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GUY CABLE DESIGN AND DAMPING FOR VERTICAL AXIS WIND TURBINES.

Thomas G. Carrie
Sandia National Laboratories

Division 5523
Albuquerque, New Mexico 87185

ABSTRACT

Guy cables are frequently used to support vertical axis wind
turbines since guying the turbine reduces some of the
structural requirements on the tower. The guys must be
designed to provide both the required strength and the required
stiffness at the top of the turbine. The axial load which the
guys apply to the tower, bearings, and foundations is an
undesirable consequence of using guys to support the turbine.
Limiting the axial load so that it does not significantly
affect the cost of the turbine is an important objective of the
cable design. The lateral vibration of the cables is another
feature of the cable design which needs to be considered.
These aspects of the cable design are discussed in this paper,
and a technique for damping cable vibrations is mathematically
analyzed and demonstrated with experimental data.

* This work was supported by the U. S. Department of Energy
Contract DE-AC094-76DPO0789.

** A U. S. Department of Energy Facility
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Introduction

Most vertical axis wind turbines use guy cables to support the

top of a single, fully rotating central tower. Other”designs,

such as a cantilevered tower or two concentric towers (one

stationary to react cable loads) have been found to be,

generally, less cost effective. The guy cables serve two

primary functions while supporting the turbine. They provide

the strength necessary to hold the turbine during hurricane

winds, and they provide the stiffness at the top of the rotor.

The strength and stiffness requirements are not competing

design objectives, however, one or the other may “drive” the

various parameters involved in the cable design.

There are two important consequences of using guy cables to

support the rotor. First, since guys have an initial tension,

the vertical component of the tension is reacted through the

tower, the foundation and, in this case, the bearings. This

axial load imposed by the guys impacts the cost of these

components. The second consequence of the guy support is

lateral vibrations of the cables. Cable vibration will be

excited by the motion of the top of the turbine while it is

operating. There is always excitation to the cables as long as

the turbine is operating in wind. If the excitation frequency

is near one of the cable natural frequencies, then the

amplitude of vibration can be quite large. Large amplitude

cable vibrations need to be avoided in order to reduce fatigue



in the cables and their terminations and also to maintain a

reasonable blade/cable clearance distance. Other aspects of

the cable design, which include the cable sag, the required

blade/cable clearance distance, thermal expansion effects, and

cable anchors, are discussed in some detail in Ref. 1-5.

Design Guidelines

There are a number of cable parameters which have to be

chosen in order to establish the design for the guys. These

parameters a~e the cross-sectional area of a cable, the number

of cables, the length of the cables, the pretension of the

cables, the cable elevation angle, and the cable material

(density and modulus). All of these parameters affect the two

key design requirements on the guys, their support strength and

the stiffness they create at the top of the turbine [Ref. 3].

These cable parameters also affect the consequences of the

cable design which include lateral cable vibrations, cable sag,

and the resulting axial load on the turbine due to the tension

in the guys [Ref. 3].

The strength requirement on the guys is the easiest to

specify. The cross-sectional area of the cables must be

sufficiently large to support the turbine during parked

survival in hurricane winds without the tension in the cables

exceeding their ultimate strength divided by a factor of

safety. A factor of safety of at least three is recommended

for cables with an expected life of thirty years. This factor



of safety is not conservative when compared to other cable

applications and should be increased if the turbine will be

placed in an environment which is particularly harsh for

corrosion. The tension in cables during the parked survival

condition will be the initial tension plus the increase (or

decrease) due to the wind drag on the turbine. Thus the value

of the initial tension will affect the cable tension during

parked survival unless the initial tension is suf~iciently lnw

that the downwind cable goes slack during the hurricane winds.

The stiffness requirement for the guys is impossible to

generalize for all turbine,designs. The required stiffness

will have to be chosen interactively with the rest of the

turbine design. This is due to the fact that the stiffness at

the top of the turbine affects the frequencies of the natural

modes of vibration. However, these frequencies are also

controlled by the whole turbine structure especially the blades

and the tower. Consequently, depending on the desirable values

for these modal frequencies, the operational frequency of the

turbine, and the structural properties of the turbine, the guy

cable stiffness will have to be chosen accordingly.

Figure 1 shows the variation in the modal frequencies with

the guy stiffness for the 17-Meter Low Cost Turbine. Examining

this figure, one can see that some of the modes are quite

sensitive to the guy stiffness. Further, we can see that, in

order to keep the modal frequencies away from the excitation

frequencies, the guy stiffness is forced to be greater than

three k.
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Another consideration for choosing the cable stiffness is

the allowable angle change for the bearings at the bottom of

the rotor. If the bearing can only allow a small angle change

of the rotor, then the cable stiffness will have to be

sufficiently high to restrain the rotor from leaning. However,

if a universal joint is used to protect the bearing or some

more tolerant bearing design is used, then this constraint on

the stiffness will not apply.

The frequencies of lateral vibrations of the guy cables are

a consequence of the guy design, and they can place a

constraint on the design. The natural frequencies of vibration

of the cables are f
n = n(T/pA)%/2L [Ref. 3] where n is the

mode number, L is the cable length, T is the guy tension, A is

the cable cross-sectional area, and P is the mass density. In

many designs these parameters cannot be chosen so that the

first cable frequency is above the excitation frequency of

2.O/rev (for a two bladed turbine) since that would force the

tension to be larger than would otherwise be desirable.

Further, since the tensions in the cables vary with the wind

velocity and temperature, it may not be possible to completely

avoid all cable resonances in any case. The cable vibration

problem is discussed in the last section of this paper and a

technique for restraining the vibrations is analyzed and

demonstrated.

The sag of the guy cables is another consequence of the guy

design, and it must be evaluated and compared with the

10



bl,ades/cable clearance distance. If the sag is too large for

available clearance, then the cable design will have to be

changed. More discussion of the clearance requirements can be

foupd in Ref. 3.

The axial load which is applied to the turbine by the guys

can be the most serious consequence of the guy design.

Reducing the axial load within the constraints of the design

will reduce the cost of the turbine. Nellums in Ref. 6 has

shown that reductions in the costs of the bearings and tower

result from reducing the cable imposed axial load for a 150

foot tall turbine. Foundation costs would also be reduced.

The axial load is simply the total of the guy tensions

times the sine of the cable elevation angle at the top of the

turbine. Reducing either the tension or the elevation angle

will reduce the axial load. However, both of these changes

also decrease the guy stiffness, so the required stiffness will

restrict the design choices. It can be shown that to obtain a

minimum axial load, for a given stiffness, the elevation angle

should be 35.3 degrees.

The axial load on the turbine will change as the guy

tensions change~ so during hurricane survival the axial load

may increase. Depending on the tower and bearings designs, an

increase in the axial load during the parked survival condition

may or may not affect the cost of these components.

11



In view of the requirements and consequences of the cable

design, it is clear that the design process must be iterative

and interactive with the total turbine design. The starting

point for the cable design must be the strength requirement.

Then, using an elevation angle of thirty-five degrees,

determine a tension and an area for the stiffness requirement.

This new area and tension will then be factored back into the

strength requirement, and then the stiffness reevaluated, and

during this design iteration the axial load, cable sag, and

cable natural frequencies need to be computed and evaluated for

acceptability.

Cable Vibrations

If the design of the guys results in the first cable

frequency being less than n per rev where n is the number of

blades, then lateral vibrations of the cables can result.

Excessive cable vibration could cause a blade strike or fatigue

the cable terminations or anchors. Excitation of the cables

always exists since the top of the rotor moves while it is

operating, and the cables have exceptionally low inherent

damping (less than 0.2 percent of critical), so very high

resonant responses can result. Experience has shown that

the first cable frequency is above the primary excitation

frequency, n per rev, then there is no problem with cable

vibrations. i~owever, keeping cable frequencies that high

be costly, par~-icularly for large turbines.

if

can
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There are two direct solutions to alleviate the cable

vibration problem. One is to constrain the cable so that the

cable modes are shifted to a higher frequency. This can be

dclneby forcing one or more nodal points along the span of the

cable. The other solution would be to add damping to the cable

SQIthat resonant responses, when they occur, would be limited

in.magnitiud~.

The rest of this paper will discuss a cable damping system

which was developed for this purpose.

The concept for the dampers utilizes Coulomb friction to

dissipate the energy. It is simply a pair of weights which are

suspended from the cable and slide on two inclined surfaces

whenever the cable moves. The two surfaces are at right angles

FIGURE 2 - DIAGRAM OF CABLE DAMPING CONCEPT

13



to each other and at right angles to the cable, thus they can

damp the motion of any lateral cable vibration. The dampers

can be placed near the anchors so that they are

out-of-the-way. They can be built inexpensively and require no

power to operate them. They could be designed to require very

little maint~nance and be very reliable. Figure 2 shows a

diagram of the damping concept with just one friction surface

shown, omit+ing the other for clarity purposes.

FIGURE 3, DIAGRAM OF CABLE WITH DAMPER

14



In order to determin~ the size, weights, and spacing of

this damping concqpt, an analysis for the damping was performed

and is described very briefly below. Figure 3 shows a diagram

of the physical system that will be anaylzed with the indicated

notation. We will consider motion in only one plane since the

out-of-plane motion is uncoupled. Our interest is the modal

damping in the cable, so we can consider the homogeneous

differential equation and boundary conditions=

pu(x, t) -Tu’’(x, t) =0
(1)

pv(x, t) -Tv’’(x, t) =~
(2)

for 11 <x<L,

w’here p is the mass per unit length? T is the tension~ u and v

are the displacements, and the dots represent differentiation

with respect to time and the primes with respect to x. The

boundary conditions and continuity conditions are

U(o, t) = v(L, t) = O , (3)

(4)

and

T[v’(kl, t) - U’(L1, t)] = CO:(L1, t),(s)

where c is the vi%cous damping co~fficient. If we take !L2
o

to be much less than 11, then V“ can be aPPr~ximated bY zero;

and the coupled differential equations can be reduced to one

differential equation with an inhomogeneous boundary

condition. Using separation of variables and assuming

15



sinusoidal motion in the standard way leads to a transcendental

equation for the eigenfrequencies, except in this case, the

frequencies are complex because of the damping.

‘1 tan~.— + i c tanc + 1 = O , (6)
% b

where

and u is the natural frequency of vibration. Equation (6) can

be solved approximately for the damping coefficient in the

first mode, and we find

(7)

where

Equation

zero or when

A = 12/L .

(7) reveals some reassuring behavior. When c is

c is infinity, the damping coefficient is zero as

one would expect physically. Consequently ~ is a maximum at

some intermediate value of c. This is easily computed and

L = A/2 at c = l/-ITAmax (8)

16



Figure 4 shows a series of plots of the damping

coefficient i as a function of c for various values of A. One

can see the maxima of L shift as A is increased. Also note

that the curves become steeper near the maximum L with

increasing A.

,10I

0,
c 5 10 15 20

C7T

FIGURE !+ - THE VARIATION IN DAMPING FACTOR WITH

VISCOUS DAMPING COEFFICIENT
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The magnitud~ of the damping coefficient that can be

obtained with this systeq appears quite attractive. With the

damping syst~m connected to the cable one-tenth of ~he distance

along the cable (A = 0.1), damping values as high as five

percent of critical can be obtained. Even if only two percent

damping were achieved, this still represents an increase by a

factor of ten over the damping inherently in the cables.

The analysis of the cable damping was performed assuming

viscous damping, but the actual damping mechanism is Coulomb

friction. By equating the energy dissipated in one cycle of

the viscous damper to that of the friction damper, a

relationship between the viscous coefficient and friction

coefficient can be obtained. The energy dissipated in one

cycle is

f

21r/(J.!

‘D = ‘D “~dt
o

where F
D

is the damping force. Evaluating UD for both the

viscous damping and the friction damping and equating the

results, we find that the sliding weight W which must be

suspended by the cable for the same energy dissipation is

c~ ~ u U(xo)
w=

4 p Cos y (9)

where P is the friction coefficient, Y is the elevation angle

of *he friction surface, and U(xo) is the displacement of the

18



cable at the attachment point. Equation (9) reveals the basic

nonlinearity of friction damping as opposed to viscous damping;

the weight required for equivalent damping is proportional to

the displacement U(XO). Thus , the equivalent co goes down

with increasing amplitude and goes up with decreasing

amplitude. Consequently, an anticipated displacement U(xo)

must be known before an equivalent weight W can be calculated.

This nonlinearity also reveals itself when the cable motion is

s:mall,then the equivalent c is large, and the damper
o

creates a large force relative to the elastic force at the

connection. This force just drives a node point and the energy

dissipation goes to zero.

This damping scheme was tested on the 17-Meter Research

Turbine at Sandia National Laboratories in order to determine

the effect of the damping on the cable vibrations. A single

pair of friction dampers at right angles were connected to just

one of the four guy cables four meters from the cable end (A =

0.1). A pair of 18 kg weights were used as the sliding

elements. The surfaces were inclined at thirty-five degree

from the horizontal and had a friation coefficient u = 0.20.

The size, mass, and location of these dampers were quite

reasonable and should have yielded between two to five percent

damping depending on the amplitude of the cable motion.

Acceleration measurements were takqn on the cable in the

horizontal and vertical directions while the turbine was

operating in a variety of wind speeds. The acceleration data

19



was analyzed using the Method of Bins [Ref. 7] so that the rms

acceleration amplitude could be plotted as a function of wind

speed. One would expect the cable vibrations to increase with

wind speed since the excitation increases. Measurements were

taken with and without the damping system connected and at

thr~e different cable tensions, T1, T2, and T3.

The highest tension, T1 = 80 kN, caused the first cable

frequency to be about twenty percent higher than two per rev;

the second tension, T2 = 54 kN, produced a cable frequency

very near two per rev; and the third tension, T3 = 27 kN,

created a cable frequency at about seventy percent of two per

rev. The Bins data for the horizontal and vertical

accelerations with the three tensions are shown in Figures

5-14. The first five figures are the horizontal acceleration

plots: Tension 1 without damping, Tension 2 without damping,

Tension 2 with damping, Tension 3 without damping, and Tension

3 with damping. The last five figures are the vertical

acceleration plots in that same order. Note the tremendous

difference in the acceleration levels between Figs. 5 and 6,

and then adding the damper in Fig. 7 brings the acceleration

levels back down to the levels of Fig. 5. Figs. 8 and 9 are

the undamped and damped cases for tension T3. There is

hardly any difference between the plots. This is the expected

result since this case is not a resonant response, but merely a

forced response, and damping does very little unless a

resonance exists. Figs 10-14 show the same data but for the

vertical direction. The same trends are exhibited in these

figures.

20
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Inclusions

The design of the guy cables is not a straightforward

process. It must be iterative since there are multiple

requirements and constraints, and it must be interactive with

the rest of the structural design since the cable stiffness

affects the modal frequencies.

The cable damping concept demonstrated here appears to work

quite well in reduci’ng resonant vibrations of the cables. The

system appears simple to design and install. Consequently,

this system or something similar can be used to eliminate the

constraint of cable vibrations on the design of the guys.
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