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Abstract
A two-dimensionalunsteadyairfoilanalysisisdescribedwhichutilizesadoubletpanel
method tomodel theairfoilsurface,an integralboundarylayerschemetomodel the
viscousattachedflow,and discretevorticestomodel thedetachedboundarylayers
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1. INTRODUCTION

1.1 Research Motivation and Objectives

The power produced by a Darrieus turbine at its regulation windspeed is

much higher than would be anticipated from an analysis based on steady air-

foil data. The additional power output is a direct consequence of an

unsteady flow phenomena known as dynamic stall. Above the regulation

windspeed, the power output typically drops off abruptly.

Although the windspeed range over which the peak power is attained is

relatively small, the turbine drive train and electrical power generation

equipment must be sized to safely accept that maximum level of power out-

put. Economic studies by Kadlec (1980) and Klimas (1980) have indicated

that a 5 to 10 percent reduction in the cost of energy from a one megawatt

Darrieus turbine could be achieved if the peak power output is reduced as

shown in Figure 1.1. The actual loss of useable power is minimal due to

the relatively infrequent occurrence of winds near the regulation

windspeed. However, the reduced maximum power output allows the use of

smaller and less expensive drive trains and generators. In addition, the

overall efficiency of the wind energy conversion system is increased by the

improved matching of the aerodynamic and mechanical components.

To control the peak power output of a Darrieus turbine without adver-

sely affecting its performance at low and medium windspeeds, it is

necessary to tailor the dynamic stall characteristics of its blades. It iS

anticipated that “stall regulation” may be achieved through the design of
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airfoil sections which either passively exhibit the desired characteristics

or have provision for active boundary layer control.

To facilitate the design and evaluation of the new airfoil sections, a

valuable tool would be a numerical model capable of predicting the

airloads on an airfoil experiencing dynamic stall. The model would allow

the examination of many more potential geometries than would be economi-

cally feasible if wind tunnel or full-scale turbine tests were required.

The research reported herein has been concerned with the development of a

numerical model having the capability to perform this function. The

current work has been limited to the prediction of the unsteady separated

flow over an airfoil at a constant angle of attack. However, as for-

mulated, the model is directly applicable to unsteady airfoil motions as

well. Its extension to these cases is currently underway at Texas Tech

University.

In addition to the theoretical work reported herein, an experimental

program has been conducted. The purpose of this work was twofold. First,

it has provided new insights into the mechanisms of dynamic stall and the

way in which it influences Darrieus turbine performance. Secondly, it has

generated new data which will eventually be utilized to test the predictive

capabilities of the numerical model.

1.2 Relationship of Research to Previous Work— —

Airfoil models used in previous Darrieus turbine aerodynamic simula-

tions can be classified as either thin airfoil potential flow models or

lifting line models with tabulated airfoil data. The airfoil model which

is currently being formulated includes both viscous and unsteady effects and

will be referred to as DYNA2 (DYNamic Airfoil model in 2 dimensions).— —
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The thin airfoil models which have been used by Wilson (1978) and

Fanucci (1976) yield good results when the airfoil angles of attack are

below stall thresholds and when the airfoil section being modeled is indeed

thin. Empirical drag data are required to actually compute the airfoil

thrust coefficient. The thin airfoil models do include the important dyna-

mic effects due to pitching and certain added mass effects. They are

totally inadequate for predicting static or dynamic stall.

The lifting line model which has been used by Strickland (1976) yields

good results when the flow can be considered as quasi steady. Dynamic

effects can be estimated using empirical relationships as was recently

demonstrated by Klimas (1980) who used the Boeing-Vertol Model by Gormont

(1973). The lifting line model used in this fashion required that static

lift and drag data for the airfoil in question be available.

The DYNA2 model integrates analytical models for three separate regions

of the flow. These three regions require utilization of panel methods to

model the potential flow, discrete vortex wake methods to model the

separated shear flows, and the boundary layer methods to model the attached

shear flows. Each of these analysis methods must include unsteady effects.

A historical review of panel methods by Kraus (1978) reveals that one

of the first uses of this type of method was by A.M.O. Smith (1962) for a

body with zero lift. These methods have progressed to a point such that

three-dimensional lifting geometries can be considered in both subsonic and

supersonic flows as typified by the work of Woodward (1973). Many of the

investigations using panel methods have been for steady flows, although the

general method is well suited to unsteady flows as is evfdenced by the works

of Ashley (1966), Djojodihardjo and Widnall (1969), Summa (1976), and Oler
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(1976). Utilization of panel methods has been concentrated on attached non-

separating flows where the wake vorticity is shed smoothly from the

tri~iling edge and the Kutta condition is satisfied. One recent exception is

the utilization by NASA Langley of panel methods to examine the flow around

a delta wing with leading edge separation.

The modeling of separated wakes using discrete vortices can be viewed

as being a natural extension of unsteady panel methods. For instance, in

the case of a stalling airfoil, the wake will consist of two wake surfaces

in:~teadof the usual one for unseparated flow. Clements (1975) gives a

comprehensive review of wake modeling using discrete vortices. Many of the

investigations reported by Clements pertain to flow behind bluff bodies

such as that due to Sarpkaya (1979) for flow behind circular cylinders.

These bluff bodies were in all cases immersed in a fluid with steady, uni-

form freestream velocities. Most of the workers used potential flow models

ba:sed on conformal mapping techniques as opposed to utilization of the more

flexible panel methods. One example of wake modeling using discrete vor-

tices is that due to Ham (1968) in which he modeled dynamic stall by

allowing a single vortex to be shed from the leading edge of the airfoil at

some assumed angle of attack.

A number of unsteady turbulent boundary layer analyses are available in

the literature ranging from integral forms (e.g., Daneshyar, 1978) to one-

eqldation closure models (e.g., Nash, et al., 1975), to multiple equation

cl(~suremodels. Due to the large number of boundary layer calculations

required for unsteady cases, the simpler models should be used when

po:ssible. Part of the work leading to the development of DYNA2 has been to

extend the relatively successful integral method due to Head (1969) to

include unsteady effects.
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The major contribution of the DYNA2 model and its possible extensions

is that it provides a synthesis of existing techniques to provide a reaso-

nably general unsteady airfoil model which includes the prediction of dyna-

mic stall. In reading the literature, it is apparent that much of the work

has been compartmentalized into potential flow via panel methods, separated

wakes via discrete vortices, and turbulent boundary layers via a number of

closure models. Due to the relatively mature nature of the work in each of

these areas, it therefore seems appropriate and timely to combine these

techniques into a more complete model.



2. FORMULATION OF THE DYNAMIC STALL ‘PIUIJl!iL

2.1 Overview of the Complete Model——

There are two principal components contained

the potential flow and boundary layer calculation

routines include unsteady effects and are coupled

in DYNA2. These are

routines. Both

through the pressure

distribution and boundary layer separation effects.

The potential flow calculations are accomplished with a finite

element method which allows representation of the airfoil and wake

surfaces by uniform

face extending from

the trailing edge.

strength doublet panels. The wake includes a sur-

the boundary layer separation point as well as

The routine predicts the position and strength

from

of

the wake surfaces and the corresponding pressure distribution and

integrated load on the airfoil.

In the model’s present form, the location of the boundary layer

separation point is predicted on the basis of a pressure distribution

for a steady, nonseparated flow. That location is considered fixed as

the potential flow calculations proceed in a step-by-step manner.

Obviously, a more correct arrangement would be to recalculate the

separation point location at each time step. However, the dif-

ficulties (discussed in the next chapter) which have been encountered

when that method was utilized have forced the temporary adoption of

the present scheme. The resolution of the step-by-step boundary layer

calculation problems is the subject of work currently underway at

Texas Tech University.

-7-



2.2 The Potential Flow Model. —

2.2.1 Mathematical Representation

Consider the motion of a homogeneous, incompressible and inviscid

fluid through which a body with its associated trailing wake moves.

body surface is given with respect to a fluid fixed reference frame

S(;,t) = o

and the trailing wake by

W(:,t) = o

The

by

(2.2.1)

(2.2.2)

The possibility of a separated flow is accounted for by allowing the wake

to include surfaces of potential discontinuity emanating from a boundary

layer separation point as well as from the trailing edge.

Noting that the body plus wake comprises a complete lifting system and

assuming that the motion was started from a state of rest or uniform

motion, it follows that the motion is irrotational for all times. The

governing equation for the disturbance potential is given by

v2$(;,t) = o . (2.2.3)

Once the solution is known, the pressure distribution in the flow may

be found from the unsteady Bernoulli equation:

P=P m -P(++; V4?) . (2.2.4)

The determination of a unique solution of Eqn. 2.2.3 is

accomplished through the application of the following boundary

conditions:

1) The Infinity Condition -

The disturbance potential resulting from the presence of

the body must vanish at infinity.
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2) The Kinematic Surface Tangency Condition -

On the surface, S, the normal relative fluid velocity

must be zero.

3) The Kutta Condition -

At all times, the flow of fluid from the trailing edge

must be smooth and continuous.

4) The Boundary Layer Separation Condition -

The sheet of potential discontinuity from the boundary

layer separation point must reflect the injection of the

boundary layer vorticity.

5) The Dynamic Free Surface Condition -

The pressure must be continuous through the wake sur-

faces, since they cannot sustain a load.

6) The Geometric Free Surface Condition -

The wake particles are convected downstream at the local

convection velocities.

2.2.2 Separated Flow Model— —

For the purpose of modeling, it is assumed that the wake may be

adequately represented by two sheets of potential discontinuity. One

surface extends from the trailing edge while the other originates at

the boundary layer separation point as illustrated in Fig. 2.2.1.

The rates at which vorticity is shed into the two wake surfaces

are related to the rate of change of the vorticity bound to the air-

foil surface by the Kelvin-Helmholtz vorticity conservation theorem.

9



Figure 2.2.1 Separated Flow Model
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The theorem requires that the rate of change of net vorticity in the

flow field is zero, i.e.,

or

dr
net— .

dt
o

(2.2.5)

drb dr drs

dt
~+—=

+ dt dt
o.

Here, the net vorticity has been divided into three components: the

‘vorticity bound to the airfoil surface rb, the vorticity shed from the

“boundary layer separation point rs, and the vorticity shed from the

trailing edge I’w. The time derivatives of rw and rs represent the

rate of vorticity shedding to the respective wake surfaces.

A simple vorticity flux analysis may be utilized to estimate the

vorticity shedding rate from the boundary layer separation point.

drs Uez
—= —
dt-2

where Ue is the edge velocity. An

“100%of the vorticity contained in

(2.2.6)

assumption has been made here that

the boundary layer is injected into

the inviscid flow field at the separation point.

overestimate so that a reduction factor is needed

calculations.

This is actually an

in the actual

11



In Appendix D, it is demonstrated that the vortex sheet strength

distribution is equal to the gradient of the potential jump across that

sheet. If yb iS the vorticity per unit length along an airfoil sur-

face and a is the distribution of potential discontinuity or doublet

strength along the surface, then referring to Fig. 2=2”2~ the bound

vorticity may be written as

rb=/;ybds

(2.2.7)

‘b = ‘“TE “

The rate of change of bound vorticity may be expressed in terms of the

difference in surface doublet strength at the trailing edge:

drb
—=
dt

&(AoTE) . (2.2.8)

Substituting Eqns. 2.2.6 and 2.2.8 into Eqn. 2.2.5 provides an

expression for the rate of shedding of vorticity to the wake surface

extending from the trailing edge.

dr~ U2
—=
dt -(~AoTE) ++) ●

(2.2.9)

Recall that Eqn. 2.2.9 was based upon the Kelvin-Helmholtz vor-

ticity conservation theorem. The same result may be arrived at by

applying the dynamic free surface boundary condition at the airfoil

trailing edge. Specifically, the pressure must be continuous across

the wake over its entire length, including the point of attachment at

the trailing edge. There, the pressure difference across the infini-

tely thin surface is zero which leads to

12



Figure 2.2.2 The Bound Vorticity on an Airfoil
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o =Pu-Pg

o =~(ou - +1) +

Recognizing that V@ = ; for the fluid

#u: - u:) = -

From Fig. 2.2.3, it is noted that (U2
u

(2.2.10)

+-(v$:-v@;) .

fixed reference frame, then

&(A$TE) . (2.2.11)

- U~)/2 is the net rate of vor-

ticity shedding from the boundary layers on the upper and lower sur-

faces of the airfoil at the railing edge. Then,

drw
—. -
dt &@$TE) . (2.2.12)

By calculating the circulation about a curve, as shown in Fig. 2.2.4,

which encloses the airfoil and wake surface extending from the boun-

dary layer separation point, it is apparent that

so,

(2.2.13)

(2.2.14)

which is equivalent to the result obtained from the Kelvin-Helmholtz

theorem.

An important consequence of boundary layer separation may be

noted by applying the dynamic free surface condition to the wake sur-

face extending from the separation point. Let points A and B be

located an infinitesimal distance ahead of and behind the boundary

layer separation point. The pressure difference across the two points

must be zero which results in

14
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As in Eqn. 2.2.11, we may write

ars
—=
at

+$: - v+;) ●

Substituting into Eqn. 2.2.15 yields

OB a~A as
—=-—–+T”-”at at

(2.2.15)

(2.2.16)

(2.2.17)

Therefore, it is noted that behind the boundary layer separation

point, there is an additional increment to 3$/3t equal to the rate of

vorticity shedding from the separation point.

The same observation may be made by considering the rate of

change of the potential jump across the trailing edge as described by

Eqn. 2.2.13 which may be rewritten as

(2.2.18)

For the case of a steady stalled airfoil, the average rates of change

of rb and $% are zero, yet the d$u/dt is nonzero due to the vorticity

being shed from the boundary layer separation point.

The additional contribution to 3$/3t in the separated region is

important In the calculation of the pressure distribution around the

airfoil. Without its inclusion, a

cated across the two wake surfaces

drag will result.

2.2.3 Solution Method

finite pressure jump will be indi-

and erroneous values of lift and

For the potential flow model described in the previous sections,

the governing equation is the linear Laplace equation,

v2@,t) = o

17



Through an application of Green’s theorem (see Appendices C and D), it

may be shown that any solution to Eqn. 2.2.18 may be represented by

integrals of sources and doublets distributed over the boundaries of

the flow. Furthermore, a unique solution may be obtained utilizing

surface distributions of doublets alone. The Green’s function solu-

tion to Eqn. 2.2.18 is then given by

(2.2.19)

where a = o(~,t), doublet strength distribution

on S(i,t) = O.

A+w = A$w(~,t), doublet strength distribution

on W(?,t) = O.

+
u = surface normal on S(~,t) = O or W(~,t) = O.

R = }-~
+

, vector distance between the “field” point, r,

and *’source’*point, ~.

The body and wake doublet strength distributions, u and A+w,

respectively, must be determined through application of the boundary

conditions. It should be noted that the infinity condition is

inherently satisfied by Eqn. 2.2.19.

The surface tangency condition requires that the normal relative

velocity component between the fluid and solid surfaces vanish on the

surfaces. This condition may be expressed as

18



(2.2.20)

on S(l,t)

Substitution of Eqn. 2.2.19 into Eqn. 2.2.20 yields

(2.2.21)

on S(l,t) = O

Eqns. 2.2.21 provides a singular Friedholm integral equation of

the first kind for the unknown surface doublet strength distributions.

Once it has been solved subject to the remaining boundary conditions,

the potential at any point in the flow field may be determined by Eqn.

;!.2.19. The solution is complicated, however, by the dependency upon

the wake surface locations which are also unknown.

Consider the following approach to the solution of Eqns. 2.2.21:

1)

2)

At t = O, let the body be started impulsively and the

freestream velocity brought instantaneously to ;=. For this

instant, there is no wake and no contribution to the

downwash on the body by the wake. A unique solution for

the potential field may then be found through a simultaneous

application of the surface tangency condition (Eqn. 2.2.21)

and the Kutta condition.

Over the next infinitesimal time increment, assume that the

resulting potential (and veloclty) field are unchanged. As a

result, the wake surfaces generated during that time increment

19



3)

4)

5)

may be predicted through the application of the Kutta and

boundary layer separation conditions.

For the next time step, the integrals over the wake surfaces

of Eqns. 2.2.21 are known and the equation may once again be

solved with the Kutta condition for a.

Again assuming the velocity field to remain constant over the

time increment, the new locations of the existing wake

surfaces may be calculated through application of the dynamic

and geometric free surface conditions. In addition, new wake

surfaces are shed as before.

In this way, the solution proceeds in a step-by-step manner

towards the steady state or periodic final result.

2.2.4. Problem in Body Fixed Coordinates—— —

In the previous sections, a mathematical representation of the

general motion of a finite number of rigid bodies through an ideal

fluid was described. All expressions were made with respect to an

inertial, fluid fixed reference frame, i.e., translating at ;m.

We now assume that the body is rigid. As a result, the func-

tional representations of the body surface is independent of time

when given with respect to a body fixed coordinate system. This @lS

the fact that the

dependent suggest

problem to a body

Consider the

governing Laplace equation is not explicitly time

that it would be

fixed coordinate

motion of a body

advantageous to transform the

system.

through an ideal fluid as shown in

Fig. 2.2.5. We denote by K. or the subscript ‘o’, operations with

respect to the fluid fixed frame. A K or the absence of a subscript

20



Figure 2.2.5 Inertial and Body Fixed Reference
Frames
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indicates operations with respect to the body fixed frame. These

coordinate systems are illustrated in Fig. 2.2.5. It should be noted

that the translational velocity, U, of the K. frame and the transla-

tional and rotational velocities, UB and WB, of the K frame are taken

with respect to an inertially fixed frame.

To establish the connection between the two coordinate systems,

note that the position vectors for an arbitrary fluid fixed point P

for the two reference frames are related by

+
r = >(;o,t)

(2.2.22)

= [T]{;o-+rKo(t)}

and [T] = coordinate transformation matrix, i.e., for any vector ~o>

{A} = [T]{AO}.

Consider the disturbance potential field, @. Since the value of

a scalar field is independent of the reference frame, we may write

$O(:o,t)=At) (2.2.23)

Similarly, for the pressure field and body surface function, it

follows that

Po(;o,t) = P(;,t) (2.2.24)

So(;o,t) = s(;). (2.2.25)

In Eqn. 2.2.25, advantage has been taken of the fact that S is inde-

pendent of time with respect to the body fixed reference frame.

22



Since the gradient operator defines a vector field, gradients from

the K. and K frames may be related by

{V} = [T]{VO} (2.2.26)

Then for the Laplacian,

V2 ={V}T {v}

or

V2 = {VO}T [T]T [T] {Vo}

(2.2.27)

For the particular case of a transformation matrix, it may be shown

that

[T]-l = [T]T

so

[T]T [T] = [1].

Eqn. 2.2.27 then becomes

V2 = {vo}T {Vo}

or (2.2.28)

V2 =V2
o“

To relate the time derivatives for the two reference frames, we

write

a at a +&.v—= ——
ato atOat at

But since time is unchanged by the transformation,

at_l
ato

and (2.2.29)

a a_+a&v—.
at at at

23



The second term of the right hand side of Eqn. 2.2.29 is the

contribution to the temporal variation due to the motion of the K

frame relative to the K. or

the convective contribution

fact that it represents the

variation of r with respect

fluid fixed frame. In a sense, it is like

to a substantial derivative due to the

change of a property Q(r) resulting from a

to the fluid fixed reference frame.

Eqn. 2.2.29 may

a
ato

be rewritten as

= ~+ [bm-q+t) - LB X;]”v (2.2.30)

where the relative velocity between the K and K. frames has been writ-

ten as the difference of their velocity with respect to the inertially

fixed frame.

Recall from the previous section that the governing equation for

the potential flow model is

V:+o(:o,t) = o (2.2.31)

where the subscripts ‘o’ indicate operations with respect to the fluid

fixed frame. Substitution of Eqns. 2.2.23 and 2.2.28 into Eqn. 2.2.31

yields

v2$(;,t) = o (2.2.32)

which is the governing equation for the body fixed problem.

The surface tangency boundary condition was written for the fluid

fixed frame as

24



1
M#o,t) Voso(:o,t)

+Vo+o(;o,t) “
Voso(;o,t) at

VJ&o,t)

. 0

(2.2.33)

on So(lo,t) = O.

Substitution of Eqns. 2.2.23, 2.2.25, and 2.2.30 into Eqn. 2.2.33

yields

1 ~as(;)
~+ [iim-fiB(t)4B(t)x;]*vs(;)}

Vs(;)

+Vl$l” Vs(;) = o

Vs(;)

or

?!$&A=- [3m-3B(t)-LB(t)x; - ~] on S(l) = O
an(l)

(2.2.34)

where n(;) = outward normal on S(;) = O with respect to the body

fixed frame.

An expression for the pressure field in fluid fixed coordinates

was given previously by

a~o(lo,t)
P(:o,t) = Pm - p{ at +; [vo+o(~o,t)]?.

This may be rewritten in body fixed coordinates as

P(;,t) = pm_p{aO(~,t)
at

+ [im-fiB4B(t) x;] ● V+(l,t)

(2.2.35)

+;[v$(;,t)]z} .
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2.2.5 Numerical Solution ~ the Collocation Method

We now wish to develop a technique for solving Eqn. 2.2.34 with

the aid of a digital computer. For this purpose, the blade and wake

surfaces are descritized into MB and ~(t) elements as shown in Fig.

2.2.7. Over each surface element, the unknown doublet strength

distribution is approximated with a uniform distribution of unknown

magnitude. The centroids of the surface elements are identified as

control points at which the surface tangency condition is satisfied

exactly.

In addition to the surface tangency condition, a Kutta condition

must be applied at the

potential distribution

all forms of the Kutta

from the trailing edge

trailing edge to uniquely specify the unknown

(see Appendix A). The essential requirement of

condition is that the flow proceed smoothly

of the airfoil. Actual enforcement of the con-

dition may be accomplished by specifying the direction of wake

shedding, matching the upper and lower surface trailing edge pressures

or by matching velocities if a steady flow. Whatever the method of

application, the Kutta condition provides an additional boundary con-

dition which serves to represent the essential consequence of viscous

boundary layers in a real fluid flow.

Consider the case of an isolated body descritized into M elements

as shown in Fig. 2.2.7. We now have M surface tangency conditions plus

the Kutta condition but only M unknown doublet panel strengths, oi so

that the problem as stated is overspecified. Either an additional

singularity of unknown strength must be added to the flow or the

number of boundary conditions must be reduced. The latter approach

has been followed in the present Investigation.
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Rather than applying surface tangency conditions on both the

upper and lower surface elements at the trailing edge, the flow is

required to be tangent to the trailing edge bisector as shown in Fig.

2.2.8. In this way, the Kutta condition is satisfied as well as

approximate forms of the surface tangency conditions on the trailing

edge elements. Therefore, the three boundary conditions at the

trailing edge are replaced by a single one and the number of boundary

conditions is M-1. A final condition on the unknown doublet strengths

is found by assuming that the potential jump across the trailing edge

has equal contributions from the upper and lower elements, i.e.,

With these approximations, the surface tangency condition of Eqn.

2.2.21 may be rewritten in matrix format as

[A]{u} = {D} - [AW]{A$W} (2.2.36)

where A =
i,j

normal induced velocity coefficient at the ith

control point due to the jth source element

+ th
‘i

= position of the f control point

Ej =

.th
position of the J source element

+ th
‘i

= surface normal at the i control point

+ .th

‘j
= surface normal at the J source element
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and

Uj = strength of the

Di = normal downwash

jth doublet el~ment

at the ith control point

due the freestream velocity and motion of S

Aw
th

= normal induced velocity coefficient at the i
i,j

.th
control point due to the J wake source element

A$; =
th

strength of the j wake doublet element.

Recall that the body and freestream are started impulsively such

that the wake doublet strengths, {A@w}, are known for that instant and

all later ones. Therefore, it is convenient to define

{B) = total downwash array

= {D} - [AW]{A$W}

so that Eqn. 2.2.36 becomes

[A]{o] = {B} (2.2.37)

We may then solve the linear equation set for the body surface

doublet distribution, {u}, i.e.,

{0} = [A]-l {B}.

It should be noted that the coefficient matrix, [A], does not

change with time since the body has a fixed geometry.

(2.2.38)

Once the

potential for

expression of

unknown doublet strengths have been determined, the

any b points in the field may be found from a matrix

Eqn. 2.2.19,

{Ob} = [Cb]{a) + [Cf]{A@w} .

30
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2.2.6 Evaluation of the Influence Coefficients.—

As noted in the previous section, the representation of a general

doublet distribution on a

permits the definition of

coefficients. These were

1

surface element by a uniform distribution

normal velocity and potential influence

given by

9

and C.
J

~ potential influence coefficient at ;b due to the

.th
J source element

(2.2.40)

(2.2.41)

The direct evaluation of the integrals of Eqns. 2.2.40 and 2.2.41

may be avoided if we take advantage of the analogy between surface

distribution of doublets and vortices. It may be shown (see Appendix D)

that a general distribution

distribution of vortices on

sheet at any point is equal

of doublets may be represented by a

the surface. The strength of the vortex

to the gradient of the doublet strength

with vortices normal to that gradient. For the particular case of a

surface element having a uniform doublet distribution, an equivalent

representation is that of a vortex ring on the boundary of the element

with strength equal to the element doublet strength. This iS

illustrated for a two-dimensional surface element in Fig. 2.2.9.

We may determine the influence coefficients by evaluating the

vc~rtex equivalents of the doublet elements. Referring to Fig. 2.2.9,

the potential influence coefficient may be written as
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01 ‘2-—
Cj=fi z~

(2.2.42)

++ ++

-l(l”ey
= ~[tan ● )-

tan-l ‘2”ey
(+ )1

“:
‘1 x

●-L
‘2 x

For the normal velocity influence coefficient, we may write

(2.2.43)
++ ++
ezxr ezxr

~T[+-+l”:i=—

‘1 ‘2

It should be noted that all of the vector quantities of Eqns. 2.2.42

and 2.2.43 are given with respect to the element coordinate system

illustrated in Fig. 2.2.8.

2.2.7 Calculation of Airloads—

In Appendix A, it is shown that the pressure at any point in

irrotational, ideal flow may be found with the unsteady Bernoulli

equation,

an

P = Pm-p{% +;(VQ)2 }. (2.2.44)

One should recall that Eqn. 2.2.44 is valid for a fluid fixed coor-

dinate system. In Section 2.2.4, the equivalent expression for a body

fixed coordinate system was written as

(2.2.45)
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Eqn. 2.2.45 may be rewritten in a more convenient form for

numerical computation by expressing V+ as

(2.2.46)

where V z surface gradient. In addition, recall that the surface
s

tangency condition was written in body fixed coordinates as

ao
—= -(im-iJBqBx:)”:.
an

With Eqn. 2.2.46, Eqn. 2.2.45 may be expanded to yield

P = Pm-p{% + (8m-6B4Bx:)*vs@

By substituting Eqn. 2.2.47 into Eqn. 2.2.48, we arrive at

P = Pm-p{% + (fim-fiB<Bx;)*vs@

Eqn. 2.2.49

gradient of

(2.2.47)

(2.2.48)

(2.2.49)

+ &Jo2}.

provides the advantage of reducing the computation of the

the distribution potential to the computation of its sur-

face gradient. With Eqn. 2.2.49, the airloads on the body surface

may be calculated by integrating the pressure force vector components

over the surface.
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2.3 The Boundary Layer Model— —

There were several general requirements which had to be met by the

boundary layer model used in this work. The model had to be able to

predict both laminar and turbulent portions of the boundary layer flow

as well as the location of the transition region between them as indi-

cated in Fig. 2.3.1. Unsteady effects had to be an intrinsic part of

the formulation since they have been shown to contribute to stall

delay in a significant manner [see McCroskey and Phillippe (1975)].

The boundary layer model had to also be capable of making reasonably

accurate predictions in the vicinity of separation so that appropriate

separation criteria could be applied. In addition, calculation times

had to be reasonable.

2.3.1 Overview of Unsteady Boundary Layer Codes— — —

Several investigators have made extensive calculations using

unsteady turbulent boundary layer codes in recent years, e.g., Nash,

Carr, and Singleton (1975); Dwyer and McCroskey (1971); Telionis

(1975); Daneshyar and Mugglestone (1978); and Lyrio, Ferziger, and

Kline (1981). Notable among the codes which have been developed are

the several variations of a differential boundary layer model due to

Nlash, et al. (1978). This model met most of the general require-

ments in that it predicts both laminar and turbulent flow, includes

unsteady effects, and is capable of predicting flow in the vicinity of

separation. In addition, the model has been applied to dynamic stall

problems and has been shown to give good results according to

McCroskey and Phillippe (1975). While the computational time required
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for this method is not excessive in comparison with other differential

boundary layer codes, it was felt that an integral technique might be

more appropriate due to the large number of boundary layer calcula-

tions required.

Only very recently have integral techniques for unsteady tur-

bulent boundary layers appeared in the literature. The method due to

Daneshyar and Mugglestone (1978) utilizes the unsteady momentum

integral equation along with the entrainment equation and a skin-

friction equation derived from the Coles (1956) velocity profile.

Other assumptions and linearization which are a part of this for-

mulation restrict its use to cases of small amplitude periodic fluc-

tuations of the freestream. Very recently, however, Lyrio, Ferziger,

and Kline (1981) formulated and tested a similar integral technique

which gives excellent results for the steady turbulent flows of

Tillman, Herring and Norbury; Stratford, Samuel and Joubert [see Coles

and Hirst (1968) for these four flows]; Kim (1980); Simpson and

Strickland (1977); and Wieghardt [see Kim (1980)]. More importantly,

this method predicts the unsteady turbulent boundary layer data of

Karlson (1959), and Houdeville, et al. (1979), and compares well with

the finite difference methods of McCroskey and Philippe (1975), and

Singleton and Nash (1974) while being an order of magnitude faster.

2.3.2 Present Boundary Layer Model— —

The turbulent boundary layer analysis used in the present work is

essentially that due to Lyrio et al. (1981). This method gives good

results prior to actual separation of the boundary layer as evidenced

in Figures 2.3.2 and 2.3.3. Predictions near separation as well as
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downstream of separation tend to be very sensitive to freestream velo-

city gradients as evidenced by the present authorfs experience with

the analysis. The formulation for the laminar portion of the boundary

layer is based upon an extension of Thwaites method [see Cebecci and

Bradshaw (1977)]. The major extension of Thwaites method is the

inclusion of unsteady terms in the momentum integral equation.

The unsteady momentum integral equation which is valid for both

laminar and turbulent flow can be written as

(2.3.1)

where Ue, e, 6* and Cf are the freestream velocity, momentum

thickness, displacement thickness, and friction factor, respectively.

For the laminar formulation, a pressure gradient parameter, A, is

defined as

au au
A =&R(G+~4)

coax ueat
(2.3.2)

where ~ is the Reynolds number based on Ue and 0. In order to obtain

a solution to the laminar case a connection between Cf/2, O, and 6*

must be made. The following correlations were obtained based on wedge

flow solutions which make this connection:

Cf—=
2

H=

A =

1.91 - 4.13A

R:

(0.680 - 0.922A)-1

0.325 - 0.130AH2

(2.3.3)
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Here, H is the usual shape parameter, 6*/El,A is the blockage factor

*
8*/6, and R: is the Reynolds number based on Ue and 6 .

The turbulent boundary layer model of Lyrio, Ferziger, and Kline

utilizes the entrainment equation given by

la——
ue ax ‘Ue (6 - 6*)] = F

(2.3.4)

The entrainment function F is calculated from the following auxiliary

equations

dF—=
dx

~ (Fe-F)

Fe = 4.24 Ke(—
.916

~:A)

(2.3.5)

Ke = .013 + .0038e
-B/15

6
(S*dP.——
-cWdx

where tw is the wall shearing stress and dP/dx

pressure gradient. Shape factor relationships

following general velocity profile.

is the streamwise

are obtained from

u
1 + VTln(~)

2 ‘my—.
Ue

- VB Cos (~)

rCf‘T =~~(sgn Cf/2)

the

(2.3.6)

VB = 2(A-VT)

Cf ‘w—=
2

pu:
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where U is the velocity in the boundary layer at a distance y from the

wall and p is the fluid density. The skin friction law is given by

Cf _ ●051 ~_2A
2 11”732($”268 sgn (l-2A) (2.3.7)

2.3.3 Transition and Separation

Transition of the laminar boundary layer (found near the forward

stagnation point of the airfoil) to a turbulent boundary layer can be

triggered in one of several ways. In the first case, a separation

bubble can be formed near the leading edge which consists of a laminar

separation and turbulent transition with subsequent reattachment. In

some cases the shear layer may not reattach. In the present model the

streamwise extent of the separation bubble is assumed to be small and

a turbulent boundary layer is assumed to begin at the point of laminar

separation given by a value of H > 4.0. A model for the separation

bubble has been proposed and tested by Roberts (1980) and Arena and

Mueller (1980) and should eventually be included in the boundary layer

code. In the absence of a laminar separation bubble, transition may

occur by virtue of laminar instabilities which can be predicted using

the criteria due to Cebecci and Smith (1974)

R
8tr

= 1.174 (1 + ~~’400) Re~”46
x
tr

tr

(2.3.8)

Here ~ and Rex are Reynolds numbers based on the momentum thickness

and distance from the forward stagnation point, respectively. As

pointed out by McCroskey (1975), this latter type of instability

occurs only at high Reynolds numbers and low angles of attack.
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Separation criteria associated with the unsteady boundary layer

is more complicated than for the steady case in which it is generally

i~ssumed that separation occurs at a position of zero wall shear

stress. For example, it is evident that no separation occurs from a

flat plate oscillating parallel to its own surface in an otherwise

still fluid even though the wall shear stress goes to zero twice

during each cycle. Several investigators have examined the Moore

(1958)-Rott (1956)-Sears (1956) model and have concluded that if pro-

perly interpreted, it yields an unsteady boundary layer separation

criteria. Basically, the model requires that the shear stress must

vanish at some point within the boundary layer and, in addition, the

velocity relative to a coordinate frame moving with the separation

point must vanish at the same location. This criteria is also con-

sistent with the findings of Nash and Patel (1975) in that they

c:onclude that separation will occur if and only if the typical

reversed flow velocities (which their model calculates) exceed the

rate of penetration of the reversed flow into the oncoming boundary

layer. An alternate separation criteria is based on monitoring any

rapid increase in the various boundary parameters such as the displace-

ment thickness 6* or the v component of velocity normal to the sur-

face. Nash and Patel (1975), in fact, use a crude criteria to enable

them to locate the approximate location of separation by noting the

region where 6*/C > 0.1 where C is the airfoil chord length. In the

work of Lyrio, Ferziger, and Kline the “fully developed*’ separation

point is found to occur when A = 0.5. The “intermittent” separation

point occurs prior to the “fully developed’” separation point. The

intermittent separation point occurs when
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2 -A
H>~ (2.3.9)

according to the Sandborn (1961) correlation. the intermittent

separation point is much more reliably predicted than the fully devel-

oped separation point and was thus used as the point of introduction

of the nascent vortex in the present work. The exact point in the

separation region at which the nascent vortex should be introduced for

optimum results is presently unknown. Further study regarding this

detail should be undertaken.

2.3.4 Numerical Solution of Boundary Layer Equations—

Numerical solutions are obtained in the present model using an

explicit finite difference formulation of Eqn. 2.3.1. For the laminar

formulation equations 2.3.1, 2.3.2, and 2.3.3 can be cast in the

following form:

~a6*_B
ax

(2.3.10)

This equation is integrated over an interval Ax using a fourth order

Runge-Kutta method to yield the variation of 6* as a function of x at

a given time step. Time derivatives in the coefficient B are obtained

from backward

obtained from

constant over

Ax is further

differences while derivatives with respect to x are

forward differences. These derivatives are held

the integration interval Ax. The integration interval

subdivided into at least eight subintervals. For the

turbulent formulation using equations 2.3.1, 2.3.4, 2.3.5, 2.3.6, and

2.3.7 a pair of simultaneous equations results which can be symbolized

as:
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(2.3.11)

A fourth order Runge-Kutta method is used to yield simultaneous values

of 6* and A as a function of x.

In the work completed to date the time dependent terms in the

code have been suppressed such that the solution obtained is of a

quasi-steady nature.

45



3. CALCULATION RESULTS

Contained in the following sections are calculation results

illustrating the current capability of DYNA2 to predict steady and

unsteady, attached flows and steady, separated flows over two-dimensional

airfoils. Possible enhancements to the model which would improve the

accuracy of those calculations are outlined.

3.1 Steady, Attached Flows

Figures 3.1.1 through 3.1.4 are representative of the capability of

DYNA2 to predict the pressure distributions on two-dimensional bodies

resulting from steady flows without boundary layer separation. The calcu-

lation results presented are for the cases of a cylinder and typical tur-

bulent and laminar airfoils. The model does an excellent job for the cases

of the cylinder and turbulent airfoil but is less successful for the lami-

nar airfoil.

Figures 3.1.3 and 3.1.4 illustrate calculation results for the same

laminar airfoil at identical angles of attack. The only difference in the

two calculations is a slight repositioning of the doublet panels near the

nose. The sensitivity of the calculations to this modification is a con-

sequence of the use of flat, uniform strength doublet panels as the basic

surface modeling elements. Since only one degree of freedom (the doublet

panel strength) is allowed for each element by this representation, there

can be only one boundary condition enforced on each element. The choice

made for DYNA2 is a surface tangency condition applied at the centroid of

the elements. A higher order doublet strength distribution on the panels

would allow extra degrees of freedom which could be utilized to enforce
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adtiitional boundary conditions. These might include multiple surface

tangency conditions on individual elements and a requirement for continuity

of the surface fluid velocity between adjacent panels.

The use of planar surface elements causes the centroids of the elements

to actually be below the true curved airfoil surface in most cases. For

turbulent airfoils and the majority of the surface of laminar airfoils,

th:k presents no problem since the deviation will be small if the curvature

is small. However, difficulties can arise near the leading edge of laminar

airfoils where the radius of curvature is typically small and the rate of

change of fluid velocity with respect to a surface coordinate is large.

Many, very small elements are required to adequately model regions such as

th:Lsand there is little tolerance in

could be improved by utilizing curved

sely follow the true airfoil surface.

One disadvantage of using curved,

their positioning. The situation

doublet panels which would more clo-

multiple degree of freedom doublet

panels as the basic surface modeling element is that the corresponding

influence coefficients can not be evaluated in closed form. Their calcula-

tion through a numerical integration scheme would increase the computation

time requirements significantly as compared to the planar, uniform strength

elements. However, on the basis of the current calculations, it appears

that the more complex elements are necessary to achieve a satisfactory

degree of flexibility and reliability in calculations for any arbitrary

airfoil which one might wish to consider.

3.;2 Steady, Attached Flows

Figures 3.2.1 through 3.2.4 are typical of calculations for non-

separated flows over airfoils involved in unsteady motions. Figure 3.2.1
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presents a comparison between the computed and exact potential jump distri-

butions over an impulsively started flat plate airfoil at the starting

instant. Figure 3.2.2 illustrates the subsequent development of the cir-

culation and lift.

Figures 3.2.3 and 3.2.4 present the results of calculations for a NACA

0015 airfoil oscillating in pitch. From Figure 3.2.3, it is noted that the

maximum lift leads the maximum angle of attack due to the apparent mass

effects. The sectional circulation, however, lags behind the angle of

attack as a result of the downwash produced by the vorticity in the wake.

The wake geometry produced by the oscillating airfoil motion is depicted in

Figure 3.2.4. It is felt that the prediction of realistic wake geometries

such as this will be an essential element in the eventual calculation of

the unsteady airloads on airfoils in dynamic stall.

3.3 Quasi-Steady, Separated Flows

Figures 3.3.1 through 3.3.3 illustrate the comparison between computed

and experimentally determined lift and drag curves for a NACA 0015 airfoil

at three Reynolds numbers. The boundary layer separation points for these

calculations were predicted on the basis of pressure distributions for

steady, nonseparated flows at equivalent angles of attack. The potential

and boundary layer calculations were not coupled In a step-by-step solution

procedure. The resulting variations of separation point location with

respect to angle of attack are illustrated in Figure 3.3.4.

From the figures, it is noted that the lift curves are predicted with

reasonable accuracy for the R = .665 * 106 and 1.27 * 106 cases and less
e

well for the R = .043 * 106 case. The loss of accuracy there is most
e

probably a consequence of the utilization of boundary layer correlations
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at Re below their range of applicability. It may also be noted that the

drag is underestimated at all three Reynolds numbers.

As was described in the previous chapter, a reduction factor iS uti-

lized in determining the rate of vorticlty shedding at the boundary layer

separation point. Since the value of a$/ot and pressure in the separated

region are directly related to the shedding rate, the reduction factor

strongly affects the calculated airloads. The reduction factor for the

illustrated calculations was chosen such that the best prediction of lift

at post-stall angles of attack was achieved. The resulting value was 0.5.

Unfortunately, this reduction factor value did not yield acceptable

accuracy for the drag coefficients.

It is expected that there exists a unique combination of the reduction

factor and separation point location that will yield satisfactory predic-

tions of both lift and drag. Figure 3.3.5 illustrates a slight modifica-

tion of the separation point versus angle of attack relationship for the

Re = .655 * 106 case. When used with a reduction factor of 0.55 instead of

0.5, the calculated lift and drag are significantly improved as illustrated

in Figure 3.3.6. A modification of separation point location such as that

in Figure 3.3.5 is likely to occur when the potential and boundary layer

routines are directly coupled. Figure 3.3.7 illustrates the calculated

~arated flow pressure distribution for a = 24°, R = .655 * 106. The
e

difference between this distribution and the nonseparated distribution

which was used in the boundary layer calculations is apparent.

In recent attempts to couple the viscid and inviscid calculations on a

step-by-step basis, unrealistically erratic movement of the boundary layer

separation point was predicted. This was a result of attempting to utilize
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an incomplete and inaccurate modeling of the viscid/inviscid interactions

in the immediate vicinity of the separation point. In DYNA2, the separa-

t:Lonprocess is represented by a surface of potential discontinuity ema-

nating from the boundary layer separation point. This wake surface

influences the pressure distribution and, hence, has a feedback effect on

the location of the boundary layer separation point. Therefore, the pre-

cise manner with which the wake surface is generated has a dramatic effect

on the boundary layer calculations and the airload predictions as a whole.

Additional development of DYNA2 in this area is needed.

Figure 3.3.8 illustrates a calculated wake geometry behind an airfoil

with boundary layer separation. The geometry is qualitatively as would be

e~cpected.
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4. DYNAMIC STALL EXPERIMENT

4.1 Objectives

The original

parallel with the

model DYNA2 which

present status of

not progressed to

motivation for pursuing an experimental

analytical study was to provide a means

is described in the previous sections.

investigation in

of verifying the

Unfortunately the

DYNA2 does not allow direct comparison since DYNA2 has

the point where the Darrieus flight path can be simi-

lated. Eventually, however, DYNA2 will yield predictions of Darrieus tur-

bine aerodynamic characteristics for which there are currently no available

experimental counterparts. While it is true that there is a large amount

of available experimental data for oscillating airfoils, there is also

a need for unsteady aerodynamic data specific to Darrieus turbines. The

experimental work described in the following sections represents a

significant beginning effort aimed at alleviating that need.

The experiments which were conducted were designed to determine the

characteristics of the unsteady blade loadings and dynamic stall phenomena

as they occur on Darrieus turbines. Similar experiments on airfoils

oscillating in pitch have revealed that the oscillation amplitude and

reduced frequency of the oscillations are key parameters in determining

the significance of the unsteady aerodynamic effects (see Martin, et al.,

19”74 and Cebecci and Smith, 1974). In the present work the tip-to-wind

sp(aed ratio is indicative of the oscillation amplitude and will be varied

over a limited range. The chord to radius ratio is indicative of the

oscillation frequency and will be fixed a a value of C/R = 0.25.
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4.2

will

General Test Setup— —

The general test setup is

be described only briefly

rotor with a NACA 0015 airfoil

with a depth of 1.25 meters, a

meters. Some testing was also

described by Strickland (1980) in detail and

herein. In general, a straight-one-bladed

was built and operated in a water tow tank

width of 5 meters, and a length of 10

done using a SANDIA 0015/47 airfoil. The

rotor blades extended to within 15 centimeters of the tank bottom. This

simple rotor appeared to be adequate for validating the major features of

the analytical model. The use of water as a working fluid greatly facili-

tates the ability to make relatively low frequency measurements while

working at appropriate blade Reynolds numbers. In addition, blade forces

and pressures are more easily measured. An airfoil chord length of 15.24

cm and a rotor tip speed of 45.7 cm/sec were chosen to yield a blade

Reynolds number of 67,000. Three towing speeds of 18.3 cm/see, 9.1 cm/see,

and 6.1 cm/sec were chosen to yield tip-to-wind speed ratios of 2.5, 5.0,

and 7.5, respectively. The rotor diameter was chosen to be 1.22 meters,

thus giving a chord to radius value (C/R) of

mid chord in all cases.

Data were acquired using the Mechanical

0.25. Blade attachment was at

Engineering Department HP9835A

desktop computer coupled to a multichannel HP6940B analog to digital con-

verter and a HP7225A plotter. The system is capable of acquiring analog

signals from an experiment at rates in excess of 1 KHz, which was quite

adequate in light of the rotor rotational speed of 0.12Hz. The synchroni-

zation of the rotor position for various runs was extremely important. The

rotor has a transducer (Waters Mfg. Analyzer APT 55) mounted on the main

shaft, which allowed the rotor angular position to be monitored and

recorded along with whatever other parameter was being measured.
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Calibration and input data for each run were stored on magnetic tape

cartridges which are compatible with the HP9835A. Each cartridge iS

capable of storing 256 K Bytes of information or about 128 K data points on

42 files.

4.3 Pressure Measurements——

Pressure measurements were made on both sides of the NACA 0015 air-

foil at five locations. The pressure ports were located at x/c values of

0.017, 0.042, 0.100, 0.360, and 0.810 at a uniform depth of about 30 cm

below the water surface. The pressure ports were connected to diaphram

pressure transducers (Validyne DP45-16) via copper tubing which was

inserted through the hollow cores of the blade. The diaphram pressure

transducers were connected to a Validyne demodulator unit (CD 18) which

converted the pressure signal into an analog voltage suitable for introduc-

tion into the HP data acquisition system. A schematic of the arrangement

is shown in Fig. 4.3.1.

The pressure measurements were made on one side of the airfoil and

then the other. The inner side denotes the surface closest to the axis of

rotation while the outer side denotes the side farthest from the axis of

rotation. At least five repetitive runs were made to check the repeatabi-

lity of the data.

Typical pressure data are shown in Fig. 4.3.2 for the inner and outer

surfaces at x/c = 0.10 as a function of rotor position. Multiples of 360

clegrees correspond to the nose of the foil pointing directly into the

flow. These data are the average of five runs and differ very little from

each individual run.
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Typical pressure coefficient distributions for the airfoil at two dif-

ferent rotor angles are shown plotted in Fig. 4.3.3. The pressure coef-

ficient in this case is defined by

P-Pm
c =
P 112PU:

where

Here the velocities UT and & are the blade

(4.3.1)

tangential speed and the

carriage speed (wind speed far from the rotor), respectively. The pressure

Pm is the static pressure at the depth below the surface corresponding to

the pressure taps. A set of Cp curves taken during the second revolution

are given in Appendix E for tip-to-wind speed ratios of 2.5, 5.1, and 7.6.

The normal and tangential forces can be obtained by integrating the Cp

curves. Since only ten data points are available, the results may contain

a reasonable amount of error. The integration was carried out using a

second order polynomial fit to three data points in the subregion of

integration. The results for the normal and tangential forces are given in

Fig. 4.3.4 and Fig. 4.3.5 respectively. The nondimensional forces F:
+

and F
t

are defined by

I
Fn

F: =
1/2pcut

(4.3.2)

F:
F; =

1/2p Cu:

where F~ and Ft
t

are the normal and tangential forces per unit blade

length.
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4.4 Strain Gage Measurements

Measurements of normal and tangential forces using strain gage instru-

mentation were performed for three tip-to-windspeed ratios of 2.5, 5.1,

and 7.6. Five repetitive runs were made to determine the repeatability of

the data. Tests were performed on both the NACA 0015 and the Sandia

0015/47.

The experimental arrangement for obtaining strain gauge data is shown

in Fig. 4.4.1. As indicated in Fig. 4.4.1 the two forces were measured

using strain gages located on a support mounted at the mid chord. Each

bridge was arranged so that it was only sensitive to the desired force.

The instrumentation consisted of eight 350 ohm strain gages making up

the two Wheatstone bridge configurations,

Calex model 176 amplifier, and a Krohnite

Vdc signal was applied across the bridge.

a 15 vdc Calex power supply, a

model 3343 low pass filter. A 15

As the bridge was strained the

voltage caused by the unbalanced bridge was measured. This output voltage

was amplified approximately 1000 times to increase the signal level into

the desired voltage range. The output signal from the bridge was passed

through a filter to low pass the signal below a cutoff frequency of 0.6 Hz.

This was necessary in order to eliminate extraneous mechanical noise at

about 2 Hz. Finally, the signal was introduced into the data acquisition

system.

The output voltages from the strain gage bridges El and E2 are related

to the blade forces by

Fn
= ‘lEl

4.4.1
Ft = C2E2

where C. and C. are calibration constants. It should be noted that El
1 A

includes the effect of the centrifugal force

Fc = mRlA)2
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where m is the mass of the blade. While this effect is relatively small it

was nevertheless subtracted from the equation for Fn. All cases were run

at the same angular speed (tip speed) and thus F= was constant for all cases.

Additionally, the strain gage data were corrected for finite aspect ratio

effects; i.e. induced drag and lift. The effective aspect ratio of the

blade was approximately 10.5 and therefore these corrections tend to be

small. Details of this correction are given by Graham (1982).

Strain gauge data for normal and tangential forces on the NACA 0015

rotor are given in Figures 4.4.2 and 4.4.3. Data for the Sandia 0015/47

rotor are shown superimposed on the NACA 0015 data in Figures 4.4.4 and

4.4.5.

4.5 Discussion of Results—

The experimental results which were obtained as a part of this study

cannot be compared to results from the DYNA2 model at the present time.

Some comparisons between the VDART2 model by Strickland (1981(a) and

1981(b)) can be made along with comparisons between the integrated pressure

force data and the strain gage data. In addition, the

pressure data can be used to yield some information on

stall on the airfoil.

4.5.1 Blade Forces

Typical non-dimensional blade forces are shown in

instantaneous

the progression of

Figures 4.5.1, 4.5.2

and 4.5.3. These forces are defined by Equations 4.3.2. A positive normal

force acts radially outward while a positive tangential force acts In the

direction of motion of the airfoil. Blade forces obtained from integrated

pressure measurements, strain gage measurements, and analysis are plotted

in these figures.
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Fair agreement exists for the normal force (F:) results between the two

experimental sets of data and the VDART2 analysis. The agreement between

the strain gage data and the analysis is typical of that noted previously

by Strickland (1981(a)) for two bladed rotors with C/R = 0.15.

The tangential forces (F:) are an order of magnitude smaller than the

normal forces and thus tend to be more difficult to measure. The agreement

between the integrated pressure measurements and the strain gage measure-

ments is seen to be reasonably

180°. The integrated pressure

good in the upstream region between 0° and

measurements typically tend to produce much

larger values of F; than do the strain gage measurements in the region of 180°

to 360°. The reason for this is presently not well understood. The VDART2

analytical predictions when compared with the strain gage data are again

typical of those noted by Strickland (1981(a)). The peak value of F:

predicted in the upstream region for a tip-to-windspeed ratio of 2.5 tends

to be high in comparison to the strain gage measurements. This discrepancy

can be traced to an inadequate dynamic stall model in the VDART2 analysis.

Several things can be said with regard to the accuracy of the various

force data. The strain gage measurements appear to yield the best results

in that the data are smooth and vary in a continuous fashion from one cycle

to the next. This is readily seen, for instance, by comparing Figures

4.3.4 and 4.3.5 with 4.4.2 abd 4.4.3. The strain gage data are also quan-

titatively similar to strain gage data taken previously by Strickland

(1982(a)) for slightly different cases. The strain gage data are subject

to error due to aspect ratio corrections which were only approximately

made in the present work. In addition, some error may have been introduced

due to minor tangential accelerations of the blade caused by play in the

drive train. These sources of error are not considered in the indicated

error bars. The integrated pressure data, on the other hand, is subject to

errors associated with local static pressure variations due to small
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vertical displacements of the blade as it moves through the water. This

change in reference pressure affects the normal force since the blade was

run once in each direction through the tow tank to obtain pressures on both

sides of the afrfoil, The numerical integration procedure used as well as

the number of pressure taps can also significantly affect the integrated

pressure results. In the present work the number of pressure taps may not

have been adequate. Another source of error which can be significant at

high tip to windspeed ratios is blade toe-in or toe-out. A toe-in or out

c~f5 degrees will, for instance, change the magnitude of Ft by about 2.5 at

a tip to windspeed ratio of 7.6.

In summary, the integrated pressure measurements do not yield suf-

ficiently accurate tangential force data and should be improved by elimi-

nating some of the sources of experimental error. The normal forces

obtained from integrated pressure measurements are, on the other hand, of

fair quality.

4.5.2 Pressure Data

In this section the pressure data are analyzed to extract information

concerning the phenomenon of dynamic stall. The data indicate that dynamic

stall occurs primarily at the lowest tip-to-windspeed ratio of 2.5

although some stall may occur at the tip-to-windspeed ratio of 5.1 The

data shown in Figures 4.5.4-4.5.10 obtained at a tip-to-windspeed ratio of

2.5 during the second revolution of the NACA 0015 blade. The data pre-

sented in this section are the result of a single run to avoid any

averaging of the pressure pulse moving across the airfoil. The non-

dimensional pressure coefficient is defined by equation 4.3.1.
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As seen in Figure 4.5.4, at a rotor angle of 11O.1° there is a flat-

tening of the C curve over the aft inner surface of the airfoil indicating
P

separation. Simultaneously the suction peak begins to decrease in magni-

tude. At a rotor angle of 116.8° the angle of attack is approximately 23°

and the airfoil appears to be fully stalled over the inner surface. In the

vicinity of this rotor angle it is believed that a vortex is shed at the

nose and begins moving along the surface of the airfoil. At a rotor angle

of 123.8° this vortex appears to be passing through the vicinity of x/C =

0.36 and has significantly affected the pressure on the surface of the air-

foil at this location. The airfoil remains in a stalled condition until a

rotor angle of approximately 150°. At this point the flow reattached as

indicated by the slight suction over the nose of the airfoil as shown in

Figure 4.5.5 at a rotor angle of 152.8°.

Figures 4.5.6 and 4.5.7 show the Cp
curves at rotor angular posi-

tions where the outer surface of the airfoil is experiencing stall.

Separation of the flow over the aft portion of the airfoil appears to begin

at a rotor angle of 264.9°. At a rotor angle of 271.9° the angle of attack

is approximately -23” and the blade is fully stalled over the outer sur-

face. As in the case of the inner surface stall described above, a vortex

is shed at the nose of the airfoil and begins moving along the surface.

The effect of this vortex on the pressure tap located at x/C - 0.36 may be

seen at a rotor angle of 279.4°. The flow appears to have nearly reat-

tached at a rotor angle of 300.4°. However, the Cp value at the x/C loca-

tfon of 0.81 indicates a strong pressure disturbance probably due to the

vortex shed at the onset of stall.

Figures 4.5.8 - 4.5.10 show the effect of angle of attack on the

pressure coefficient. The bars indicate suspected regions of stall. In
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Figure 4.5.8 the maximum value of the pressure coefficient over the first

three pressure taps is plotted versus the rotor position. The Cp values

on the inner surface increase with increasing angle of attack until dynamic

stall occurs. At this point, a dramatic loss of suction is observed until

the flow reattaches. This effect is also observed in the region of outer

surface stall. Figure 4.5.9 shows the effect of dynamic stall on the

pressure coefficient at x/C = 0.36. The abrupt increase in the magnitude

of the pressure coefficient in the regions of stall indicates passage of a

vortex through this vicinity. This phenomenon is observed in both regions

of stall.

A comparison of Figures 4.5.9 and 4.5.10 indicates a time delay bet-

ween the effect of the moving vortex on the pressure coefficient at x/C

locations of 0.36 and 0.81. The motion of this vortex can also be seen in

figures 4.5.4 through 4.5.7. From these figures it can be seen that the

vortex moves with a nearly constant velocity toward the trailing edge of

the airfoil at about 30% of the airfoil speed (rotor-tip-speed) or in other

words the airfoil moves about 3.5 chord lengths while the vortex moves from

the nose to the trailing edge.
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5. CONCLUSIONS and RECOMMENDATIONS

In this chapter, a summary of the work performed is presented followed

by a list of conclusions. Also, recommendations for future work are

discussed.

5.1, Summary of the Analytical Study——

The long-term goal for the present investigation is the development of

a numerical model of dynamic stall as it occurs on Darrieus turbines. The

current project has produced a numerical model theoretically capable of

accomplishing this. The model is capable of predicting, with reasonable

accuracy, steady and unsteady flows over aifoils with attached boundary

layers and quasi-steady, separated flows.

The principal difficulty yet to be overcome before calculations of

unsteady, separated flows can be made is the coupling of the viscid and

inviscid calculations on a step-by-step basis. DYNA2 must incorporate this

feature before any attempt can be made to simulate a dynamically stalled

airfoil.

Of lesser importance is the issue of the basic surface modelihg element.

If higher order curved panels are utilized, then significantly higher com-

putation costs will be incurred. Without their adoption, the DYNA2 will

lack the reliability and generality needed of an aerodynamic design tool.

It is suggested that the current planar elements be preserved during the

continued development of DYNA2. The incorporation of advanced panel ele-

ments can be made during the final refinements.
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5.2 Summary of the Experimental Investigation——

The primary purpose of the investigation was to obtain instantaneous

pressure distributions which are characteristic of the Darrieus turbine.

In addition, measurements of transient aerodynamic blade forces were made

using strain gage instrumentation.

From the measurements, it is apparent that dynamic stall is prevalent

at a tip-to-windspeed ratio of 2.5. No stall was observed at tip-to-

windspeed ratios of 5.1 and 7.6.

At the tip-to-windspeed ratio of 2.5, dynamic stall occurs over the

inner surfaces at rotor angles of approximately 100° < Q < 140°

corresponding to angles of attack of 20° < a < 23°. Dynamic stall over the

outer surface occurs at rotor angles of approximately 265° < (3< 290°

corresponding to angles of attack of 18° < a < 23°.

Boundary layer separation appears to proceed from the trailing edge to

the leading edge. This is accompanied by the shedding of a vortex at the

nose and the subsequent movement of the vortex over the stalled surface.

The vortex moves toward the trailing edge at about one-half the airfoil

speed.

For future experimental studies, it is recommended that the number of

pressure taps be doubled and that additional probes be located on the oppo-

site side of the airfoil.
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APPENDIX A

FUNDAMENTALS OF POTENTIAL AERODYNAMICS

As an aid to understanding the unsteady aerodynamic solutlon

method described in the preceding chapters, a brief introduction to

the fundamentals of low speed aerodynamic theory will now be given.

Particular attention will be directed to the somewhat subtle aspects

of lifting potential flow theory. Most of the theoretical relation-

ships will be stated without proof. Their physical significance will

be emphasized, however, and references given where the derivations and

additional discussion may be found.

A.1 The Governing Equations

We are concerned with finding an Eulerian or “field” description

of the motion of an ideal fluid through which one or more bodies move.

An idea’1fluid is defined as one that is inviscid, homogeneous, and

incompressible. These assumptions are compatible with the physical

realities of low speed aerodynamics.

The objective is to determine a set of governing equations which

specify the relationship between the unknown vector velocity and sca-

lar pressure fields. With these relationships and properly specified

initial and boundary conditions, the unknown fields may be determined.

The basis for these equations are the natural laws of conservation of

mass and momentum.

Newton’s second law of motion states that at any instant, the rate

of change of momentum of any mechanical system is equal to the force

acting on it at that instant. This requirement is described by
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Eulerts equation (see Kararncheti, pp. 175-190);

&(p?i) = pi - VP

or

+

P{++ [tf”v]ii}= p; - VP

body
mass x acceleration =

+ pressure
force force “

Conservation of mass requires that the mass of an infinitesimal

fluid element be constant. Since the fluid is incompressible, the

mass per unit volume is a constant and it is sufficient to require

that the velocity field not diverge. This is expressed by

v“;= o.

The vector conservation of momentum requirement provides three

nonlinear equations, while the continuity equation yields a linear

fourth. The simultaneous solution of these is sufficient to determine

the unknown velocity components and pressure. The actual determina-

tion of that solution is quite difficult in most cases, however, due

to the nonlinearity of the momentum equations.

A.2 Irrotational Motion

The Helmholtz theory of vortex motion states that in the motion of

an ideal fluid through an irrotational force field, the material rate

of change of the circulation around any fluid surface element is zero.

This is expressed as (Karamcheti, p. 239)
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Kelvinfs circulation theorem provides a slightly stronger state-

ment of the same concept; in the motion of an ideal fluid through an

irrotational force field, the circulation around a closed fluid curve

remains constant for all time. This theorem is expressed as

(Karamcheti, p. 242)

Application of Stokes

f
$i”$s =Q-r = o.

Dt C

theorem on rotation to the Kelvin-Helmholtz

circulation theorem yields a significant result. Through purely kine-

matical arguments, Stokes demonstrated that for any vector field in a

region, R, the vorticity flux through an open surface contained in R

is equal to the circulation around the closed curve which bounds the

open surface. This is stated as (Karamcheti, p. 132)

where

+
~=vxii.

Combining this with the Kelvin-Helmholtz theorem yields

DI’ D

1~

++
—=—
Dt Dt S

n“~ dS = O.

Therefore, one concludes that for an ideal fluid in an irrotational

force field, the vorticity flux through any fluid surface element

constant. Furthermore, if that vorticity flux is zero for any

instant, it must be zero for all times. This is the reason for

is a

106



generally assuming that ideal fluid motion is started from a state of

+
rest or uniform motion in which case, G = O over the entire region

occupied by the fluid. Since the vorticity is equal to twice the

angular rotation rate of the fluid, it is said that the motion must be

rotation free or irrotational for all times after the starting

instant.

The requirement of irrotationality for all times is a necessary

and sufficient condition to guarantee the existance of a velocity

potential, i.e.,

;=vxii=o

therefore,

The existence of a velocity potential has several important consequen-

ces with respect to the governing equations.

Eulerts equation was given previously as

This may be rewritten as

+

(1
2

~+v;
[1

-8XNX3]=F.V:.

Assuming an irrotational motion and force field yields

[1
&3+v[y]=vw:

or
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where

V@=8and Vf2=$.

After integration of the last expression, one arrives at

which is the unsteady Bernoullits equation.

The conservation of mass requirement was previously given as

Vi= o-

Substitution of the velocity potential yields

V20= o

which is the familiar Laplace equation.

Prior to the assumption of irrotationality and, thereby, the

existence of a

unknown vector

velocity potential, there were four equations for the

velocity and scalar pressure fields. Now, there are

just two equations for the scalar velocity potential and

fields. Furthermore, the governing equation is now the ~

equation. Since it is linear, complicated solutions for

pressure

inear Lapace

@ may be

constructed from the superposition of elementary ones. Once @ is

determined, the pressure field may be found from Bernoullils equation.

A.3 The Circulation Theory of Lift.—

Consider the irrotational flow of an ideal fluid past a two-dimen-
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sional body. Since the body is two-dimensional, the flow field is

said to be doubly connected and the possibility exists for a finite

circulation around a circuit which includes the body.

d’Alembert considered the case in which the circulation is spe-

cified to be zero and came to the surprising conclusion that the net

resistance forces of the fluid on the body are zero. This is commonly

known as dlAlembertts paradox.

Kutta and Joukowski independently considered the case of nonzero

circulation and found that a finite lift force was produced. The

result is known as the Kutta-Joukowski theorem of lift and is stated

as: if there is a circulation of magnitude r around the cylinder and

if the undisturbed velocity at infinity has the magnitude UW, then a

lift exists with a magnitude of pU@r per unit span.

The requirement of a net circulation for the generation of lift

complicates the potential flow problem. From topology considerations

(Karamcheti, PP. 252-263), it my be shown that a finite circulation

can only exist for an irreducible circuit in a multiply connected

region. A consequence of the multiple connectivity is that the poten-

tial field is not unique unless the circulations around the irredu-

cible circuits are specified. Additional relationships based upon

physical experience must be found to determine the circulation

strengths, since the previously applied natural laws are of no help.

In addition, consideration must be given to the Kelvin-Helmholtz

theorem and how the circulation was established in the first place.

A.4 Two-Dimensional Airfoil Theory
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If the flow field around an airfoil having a sharp trailing edge

is calculated assuming zero circulation, a streamline pattern similar

to the one shown in Figure A.1 results. As a consequence of the sur-

face gradient discontinuity at the trailing edge, a Velocity Siww-

larity exists at that point. Physical experience has demonstrated

that an infinite velocity cannot exist in any real fluid with a finite

viscosity. Realization of this deficiency in the ideal fluid repre-

sentation led Kutta and Joukowski to propose that the circulation

about the airfoil be such that the flow from the trailing edge be

smooth and finite. This is typically known as the Kutta condition.

It provides the additional relationship which is necessary to uniquely

specify the circulation strength and potential field.

Now consider a two-dimensional airfoil at rest in an ideal fluid.

Since the fluid velocity is everywhere zero, the circulation around

the airfoil is zero. At the initial instant, t = O, the fluid is

instantaneously brought into motion such that at infinity, U = U~.

The Kutta condition requires that the fluid flow smoothly off of the

trailing edge and, consequently, that there be a finite circulation

around the airfoil. The Kelvin-Helmholtz theorem, however, requires

that the circulation about any closed curve in the fluid be zero. The

simultaneous satisfaction of these apparently contradictory conditions

is accomplished by the generation of a trailing wake which forms the

starting vortex illustrated in Figure A.2.

For any incremental time interval, dt, the vorticity shed from the

trailing edge into the wake is equal to the negative of the change in

‘*boundvorticity’” or equivalently, circulation strength about the air-

110



Figure A.1 Flow Field About an Airfoil
With Zero Circulation
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the Kutta Condition
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foil during that time interval. Referring to Figure A.2, this can be

expressed mathematically as

(sr=-
W

drb

dt
&t.

Therefore, the net circulation around the wake is always the exact

negative of the circulation around the airfoil, i.e.,

J

T
rw ‘

‘Fb
-Xdt = -Tb.

o

The wake surface is a sheet of potential discontinuity and, con-

sequently, a boundary in the flow field. All closed fluid circuits of

the Kelvin-Helmholtz type must include the entire lifting system of

airfoil plus the trailing wake as shown in Figure A.2. The net circu-

lation around these circuits, rK_H, is zero for the starting instant

and all later times.

A.5 Three-Dimensional Airfoil Theory

A similar situation exists for finite wings as illustrated in

Figure A.3. Before the starting instant, the fluid is at rest and the

circulation strengths about all closed fluid curves in the region are

zero. After the starting instant, a unique circulation strength of

the bound vortex is determined by the Kutta condition at the trailing

edge. Since it is not possible for a vortex tube to end in a fluid,

away from the boundaries, two tip vortices must be shed. Downstream,

the tip vortices are joined to the starting vortex. For the

simplified flow situation depicted in Figure A.3,

b’Tl = Irb] = Irw].
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Figure A.3 Vortex System for a Finite Wing
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Consequently, any closed circuit about the complete lifting system

will have zero circulation. This is sufficient to satisfy the

Kelvin-Helmholtz theorem.
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APPENDIX B

AN INTEGRAL SOLUTION TO LAPLACE’S EQUATION

In this appendix, it will be shown that any solution to Laplacefs

equation may be expressed in terms of integrals of potential doublets

and sources distributed over the boundaries of the solution domain.

We will begin in the first section with a derivation of Greents

theorem and in the following section demonstrate its application for

the determination of the desired integral solution to Laplacets

equation.

B.1 Greents Theorem

Gauss’ divergence theorem expresses the equivalence of the

divergence of a vector field within an enclosed volume with the flux

of that vector field across the boundary surface. The mathematical

statement of the theorem is

M
VW: dV =

I
~“~ ds

v s

where ~ = any vector field

(B.1)

v = enclosed volume

S = bounding surface

$ = outwardly directed surface normal.

For the vector field, ~, we may choose

where $ and $~ are continuous functions having finite first and second

derivatives within the volume, V. Substitution for ~ in Equation B.1
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yields

(B.2)

“Equation 0.2 may be expanded to give

M
[VI$*V@’+ $v2@’]cN=

$
@%dS

v
s an

which is known as Green’s theorem in the first form.

We may alternately choose for A in Equation B.1

Performing the substitution yields

Equation B.5 is known as Green’s theorem in the

@ ~)dS.

second form.

(B.3)

(B.5)

B.2 Greenrs Theorem for Irrotational Acyclic Flow

We now wish to consider the motion of a body having surface S in

an ideal fluid with an outer boundary surface Z. It is assumed that

the fluid motion was started from a state of rest or uniform motion so

that it is irrotational for all times. We further assume that the

flow is acyclic (i.e., I’= O about all closed fluid curves) so that a

single-valued solution, q(~,t), to Laplace*s equation must exist.

Recalling Greents theorem in the second form, Equation B.5, let

+ =$(;,t) where V*$ = O

117



and

Here we note that R is simply the distance

located by ~ and any point in the volume,

a .

between a fixed point, P,

1. Since V2@’ = O except at

i=;> an infinitesimal spherical boundary surface, o, is placed

about P as shown in Figure B.1, thereby excluding it from the volume,

v.

Under these conditions, Equation B.5 becomes

0=11+12+13 (B.6)

where

(B.6a)

(B.6b)

(B.6c)

To determine the potential, $(~,t), due to the motion of S, we

consider the limits of 12 and 13 as Z+m and 0+0, respectively.

Equation B.6b may be shown to go to zero as Z+W, since the fluid at

a$
infinity is at rest or in uniform motion and @ and ~ must vanish

there. Now consider Equation B.6c. Noting that since o is a spheri-
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I

Figure B.1 Integration Regions for Equation B.6
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cal surface, then R=cand~= $=, and the equation may be rewritten

as

. lim

‘3 \l [1
[m:-+% +]E2d~E+o ~a&E

(B.7)

where dll= differential solid angle. By the mean value theorem of

integration, it is possible to determine mean surface values of $ and

a~
~n

such that Equation B.7 becomes

or

(B.8)
13

= 4T@.

From the preceding conclusions, Equation B.6 becomes

@(;) =~-
$ , ~+ ‘s + $: ~[+lds’

(B.9)

which is the desired integral solution to Laplace’s equation. A

notable feature of Equation B.9 is that the

point in the fluid flow field is determined

normal derivative on the bounding surface.

al——] may be recognized as potential
and an[4nR

potential at any given

by the potential and its

In addition, the terms ~

sources and doublest,

respectively.

Although the previous derivation was given for a three-dimensional

flow field, equivalent relations for a two-dimensional field may be

determined also. In this case, Gauss’ divergence theorem relates sur-

face and line integrals rather than volume and surface integrals. The

derivation of Greents theorem proceeds in exactly the same way. The
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result is given by

We allow $ to be the

R = 1~-~1 as before.

o=

solution of V2$ = O and choose ~ = En(R) where

Substitution into Equation B.1O yields

(B.1O)

If we take the limits as Z-XOand 0+0, the two-dimensional equivalent

of Equation B.9 results and is given by

For this case, the surfaces are

and doublets.

~+ : ##Ln R)]dR.
h

(B.12)

represented by two-dimensional sources
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APPENDIX C

UNIQUENESS REQUIREMENTS FOR THE INTEGRAL SOLUTION

Consider an interior and exterior flow separated by a bounding

surface, S, as shown in Figure Cl. Let @E(~,t) be the solution of

‘2$E for the exterior flow and $I(~,t) be the solution for the

interior flow.

Recall that Greents theorem was given by Equation B.5 as

(Cl)

For the exterior flow, we choose @ = $E and @E = A
++

R
where R =

II
r-<E .

Now V21$E= O everywhere except at ~ = ~. Consequently, by surrounding

the point P at ~ with a spherical boundary and taking the limit as the

sphere is reduced to P, we find that (as shown in Appendix B)

(C.2)

For the interior flow, @ = $1, and agaf~, +1= ~e Since we are

only concerned with the points P exterior to S, R = 1~-~1I cannot be

zero and V2$1 = O for all ~l. Equation C.1 for the interior problem

may be written as

(C.3)

Adding the exterior and interior solutions, Equations C,2 and C.3,

respectively, yields

@(:,t) =%
# s

(C.4)



a a
Noting that — = - —

anE anl’
Equation C.4 may be rewritten as

1

! ) [(+E -‘% ‘ [1
$1)<: l“. (C.5)

From Equation C.5, it is noted that the external potential field

is again determined by surface distributions of potential sources and

doublets. In this case, however, it is clear that the strength dis-

tributions of the singularities is dependent on the interior flow.

Suppose that the interior flow is such that $1 = $E on S, thereby

requiring a continuous tangential velocity across S, with the possi-

bility of a discontinuous normal velocity left open. Equation C.5

reduces to

C?&) ‘+ $:[++j+l” (C.6)

illustrating that the potential field may be represented by a surface

distribution of sources.
3$E 84X

Suppose that — = — so that the normal velocity across S is
a% a%

continuous while the tangential velocity may be discontinuous.

Equation C.5 reduces to

(C.7)

which provides an expression for @(?,t) with a surface distribution of

doublets.

We may generalize the preceding discussion by stating that a solu-
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tion to Laplacels equation may be uniquely represented by surface

distributions of

1) sources only

2) doublets only

3) sources and doublets on separated portions of the surface

4) linearly related distributions of sources and doublets.

As a final comment, it is noted that doublet distributions are

required on lifting surfaces, since only they allow the possibility of

discontinuous tangential velocities and finite circulations.
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APPENDIX D

EQUIVALENT DOUBLET AND VORTEX SURFACE DISTRIBUTIONS

The objective for this appendix is to demonstrate the equivalence

of surface distributions of potential doublets and vortices. This

will be accomplished by first deriving the expression for the poten-

tial of a three-dimensional doublet. The velocity field induced by a

vortex segment will then be derived, and from that the velocity poten-

tial induced by a ring vortex will be determined. It will then be

clear that the potential field due to a distribution of uniform

strength doublets over an open surface is equivalent to that induced

by a line vortex around the boundary of the surface with strength

equal to that of the doublets. Finally, the general conclusion will

be drawn that any surface distribution of doublets may be represented

by a distribution of vortices oriented normal to the gradient of

doublet strength and having strengths equal to that gradient.

D.1 The Potential Doublet

A potential doublet may be formed by taking the limit as a poten-

tial source and sink are brought together where the axis of the

doublet is along the line connecting source and sink centers as shown

in Figure D.1. This is expressed by

+(3 = “& [ +(3 + (@+ d)]
doublet source sink

1im
= 6s+0 [ $@) - $(; + 6:)]

source source

1im V$(;) ● ~:
= ~s+o source
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Figure D.1 Doublet as a Combined Source and Sink Flow
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= v(f)(;) ● z
s

source

(D.1)

where

From Equation D.1, the potential field due to a surface distribu-

tion of doublets is given by

~rhere ~ = the surface normal.

D.2 Velocity Field Induced by a Vortex Segment—.

For an ideal fluid, the incompressibility requirement may be

stated as

V“i= o

Since for all vector fields, A, it is true that

V“(VXI) =0

we may choose

(D.3)

Given Ul, the vorticity field is given by

(D.2)

fi=vxvxx

127



or

ii = V(v”i) - v2i (D.4)

Since ~, to this point, is indeterminate to the extent of the gradient

of a vector, we may further stipulate that

V“z= o (D.5)

With Equation D.5, Equation D.4 may be rewritten as

This is Poisson’s equation for ~. By solving for ~, it will then

be possible to determine the velocity field utilizing Equation D.3.

Consider the solution of the vector relationship, Equation D.6,

which has the following component equations:

(D.7a,b,c)

V2AX = - ~
x

V2AY = - ~
Y

V2AZ = - Q
z

It is sufficient to determine the solution of C.7a over all space,

keeping in mind that @ and ~must vanish at infinity.

Recall that Greents theorem was given by Equation B.5 as

(D.8)

For @ and $’, choose

(D.9)

(D.1O)
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w’here

Therefore,

Substitution of Equations D.9 - D.11 into Equation D.8 yields

where Z = outer boundary

a . spherical shell about singular point at *1 = ~.

The surfaces z and u, as well as the vectors ~, 71 and ~ are

illustrated in Figure D.z.

(Doll)

(D.12)
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Figure D.2 Integration Regions for Equation D.12



If we consider the first integral of the right hand side of

Equation D.12 and allow Z to be a spherical surface which spreads to

infinity in the limit, it follows that

where dil= differential solid angle and it is assumed that

lim R o
R- ~Ax/(sR=

For the second integral over o,

12 ‘::~~o(~+~ ~)R2dQ

(D.13)

(D.14)

12 =
- 41T Ax(:l)

Substitution of Equations D.13 and D.14 into Equation D.12 yields

(D.15)

When the equivalent solutions for Equation D.7b and c are determined,

(D.16)

NOW from Equations D.3 and D.16, we may determine the velocitY
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field resulting in the vorticity distribution, ?(:) ;

fi(; )
~=VrXA+=fi(VrX~~~V~ dV (D.17)

We now wish to determine the velocity field induced by an infini-

tesimal vortex filament with strength r as shown in Figure D.s. From

-
Equation D.16, the incremental contribution to A from the filament may

We may write

and

so that Equation D.18 may be rewritten as

~~(;) .La
41T R

Consequently, the incremental velocity from the vortex filament is

(D.18)

(D.20)

where d; and ~1 are fixed and Vr indicates that the curl is to be
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Figure D.3 Velocity Induced by a Vortex Line
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taken with respect to the coordinates of the point ~.

Finally, the velocity induced by a vortex segment is

3(:) =% /c d~X V (~)

which is the well known Biot-Savart law.

D.3 Velocity Field of a Vortex Ring— ——

We would now like to determine the velocity field induced by a

vortex ring. Equation D.21 may be written in component form for a

closed vortex ring as

By Stokes’ theorem, Equation D.22a may be rewritten as

U@ = /c i “ d~= j~s (V Xt)*;dS

where

By expanding Equation D.23, we find that

.2 .2 1 u2(~):
Ux(;) =&J/s [(-7- n)iex+uxoy R y

oy Uz

a’
+ ~ (~)~z]” ;ds

=~~~SV(~;)*~dS
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Similarly, for the other two component equations;

L@) =% ~~ V(~~)”;dS
s

o 4)S;dS@) ‘~~~s ‘(=R

~leconclude that

3 (;) =~~~ V[V($; ]dS
s

@ (:) = & JJS v (+) ‘;dS

D.4 Equivalency of Doublet and Vortex Distributions—

(D.25)

and

(D.26)

To summarize, in Section D.1, the potential due

cloublet was derived. Following that, the potential

distribution of doublets was given by Equation D.2.

cases of distribution of uniform strength doublets,

becomes

to an isolated

due to a surface

For the special

the potential

(D.27)

where n = n(C), the surface normal and
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In sections D.2 and J).3,the velocity potential due to a vortex

ring was determined by deriving the velocity field due to an arbitrary

distribution of vorticity and specializing it for the case of an

isolated vortex filament. The resulting potential field of a vortex

ring given by Equation D.2 and is repeated here;

(D.28)

where S is any open surface bounded by the vortex ring.

Comparison of Equations D.27 and D.28 reveals that a vortex ring

of strength r is equivalent to a distribution of doublets with

strengths p = r over any arbitrarily shaped surface bounded by the

vortex ring. If two constant strength doublet surfaces share a common

boundary, as shown in Figure D.+, it follows that the potential for

that segment of the boundary is equivalent to a vortex segment with a

strength equal to the difference of the doublet strengths. This idea

may be carried further by envisioning any surface as being made up of

infinitesimal areas of constant strength doublets. In the limit, as

the areas are reduced to points, the equivalent vortex representation

would be a vortex sheet with the filaments directed normal to the gra-

dient of doublet strength and filament circulations equal to the gra-

dient.
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Figure D.4 Vortex Representation of Uniform

Strength Doublet Panels
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APPENDIX E

EXPERIMENTAL PRESSURE DATA

In this appendix typical plots of pressure data are given. These plots

consist of pressure coefficient curves at selected blade positions in the

second revolution of the rotor. Data for the three tip-to-windspeed ratios

of 2.5, 5.1, and 7.6 are given in Figures El, E.2, and E.3 respectively.
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