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GUY CABLE DESIGN AND DAMPING FOR VERTICAL AXIS WIND TURBINES

Thomas G. Carne
Sandia National Laboratories
Division 5523
Albuquerque, New Mexico 87185

ABSTRACT

Guy cables are frequently used to support vertical axis wind
turbines since guying the turbine reduces some of the
structural requirements on the tower. The guys must be
designed to provide both the required strength and the required
stiffness at the top of the turbine. The axial load which the
guys apply to the tower, bearings, and foundations is an
undesirable consequence aof using guys to support the turbine.
Limiting the axial load so that it does not significantly
affect the cost of the turbine is an important objective of the
cable design. The lateral vibration of the cables is another
feature of the cable design which needs to be considered.

These aspects of the cable design are discussed in this paper,
and a technique for damping cable vibrations is mathematically
analyzed and demonstrated with experimental data.

* This work was supported by the U. S. Department of Energy
Contract DE-AC094-~-76DP00789.

** A U. S. Department of Energy Facility
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Introduction

Most vertical axis wind turbines use guy cables to support the
top of a single, fully rotating central tower. Other designs,
such as a cantilevered tower or two concentric towers (one
stationary to react cable loads) have been found to be,
generally, less cost effective. The guy cables serve two
primary functions while supporting the tﬁrbine. They provide
the strength necessary to hold the turbine durinj hurricane
winds, and they provide the stiffness at the top of the rotor.
The strength and stiffness requirements are nét competing
design objectives, however, one or the other may "drive" the

various parameters involved in the cable design.

There are two important consequences of using guy cables to
support the rotor. First, since guys have an initial tension,
the vertical component of the tension is reacted through the
tower, the foundation and, in this case, the bearings. This
axial load imposed by the guys impacts the cost of these
components. The second consequence of the guy support is
lateral vibrations of the cables. Cable vibration will be
excited by the motion of the top of the turbine while it is
operating. There is always excitation to the cables as long as
the turbine is operating in wind. 1If the excitation frequency
is near one of the cable natural frequencies, then the
amplitude of vibration can be gquite large. Large amplitude

cable vibrations need to be avoided in order to reduce fatigue



in the cables and their terminations and also to maintain a
reasonable blade/cable clearance distance. Other aspects of
the cable design, which include the cable sag, the required
blade/cable clearance distance, thermal expansion effects, and

cable anchors, are discussed in some detail in Ref. 1-5.

Design Guidelines

There are a number of cable parameters which have to be
chosen in order to establish the design for the guys. These
parameters are the cross-sectional area of a cable, the number
of cables, the length of the cables, the pretension of the
cables, the cable elevation angle, and the cable material
(density and modulus). All of these parameters affect the two
key design requirements on the guys, their support strength and
the stiffness they create at the top of the turbine [Ref. 3].
These cable parameters also affect the consequences of the
cable design which include lateral cable vibrations, cable sag,
and the resulting axial load on the turbine due to the tension
in the gquys [Ref. 31}.

The strength requirement on the guys is the easiest to
specify. The cross-sectional area of the cables must be
sufficiently large to support the turbine during parked
survival in hurricane winds without the tension in the cables
exceeding their ultimate strength divided by a factor of
safety. A factor of safety of at least three is recommended

for cables with an expected life of thirty vyears. This factor



of safety is not conservative when compared to other cable
applications and should be increased if the turbine will be
placed in an environment which is particularly harsh for
corrosion. The tension in cables during the parked survival
condition will be the initial tension plus the increase (or
decrease) due to the wind drag on the turbine. Thus the value
of the initial tension will affect the cable tension during
parked survival unless the initial tension is sufficiently low
that the downwind cable goes slack during the hurricane winds.

The stiffness requirement for the guys is impossible to
generalize for all turbine designs. The required sfiffness
will have to be chosen interactively with the rest of the
turbine design. This is due to the fact that the stiffness at
the top of the turbine affects the frequencies of the natural
modes of vibration. However, these frequencies are also
controlled by the whole turbine structure especially the blades
and the tower. Consequently, depending on the desirable values
for these modal frequencies, the operational frequency of the
turbine, and the structural properties of the turbine, the guy
cable stiffness will have to be chosen accordingly.

Figure 1 shows the variation in the modal frequéncies with
the guy stiffness for the 17-Meter Low Cost Turbine. Examining
this figure, one can see that some of the modes are quite
sensitive to the guy stiffness. Further, we can see that, in
order to keep the modal frequencies away from the excitation

frequencies, the guy stiffness is forced to be greater than

three k.
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Another consideration for choosing the cable stiffness is
the allowable angle change for the bearings at the bottom of
the rotor. TIf the bearing can only allow a small angle change
of the rotor, then the cable stiffness will have to be
sufficiently high to restrain the rotor from leaning. However,
if a universal joint is used to protect the bearing or some
more tolerant bearing design is used, then this constraint on
the stiffness will not apply.

The frequencies of lateral vibrations of the guy cables are
a consequence of the guy design, and they can place a
constraint on the design. The natural frequencies of vibration
of the cables are fn = n(T/pA)%/ZL [Ref. 3] where n is thé
mode number, L is the cable length, T is the guy tension, A is
the cable cross-sectional area, and p is the mass density. 1In
many designs these parameters cannot be chosen so that the
first cable frequency is above the excitation frequency of
2.0/rev (for a two bladed turbine) since that would force the
tension to be larger than would otherwise be desirable.
Further, since the tensions in the cables vary with the wind
velocity and temperature, it may not be possible to completely
avoid all cable resonances in any case. The cable vibration
problem is discussed in the last section of this paper and a
technique for restraining the vibrations is analyzed and
demonstrated.

The sag of the guy cables is another consequence of the guy

design, and it must be evaluated and compared with the



blades/cable clearance distance. If the sag is too large for
available clearance, then the cable design will have to be
changed. More discussion of the clearance requirements can be
found in Ref. 3.

The axial load which is applied to the turbine by the guys
can be the most serious consequence of the guy design.
Reducing the axial load within the constraints of the design
will reduce the cost of the turbine. Nellums in Ref. 6 has
shown that reductions in the costs of the bearings and tower
result from reducing the cable imposed axial load for a 150
foot tall turbine. Foundation costs would also be reduced.

The axial load is simply the total of the guy tensions
times the sine of the cable elevation angle at the top of the
turbine. Reducing either the tension or the elevation angle
will reduce the axial load. However, both of these changes
also decrease the guy stiffness, so the required stiffness will
restrict the design choices. It can be shown that to obtain a
minimum axial load, for a given stiffness, the elevation angle
should be 35.3 degrees.

The axial load on the turbine will change as the guy
tensions change, so during hurricane survival the axial load
may increase. Depending on the tower and bearings designs, an
increase in the axial load during the parked survival condition

may or may not affect the cost of these components.

11
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In view of the requirements and conseguences of the_cable
design, it is clear thét the design process must be iterative
and interactive with the total turbine design. The starting
point for the cable design must be the strength requirement.
Then, using an elevation angle of thirty-five degrees,
determine a tension and an area for the stiffness requirement.
This new area and tension will then be factored back into the
strength requirment, and then the stiffness reevaluated, and
during this design iteration the axial 1nad, cable sag, and
cable natural frequencies need to be computed and evaluated for

acceptability.

Cable Vibrations

If the design of the guys results in the first cable
frequency being less than n per rev where n is the number of
blades, then lateral vibrations of the cables can result.
Excessive cable vibration could cause a blade strike or fatigue
the cable terminations or anchors. Excitation of the cables
always exists since the top of the rotor moves while it is
operating, and the cables have exceptionally low inherent
damping (less than 0.2 percent of critical), so very high
resonant responses can result. Experience has shown that if
the first cable frequency is above the primary excitation
frequency, n per rev, then there is no problem with cable
vibrations. However, keeping cable frequencies that high can

be costly, par*icularly for large turbines.



There are two direct solutions to alleviate the cable
vibration problem. Oné is to constrain the cable so that the
cable modes are shifted to a higher frequency. This can be
done by forcing one or more nodal points along the span of the
cable. The other solution would be to add damping to the cable
so that resonant responses, when they occur, would be limited
in magnitude.

The rest of this paper will discuss a cable damping system
which was developed for this purpose.

The concept for the dampers utilizes Coulomb friction to
dissipate the energy. It is simply a pair of weights which are
suspended from the cable and slide on two inclined surfaces

whenever the cable moves. The two surfaces are at right angles

A

N
7777

FIGURE 2 - DiAaGrRAM oF CABLE DAMPING CONCEPT
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to each other and at right angles to the cable, thus they can
damp the motion of any'lateral cable vibration. The dampers
can be placed near the anchors so that they are

out-of-the-way. They can be built inexpensively and require no
power to operate them. They could be designed to require very
little maintenance and be very reliable. Figure 2 shows a
diagram of the damping concept with just one friction surface

shown, omit+ting the other for clarity purposes.

f-— C
<

FIGURE 3, Di1aGRAM OF CABLE WITH DAMPER



In order to determine the size, weights, and spacing of
this damping concept, én analysis for the damping was performed
and is described very briefly below. Figure 3 shows a diagram
of the physical system that will be anaylzed with the indicated
notation. We will consider motion in only one plane since the
out-of-plane motion is uncoupled. Our interest is the modal
damping in the cable, so we can consider the homogeneous

differential equation and boundary conditions.

pu(x, t) - T u"(x, t) =0

(1)
for 0 <« x < Zlvand
pV(x, t) = T v"(x, t) =0

(2)
for 21 < x <L

14

where p is the mass per unit length, T is the tension, u and v
are the displacments, and the dots represent differentiation
with respect to time and the primes with respect to x. The

boundary conditions and continuity conditions are

u(0, t) = v(L, t) =0 , (3)

t)y |, (4)

and

T[V'(Q'll t) ~ U'(Qll t)] = COu(Q/l’ t)l(S)

where 4 is the viscous damping coefficient. TIf we take %
to be much less than 21, then v" can be approximated by zero;
and the coupled differential equations can be reduced to one

differential equation with an inhomogeneous boundary

condition. Using separation of variables and assuming

15
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sinusoidal motion in the standard way leads to a transcendental
equation for the eigenfrequencies, except in this case, the

frequencies are complex because of the damping.

')
_}__t_als,+ictan6+l=0, (6)
2 B
2
where
B:I—-_...._('i____.
T VT/p
1
c = co/ V/Tp ,

and w is the natural frequency of vibration. Equation (6) can
be solved approximately for the damping coefficient in the

first mode, and we find

L = (7

where
A= QZ/L .
Equation (7) reveals some reassuring behavior. When ¢ is
zero or when ¢ is infinity, the damping coefficient is zero as
one would expect physically. Consequently ¢ is a maximum at

some intermediate value of c. This is easily computed and

‘max = A2 at c = 1/m) (8)



Figure 4 shows a series of plots of the damping
coefficient ¢ as a function of ¢ for various values of A. One
can see the maxima of y shift as A is increased. Also note

that the curves become steeper near the maximum C with

increasing A.

§ cw%z

_].+c2ﬂ2k2

cm

FIGURE 4 - THE VARIATION IN DAMPING FACTOR WITH
Viscous DAMPING COEFFICIENT



The magnitude of the damping coefficient that can be
obtained with this sysfem appears quite attractive. With the
damping syste~m connected to the cable one-tenth of +he distance
along the cable (A = 0.1), damping values as high as five
percent of critical can be obtained. Even if only two percent
damping were achieved, this still represents an increase by a
factor of ten over the damping inherently in the cables.

The analysis of the cable damping was performed assuming
viscous damping, but the actual damping mechanism is Coulomb
friction. By equating the energy dissipated in one cycle of
the viscous damper to that of the friction Adamper, a
relationship between the viscous coefficient and friction
coefficient can be obtained. The energy dissipated in one

cycle 1is

U 27/ w
D=f Fo + 4 dt
o D

where FD is the damping force. Evaluating UD for both the

viscous damping and the friction damping and equating the

results, we find that the sliding weight W which must be

suspended by the cable for the same energy dissipation is

c T W u
o) (XO)

W=4ucosY (9)

where y is the friction coefficient, Y is the elevation angle

of t+the friction surface, and u(xo) is the displacement of the



cable at the attachment point. Equation (9) reveals the basic
nonlinearity of friction damping as opposed to viscous damping;
the weight required for equivalent damping is proportional to
the displacement u(xo). Thus, the equivalent ¢, 9goes down
with increasing amplitude and goes up with decreasing
amplitude. Consequently, an anticipated displacement u(xo)
must be known before an equivalent weight W can be calculated.
This nonlinearity also reveals itself when the cable motion is
small, then the equivalent 4 is large, and the damper

creates a large force relative to the elastic force at the
connection. This force just drives a node point and the energy
dissipation goes to zero.

This damping scheme was tested on the 17-Meter Research
Turbine at Sandia National Laboratories in order to determine
the effect of the damping on the cable vibrations. A single
pair of friction dampers at right angles were connected to just
one of the four guy cables four meters from the cable end (A =
0.1). A pair of 18 kg weights were used as the sliding
elements. The surfaces were inclined at thirty-five degree
from the horizontal and had a friction coefficient u = 0.20.
The size, mass, and location of these dampers were quite
reasonable and should have yielded between two to five percent
damping depending on the amplitude of the cable motion.

Acceleration measurements were taken on the cable in the
horizontal and vertical directions while the turbine was

operating in a variety of wind speeds. The acceleration data

19



was analyzed using the Method of Bins [Ref. 7] so that the rms
acceleration amplitude'could be plotted as a function of wind
speed. One would expect the cable vibrations to increase with
wind speed since the excitation increases. Measurements were
taken with and without the damping system connected and at
three different cable tensions, Tl’ Tos and T,.

3
The highest tension, T1 = 80 kN, caused the first cable
frequency to be about twenty percent higher than two per rev;
the second tension, T2 = 54 kN, produced a cable frequency

very near two per rev; and the third tension, T, = 27 kN,

3
created a cable frequency at about seventy percent of two per
rev. The Bins data for the horizontal and vertical
accelerations with the three tensions are shown in Figures
5-14. The first five figures are the horizontal acceleration
plots: Tension 1 without damping, Tension 2 without damping,
Tension 2 with damping, Tension 3 without damping, and Tension
3 with damping. The last five figures are the vertical
acceleration plots in that same order. Note the tremendous
difference in the acceleration levels between Figs. 5 and 6,
and then adding the damper in Fig. 7 brings the acceleration
levels back down to the levels of Fig. 5. Figs. 8 and 9 are
the undamped and‘damped cases for tension T3. There is

hardly any difference between the plots. This is the expected
result since this case is not a resonant response, but merely a
forced response, and damping does very little unless a
resonance exists. Figs 10-14 show the same data but for the
vertical direction. The same trends are exhibited in these

figures.
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Conclusions

The design of the guy cables is not a straightforward
process. It must be iterative since there are multiple
requirements and constraints, and it must be interactive with
the rest of the structural design since the cable stiffness
affects the modal frequencies.

The cable damping concept demonstrated here appears to work
gquite well in reducfng resonant vibrations of the cables. The
system appears simple to design and install. Consegquently,
this system or something similar can be used to eliminate the

constraint of cable vibrations on the design of the guys.
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