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SAND82-0345

FINITE ELEMENT ANALYSIS AND MODAL TESTING
OF A ROTATING WIND TURBINE*

T. G. Carrie
D. W. Lobitz
A. R. Nerd

R. A. Watson
Sandia National Laboratories

Albuquerque, NM

Abstract——

A finite element procedure, which includes geometric
stiffening, and centrifugal and Coriolis terms resulting from
the use of a rotating coordinate system, has been developed to
compute the mode shapes and frequencies of rotating
structures. Special application of this capability has been
made to Darrieus, vertical axis wind turbines. In a parallel
development effort, a technique for the modal testing of a
rotating vertical axis wind turbine has been established to
measure modal parameters directly. Results from the predictive
and experimental techniques for the modal frequencies and mode
shapes are compared over a wide range of rotational speeds.

* This work was performed at Sandia National Laboratories and
was supported by the U. S. Department of Energy under
contract number DE–AC04–76DPO0789.
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Introduction

Over the past several years, wind
energy has been considered as a
potentially viable option in the
search for renewable energy sources.
The feasibility of tapping this
source depends on the ability to
design extraction devices which are
both safe and reliable, and, can be
produced at low cost. The extraction
device of interest here is the
vertical axis wind turbine (VAWT)
shown in Figure 1. As dynamic
effects can be substantial due to the
periodic nature of the aerodynamic
loading, the design process must
depend on accurate predictive tools
and/or measurement techniques for
determining the dynamic response
characteristics of the turbine.

Determination of modal charac-
teristics is of paramount importance
in that, with this information,
resonant behavior can be avoided. In
rotating structures, the acquisition
of these characteristics is compli-
cated by their dependence on the
structure’s rotational speed.
Therefore, special methods have to be
employed for both the predictive and
experimental procedures.

In this paper predictive as well
as experimental techniques are
described for identifying the modal
characteristics of a VAWT. Results
from each method are obtained and
compared for a two–meter turbine.

Fig. 1 The Sandia 17-m Research Turbine

The predictive technique
developed here is based on the finite
element method in order to take
advantaqe of its superior
versatility. As the turbine is
modeled in a frame which rotates at
the turbine operatinq speed (assumed
constant), rotating coordinate system
effects must be taken into account.
Within this frame, the motions of the
turbine are assumed to be small.

The finite element method has
been used previously to predict the
modal characteristics of rotating
structures. Several
investigators, 1-4 have applied the
method to structures which are
comprised of rotatinq beams
reminiscent of fan or helicopter
blades. However, in these cases some
of the rotating coordinate system
effects are neqlected. This may be
justified since, for these types of
structures, motions normal to the
axis of rotation are relatively
small. For the vertical axis wind
turbine, this is not the case and
these effects cannot be omitted. A
method described in Ref. 5 uses
finite elements to obtain the
eigenvalue solution to the suinninq
skylab problem. This method, which
is similar to the one used here for
the analysis of the VAWT, includes
all rotatinq coordinate system
effects.

Other techniques which have been
used to obtain dynamic
characteristics of rotatinq
structures include various Galerkin
procedures, the modal method, and the
component mode method in combination
with various eigensolution schemes.
In Ref. 6, the Garlerkin method is
used in conjunction with an
asymptotic expansion technique (the
method of multiple time scales) to
examine resonance in a spinning,
nutating plate. A Galerkin procedure
was also used in Ref. 7 where the
dynamic response of a horizontal axis
wind turbine was studied with Floquet
Theory. Refs. 8-10 employ the
com~onent mode method in combination
with relatively standard eiqenvalue
extraction Procedures to investigate
the dynamic characteristics of a VAWT.

A major experimental obstacle in
obtaining the natural frequencies and
mode shapes of a rotatinq structure
is that mechanisms for exciting the
structure while it is rotatinq must
be devised. Also slip-rinqs or
telemetry must be employed for data
transmission from the structure.
These complications may account for
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the minimal amount of reporting for
this type of modal testing in the
open literature. One reference,ll
however, was found where modal test
data were cited for a model propeller
blade as a function of rpm. The
original work, Ref. 12, may be
difficult to acquire.

The remainder of this paper is
divided into five sections. The
first describes the details of the
finite element method used for
predicting the modes and frequencies
of the rotating turbine. In the
second, details of the finite element
model are presented. The
experimental procedure for the
rotating modal test is described in
the third. The fourth provides
comparisons of the predicted and
experimental data. The final section
contains the conclusions.

Finite Element Theory for the VAWT——

The effects which must he
included for an accurate
representation of the dynamics of a
VAWT relative to a coordinate system
rotating at a constant speed, include
tension stiffening, and centrifugal
and Coriolis terms. Manifestations
of the latter primarily appear in the
inertia terms of the equations of
motion. However, in the finite
element context, they result in
additions to the damping and
stiffness matrices, and the force
vector. Specifically, the Coriolis
terms produce a skew-symmetric
contribution to the damping matrix,
and the centrifugal forces result in
a steady force plus a negative
contribution to the stiffness matrix,
referred to here as centrifugal
softening. The resulting finite
element equations are represented by

Mti + CL - SU + KU = Fc + Fg,

where M is the classical mass matrix,
C is the Coriolis matrix, S is the
centrifugal softening matrix, K is
the usual stiffness matrix, Fc is a
static load vector representing the
steady centrifugal force, and Fg
represents the gravitational forces
which are also steady due to the
orientation of the axis of rotation
of the turbine. To obtain the modes
and frequencies of the turbine as
observed in the rotating system,
equation (1) is reduced to the
following form:

Thus the solutions correspond to
small motions about a prestressed
state.

Aeroel astic effects have not been
included in this anal,ysis. These
effects have, however, been
incorporated in stability
investigations of the VAWT13 and,
while stronqly influencing stability,
seem to have little effect on the
natural frequencies and modes of the
turbine. This, coupled with the
qeneral experimental observation that
VAWTS are relatively stable machines,
tends to justify this omission.

The coordinate system emoloyed in
this analysis rotates at the turbine
operatinq speed with the oriqin fixed
in soace at the base of the tower.
As shown in Fiqure 2, the anqular
velocity vector is directed
vertically along the z axis.

z

x

MU+ Cd + (K +KG - S) u = O, (2)

where KG is the geometric stiffness
matrix resulting from the steady
centrifugal and gravitational loads.

(1) Fig. 2 A Beam Element in the Rotating
Frame

The finite element matrices are
developed on the basis of the motions
that remain small within this
rotating frame. The matrices, M, K,
and KG are presented in a number of
currently available finite element
texts and will not be derived here.
On the other hand, the matrices, C
and S, which are due to rotating
coordinate system effects, are not
commonly encountered, and therefore
will be developed.

Due to the structural nature of
VAWTS, the finite element equations
need only be developed for beam
elements and concentrated masses, In
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order to develop inertia matrices for
the beam elements, the displacements,
velocities and accelerations are
assumed to vary linearly along the
length of the element. The mass of
the element is concentrated along its
axis so that the rotational kinetic
energy of the element about its axis
is neglected. Using the following
equation for the total acceleration
at a point in the rotating system,

*t=&+ 2Qx~+

lx[sx(~+~)l’
(3)

where

%t ‘s the total acceleration vector,
excluding gravitational
acceleration,

~, ~, ~ and ~ are the original
position, the displacement,
velocity, and acceleration
vectors, respectively, as
observed in the rotatinq
coordinate system, and

J is the fixed angular veln”i+y
vector of that system,

an expression for the inertia force
due to the elemental mass at that
point can be developed. Adopting the
linear form for the motion, the
initial position, displacement,
velocity, and acceleration relative to
the rotating frame can be cast in
terms of the nodal point values as
follows (see Figure 2):

where

[

1-s/! o 0 s/1. o 0
p.f) 1-SIL o 0 s/L o

0 0 l-s/R o 0 1Slk ,

~T=u

[

u
‘1 ‘Y1 Z1 lJx2 ‘Y2 UZ2 1, etc.,

s is the arc length variable, and

k? is the length of the element.

Note that the overbars denote nodal
point values. Specializing ~ to \T
= [0 O nz], the second and third
terms of equation (3) become

.
2Q x ~ = 2QzQi , (5)

where

Q.

o -1+s/!, o 0 -s/L o
I-s/k o 0 SJL O 0

1 0 0 0 0 00

[

l-s/.L o 0 s/,L o 0
R=O 1-s/! o 0 s/1 o1

1 0 000 0 OJ,

Using r!’Alembert forces alonq with the
concept of virtual work, the required
matrices are obtained as follows:

where .SUT is the variation in the
nodal displacements and o is the mass
per unit length. The first inteqral
on the riqht hand side of equation (7)
corresponds to the mass matrix; the
second, the Coriolis matrix; the
third, the centrifugal softeninq
matrix; and the fourth, the centrifqal
forces . Of special interest here are
the second and third terms which are
presented in detail below:

Coriolis

Zplflz

o -1/3

1/3 D

o 0

0 -1/6

1/6 o

0 0

Centrifugal So fteninq

[
1/3 o

o

0

0

0

0

0

0

0

0

0

1
-1/6 O

1/6 00

0 00

0 -1/3 o

1/3 00

0 00

1
1/6 O 0

0 1/6 O

0 00

1/3 o 0

1/3 o

0

II
O
‘1
a

Y1

(1
‘1 (8)

(1
X2

o
Y2

‘*2

H

u
xl

‘Yl

u
‘1 (9)

u
‘2

‘Yz

‘*2
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Concentrated masses, such as blade
joints, flanges and support bearings,
are handled in an entirely similar
manner, resultinq in the followinq
expressions:

Coriolis

[1

o -1 0

2mOz 1 0 0

000

These concentrated masses possess no
rotational kinetic energy. They must,
however, be attached to a point which
is on the rotating structure.

The matrices, C and S, of
equations (1) and (2) are obtained by
assembling the contributions from all
the beam elements and concentrated
masses of the finite element model.

A critical factor in the
development of this method is that
vector transformations are not
required between stationary
(groundbased) and rotating coordinate
systems. For most VAWTS, the physical
connections of the rotor to the ground
occur through the tiedown cables and
the tower base connection. The
stiffness of both of these connection
mechanisms is usually isotropic
(independent of azimuthal position)
and therefore can be represented by
massless linear springs which rotate
with the turbine and act to restore it
to its original position. The
associated mass can usually be
adequately modeled by concentrated
masses placed at appropriate points
the rotating frame.

n

The eigensystem represented by
equation (2) is Hermetian due to the
skew–symmetry of the Coriolis matrix
Consequently, it can be shown 14 that
the eigenvectors are, in general,
complex; but the eigenvalues, which
are the squares of the circular
frequencies, are real. Thus, with
this system, the natural frequencies
are purely real or purely imaginary
depending on the sign of the real
eigenvalues. If structural damping is
included, the system loses its
Hermetian character and the
eigenvalues as well as the
eigenvectors are complex. For the
present analyses, structural damping
has been excluded due to the lightly
damped nature of most VAWTS.

Instead of developing a completely
independent package for the
eigensolution of equation (2), an
existing code was modified. With this

approach, duplication of such things
as input, output, plotting, solution
procedures, etc., is avoided. The
MacNeal-Schwendler version of
NASTRAN15 was selected here because
the modification required was minimal
and could be accomplished via DMAP
~rogramming, a feature which allows
the NASTRAN user to modify the code
without actually dealing with the
FORTRAN codinq. This version contains
complex eiqens,ystem solution
procedures and also permits the
stiffness, mass, and dampinq matrices
to be modified throuqh an input
option. Thus, the special matrices
required in equation (2), specifically
the Coriolis (C) and softeninq (S)
matrices, can be qenerated externally
and read into NASTRAN as input. As
the NASTRAN code handles non-symmetric
as well as symmetric matrices, no
special problems occur due to the
skew–symmetry of the Coriolis matrix.
The mass (M) and stiffness (K)
matrices are generated internally,
complete with the effects of qeometric
stiffening in the stiffness matrix.
Additional details on this NASTRAN
procedure are presented in the next
section.

This analysis package has
undergone limited verification due to
the lack of available closed form
solutions for rotatinq structures.
However, the exact solution for the
compressed, whirlinq shaft with pinned
ends provides at least one test case.
If the shaft is not spinning, its
natural frequencies and corresoondinq
modal solutions are qiven by

n . (&y (#’2 [, - & (+)2]’2, (,1)

Hu 11

Cos Vnt

‘J1
=sin~z o 9

11

u o
=sin~z

\l
3

‘2 Cos Vnt

(12)

where

P is the axial load,

u, v are the transverse
displacements, and

E, I, P, A, L are the usual
physical properties of the shaft.



On the other
spinning its
Un, relative
are

‘n =

where Vn is t
and Q is the
shaft. Thus,

hand, when the shaft is
natural frequencies,
to the rotating frame

tfll,
‘n (13)

iven by equation (11)
angular velocity of the
the non-spinning natural

frequencies split into two
frequencies, one increasing with
angular velocity at a rate of 1 Hz/Hz,
and the other decreasing at 1 Hz/hz.
Moreover, the modal solutions become

Hu [

Cos tint
= sin ~ z

‘1
1Cos (Unt + Tr/2) ,

II

(14)
u

. sin ~ ~
1

Cos Unt

“2 L ICos (Unt + >) .

Whereas the u and v motions were
previously uncoupled in the modes of
the non-spinning shaft, now they are
coupled, with the motion in one
direction ninety degrees out of phase
with that in the other. This behavior
as well as the natural frequency
variation with angular velocity is
precisely predicted by the finite
element analysis package.

Finite Element Results for the 2-m VAWT———..————.-—-- -----———-———__———__

In this section the details of the
finite element model used to predict
the modes and frequencies of the
Sandia 2-m research turbine as a
function of rpm are presented. Before
dc)ing this, however, a short
description of the NASTRAN
calculational procedure is in order.

This procedure is based on version
61 of MSC-NASTRAN15 and utilizes two
of the available rigid format
options. Using the first of two
required data decks, a static analysis
with geometric stiffening effects
(Rigid Format 64) is performed on the
model under the action of centrifugal,
gravitational and boundary forces.
The resulting modified stiffness
matrix is then retained via a modest
amount of DMAP programming for use in
the subsequent complex eigenvalue
analysis (Rigid Format 67) of the
second data deck. Along with the
necessary structural data, this second
deck also includes the “Direct Matrix
Input at Grid Points” (DMIG) cards,
through which the Coriolis and

Centrifugal Softeninq matrices
described in the previous section are
input. Because the actual number of
DMIG cards required tends to be larqe,
a pre–processing proqram, FEVD, was
written for automation purposes. FEVD
reads the NASTRAN structural data deck
and extracts information it needs from
GRID, CFiAR, PBAR, MAT1, CONM2, and
RFORCE cards. With this information
it constructs the necessarv matrices
and casts them in terms of DMIG
cards. It then inserts these into the
second NASTRAN data deck. In this
manner, the exercise of includinq
rotating coordinate system effects in
NASTRAN is relatively transparent to
the user.

NASTRAN provides the user with a
choice of two complex eigensolvers.
The one which employs the upper
Hessenberq method is very efficient
but limited to sixty degrees of
freedom (the actual number may vary
depending on computer installation).
The other which utilizes the inverse
Dower method is limited in the number
of degrees of freedom only by economic
considerations, but requires insiqht
into the location of the desired
natural frequencies in the complex
plane. For the analysis in this
paper, the upper Hessenberq method was
used in conjunction with Gu,van
reduction (also a NASTRAN option) to
reduce the number of deqrees of
freedom from that of the actual model
to sixtv.

The finite element model of the
2-m VAWT is shown in Fiqure 3. The
actual hardware is displayed in a
photograph in Figure 4. The truss
tower, which adds a

400 Ibf

1~

400 lbf

1~

r

1600 lbl/111- ,...,m, A ,!:%3>

ml”
)bf/in

\ !..”, ! .“. ”,

“

(:01 ‘“M

TY
(:0) “m

(1710’%* ~:~o~ol lbf/in (1 : 106) ~ (:%0:) “’’’”

2700 ~ 2700 @l#

(65,0001 rad (65,000)

Fig. 3 Finite Element Model of the 2-m
VAWT
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Fig. 4 The Sandia 2-m Turbine with
Instrumentation

fair degree of complexity to the
model, is represented by 150 beam
elements. The blades are modeled
with 20 beam elements each. The mass
of the hardware associated with the
upper bearing and tie–down

Mode
Number

1
2
3
4
5
6
7
8

1:

connections is represented by a
concentrated mass placed at the top of
the tower. The tie-down cables are
modeled with horizontal linear springs
and a vertical downward force as shown
in Figure 3. The mass of the
instrumentation installed on the rotor
for the test (which is not negligible
compared to the rotor mass) is
included through appropriate
concentrated masses. The base is
modeled as shown in Fiqure 3, with a
concentrated mass in combination with
torsional and linear surinqs. As
indicated the sprinqs are equal in the
two orthogonal directions, thus
Droducinq the desired isotropic effect
mentioned in the orececling section.

Using Darked test data, the model
was moderately tuned by adjusting the
parameters associated with the base
which, in general, must be estimated.
The modified values are qiven in
parentheses in Fiqure 3. The
resultinq oarked frequencies for the
first ten modes are qiven in Table 1
alonq with the experimental values.
As computed from the table, the
average error in the frequencies was
reduced from 12 to less than 1 per
cent, after tuning. Only the second
symmetric flatwise mode deviated by
more than 1 per cent, which is most
Probably caused by inaccurate modeling
of the blade–to–tower joint.

Mode identification terminology is
given in the second column of Table 1
for the first ten parked modes, and
corresponding three–views in Figure
5. In Fiqure 6, for purposes of
comparison, predicted and measured
three–views of the 2nd rotor
out-of-plane mode are qiven. This
agreement is representative of the
first ten modes.

Table 1 Parked Frequency Comparison

Mode Name

1st Antisymmetric Flatwise
1st Symmetric Flatwise
1st Rotor Out-of-Plane
1st Rotor In-Plane
Dumbbell
2nd Rotor Out-of-Plane
2nd Rotor In-Plane
2nd Symmetric Flatwise
2nd Antisymmetric Flatwise
3rd Rotor Out-of-Plane

Measured
Modal

Frequency (Hz)

12.3
12.5
15.3
15.8
24.4
26.2
28.3
29.7
31.5
36.5

Initial
Analytical

Frequency (Hz)

12.5
12.6
17.1
17.2
22.6
30.5
30.6
30.9
39.7
42.3

Modified
Analytical

Frequency (Hz)

12.3
12.4
15.2
15.9
24.4
26.2
28.0
30.6
31.7
36.5
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Fig. 5 Predicted Mode Shapes for the
Parked 2-m VAl~T

/-<,----- --- 2..

. i2--
- .’* ,

i
A Comparison of the Predicted ;
and Measured 2nd Rotor Out-of- —
Plane Mode of the Parked Turbine ~2c

~
Using the tuned parameters, the E

fan plot of Figure 7 was produced. s

The mode numbers on the various
curves correspond to the modes
identified in Table 1. The lC

variations of the frequencies with
rpm are quite complex. While most
monotonically increase with rpm, some
decrease monotonically. Others
increase and then decrease and vice a
versa. Althouqh more complicated,

‘L’

CD
I 1 1 1 1 1

— ANALYTICAL PREDICTIONS

1 1 1 1 I 1

100 200 300 400 500 600 700
these variatio~s are similar to those ROTOR RPM
associated with the whirling shaft

Fig. 7problem discussed in the previous Predicted Fan Plot for the 2-m
section. VAWT
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In addition to complicated
frequency variations, the mode shapes
also change in character witfi rprn.
Specifically, mode shapes which are
completely uncoupled when the turbine
is parked become coupled during
rotation. In qeneral, the couplinq
oc$urs between pairs of parked modes
90 out of phase with each other. In
Figure 8 this coupling is shown for
the 2nd rotor out-of-plane mode. AS

the turbine rotates, a mode which is
similar to the 1st rotor in–plane mode
is drawn into and coupled ~ith the
original mode, but at a 90 phase
shift. In mathematical terms, the
modes chanqe from real to complex when
the turbine rotates. Furthermore, as
indicated in Figure 8, these complex
mode shapes change slightly as a
function of r~m.

0° PHASE 90” PHASE

““pMO}o
300RpM0’) o

Fig. 8 Predicted Modal Coupling with
Turbine Rotation

Experimental Procedure

There are two objectives in
developing a modal testing capability
for a rotating turbine. First,
experimental data on representative
hardware is required to verify the
accuracy of the finite element
analysis technique described above,
and secondly, a need exists for an
established experimental technique to

measure rotating modal frequencies so

that, in the absence of other
information, design modifications of
an existing turbine can be made purely
on the basis of the test data.

In this section, the experimental
procedures that were developed for
modal testing of both the parked and
rotatinq turbine will be described.
The general technique of modal testinQ
with a mini-computer based Fast
Fourier Transform (FFT) will be
discussed briefly, followed by its
application to the parked Sandia 2-m
research turbine. This particular
turbine was selected for the test
because of its manageable size and its
variable speed capability. Finally,
for the rotating modal test, a full
description of the instrumentation,
the excitation of the structure, and
the extraction of the modal parameters
from the data will be qiven.

The FFT technique, which involves
exciting the structure with a force
having a linear spectrum containing
the frequency band of interest, is
generally faster and more versatile
than the older analog swept-sine
technique. The applied force and
response are measured in the time
domain and transformed to the
frequency domain using the FFT. The
frequency response function is then
computed using the cross–spectral and
auto-spectral densities of the applied
force and the response. Typically a
number of measurements are averaged so
as to reduce the effects of
uncorrelated noise. A more complete
description of FFT modal testing is
contained in Ref. 16. The greater
versatility of this technique is a
result of more relaxed requirements on
the excitation. For example, the
technique is equally applicable to
shaker driven structures or structures
excited by an instrumented hammer.

As the first step in the rotating
modal test, a detailed parked modal
test was conducted. The turbine was
extensively instrumented with
piezoelectric accelerometers on the
blades, tower, and turbine base.
Figure 9 shows a diagram of the
turbine with the measurement points
indicated by numbers. The excitation
was provided by an instrumented hammer
for impacting either the tower or the
blades. The accelerometer and force
time histories were filtered, recorded
on FM tape, and, using mini-computer
based software, digitized and combined
to form a set of frequency response
functions.

12



Fig. 9 Measurement Locations for the
Parked 2-m VAWT Modal Test

Prior to the test, a two channel
analyzer was used to determine the
frequency range of interest, the
resolution required, and the best
locations for the driving points.
From this procedure it was determined
that all the modes of interest were
between ten and sixty Hz. The input
force spectrum was tailored for this
range, and the time histories were
zoomed between its extremes to give a
desirable frequency resolution
(approximately 0.1 Hz).

Figure 10 shows a typical
frequency response function using
three samples of data with the
magnitude plotted versus frequency.
This response function is the response
of a blade in the flatwise direction
(perpendicular to the blade chord) due
to a force input on the tower. The
sharp resonant peaks clearly indicate
modal frequencies and, because of
their sharpness, the corresponding low
modal damping.

‘sing additi!?a~jthmini–computer based software
a complete set of frequency response
functions (one for each measurement
point and direction) as input, the
modal frequencies, damping, and mode
shapes are computed. Figure 11 shows
one view of four of the fourteen modes
that were extracted from the data,
with the deformed shapes indicated by
the dashed lines.

io.o 60.0

Frequency (Hz)

Fig. 10 Typical Frequency Response
Function From the Parked
Modal Test

1st AI?tisymmetric
Dumbbell

1

,/ \,
\

/’ j
\\ ,’\
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/./,/,
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‘, /’

Bl!!l
Freq = 12.3 Hz Freq = 24.4 Hz

2nd Antisymmetric 3rd Rotor
Flatwise Out-o -Plane

@l

-.
,.-

< :.,

/ “, j ‘j
; ‘. t‘.
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b,‘,/ ,:, :/’

L ; ,’ ‘i1’I /’-.-.-, f’

i!!h!!i
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Fig. 11 Four Measured Mode Shapes for
the Parked 2-m VAWT
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Having obtained the modal
characteristics of the parked turbine,
the rotating modal test was
conducted. Modal data was collected
at six different rotational speeds in
100 rpm increments from 100 to 600
rpm. In this way, the chanqinq
frequencies could be tracked from
their parked values up to the nom
operating speed of 600 rpm.

For the rotating test seven s
gages and two accelerometers were
to measure the response of the

nal

rain
used

turbine. The two accelerometers were
placed on tower in–the-plane and
out-of–the–plane of the rotor. The
steady–state centrifugal acceleration
was sufficiently low on the tower so
that accelerometers could be used
conveniently. Two of the seven strain
gages also were used on the tower with
the other five on the blade roots.
The strain gages, which have two
active elements, were placed on the
blades and tower so that they measured
either purely in–plane or out-of–plane
deformations. On the blades in-plane
is generally referred to as fl atwise
(perpendicular to the blade chord),
and out–of–plane as edgewise (in the
direction of the chord).

Slip rings were used to transmit
the transducer signals from the
rotating turbine. However, before
passing the signals through the slip
rings, they were amplified by DC
amplifiers mounted on the tower. In
spite of the complications involved,
transducers attached to the rotating
structure were used so that the data
taken would be relative to the
rotating frame of the analytical
predictions. Any measurements taken
on fixed hardware would have to be
transformed to the rotating frame for
purposes of comparison. This process
adds complexity to the data processincl
and cannot adequately determine blat
behavior.

All testing in the rotating
configuration was done in very low
winds (less than 5 mph) to avoid
aerodynamic excitation which could
overwhelm the forces applied to exc-
modal resr)onse. In addition. the

e“

te

aerodynamic forces, which ex~ite the
turbine at integral multiples of the
rotational frequency, might obscure
any modal information at those
frequencies. In the absence of wind,
the motor-generator was used to propel
the turbine and maintain its speed at
a constant, preset value.

In selectinq a device for exciting
the rotating turbine, several concepts
were considered. Any type of impact
excitation is virtually eliminated

because of the hiqh blade tip speeds
(over 190 ftlsec). Also, since this
testinq technique is to be applicable
to turbines of all sizes, the device
must be capable of excitinq large
turbines as well as the relatively
small ?-m turbine used in this test.

The scheme finally chosen consists
primarily of a pretensioned cable
attached between one blade and the
tower. The cable is suddenly released
after the turbine is rotatinq at a
preset speed. Fiqure 4 is a
photograph of the turbine, showinq the
snap release device and the other
instrumentation mentioned above. The
snap release device consists of a
force transducer which measures the
tension in the cable, a burn wire, and
an easily reulaceahle nylon cord.
After preloadinq the cable, the
turbine is rotated at the desired
speed. A current is passed throuqh
the sliprinqs to the burn wire which
in turn cuts the nylon cord, releasinq
the tension in the cable. Fiqure 12
shows a detailed diaqram of the
snap-release device. The cable is
restrained at both ends so that it
becomes slack after release and ‘
not fly out from the turbine.

aoes

\

/’
NY1ON CORD

“\\

/
AIRCRAFTCABLE

TO TURBINE

\

BLADE

L

rl “ 11
Fig. 12 The Snap-Release Device
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It would appear that this
snap–release device would only produce
motion in the plane of the turbine,
and this is the case for the parked
turbine. However, when it is
rotatinq, the in-plane and
out–of-plane motions are cou~led
through Coriolis forces.
Consequently, all modes of interest
are excited by this mechanism.

One difficulty which is related to
the FFT algorithm, arises in usinq
this excitation device. The snao
release basically applies a force
which is a Heaviside function. As the
Fourier transform for the Heaviside
function does not exist, the FFT
cannot be used on this force.
However, if the Heaviside function is
passed through a high-pass filter, it
can be converted to a well behaved
function that is easily transformable
with the FFT. Figure 13 shows a trace
of a typical force history after
passing it through the hiqh-pass
filter. As shown, the force signal
has dropped to essentially zero after
about 0.4 sec., which is numerically
compatible wit$ the FFT. Also on this
force trace, evidence exists (the
three/rev response prior to release)
that the turbine is beinq
aerodynamically driven at some small
level.

c1
.

c1

\
\
\
\
\

-0.4 0.0 0.4 0.8

Time (See)

Fig. 13 A Typical Filtered Force History
Produced by the Snap-Release
Device

The high pass filter used in this
test is the AC coupling circuit of the
same set of amplifiers which amplify
the signals before recordinq them on
FM tape. Of course, the response
signals must also pass through matched
filters to avoid relative phase shifts
between the response and the
excitation. Figure 14 shows the
magnitudes of the frequency response
function for the low and high pass

filters used here, with the three dB
points at approximately 2.0 and 100.0
Hz.

J—d———J
1.0 1(1.O 100.0

~requency (Hz)

Fig. 14 The Magnitude of the Frequency
Response Function for the Filter
Used in the Rotating Modal Test

Figures 15 and 16 show typical
frequency response functions from the
rotating test at 600 rpm. These
functions were obtained from data
taken by in-plane and out-of-plane
accelerometers located near the top of
the tower. Taking into account the
scale factors on the two plots, the
magnitudes of the two response
functions are approximately equal.
This indicates that the Coriolis
coupling has indeed produced
out-of-plane response, even though the
initial excitation was strictly
in-plane.

s,&_JJ
0.0 50.0

Frequency (Hz)

Fig. 15 Measured In-Plane Frequency
Response Function for a
Rotational Speed of 600 rpm
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Fig. 16 Measured Out-of-Plane Frequency
Response Function for a
Rotational Speed of 600 rpm

Although the general data quality
is represented by that in Figures 15
and 16, at higher rotational speeds
the aerodynamic excitation of the
turbine became more prevalent in spite
of the low wind environment. This is
indicated in the frequency response by
high levels at integral multiples of
the rotational frequency.

At each rotational speed,
frequency response functions were
computed from the data taken with the
seven strain gages and the two
accelerometers. Ignoring those peaks
associated with the aerodynamic
excitation, the frequencies of the
remaining peaks on each of the
response functions were extracted and
tabulated. Small variations in the
frequency of some of the modes did
occur, and in those cases an average
value was used. Since the mode shapes
are complex, magnitude data were used
rather than the imaginary component to
obtain these modal frequencies.

In view of the small number of
transducers on the turbine, a full
description of the mode shape is
impossible. However, ei?envectors can
still be computed with nine components
in each vector using the method
outlined above. One typical
eigenvector corresponding to the
second rotor out–of-plane mode and a
rotational speed of 300 rpm, is shown
below. The magnitude and phase are
separated by commas in the vector.
The first two components are the
accelerations with units of mini-q’s,
and the last seven are stresses with
units of psi.

tower out–of–olane

tower in-plane
tower out–of-Diane

tower in-plane
blade 1, lower edqew

blade 1, lupper eflqew
blade 7. lower edqew

se
se
se

blade 7; upper edgewise
blade 2, lower fl atwise

1.00,
1.28,
7.57,
4.75,

1.06,
0.83,
1.17,
0.80,
0.00,

90
166
779
178
749
?75
256
255
——-

;

This eiqenvector has been normalized
so that the first comDonent has a
unit magnitude and a uhase of 90
deqrees. Note the larqe ohase
variations which are normally not
seen when non-rotating structures
are analyzed for their complex
modes. The out-of-plane acceleration
has a phase of 76 deqrees (nearly 90
degrees) qreater than the in-plane
acceleration. Likewise the
out-of-plane tower strain qaqe is
advanced by 101 degrees over t+e
in-Diane qage. The four edqewise
strain gages are basically in phase
with the out-of-plane deformation of

the tower. These phase relationships
are caused urimarilv by rotatina
coordinate system effe~ts.
Structural damping, errors f
in the initial data and
approximations in the extrac
algorithms also contribute.
from the uhase components in
vector, it is clear that the
and out-of-plane motion is
approximately ninety degrees
ohase.

.,

om noise

ion
However,
the
in–Diane

out of

Comparison and Discussion of Results
7TiT_Tan pTot of Figure 7-titiT6~ti~;--

-——. .—.. -——--—

generated for the 2-m turbine usinq
the finite element predictive
capability is reproduced in Fiqure
17. The experimental data are
superimposed as shown. In qeneral
the aqreement between the predicted
and measured values is excellent. In
fact, the averaqe absolute deviation
of the experimental points from the
predicted is 0.52 Hz., or 2.2
percent. Althouqh the deviation does
not appear to be dependent on the
rpm, the aqreement is not as qood at
the hiqber frequencies. This
deqrarlation for the higher
frequencies occurs in qeneral when
finite element methods are used and
is primarily caused by an
insufficient number of deqrees of
freedom in the model to accurately
represent the associated mode
shapes. The coarse representation of
the base of the turbine may also be a
contributor to this mild lack of
aqreement, especially since base
motion was experimentally observed to
be more prevalent in the hiqher modes.
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. EXPERIMENTAL DATA
’11_ ANALYTICAL PREDICTIONS
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-o 100 200 300 400 500 600 700

ROTOR RPM

Fig. 17 A Comparison of Predicted and
Measured Modal Frequencies for
the 2-m VAWT as a function of
rpm

Due to the small number of
transducers on the turbine, the
experimental mode shapes are coarse
and quantitative comparisons to those
predicted are difficult. However, as
indicated in the previous section,
the measured complex modes are
definitely composed of in-plane and
out-of-plane motion approximately
ninety degrees out of phase,
consistent with the predicted results.

Conclusions-——— -——

In view of the excellent agreement
between predicted and measured modal
frequencies, the accuracy of the
finite element technique for
computing the modal characteristics
of rotating VAWTS has been verified
for lightly damped turbines. As
shown, these predictions are of the
same level of accuracy as is obtained
in the finite element modal analysis
of stationary structures.
Additionally, a rotating modal
testing technique for VAWTS has been
demonstrated which is applicable to
large as well as small turbines.
Thus, if a predictive capability is
unavailable, the rotating modal
characteristics of established
hardware can be measured by the
technique described herein.

The authors wish to acknowledge
W. N. Sullivan for providing the
impetus to do the rotatinq modal
test. C. M. Grassham made invaluable
contributions in the desiqn of the
snap release device and in the
planning and maintenance of the
signal processing system. Others who
made significant contributions in the
testing and data reduction are
P. H. Adams and his strain gage
installation team, ,1. D. Burkhardt,
B. K. Cloer, M. R. Weber, and
L. H. Wilhelmi, Also, the work of
J. R. Koteras in establishing sPecial
NASTRAN analysis procedures for the
finite element predictive capability
is gratefully acknowledged.
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