall variability in fatigue crack growth life. 
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CHAPTER 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Ideally, estimates of the crack growth life of a structural component should 
account for all known sequence effects and should predict both mean and vari- 
ance of the time to fail, but there is generally insufficient information for this 
prediction. For particular applications, however, it is often possible to obtain 
useful estimates without completely describing the random loading or all of the 
sequence effects. 

The crack growth model of Chapter 2 accounts for sequence effects by 
representing the crack closure phenomenon in a simplified way. Comparisons 
with test data  show that  the model is capable of relatively accurate crack growth 
life predictions with a minimum of input data. The loading can be specified, 
including probable sequences, with an efficient simulation method tha t  generates 
only those events in a random loading that  are significant in a fatigue sense. 
The significant events, described by the random variables that  define cycle 
means and amplitudes after racetrack filtering, are sequentially simulated. 
Sequence effects can be modeled and crack growth calculated analytically by 
using scalar diffusion models to estimate the crack opening stress for stationary 
Gaussian loadings. For nonstationary applications, when crack growth must be 
calculated cycle-by-cycle, the above simulation method is shown to be easily 
adapted to sequentially simulate the nonstationary parameters. Sequence effects 
are usually important for loadings with distinct overloads, but the stochastic 
dynamics of the overload arrivals can diminish the effect. Diffusion models are 
capable of predicting mean and variance of time to failure for some special load 
cases of this type. 

Crack growth estimates that neglect sequence effects are also shown to be a 

very useful alternative when the application requires a rough, and generally con- 
servative, life estimate. These life estimates are obtained by simple integrals of 
the random variable load models without cycle-by-cycle calculation of crack 
growth. A conservative estimate is obtained by assuming a Gaussian loading to 
be narrow-band; more accurate estimates are available using the random 
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variable models of wide-band loadings after racetrack filtering. For stationary 
Gaussian loadings, the sequenceless estimate is often within a factor of two of 
the more computationally expensive prediction that includes sequence effects. 
When sequence effects do produce a substantial crack growth retardation, 
increasing the mean life, there is usually an associated increase in the variability 
of the time to failure. Even though the mean life may be several times longer 
than the sequenceless prediction, there remains a relatively high probability that  
the actual life will again be close to the sequenceless prediction (within a factor 
of two). 

6.2 Suggestions for Future Work 

The direction for future work in crack growth modeling depends on the 
discoveries, in the next few years, of the physical processes governing fatigue 
crack propagation. Currently, the emphasis on linking the crack opening stress 
ratio, q o ,  to the applied stress ratio, R ,  is a stumbling block, because, in a ran- 

dom loading environment, the stress ratio is often difficult to define. It may be 
possible, however, to define a reset stress like parameter for the stress valleys 
(minima) which can be used in conjunction with the reset stress to continuously 
monitor an equivalent stress ratio. In hindsight, the crack opening stress ratio 
should probably have been a function of maximum stress, as well as stress ratio; 
it would not have been too difficult, and may be important in some applications. 

The load models presented here have emphasized Gaussian loadings, while 
many loadings on structural components are non-Gaussian. The extension of 

this work to non-Gaussian loading is possible with only minor additional effort 
in implementing the load models. Most noli-Gaussian loadings can be converted 
to Gaussian by a simple transformation, which may be based on moments of the 
distribution, or may be based on empirical estimates of the actual non-Gaussian 
distribution. Once the loading is transformed to Gaussian, all of the methods 
presented here apply. The appropriate random variable models can then be 
transformed back to the original loading distribution to calculate crack growth. 
(The ASTM loadings used here were transformed Gaussians; the ASTM life 
predictions presented here were obtained by this procedure.) A s  shown in 
Chapter 4, sequence effects in life estimates for non-Gaussian loadings can be 
substantial. 

Nonstationary loadings are treated here by simulating the loading and cal- 
culating crack growth cycle-by-cycle. Analytical solutions to nonstationary 
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loading problems may be possible using the approach of Section 5.6, where scalar 
diffusion models were used on an inherently multi-dimensional problem by 
uncoupling the crack length dependence (long correlation time) from the reset 
stress (intermediate correlation time) and from the applied stress (short correla- 
tion time). The key again lies in the correlation time of the nonstationary 
parameter. If the correlation time is short, the loading can be treated as an 
equivalent stationary loading with an adjusted distribution of peaks (see Section 
4.5). If the correlation time of the nonstationary parameter is long, the crack 
growth may be estimated independently at different parameter values and then 
integrated over all possible parameter values (expectation over the nonstationary 
parameter). Intermediate correlation times can be bounded by these two limit- 
ing cases. 

Vector diffusion models should probably be pursued more vigorously as the 
availability of super computers increases. Although the additional accuracy and 
flexibility of a vector model is costly in terms of present computational abilities, 
it is possible that  these costs may be minimal in the future. 
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