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Abstract

Start-up of a vertical axis wind turbine causes transient
torque oscillations in the drive train with peak torques which
may be over two and one-half times the rated torque of the
turbine. These peak torques are of sufficient magnitude to
possibly damage the drive train; safe and reliable operation
requires that mechanical components be overdesigned to carry
the peak torques caused by transient events. A computer code,
based on a lumped parameter model of the drive train, has been
developed and tested for the Low Cost 17-Meter turbine; the
results show excellent agreement with field data. The code has
subsequently been used to predict the effect of a slip clutch
on transient torque oscillations. It has been demonstrated
that a slip clutch located between the motor and brake can
reduce peak torques by thirty eight percent.

—
* This work was supported by the U.S. Department of Energy

Contract DE-AC094-76DPO0789
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Introduction

Transient events during operation of Darrieus vertical-axis

wind turbines can cause torque levels in the drive line which

are unacceptable for many components. Start-up and braking in

various ambient conditions are typical events during which peak

torques may reach excessive magnitudes. Experience with

research vertical axis wind turbines (VAWT) indicates that peak

torques of 2 to 3 times rated torque are typical during

starting and braking, which implies an undesired overdesign of

drive-line compon~nts. The objective of the present

investigation is to develop an analytical tool which can be

used to predict drive-train behavior for several different

loading conditions.

Analysis is needed to determine which starting and braking

methods are most effective in reducing the peak torques seen in

the drive-line. Areas deserving investigation include start-up

in high winds, as well as electrical and mechanical methods

(clutches) designed to achieve a softer start. The relative

effectiveness of low speed vs. high speed braking, and

definition of a braking rate which will decrease dynamic

amplification to an acceptable level also merit study.

Although this paper will deal primarily with turbine start-up

in zero ambient wind speed and the effects of a slip clutch on

transient response, the model can easily be adapted to study

the problems mentioned above.

The model and the numerical results as well are based on

experimental data obtained on the Low Cost 17M VAWT installed

at Rocky Flats, CO, Figur= 1. The method, however, is

essentially general to all VAW’T’S. A Fortran program called

DYDTA (DYnamic Drive Train Analysis) numerically evaluates the

differential equations of motion and plots results. The

program is briefly described in Appendix A.



Figure 1. DOE/ALCOA Low Cost 17M Vertical Axis Wind Turbine
installed at Rocky Flats, CO.
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The Drive Train Model

Typically, a VAWT drive train consists of the turbine rotor

(blades and rotating tower), the transmission, a brake disc and

an induction motor/generator which are connected in series by

shafts and couplings. Additional mechanical components may be

present, and the drive train topography may vary depending upon

the specific turbine design. Additional components may include

a timing belt (for incremental adjustment of turbine operating

speed) and/or a slip clutch. The position of the brake

relative to the transmission and clutch, if present, is the

most variable element in drive train topography. For instance

on the Low Cost 17M turbine at Rocky Flats, Figure 1, the brake

is on the high speed shaft, whereas earlier turbines have had

the brake on the low speed shaft.

The transient response depends on the natural

characteristics of the system and the functional form of the

applied torques. The physical representation of the drive

train is shown in Figure 2, along with physical values for the

Low Cost turbine. For generality the model includes the slip

clutch, as well as applied torques on each inertial element.

Several assumptions are made, all of which may not be

applicable to a given VAWT design. The low speed shaft is

considered to be the only significant stiffness in the system

since, in an equivalent system, it appears much softer than

both the high speed shaft and the rotating tower. As larger

turbines are built and tower height increases, the tower

stiffness may approach the same value of stiffness as the low

speed shaft, and at some point tower stiffness may have to be

included in the model. On the other hand, the effect of the

transmission’s gear ratio on the equivalent stiffness of the

high speed shaft seems to insure that the high speed stiffness

will remain large relative to low speed stiffness, and thus the

high speed shaft can be effectively modeled as a rigid

element. The motor torque curve as specified by the

manufacturer is modified by a constant scale factor less than
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Figure 2. PhysicalRepresentationof VAWT Drive Train.



one, which is related to the voltage drop in the line. For an

induction motor\generator, torque is proportional to voltage

squared, so that a 20% drop in voltage will cause a 36%

reduction in motor torque. The assumption of a constant motor

scale factor implies that the voltage drop, and thus the

current drawn by the motor are independent of motor speed,

which is only approximately true. Also, nonlinear effects such

as Coulomb friction, aerodynamic damping, and drive slack are

not treated. All losses are represented by viscous damping.

The equations of motions describing the torsional response

of the drive train can be easily written by drawing free body

diagrams for each inertial element, Figure 3, and equating the

torque on each to zero. This method is preferred because it

+“-el

‘MOT Tc/m

3(a)

Ts

-’0-(i$ ‘Bf3K

TC ~sinz

JB

3(b)

JR

3(c)

Figure 3. Free Body Diagrams for writing equations
of motion.
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permits treatment of the nonlinear effect of the clutch in a

simple way since torque through the clutch can be expressed

explicitly. Referring to Figures 2 and 3, Tc and Ts are

defined and calculated as follows:

Ts = torque transmitted through low speed shaft,

Ts = KL(f34 - 65) +C(G4 - fQr

Tc = torque transmitted through slip clutch.

The equations of motion can now be written directly:

..

‘M”l = ‘MOT - Tc\nl,

JBe3 = Tc - TBRK - Ts\n2,

JR8~ = Ts + TROT,

where the clutch imposes a constraint of the form

ITC[< Tmax;—

T
max = maximum torque passed by clutch.

(1)

(2)

(3)

(4)

(5)

The slip clutch typically consists of two mating frictional

surfaces which are connected to the driving and driven shafts,

respectively. These frictional surfaces are compressed

together by a spring, so that the normal force, surface area,

and friction coefficients determine the maximum torque

tra~nsmitted by the clutch. Tmax can be adjusted by changing

the spring deflection.

The clutch is always operating in one of two conditions; it

is either engaged, in which case the velocities on either side

of the clutch are equal, or it is slipping, in which case the

velocities are unequal and the clutch torque is equal to

+ T
max” The torque speed characteristic of an ideal clutch—

is shown in Figure 4. Note that Tmax is a restoring torque;

that is, it is in a direction that will tend to re-engage the

clutch.
11
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Figure 4. Torque vs. Speed Difference - Ideal Clutch.
Assumes static friction coefficient equals
dynamic friction coefficient.

With this understanding, two distinct sets of unconstrained

equations of motion can be written corresponding to the two

operating states of the clutch, which will be referred to as

the engagement and slip equations, respectively.

Engagement of the slip clutch implies that 62 = 53, so

that the motor and brake move together. Multiplying equation

(2) by nl and summing the result with equation (3):

..

‘lJMo 1
+J6=nT

B3 1 MOT - ‘BRK - T~/n2 . (6)

The equations can be simplified by

variable transformation and taking

making the following

advantage of gear relations

12



$1 = fJ2 = f31\nl, (7)

$2 = 83
= ‘264’ (8)

$3 = ‘265” (9)

Thlusthe complete set of engagement equations can be written

(JME + JB)~l
.

= ‘lTMOT - ‘BRK - ‘LE($2-V3) - cE(i2-V3)’ ’10)

J2 = i~r (11)

.*
JRE;3 = KLE(~2-~3) + CE($2-~3) + TROT\n2; (12)

whlere

2
‘ME = nlJM,

J
RE = JR\n~,

‘LE = KL\n~,

CE = C\n~.

Slipping of the clutch decouples the motor

and rotor, so that the slip equations describe

(13)

(14)

(15)

(16)

from the brake

two independent

systems as shown in Figure 5. Slip implies a velocity

difference across the clutch and that the torque transmitted

thmough the clutch is a constant ~ Tmaxo Again taking

advantage of equations (7) - (9) and equations (13) - (16), and

ma~king the substitution

Tc = + Tmax (17)—

13
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JM

5(a) - motor system

Figure 5.

the final

‘ME;1

JB~~

JREi3

where

~
TBRK

TMAX KL,C T ROT
—
JB

b
JR

5(b) - brake rotor system

Representation of Drive Train for
clutch slipping.

form of the slip equations becomes

—

= ‘lTMOT + ‘max’
(18)

(“= + Tmax - TBM - KLE($2 -$3) - Ce V2 -$3) , (19)—

= KLE(iJ2 ‘*3) + CE($2 ‘~3) + TROT/n2, (20)

Tmax is positive for motor overspeed.

The conditions for initiation of slip and for re-engagement are

somewhat more subtle, although intuitively simple. Assume

that, at time equal zero, the clutch is engaged. Slip

initiates when the clutch torque equals Tmax and continued

engagement would tend to violate the constraint, equation (5).

Stated more rigorously the initiation of slip occurs when

‘Ce = Tmax (21)

and

dT
--=>0
dt

(22)

14



where the subscript e indicates the result obtained from the

engagement equations. If TCe is negative, then inequality

(Z!2)is directed in the opposite sense. Now assume that the

clutch is slipping, so that 62 ~ 63. Re-engagement occurs

when the velocities across the clutch become equal again:

62s = 63s (23)

and if

lTcel <T— max”

At re-engagement there must be a discontinuity in acceleration,

which implies a discontinuity in the clutch torque. This is

consistent with the characteristics of the clutch as shown in

Figure 4, since when Au = O (as it is at re-engagement), the

clutch torque may be any value between positive Tmax and

negative Tmax. A more complete description of the behavior

of a slip clutch is given in Appendix B, with the consequences

of the clutch illustrated.

Thus, a basic algorithm would be to use the engagement

equations until equations (21) and (22) are satisfied (slip

initiates) , and then to apply the slip equations until equation

(23) is met (re-engagement), at which point the algorithm is

applied recursively.

A great deal of insight can be gained from an examination

of the natural characteristics of the system, especially in the

case of start-up. The remainder of this paper will focus on

start-up in a zero ambient wind speed. The motor torque-speed

characteristic has a significant impact on the natural

characteristics of the system. A typical induction motor curve

is shown in Figure 6. It is important to realize

15
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that motor torque is a function of motor speed, not of time.

Torque ripple models developedl by Reuter have treated the

induction motorlgenerator mechanically as an inertia connected

to ground through a linear viscous damper. Referring to Figure

6 ithe torque-speed relationship is indeed linear for steady

Sti3te operation (1740 < u < 1860 rpm). However, during

sti~rt-up the motor speed goes from O to 1800 rpm and the

torque-speed relationship cannot be represented as a linear

element. From an intuitive standpoint, it is most clear to

think of the motor torque characteristic as a non-linear

damper, which has a coefficient dependent on rpm, superimposed

on a step torque, though in the code and model it is treated as

an applied torque. To be clear, the motor torque should not be

considered to be an external torque because it is not

independent of the state of the system. With this in mind, the

free vibration characteristics of the drive train during

start-up can be considered.

The natural characteristics of the system also depend on

the operating state of the slip clutch. When the clutch is

engaged, there is an effectively rigid connection between the

motor and the brake so their respective inertias may be lumped

together, and the system can be represented as shown in Figure

7. On the other hand, slipping decouples the motor and creates

twc)independent systems, Figure 8. The latter case will not be

treated in detail, however, it is apparent that the fundamental

frequency of the decoupled system in 8(b) will be higher than

that of coupled system in Figure (7), and that the isolated

motor, Figure 8(a) moves as a rigid body.

Due to the nonlinearity introduced into the system by the

motor and clutch, a linear eigenvalue analysis is not truly

applicable. The equivalent motor damping changes continually

so that the natural frequencies and mode shapes are a function

of speed. However, an approximate analysis can be done by

considering two subcases based on motor speed less than or

17



J~ ‘ n12 J~ + JB

Figure 7. System representation with clutch engaged.

JM

8(a]

Figure 8.

$“:}=x/nl‘MA
■

~B

8(b)

System representation with clutch slipping.

greater than the motor breakdown speed, respectively. up to

the breakdown speed the maximum absolute instantaneous motor

damping results in a critical damping of approximately minus

nine percent, and consequently the damping does not greatly

affect the natural frequencies up to breakdown speed. Note

that negative damping has the same effect on frequency as

JR
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positive damping (1 d.o.f., Ud = ~. ), blltthe
n

oppclsite effect on mode shape (in Figure 7, negative damping

from the motor tends to increase the oscillations of the motor

and brake relative to the rotor) . Thus, up to breakdown,

damping is negligible and the system can be viewed as shown in

Figure 9(a). The natural frequencies and mode shapes of the

JRE

9(a) 9(b)

Figure 9. System representation with clutch engaged
and motor speed < 1720 rpm.

system in Figure 9(a) are easily determined. The results are

d (J +JRE)
o, ‘LE S=

‘SJRE

= o, 2.586 HZ

1.000I J2)=
1.000 ‘

●

1.000

1- JS+J
RE

1.000
-0.083

(24)

(25)
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The mode shape indicates that the generator/brake is moving

with much greater amplitude than the rotor, so that the mode

basically represents the motor/brake winding up about the low

speed shaft, Figure 9(b). Indeed, if JRE >> J~ (typically

the case for VAWT’S), equation (24)can be approximatedby

dK
LEu=— (26)

‘s

which corresponds to the frequency of the system in Figure 9(b).

As previously discussed, when the motor speed is greater

than the breakdown speed, the torque is nearly a linear

function of speed, with a very large negative slope. This

slope, and thus the effective damping, is a function of the

rated power, the synchronous speed, and the slip at rating for

an induction motor/generator:

P
c= rated
M t (27)

fi2s

as given in [2].

For the Low Cost turbine this corresponds to a critical

damping factor of over 200%, which indicates that the

generator/brake oscillation will be very small. As an

approximation, the generator can then be considered to be fixed

when the motor speed is greater than the breakdown speed, as

shown in Figure 10, so that the first mode resembles the rotor

winding up on the low speed shaft.

‘RE

J~

Figure 10. System representation with clutch engaged
a;d motor-speed > 1730 rpm.
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The frequency for the system in Figure 10 is simply

4‘LEus—.
‘RE

(28)

~Jerimental Record - Base Case

The Low Cost 17M turbine at Rocky Flats is instrumented

with a torque sensor located on the low speed shaft. A typical

start-up record taken in zero ambient wind speed is shown in

Figure 11. The experimental record was used to develop a base

case which could be used to verify the predictive capabilities

of the model, as well as to fix certain parameters that could

not accurately be calculated analytically or experimentally.

The parameters which were varied were the viscous damping

coefficient and the motor scale factor. There are several

characteristics which are typical of a start-up record: the

initial overshoot and subsequent decay, and then the growth of

torque oscillations to the largest peak torque, and the

frequency shift that occurs just after the peak is reached.

Note that the maximum torque (40,000 ft-lb) is over 2.5 times

the rated turbine torque (15,000 ft-lb). The time to start is

also an important characteristic. Several non-linear effects

are apparent in the record as well; the decay envelope is not

smc)oth,which indicates non-viscous damping, and gear slack is

evident (note the ‘notch’ when the sign of the torque changes

near the end of the record). The model does not attempt to

explain or predict these non-linear effects.

DYDTA results for this base case are shown in Figures 12-15.

Varying the motor scale factor changes the starting time and

the magnitude of torque, while varying the viscous damping

coefficient primarily affects the initial rate of decay and to

a lesser extent the magnitude of torque oscillations. The

final value for the motor scale factor is 0.665, which

21
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corresponds to an 18% voltage drop in the line. This is not

unreasonable as the current drawn by the motor is rather high

and the line is fairly long at the Rocky Flats site. obviously

the?scale factor depends on the particular motor and electrical

arrangement for a given VAWT design. The viscous damping

coefficient was determined to be 1.1 x 103 lb-ft-see,

corresponding to a damping factor of approximately one

percent. This is insignificant compared to damping provided by

the motor and thus the influence of viscous damping due to the

structure on the response is negligible.

The results from DYDTA, after adjustment of the scale

factor and viscous damping coefficient, show excellent

agreement with the field data (Figure 11), and the simple drive

tralinmodel can be used to explain the characteristics typical

of a VAWT start-up in zero wind. DYDTA correctly predicts the

magnitude of the initial overshoot and the subsequent decay.

The initial overshoot is due to the step in torque which occurs

when the motor is turned on; the amplitude should be

approximately twice the initial motor torque (locked rotor

torque). When the motor speed is less than the pull-up speed

(725 rpm) the motor contributes a small amount of positive

damlping, and together with the viscous damping due to the

structure it causes the oscillations to decay in the typical

envelope fashion. However, the rate of decay constantly

decreases and eventually becomes zero as the damping from the

motor goes from positive at locked rotor to zero at pull-up and

becomes negative beyond that.

The growth of torque oscillations occurs when the damping

produced by the motor becomes negative, an effect also

predicted by DYDTA, Figure 12. Negative damping results in

energy addition to the system, which causes an unstable growth

in the amplitude of the torque oscillations. The maximum

torque seen by the low speed shaft occurs at approximately the

time the motor breakdown speed is reached, when the motor

damping changes rapidly from negative to positive. As



explained earlier, there is a frequency shift at this point as

well: prior to breakdown, the total damping is relatively

small, and thus it does not significantly affect the 1st

fundamental frequency. Since the rotor inertia is much larger

than the motorlbrake inertia, the vibrational mode basically

consists of the motorlbrake winding up on the low speed shaft.

Past breakdown the large positive damping produced by the motor

effectively reduces the motor\brake vibration to zero, so that

the first mode shape becomes the rotor oscillating about the

low speed shaft. There is a significant decrease in the

fundamental vibrational frequency past breakdown due to the

large size of the rotor inertia relative to that of the

motor\brake. Again, DYDTA is in very good agreement with field

data with regard to these phenomena. DYDTA also matches

experimental records on starting times, which essentially

depends on rotor inertia and mean motor torque.

Figure 13 demonstrates the variation of motor torque as a

function of time, which is another critical aspect of VAWT

start-up. Up until breakdown the motor draws very high levels

of current, and the motor can draw high power for only a short

period of time. Past breakdown the current is reduced, so it

is clearly advantageous to reduce the time to breakdown (tBD)

as much as possible. For the base case tBD is about 14.7

seconds. Figures 14 and 15 show the speeds of the motor\brake

and rotor, respectively as functions of time. They serve to

verify that the turbine successfully comes up to speed, as well

as to substantiate what has been said earlier in regard to the

mode shapes (the rotor motion is almost entirely a rigid body

mode whereas the motor contains a significant amount of

oscillation about the rigid body mode).

Control of Transients with a Slip Clutch

High torques experienced in the low speed shaft of the Low

Cost 17M turbine resulted in the investigation of a slip clutch

28



as a possibility for reducing peak torques. DYDTA has been

used to analyze the effect of a slip clutch on torque levels

during start-up. The results indicate a clutch could

significantly lower the peak torques seen by the low speed

shaft, with the following secondary benefit. The clutch also

reduces the time to breakdown for the motor (t~D), which

reduces the current drawn by the motor and protects it from

overload. It appears that an appropriately chosen clutch would

be well within margins of safety with respect to heat

dissipation and power absorption capabilities.

The characteristics of a typical slip clutch were discussed

earlier; recall that the clutch passes torque uniformly up to

sc)memaximum value (Tmax) which can be adjusted by changing

the deflection of a compression spring. With this in mind a

parametric study was done using DYDTA to determine what value

or’range of Tmax would best reduce torque levels. Obviously

T~laxshould be above the rated turbine torque, which is 427

ft-lbs (15,000 ft-lbs referred to the low speed shaft), or else

pc)wercould be absorbed by the clutch during normal operation.

The optimum value for Tmax for the Low Cost turbine

appears to be 475 ft-lbs (16?700 ft-lbs referred to the low

speed shaft), for which the results predicted by DYDTA are

shown in Figures 16-21. With the clutch present, the maximum

tc)rquein the low speed shaft occurs during the initial

overshoot, and its magnitude has been reduced 38% from 40,000

ft-lbs to 25,000 ft-lbs. The growth of torque oscillations

dc)esnot occur because slipping of the clutch decouples the

mc~tor from the drive train, thereby isolating the low speed

shaft from the negative damping produced by the motor. Note

that the torque in the low speed shaft can exceed Tmax,

de!spite the clutch, because of the inertial reaction of the

brake. This implies that the slip clutch should be located as

close to the component needing protection as is physically

pc~ssible.

The clipping action of the clutch is demonstrated in Figure

17; the torque transmitted through the clutch cannot exceed
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T As discussed previously, a secondary benefit is thatmax”
the clutch reduces tBD for the motor. Figure 18 shows that

the high torque part of the motor curve is sped through very

rapidly, and tBD is reduced to 12.6s from 14.7s for no

clutch. Figures 19 and 20 can be compared to determine at what

times the clutch is slipping. The power dissipated in the

clutch as a function of time, and the total heat dissipated

(obtained by integrating the power curve) are shown in Figure

21.

Conclusions

DYDTA represents an initial step towards understanding and

analyzing methods of controlling transient behavior in VAWT

drive trains. Results for start-up in zero wind speed show

exceptional agreement with experimental records on the Low Cost

17M turbine, thus providing verification of modeling accuracy.

DYDTA is currently being used to predict responses for several

different transient operations and possible design

modifications intended to reduce transient torque levels. It

is expected to become a versatile, easily implemented drive

train design tool.
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Appendix A

Description of Computer Code DYDTA

DYDTA, DYnamic Drive Train Analysis, is a Fortran code which is

intended primarily for solution of the transient dynamics

problems associated with VAWT drive trains. The inherent

phenomenon associated with steady state operation of a VAWT

called torque ripple can also be studied with the coder

although at this time the method developed by Reuter [1] is

recommended. The code is presently in a state of development,

and complete documentation will be published at a later date.

DYDTA is capable of obtaining the solution for any feasible

drive train topology, whereas the solution approach taken in

this paper is a special case. The number of different

configurations of a VAWT drive train are relatively small

because the locations of the rotor and generator are

essentially fixed. The capability to solve different

topc>logies is a very powerful tool because it enables

comparative studies of high speed vs. low speed brakes, as well

as the relative effectiveness of a clutch in differing

locations in the drive train. The equations of motion are

written based on a lumped parameter model of the structure, and

solved using ODE (Ordinary Differential Equations) , a library

subroutine which performs numerical integration. A slip clutch

and timing belt are included in the model for generality,

however, the user can negate the effect of these components

with appropriate choice of input. For example, by inputting a

very large value for the maximum torque transmitted by the slip

clutch its effect will be negated, since the maximum torque

will.not be reached and the clutch will not slip.
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The code is written to be fully user-interactive; the user

is prompted for all input. Required input includes mechanical

properties of the system (inertia, damping and stiffness), gear

ratios, and a code number for the desired drive train

topology. The user must also input information which

characterizes the applied torques (motor, brake, and/or

aerodynamic) which are to be considered. Typically this

consists of inputting several points of torque vs. speed and/or

time data. Optional input includes the initial conditions and

the integration parameters, although default values exist.

Output can be in either tabular or plot form, and the amount of

information is controlled by user input. Available output

includes speed, torque, and power as functions of time in all

relevant mechanical components.

38



Appendix B

Behavior of a Slip Clutch

In order to understand the behavior of a slip clutch and the

consequences of the mathematical modeling of the clutch, it is

instructive to examine in detail the response of a two

degree-of-freedom system which contains a slip clutch. This

system is sufficiently simple that it can be solved

analytically, thus allowing a more complete understanding of

its response. The system we wish to examine is diagrammed in

Figure B1 with the indicated notation. The applied torque is

constant and represented by To. The torsional spring has a

spring constant of K, and the clutch torque, T- has a maximum

value of Tmax.

/’
/“
/“ ~
/’ ~ ‘2

/;
/

●

‘1
To

Applied
Torque

Clutch

FIGUREB1, DIAGRAMOF TWO DEGREE-OF-FREEDOPISYSTEM

There are two operating states for the clutch, engagement and

slip, as discussed earlier. The equations of motion for this

system for the two states are given below.
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Engagement Equations

(Jl + J2)62 + Kf32 = T
0’

. .

01 = ‘2 ‘

ITCI < Tmax ,.

..
Tc = To - J181

(Bl)

(B2)

(B3)

(B4)

Slip Equations

..

‘A = ‘o - ‘c ‘ (B5)

..

‘2e2 + ‘e2 = ‘c ‘

‘rc = + T— max “

(B6)

(B7)

In order to solve these equations in a simple form so as to

observe the behavior of the clutch, we can use the homogeneous

initial conditions

6,(0) =6a(0) =0 and 6,(0) =6-(O) =0 , (B8)
L L

and let Tmax = 1.25 T
o

and set Jl = J2 .

At t=O there is no slipping

equations apply. Equations

conditions (B8) produce the

J- L

(B9)

(B1O)

of the clutch and the engagement

(Bl), (B2) and the initial

solution

‘1 = > (l-coswlt), LOl =

6’

(Bll)
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These solutions apply

point in time, ts, at

ever, can be computed

Using (Bll) and (B1O)

as long as the clutch stays engaged. The

which the clutch starts to slip, if

from the clutch torque equation (B4),
..

Tc =T
o - ’161 “

Tc = To(l - + Cosult) . (B12)

We see in (B12) that the clutch torque initially has a value of

Toj’2and then increases with time. The clutch torque would

have a maximum value of 1.5 To except that it exceeds Tmax,

so the clutch will start to slip before that point. To find

the time at which the clutch slips, ts, we use (B9) in the

abc~veequation to find

ts=; IT/w
1“

(B13)

Thus, the clutch starts to slip when t = @l. If the clutch

did not exist, then 01 and f32would continue to be equal and

increase as in (Bll), reaching their maximum value of 2To/K

at t = n/w”.
1

However, for t > ts the slip equations apply

until reengagement occurs when ~c~Oand~1=~2.

Using (Bll) and (B13), new initial conditions can be computed

for the slip equations of motion.
m

el(ts) = e2(ts) = ;: , and

;l(ts) = 62(ts) =
6 ‘o
Zwl-l?”

Now applying the slip equations (B5), (B6), and (B7) with

Tc = + Tmax, we find

..
IT

‘1°1 = - 4 0
, and

..

‘2°2 + ’02
=;To.

(B14)

(B15)

These equations show a key behavior of the clutch. Up to this

point of time, ts, 01 = e2. However, when the clutch is
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slipping, {l + ~z, consequently the velocities and angles no

longer remain equal. Solving the equations (B15) with the

initial conditions (B14), we find

To

‘1 ‘ir-
and

r

f

(B16)
-1

4for all t, ts : t < te , where LIJ2= #—
2

and te indicates the time when reengagement occurs, if ever.

The algebra at this point in the analysis is getting

sufficiently involved so as to obscure the physics.

Consequently, it is best to turn now to a plot of the

solution. Figure B2 shows the two angles, the two angular

velocities, and the clutch torque all plotted as functions of

time. Examining the figure, one can see the point at which the

clutch starts to slip and when it reengages. When the clutch

is slipping, the angular velocities are no longer equal.

However, the clutch is applying a torque in the direction so as

to equalize the velocities again. This happens at te when

the velocities are again equal and the clutch engages. Note
also the behavior of the clutch torque. While the clutch is

slipping, Tc = Tmax; when the clutch is engaged,

TC<T One can also observe from the figure themax”
discontinuity in 61 and G2when the clutch reengages.
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