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ABSTRACT

A 5-metre-diameter vertical-axis wind turbine has undergone continued
testing since 1976 at the Sandia Laboratories Wind Turbine site. The
latest tests of this machine have been with extruded aluminum blades of
NACA-0015 airfoil cross section. The results of these tests at several
turbine rotational speeds are presented and compared with earlier test
results. A performance comparison is made with a vortex/lifting line
computational code. The performance of the turbine with the extruded
blades met all expectations.
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NOMENCLATURE

As Turbine swept area

c Blade chord

Cdo Zero wind drag coefficient

c
P

J

Power coefficient, Qw
;~V: A

s

v
Advance ratio, ~w

Power coefficient, Qw
‘P *~AS(RW)3

L Blade length

N Number of blades

Q Turbine aerodynamic torque (T + Qf)

Qf Friction tare torque

R Turbine maximum radius

~mR@ C

Rec Chord Reynolds number, —
Pm

T Turbine shaft torque



NOMENCLATURE (cent)

v Average freestream velocityCa

x Turbine tip-speed ratio, ~w
03

Pm Frees tream viscosity

P Freestream density
UJ

LIJ Turbine rotational speed

NcL
a Solidity, ~

s
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SUMMARY

The Sandia 5-metre vertical-axis wind turbine has undergone continued

testing since 1976 in free air at the Sandia Laboratories Wind Turbine

site. The turbine was operated at several fixed and nearly constant rota-

tional speeds by an induction motor/generator which can act as either a

motor delivering power to the turbine or as a generator delivering power

from the turbine to the utility line. The extruded aluminum blades on the

turbines are of the straight line/circular arc troposkien approximation

with a constant NACA-0015 airfoil cross section from hub-to-hub. The tur–

bine height-to-diameter ratio is 1.02. The solidity of the present system

is 0.22 with three blades and 0.15 with two blades. These blades differ

from previous blades which had an NACA-0012 airfoil section only on the

circular arc portion of the blades. The straight line segments which

attached the original blade to the center column were not of airfoil cross

section but merely a flat sheet of steel rolled back onto itself with a

circular leading edge.

Five different constant–rotational-speed data sets were obtained with

the extruded aluminum blades: three sets (125, 137.5 and 150 rpm) with

three blades and two sets (162.5 and 175 rpm) with two blades. The perfor-

mance data were obtained with the aid of a minicomputer using a computer

program which utilized statistical methods. The unsteadiness of the winds

necessitates the statistical averaging of the data. The “method of bins”

computer technique (computer code BINS) used for averaging the data is, at

the present time, the only method by which reasonable performance infor-

mation has been obtained in free air. The results show the performance of

the turbine with the extruded aluminum blades to meet all expectations re-

lating to wind tunnel performance and analytical models. The maximum power

coefficient, C for the turbine was found to be 0.392 at a rotational
P’

speed of 150 rpm with three blades. This is an improvement of 44% over the

former three-piece blades also operating with three blades at 150 rpn.



1“

.

I Part of the improvement in the performance is due to the elimination of
k

the nonairfoil straight segments and part is due to the improved perfor-

mance of the NACA-0015 airfoil over the NACA-0012 airfoil.

i

\’
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AERODYNAMIC PERFOlU4ANCE OF A 5-METRE-DIAMETER
DARRIEUS TURBINE WITH EXTRUDED ALUMINUM

NACA-0015 BLADES

Introduction

The vertical-axis wind turbine,l which was patented in the United

States in 1931 by G. J. M. Darrieus, has been receiving continued

attention at Sandia Laboratories. 2-14 Sandia Laboratories fabricated its

first machine, a 5-metre diameter Darrieus turbine, in 1974. The original

turbine design allowed a variable rotational speed mode of operation;

however, subsequent studies identified the constant rotational speed/

synchronous power grid application as being very promising for the

Darrieus turbine. Since 1976, the Sandia 5-metre turbine has been

operating in a synchronous grid mode.

The first performance data for this turbine with its original blades

were reported in Ref 2. Each of its original blades consisted of three

segments: a circular arc located near the turbine equator with a 19-cm

chord NACA-0012 airfoil cross section, and two straight sections that

attached the circular arc to the center column. Each straight section was

steel sheet formed to a “streamlined” shape with a 10-cm chord. This

straight linelcircular arc combination was designed to approximate the

shape that a perfectly flexible blade would assume under the action of

centrifugal forces and has been given the name troposkien 3 (Greek for

turning rope). It was determined that the straight sections were

detrimental to the turbine performance and that the blades should have

the airfoil cross section from hub-to-hub. With that in mind, new one-

piece blades were designed and the airfoil cross section was changed to

the NACA-0015 cross section to take advantage of the fact that these

airfoils exhibit more favorable stall characteristics. This report

describes the performance of the turbine using these new blades.

11
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The 5-metre turbine shares the test site with a 17-metre turbine and

a 2-metre turbine. Also at the site is the instrumentation building which

houses the controls for the three turbines, turbine instrumentation,

anemometry instrumentation, and the Hewlett-Packard HP 21 MX minicomputer

system. It should be noted that the elevation of the test site is 1658

metres and that the nominal air density is 82% of standard sea level

density.

The 5-Metre Vertical-Axis Wind Turbine

The Sandia 5-m turbine, a proof-of-concept machine fabricated in

1974, was designed to be erected in the shortest possible time at reason-

able cost. These ground rules were the basis for the construction of its

original blades which were later found to perform below expectations. 2 It

was decided in 1977 to design and purchase new aluminum blades for this

machine with the blades being one-piece extrusions with the NACA-0015 air-

foil cross section extending from hub-to-hub. Figure 1 shows the turbine

at the test site with the new one-piece blades. It can be seen that over-

all, the blade design is much “cleaner” than the original design shown in

Figure 2. The new blades eliminate the

well as the knuckles at the attachment

blades.

nonaerodynamic straight sections as

to the circular arc portion of the

The new blades are one-piece hollow aluminum (Alloy 6061 T6) extru-

sions conforming to the NACA-0015 airfoil cross section with a chord of

15.24 cm (6 in.). They were bent to the curved blade shape by incremental

bending and then stress-relieved. The blades were furnished to Sandia from

Aluminum Company of America (ALCOA) without end fixtures for attachment to

the rotating tube of the turbine. The end fixtures were attached to the

blades with an aircraft structural adhesive as the primary joining method.

Representative joint components are shown in Figure 3. The upper item is a

short segment of the blade extrusions, and the item at the right is the

machined blade end fixture. The tapered plug end of this fixture is in-

serted into a closely matched cavity in the blade extrusion. This cavity

was obtained by spark discharge machining, using an identical plug as the

12



Figure 1. The 5-Metre Vertical-Axis Wind Turbine at
Sandia Laboratories Test Site
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Figure 2. Original Three-Piece Blades on 5-Metre Turbine
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machining mandrel. This mandrel is seen in the lower left corner of the

figure. After the end fixtures were installed, sheet aluminum cover plates

were contoured to the external airfoil surface and added as a double–lap

joint strengthener over the joint of the end fixture and blade with the

same adhesive. Finally, rivets were placed through the entire sandwich

structure of the joint. Destructive static tensile tests were conducted on

short , straight blade segments with three candidate joint designs: (1)

plug and adhesive (2) plug and adhesive with contoured cover plates, and

(3) plug and adhesive with riveted contoured cover plates. The tests

indicated the mode of failure and confirmed the predicted strength levels.

Each of three samples tested failed only after tensile yielding of the

aluminum extrusion had commenced (Figure 4). The blades failed at loads in

excess of 2.67 x 105 N (60,000 lbf). For reasons of maximum safety, design

3 was chosen for the blade end fixtures.

Figure 3. Short Segment of the NACA-0015 Airfoil Extrusion With
End Fixture and Mandrel

15
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Figure 4. Destructive Static Tensile Samples of Three
Candidate Joint Designs

The turbine is designed to operate at a nearly constant rotational

speed by connecting the turbine shaft through a two-stage timing belt

drive to an induction motor/generator operating at 3600 rpm. By changing

pulleys, the turbine speed can be changed in discrete steps. Figure 5 is a

schematic of the 5-m system showing the relationship of the induction

machine, speed increaser, Lebow* RPM and torque transducer, and the tur-

bine shaft. Nominal rotational speed of the turbine is determined by the

synchronous speed of the induction machine and the timing belt sprocket

ratios. The induction machine can act as either a motor, delivering power

to the turbine from the utility line, or as a generator, delivering power

to the utility line from the turbine.

*
Lebow Associates, 1728 Maple Lawn Road, Troy, Michigan 48084
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Figure 5. Schematic of 5-Metre Turbine System

Testing and Data Acquisition

The testing of turbines in free-air offers problems not usually

encountered in wind tunnel testing. In particular, the atmospheric wind

speed seldom remains constant for any appreciable length of time. Con-

sequently, it is difficult to assign an appropriate wind velocity cor-

responding to a given torque measurement. A record showing typical wind

velocity and turbine torque fluctuations is shown in Figure 6. The un-

steadiness of the velocity and torque shows some of the problems of ob-

taining free-air data from a wind turbine. Computer code BINS, 2 which uses

the “method of bins” to statistically average the wind speed and torque

data, was developed to assist the data acquisition. The wind speed and

torque are recorded at sample rates chosen by the operator, generally from

1 to 10 data samples per second. The data are then stored in velocity bin

widths of 0.5 mph, i.e., a datum point is taken and the wind velocity is

determined which, in turn, locates the velocity bin. The datum point is

17



widths of 0.5 mph, i.e. , a datum point is taken and the wind velocity is

determined which, in turn, locates the velocity bin. The datum point is

counted, and the value of the torque obtained at that wind speed is added

to the summed torque in the bin. The data are stored as a function of the

velocity bins (120 bins for velocities from O to 60 mph). Each bin records

the number of data points and the total summed torque. Each data record,

consisting of the 120 velocity bins, number of data points, and the summed

torque for each bin, also contains information which is constant for each

data record. These constants are the rotational speed, number of blades,

anemometer identification, wind shear correction factor, temperature, baro-

metric pressure, time of day, and turbine tare torque. The turbine tare

torque is the torque lost in the turbine due to bearing friction and belt

losses .

—

5-m Turbine
3 Blades

v
Time (s)

Figure 6. Representative Time Histories of 5-Metre Turbine
Torque and Site Wind Velocity
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The computer will accept simultaneously wind–velocity data from three

separate anemometers; thus, during a single test three data records can be

generated, all with the same turbine torque information but with wind

velocities corresponding to each separate anemometer. The operator has the

option of taking wind-velocity data from any of the available anemometers

at the turbine site up to a total of three.

During a test, the required constant information is input to the com-

puter. With the turbine operating, the computer is instructed to take

data. If during the test the temperature or barometric pressure changes,

the test is terminated and the data record stored. The new information is

input to a new data record and testing is resumed. Data are taken when the

winds are available, so a test may be a few minutes long or extend past an

hour. These tests are performed on a day-to-day basis; the end result is a

large amount of data taken for a wide range of wind conditions over many

days .

Results and Discussion

The data records for a given rotational speed and anemometer can be

combined into a data set, and the performance of the turbine can be com-

puted by the minicomputer in the control building. The data are corrected

for the day-to-day variations of the ambient air density, and the results

of the summed data records are presented in the form of power coefficient

as a function of tip-speed ratio or advance ratio.

The power coefficient, which is a standard measure of turbine

performance, is calculated by

c Q(.J.
P +Pm v: As

(1)

where Q is the turbine torque corrected for tare torque losses, is the

turbine rotational speed, P is the ambient air density, V is the far
w m
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field wind velocity, and As is the turbine swept area.2 The values of this

power coefficient are plotted against a tip-speed ratio defined as:

. R&xv. (2)
C@

A second power coefficient has been defined2 as

(3)

where the wind velocity of the first power coefficient has been replaced

by the blade equatorial velocity. This power coefficient was developed for

three reasons: (1) Kp shows that power reaches a maximum at a particular

value of the advance ratio (wind speed) when the turbine rotational speed

is constant; (2) Kp describes more clearly the power output character-

istics of the wind turbine operating in the synchronous mode; and (3)

since the calculation of C~ involves a wind velocity cubed, large errors

in the calculation can occur due to errors in the wind speed measurement.

The values of

ratio defined

this second power coefficient are plotted against an advance

as

(4)
v

J =—
R: “

which is merely the inverse of the tip-speed ratio.

Each data set consisted of eight or more data records and contained

more than one-third million data points. Five data sets were obtained dur-

ing the course of the test program. Three of the data sets (125, 137.5,

and 150 rpm) are for a three-bladed turbine configuration with a turbine

solidity, CT, of 0.22. The test plan originally called for testing the

three-bladed configuration at rotational speeds above 150 rpm; however,

the improved performance (higher torques) could not be accommodated. The

attempt with a rotational speed of 162.5 rpm resuLted in overspeeding of

the induction motor and finally timing belt skip and breakage. The remain-

ing two data sets (162.5 and 175 rpm) were for a two-bladed configuration

with a turbine solidity of 0.15. Again, other rotational speeds were

20
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planned; however, at lower rotational speeds the two-bladed configuration

entered a natural frequency regime which caused excessive vibration of the

turbine; at rotational speeds in excess of 175 rpm, the turbine output

again exceeded the torque limitation of the induction motor.

The wind velocities presented in all five data sets were obtained

from anemometers located two turbine diameters away from the axis of rota-

tion and at the turbine equator height. The usual winds at the turbine

site are easterly or westerly, and the anemometers are located to the

north and south of the turbine to minimize the influence of the turbine on

the anemometers. 2 Data were not taken when the wind was not from the usual

wind directions.

The power coefficients, Cp, for the three data sets of the three-

bladed configuration are presented in Figure 7 as a function of the tip-

speed ratio. It can be seen that with each increase in chord Reynolds

number (rotational speed) there is a corresponding increase in maximum

power coefficient. At a chord Reynolds number of 2.5 x 105 (125 rpm), the

maximum C
P

is 0.335; at Rec = 2.8 x 105 (137.5 rpm), C
Pmax

is 0.360; at

Rec = 3.0 x 105 (150 rpm), C
Pmax

is 0.392. Run-away, the high tip-speed

ratio at which no power is produced, occurs near the tip-speed ratio of 8

for all three rotational speeds. The power coefficients, K
P’

are presented

for the three-bladed configuration in Figure 8. This figure shows the

inherent self regulation (K
P

reaches a maximum value and does not continue

to increase with increasing wind velocity) of a Darrieus turbine operating

at a constant rotational speed with the maximum power coefficient, K
Pmax’

occurring between an advance ratio of 0.3 and 0.4. The value of K
Pm ax

increases with increasing chord Reynolds number as expected.

The power coefficients, Cp, for the two data sets of the two-bladed

configuration are presented in Figure 9. The maximum power coefficients

are lower than the three-bladed data as expected due to the lower solidity

of the turbine with two blades. 4 The Kp data presented in Figure 10 shows

a large increase in K
Pmax

with increased chord Reynolds number. As men-

tioned earlier, data at higher rotational speeds could not be obtained

since the turbine torque near the maximum power output of the turbine

21
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planned; however, at lower rotational speeds the two-bladed configuration

entered a natural frequency regime which caused excessive vibration of the

turbine; at rotational speeds in excess of 175 rpm, the turbine output

again exceeded the torque limitation of the induction motor.

The wind velocities presented in all five data sets were obtained

from anemometers located two turbine diameters away from the axis of rota-

tion and at the turbine equator height. The usual winds at the turbine

site are easterly or westerly, and the anemometers are located to the

north and south of the turbine to minimize the influence of the turbine on

the anemometers. 2 Data were not taken when the wind was not from the usual

wind directions.

The power coefficients, Cp, for the three data sets of the three-

bladed configuration are presented in Figure 7 as a function of the tip-

speed ratio. It can be seen that with each increase in chord Reynolds

number (rotational speed) there is a corresponding increase in maximum

power coefficient. At a chord Reynolds number of 2.5 x 105 (125 rpm), ttie

maximum C is 0.335; at Rec = 2.8 x 105 (137.5 rpm), C
Pmax

is 0.360; at
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ratio at which no power is produced, occurs near the tip-speed ratio of 8
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to increase with increasing wind velocity) of a Darrieus turbine operating

at a constant rotational speed with the maximum power coefficient, K
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occurring between an advance ratio of 0.3 and 0.4. The value of K
pmax

increases with increasing chord Reynolds number as expected.

The power coefficients, Cp, for the two data sets of the two-bladed

configuration are presented in Figure 9. The maximum power coefficients

are lower than the three-bladed data as expected due to the lower solidity

of the turbine with two blades. 4 The Kp data presented in Figure 10 shows

a large increase in K
Pmax

with increased chord Reynolds number. As men-

tioned earlier, data at higher rotational speeds could not be obtained

since the turbine torque near the maximum power output of the turbine
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exceeded the limitation of the induction motor. This allows the turbine to

operate at higher rotational speeds than the synchronous speed which is

input to the data reduction program as a constant value. It appears that

even at the 175 rpm condition, the induction motor may have been operating

with excessive slip. This has the effect of producing higher calculated
.
values of Kp and lower calculated values of C because these values are

P
normalized using rotational speeds lower than the actual rotational speed.

Thus the large increase in K for the 175 rpm condition and the almost
Pmax

insignificant increase in C
P

may be due to this excessive slip. This
max

means the 175 rpm data should be used with reservation.

Figures 11 and 12 present the C and K
P P

comparisons between the new

and the original blades at a rotational speed of 150 rpm. The improvement

in performance is due to the elimination of the nonaerodynamic straight

sections and associated knuckles of the original NACA-0012 blades and the

better stall characteristics of the NACA-0015 airfoil. The data show an

increase in C_ of 44% (from 0.27 to 0.39) and an increase in K of
Pmax

62% (from 0.0042 to 0.0068).

One of the computational tools used at

vertical-axis wind turbine performance is a

tailed description of which is found in Ref

Pm ax

Sandia Laboratories to predict

program called VDART, a de-

15. Briefly, VDART is a

vortex/lifting line representation of the turbine blades and the wake they

generate. The blades are divided into segments, each of which is modeled

by a single “bound” vortex which remains attached to the blade segment and

a pair of “trailing” vortices at each of the segment’s two extremities.

These trailing vortices account for spanwise lift variations and are con-

vected into the turbine wake. Also carried downstream of each segment are

“shed” vortices which model timewise variations in the bound vorticity.

The sum of velocities induced by the totality of the bound, trailing, and

shed vortex systems plus that of the ambient stream define the aerodynamic

flowfield. Once this is established at a given operating condition, the

lift and drag of the blade segment is obtained with airfoil section data.

w

v
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A comparison of the two-bladed 162.5 rpm data with the results of the

VDART code is shown in Figure

agreement is quite good. This

dynamic stall. VDART computer

could not be achieved.

13. With the exception of the X = 3 point,

exception is believed due to the effects of

solution convergence for values of X > 8
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Figure 13. Comparison of Two-Bladed 5-Metre Turbine Performance
Data With VDART Computer Program at 162.5 rpn

When the wind turbine is operated (powered) when there is no wind, a

value for the zero wind drag coefficient Cd , can be determined. The value
o

of cd as a function of chord Reynolds number is a measure of the tur–

bine’~ efficiency (high values of Cd result in low values of Cp). It is

therefore of interest to compare the°Cd ‘s of different configurations and
o

also with the minimum drag of two-dimensional airfoils of the same cross

section as the turbine blades. Under the no wind condition, the airfoils

are always operating at a geometric angle-of-attack of zero degree.

Migliore and Wolfe16 have shown that airfoils in curvilinear flow actually

operate at a virtual angle-of-attack which is different from the geometric

angle-of-attack. For the turbine this difference is dependent upon the
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geometric angle-of-attack, the tip-speed ratio, the blade chord to turbine

radius ratio, and the position of the blade in its orbit about the turbine

axis. They also show that the effect is reduced for small chord to radius

ratios. The chord–to-turbine maximum radius ratio for the 5-m turbine with

the extruded blades is 0.067. This results in a virtual angle-of-attack of

15 This is small, and its effect will be con-the order of one degree.

sidered insignificant in the calculation of C
do as a function of chord

Reynolds number for the turbine.

A plot of zero-wind drag coefficients as a function of chord Reynolds

number is presented in Figure 14. Shown in the figure are Cd curves for

two-dimensional airfoils with the NACA-0012 and -0015 profil~s obtained

from Eppler’s 17 airfoil code, Cd data for a 2-m-dismeter turbine with

NACA-0012 blades, and Cd data f~r the 5-m turbine with the original NACA-

0012 blades and the extr~ded NACA-0015 blades. The data for the 2-m tur-

bine are shown here because they represent a large amount of data obtained

under the most nearly ideal conditions and can be used as a basis for

comparison purposes. These data were obtained during spin tests of the 2-m

turbine in a large room with the laboratory instrumentation described in

Ref 4. The Cd results of the 5-m turbine with its initial NACA-0012

blades (which”performed below expectations) can be seen to be approxi-

mately 50% higher than the Cd ‘s obtained for the 2-m turbine. The 5-m

turbine with the extruded al&inum NACA-0015 blades show a marked reduc-

tion of Cd with accompanying improved performance exhibited by these

blades . Th~ results are still higher than the two-dimensional airfoil data

from the Eppler code, as can be expected since the chord Reynolds number

which the data are plotted against is valid only for that portion of the

blade at the turbine equator. The actual Reynolds number everywhere else

on the blade is lower, and the accumulated effect of Reynolds number on

the minimum drag coefficient (i.e., minimum drag increases with decreasing

Reynolds number) can be seen.
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Conclusions

The performance data for the 5-m turbine and the new one-piece

extruded aluminum blades with the NACA-0015 airfoil cross section were

obtained with the aid of a minicomputer and the computer program BINS. ‘The

data show the performance of these blades to be as anticipated and to be

considerably improved over that of the original three–piece blades. The
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highest performance was obtained with three blades at a rotational speed

of 150 rpm and produced a C
Pma~

of 0.392. This compares with a C
Pma*

of

0.273 obtained with three blades at 150 rpm taken during earlier tests

with the original three-piece blades. This 44% improvement agrees with

wind tunnel data obtained with a 2–m turbine with similar l-piece blades.

The data obtained at 162.5 rpm with two blades is compared with the

results of the computer program VDART and found to be in agreement. VDART

is the most sophisticated computer model of the vertical-axis wind turbine

performance that is available to Sandia and is considered to offer the

best results.

The one-piece extruded aluminum blades are more aerodynamically

“clean” than the original three-piece blades, as indicated by the marked

reduction of the Cd ‘s. This is in spite of the fact that the minimum drag

for the NACA-0015 a?rfoil is slightly higher than the minimum drag for the

NAcA-0012 airfoil. The turbine with the new blades has demonstrated that

the vertical-axis wind turbine can produce power coefficients in the range

of 0.4. It is believed that this machine would have exceeded this value if

it were not for the fact that the rotational speed of 150 rpm with three

blades could not be exceeded due to torque limitations of the timing belts

and induction motor.
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