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Abstract
This report presents the results of the modal test of the 110-
m-tall EOLE wind turbine. Modal testing an immense and
flexible wind turbine poses a number of problems. It re-
quires innovative excitation techniques since the modal
frequencies of this type of structure are quite low—some
below 1.0 Hz. Also, substantial energy must be input to the
structure to obtain reasonable levels of response. Step-
relaxation and wind were used to excite the structure.
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Modal Testing the EOLE

Introduction
Figure 1 is a photograph of the EOLE turbine just

after construction was finished in December 1986.
One can still see the truss structure used as the
construction crane. In the design of large, flexible
structures that are subjected to dynamic loads, knowl-
edge of the modal frequencies and mode shapes is
essential in predicting structural response and fatigue
life. For large, rotating wind turbines, these modal
parameters are particularly important since the ap-
plied forces acting on the turbine have large periodic
components at integral multiples of the fixed rotation
speed. During the design process, analytical or finite-
element models must be relied upon for estimates of
the modal parameters. However, when the turbine
hardware becomes available for testing, the actual
modal parameters can be measured and compared to
the analytical predictions.

The model is used for design, for redesign if
required, for choosing the range of operating speeds,
for setting limits on the operational wind speeds, and
for computation of predicted fatigue life. Consequent-
ly, it is of the utmost importance to have a test-
verified model.

Vertical-axis wind turbines are excited by the
applied aerodynamic forces that have primary spec-
tral content at integral multiples of the rotation speed.
If these discrete frequencies are close to any modal
frequency, a resonance can result in which very high
strains reduce the fatigue life of the structure. Figure 2
shows analytical mode shapes of a typical vertical-axis
turbine. ]Displayed in the figure are the top, side, and
front views of the deformed shapes. They are not
necessarily in increasing order of frequency that
would occur in an actual design, nor are they the exact
mode shape for a particular turbine.

For the EOLE modal test, providing adequate
low-frequency excitation was troublesome since its
modal frequencies were very low. Also, because the
structure is very large, great amounts of energy must
be input to the structure to obtain adequate response
signal levels. Two different methods of excitation were
evaluated: step-relaxation and wind excitation. In the
step-relaxation technique, a large, static force is ap-
plied to the turbine and then suddenly released. Fre-

quency response functions (FRFs) can be computed
and the modal parameters extracted. With wind exci-
tation, the turbine is instrumented in the normal
manner, but ambient wind is used to excite the struc-
ture instead of an externally applied force. A number
of response transducers are chosen as references, and
cross-spectra are computed between the references
and the other transciucers. Using the cross-spectra,
the modal frequencies and mode shapes are deter-
mined.

In the remaining sect ions of this report, the two
techniques are described in more detail, followed by a
Results section, which compares the two techniques
and compares tbe test results with analysis.

Figure 1. The 130J..E Vertical-Axis Wind !h-bine
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Excitation Using Step-
Relaxation

The step-relaxation method of structural excita-
tion involves applying a static load to the structure
and then suddenly releasing this load. This process is
analogous to plucking a violin string. Step-relaxation
excitation has been discussed in several previous pa-
pers; see, for example, References 1 and 2. It is a
technique that is seldom used because it can be me-
chanically difficult to implement; also, problems are
involved in performing a fast Fourier transform (FFT)
of the step function force signal. However, the low-
frequency weighting of the step function, which rolls
off as l/frequency, and the large amount of strain
energy that can be input to the structure make it ideal
for testing large structures with very low modal
frequencies.

In step-relaxation on the EOLE turbine, two
force-application points were used, one on the tower
and one on a blade. This resulted in two sets of FRFs
referenced to these two driving points. The forces were
applied to the turbine rotor with a high- strength steel
cable and loaded with a diesel-powered winch, which
was located on the ground -100 m from the base of

the turbine. For the tower driving point, a load of 135
kN (30 000 lb) was applied at mid-span on the tower
in a direction slightly out of the plane of the rotor. For
the blade driving point, a 45-kN (10 000 lb) load was
applied at a point between the lower horizontal strut
and mid-span on the blade (Figure 1). The required
force magnitude, direction, and location of application
were calculated as part of the pre-test planning and
will be discussed later in this section.

A quick-release device was used between the
winch and the cable to allow an immediate relaxation
of the load. For the loads required by this structure,
the quick-release device used an explosively driven
cable cutter, which cut a small piece of replaceable
steel cable. A load cell was placed in-line with the
cable to measure the force signal. It is important that
the load cell be close to the structure so that it senses
the force actually being applied to the structure. A
total of 45 accelerometers measured the response on
both the tower and the two blades. The entire setup is
displayed in Figure 3. Not shown in Figure 3, however,
is a crucial element in the design of step-relaxation
hardware. Depending on the forces used and the
length of the pull-down cable, a tremendous amount
of strain energy can be stored in the cable and then

,



suddenly converted into kinetic energy in the cable.
To prevent the cable rebound from striking and dam-
aging the turbine, a nylon restraint strap was designed
to absorb the strain energy stored in the steel pull-
down cable. At maximum deformation, the nylon
strap experienced -10 YO strain.

made //

<

I

.+ ———Cargo Strap

-I- Load Cell

+— Steel Cable

‘\ &aic&eReleaae

/
Winch

I

Figune 3. Step-Relaxation Hardware

Another of the difficulties in testing a very large
structure is that the test plan must be well established
before the test since changes may be impossible once
testing has started. For example, all the equipment
required to apply the 135-kN load to the tower had to
be designed and acquired in advance; thus, one could
not increase that load if it proved insufficient during
data acquisition.

Pre-test analysis was performed to determine the
required forces and the application points that would
excite all the modes of interest and result in adequate
response levels. Using the finite-element model that
had been developed for the design of the turbine, all
the modes were computed and their responses to
various load inputs were examined. Using the model
in this way, we determined that all the modes could be
excited with two driving points. Further, the required
force magnitudes were computed to provide adequate
signalh from the response accelerometers. Static and
transient analyses were performed to ascertain wheth-
er the particular excitation would excite the modes to
the desired levels. Figure 4 shows a result of one of
these preliminary analyses; it is a display of the static
deformation caused by application of a load on the
blade.

In doing a step-relaxation test, special consider-
ation must be directed to the signal processing used
for the force signal because the step function cannot
be digitally Fourier transformed without extensive
leakage errors. To alleviate this difficulty, the force
signal was at-coupled at the input to the FFT analyz-
er. The at-coupling network is a high-pass filter with
its 3-dB down point at 0.8 Hz. Such coupling converts
the step function into a pulse with a rapidly decaying
trailing edge, making the force-time history Fourier
transformable without leakage errors. The effect of
at-coupling the force is to generate a waveform that is
totally observable within the sample window, whereas
the unfiltered signal is not, therefore eliminating the
leakage error. Reference 2 provides a more thorough
discussion of this subject.

I

Figure 4. Deformation Due to Static Load Applied to
a Blade



The response signals were also at-coupled to can-
cel out the phase shift effects of high-pass filtering the
force signal. After at-coupling, the resulting input and
response signals are similar to those obtained by
impact testing and can be processed in a similar
manner. For example, the resulting force signals can
be used to trigger data acquisition. Further, one can
apply windows to the data to reduce the effects of
noise, including a force window or exponential
window.2 Exponential windowing is particularly
important for removing structural response caused by
wind excitation after the response caused by the
intended applied excitation has diminished. Figure 5
shows a typical FRF using the step-relaxation plotted
from 0.4 to 4.0 Hz. The function is not noise-free as is
manifest at the notches in the FRF. This noise is due
to wind-excited response as the wind was rarely <10
m/s (20 mph) during the test.

I

1

0.4 FREQUENCY (HZ) 4.0

Figure 5. Frequency Response Function Acquired
From Step-Relaxation

Using the 45 FRFs for a particular driving point,
we extracted the mode shapes and frequencies from
these data by using standard techniques. Figures 6
and 7 show two of the mode shapes from these step-
relaxation data. These figures have the undeformed
shape in a dashed line and the mode shape superim-
posed in a solid line. Referencing Figure 2, the mode
shapes are the first blade flatwise anti-symmetric
(front view) and the second rotor out-of-plane (side
view). More discussion of the test results, along with a
comparison with the analytical predictions, appears in
the Results section.

Figure 6. First Blade Anti-Symmetric Flatwise From
Step-Relaxation

Figure 7. Second Rotor Out-of-Plane From Step-
Relaxation
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Wind-Excitation Testing
During previous wind-turbine tests, high winds

have induced large vibratory responses that interfere
with the measurement of the responses from the step-
relaxation excitation, resulting in poor estimates of
the FRFs. Waiting for the winds to cease, however, is
not a reasonable alternative since test scheduling on a
prototype is extremely tight. Consequently, an alter-
native method of testing was devised to complement
step-relaxation excitation testing. It was decided to
measure the wind-induced vibration of the EOLE to
determine its modal parameters.

References 3, 4, and 5 have indicated that for
broadbimd excitation, response data alone could be
used to, determine modal parameters. No measure-
ment of the force would be required. Reference 3
indicates that it is possible to extract modal parame-
ters from transmittance functions, which are defined
as the {complex ratio between Fourier transforms of
response points. This was the approach followed in
this test. The methbd used to calculate the transmit-
tance functions was to take the ratio of the cross-
spectrum to the auto-spectrum.

The procedure for performing the wind-excitation
testing is similar to that used in performing artificial-
excitation testing. One significant difference is that
the forces acting on the structure are not measured.
Reference degrees-of-freedom (DOFS) are selected
based upon their degree of participation in each of the
mode shapes. The complete set of references should
strongl:y participate in all of the modes of the struc-
ture within the frequency band of interest.

Because 16 data-acquisition channels were avail-
able for acquiring data, and 42 response locations were
selected, three separate measurement sets were need-
ed to acquire responses at all of the locations of
interest. For each set of response measurements, auto-
spectra of the reference DOFS were evaluated, and
cross -s]pectra were measured between the response
DOFS ;and the reference DOFS. The reference auto-
spectra. provided appropriate scaling of the mode
shape to account for different levels of wind excitation
for different sets of response measurements.

For this test, time histories of the vibrational
response of the turbine were digitized and recorded on
disk. For each measurement set, the vibrational re-
sponse of the three reference DOFS were also record-
ed. The time histories were then processed to generate
power spectra as described above. This process was
performed for each of the three measurement sets.
Shown in Figures 8 and 9 are typical auto- and cross-
spectra.

Modal frequencies were determined from the
peaks in the auto-spectra of the reference DOFS and

the peaks of the indicator function. The indicator
function was created by summing the magnitude
squared of the power spectra. Particular modes were
enhanced by selecting response DOFS based upon a
knowledge of the mode shape. Shown in Figure 10 is a
typical mode indicator function calculated to enhance
the flatwise blade modes.

[ I I I

0.0 FREQUENCY (HZ) 5. 0

Figure 8. Acceleration Auto-Spectrum From Wind
Excitation
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Figure 9. Acceleration Cross-Spectrum From Wind
Excitation

In the vicinity of a resonance, where the response
is dominated by a single mode, the transmittance
function is flat and its value can be taken as the mode
shape component for that mode at that DOF. If the
transmittance function is directly calculated by using
block floating-point arithmetic, dynamic range prob-
lems can exist because of zero and near-zero values in
the denominator. To avoid this problem, the spectra
were zeroed at all frequencies except those corre-
sponding to a narrow band about the resonances. The

11



zero values in the reference spectra (the denomina-
tors) were replaced by a small number to prevent
division by zero. Transmittance functions were then
calculated by taking the ratio of the cross-spectra to
the reference auto-spectra for each data set. A typical
transmittance is shown in Figure 11. The function is
zero at all frequencies except near resonances, where it
is fairly flat.

1

+

0.0 FREQUENCY (HZ) 5.0 Figure 12. First Blade Anti-Symmetric Flatwise
From Wind Excitation

Figure 10. Summation Mode Indicator Function
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0.0 FREOUENCY (HZ) 5.0

Figure 11. Processed Transmittance Function

Mode shapes can be calculated from the transmit-
tance database by taking the value of the transmit-
tance, at resonance, as the component of the mode
vector. Two typical mode shapes are shown in Figures
12 and 13. These are the same two mode shapes shown
in the step-relaxation section. Because damping was
not a principal consideration in this test, no attempt
was made to estimate it using the wind-excited
response data.

Figure 13. Second Rotor Out-of-Plane From Wind
Excitation
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Results elastic modes, deleting the first propeller mode. The
modes are displayed with the front, side, or top views,
with just the deformed shape displayed. These shapes
are not nearly as smooth as the typical shapes shown
in Figure 2, which were analytically generated. In the
mode shapes of this latter figure, one can clearly
observe the limited physical resolution of the experi-

The principal results of interest from the modal
test are the modal frequencies and test-derived mode
shapes. Figures 6, 7, 12, and 13 show mode shapes of
two different modes acquired using the two test tech-
niques. The shapes are virtually the same. These plots
have the deformed shape superimposed over the unde-
formed. Figure 14 shows the shapes for the first 12 mentally measured shapes.

AA
FIRST TOWER

IN-PLANE
BLADE FLATWISE
ANTI-SYMMETRIC

FIRST TOWER
(QIJT-OF-PLANE

SECOND TOWER
OUT-OF-PLANE 5

0Q Al
BLADES BENDING
OUT-OF-PLANE

Q/

SECOND BLADES
OUT-OF-PLANE

A
BLADE FLATWISE

SYMMETRIC
SECOND TOWER THIRD TOWER

OUT-OF-PLANEIN-PLANE

A
SECOND FLATWISE
ANTI-SYMMETRIC

ROTOR TWIST SECOND FLATWISE
SYMMETRIC

Figure 14. Experimentally Measured Mode Shapes for the EOLE Turbine
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Table 1 compares the modal frequencies from the
two test techniques for the first 15 modes. Agreement
between the two sets of frequencies is excellent, with
all the differences less than the resolution of the
transmittance function (0.016 Hz), except for mode 6,
where the difference is only 1.5 YO. The two excitation
techniques have produced virtually identical results,
with the exception of mode 9, which could not be
observed in the wind-excited data.

Table 1. Modal Frequencies From Step-
Relaxation and Wind-Excitation Tests

Step- Wind
Mode Shape Relaxation Excitation
Description (Hz) (Hz)

Propeller

First Tower
Out-of-Plane

First Tower
In-Plane

Second Tower
Out-of-Plane

Blade Flatwise
Anti-Symmetric

Blade Flatwise
Symmetric

Second Tower
In-Plane

Blades Bending
Out-of-Plane

Third Tower
Out-of-Plane

Rotor Twist
(Dumbbell)

Second Flatwise
~. ymmetric

Second Blade
Out-of-Plane

Second Blade
Anti-Symmetric

Third Tower
hi-Plane

Third Flatwise
Symmetric

0.421

0.628

0.738

0.930

1.304

1.321

1.383

1.546

1.790

1.928

2.241

2.329

2.396

3.084

3,564

0.420

0.625

0.734

0.937

1.296

1.342

1.391

1.547

.

1.938

2.250

2.328

2.391

3.101

3,563

As indicated earlier, the objective of this modal
test was to verify the finite-element model. The com-
parison between the predicted frequencies and those
from the test are shown in Table 2. Very fine agree-
ment exists, which establishes the accuracy of the
model. The average deviation between the test and
analysis frequencies is <2?; for modes 2 through 13.
This is extremely close agreement. The first mode
(propeller) was deleted from this comparison because
the turbine brakes had to be engaged during testing,
and the locked brake stiffness was not adequately
represented in the model.

Table 2. Analytically Predicted Modal
Frequencies, Experimentally Measured

Modal Frequencies, and Measured
Damping Factors

Anal. Exper
Mode Shape Freq. Freq.
Description (Hz) (Hz)

Propeller

First Tower
Out-of-Plane

First Tower
In-Plane

Second Tower
Out-of-Plane

Blade Flatwise
Anti-Symmetric

Blade Flatwise
Symmetric

Second Tower
In-Plane

Blades Bending
Out-of-Plane

Third Tower
Out-of-Plane

Rotor Twist
(Dumbbell)

Second Flatwise
Symmetric

Second Blade
Out-of-Plane

Second Blade
Anti-Symmetric

0.52

0.63

0.75

0.92

1.27

1.29

1.42

1.61

1.76

1.96

2.20

2.34

2,38

0.42

0.63

0.74

0.93

1.30

1.32

1.38

1.55

1.79

1.93

2.24

2.33

2.40

Damping
Factors

(%)

—

0.2

0.5

0.3

0.8

0.4

0.4

1.1

0.1

0.2

0.3

0.2

0.2

4
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Included in Table 2 are the measured damping
values for each of the modes. These values, since they
are measured, include both structural damping and
aerodynamic damping (nonrotating). There were no
analytical predictions of damping to compare. The
measured data show the very low values of damping
that are typically observed for wind turbines. Of the
three measured quantities-the modal frequencies,
the mode shapes, and the modal damping factors—the
damping is most difficult to estimate accurately from
the measurements. Consequently, these damping fac-
tors should be considered fairly approximate.

Conclusions
Both wind and step-relaxation testing methods

workeci extremely well and yielded virtually the same
mode shapes and frequencies. Step-relaxation meth-
ods recluired the following: significant pretest analysis
for sizing of excitation hardware, unusual hardware
such ae explosive cable cutters and a winch capable of
applyi:ng 135 kN, expensive fixturing, and significant
grounci support. Both methods required a crane
and personnel to mount the accelerometers. Step-
relaxation testing required a higher dependence on
the sit{eworkers. However, damping information is not
as readily available from the power spectra obtained
from wind excitation as it is from FRFs obtained using

step-relaxation testing. Finally, and most important-
ly, we were able to extract modal data from FRFs
measured, using step-relaxation, in spite of high
winds. However, it would not be possible to obtain
meaningful wind-response measurements during com-
pletely calm days.
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