SANDIA REPORT

SAND79-1753 • Unlimited Release • UC-60

Reprinted August 1982

Aerodynamic Performance of the 17-M-Diameter Darrieus Wind Turbine in the Three-Bladed Configuration: An Addendum

Mark H. Worstell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

NTIS price codes Printed copy: A04 Microfiche copy: A01

SAND79-1753 Unlimited Release

AERODYNAMIC PERFORMANCE OF THE 17-M-DIAMETER DARRIEUS WIND TURBINE IN THE THREE-BLADED CONFIGURATION: AN ADDENDUM

Mark H. Worstell
Advanced Energy Projects Division 4715
Sandia Laboratories
Albuquerque, NM 87185

ABSTRACT

The U.S. Department of Energy (DOE)/Sandia 17-m wind turbine has been tested in the three-bladed configuration at five rotational speeds. These data are presented along with some fundamental comparisons to the earlier two-bladed results. Also included is the theoretical output of the three-bladed 17-m wind turbine at two selected rotational speeds.

CONTENTS

		Page			
Introduction					
Test Results					
Data Trends and Comparisons with Two-Bladed Data					
Conclusions					
References					
APPENDIX A Performance Data					
	ILLUSTRATIONS				
<u>Figure</u>					
1	DOE/Sandia 17-m Wind Turbine	3			
2	C as a Function of Tipspeed Ratio	7			
3	C as a Function of Reynolds Number p max V or a Function of Advance Batic	7			
7+	K as a Function of Advance Ratio				
5	K as a Function of Reynolds Number Pmax Power Output as a Function of Ambient Wind Velocity				
6	-max Power Output as a Function of Ambient Wind Velocity				
7	Comparison of Predicted and Experimental Power Output at 37 rpm	1 .1			
8	Comparison of Predicted and Experimental Power Output at 52.5 rpm	11			
	TABLES				
<u>Table</u>					
1	Three-Bladed Test Data Summary	5			

Figure 1. DOE/Sandia 17-m Wind Turbine

AERODYNAMIC PERFORMANCE OF THE 17-M-DIAMETER DARRIEUS WIND TURBINE IN THE THREE-BLADED CONFIGURATION: AN ADDENDUM

Introduction

This report is an addendum to an earlier published report. The first report covered the performance of the DOE/Sandia 17-m turbine in the strutted two-bladed mode. This machine incorporates the flexibility of testing with either two or three blades. The effect of adding a third blade was to increase rotor solidity -- in this case, from $\sigma = 0.14$ to $\sigma = 0.21$. The third blade is identical to the other two.

Testing in the three-bladed mode began in January 1978 and continued ~ 1 year, of which 6 months were lost for repair of the low-speed torque sensor. Aerodynamic performance data were accumulated for five rotational speeds. The nature of data assimilation and reduction is identical to that described in Reference 1. The descriptions, notations, equations, and references in Reference 1 are directly applicable to this report.

This report presents aerodynamic performance test data for the three-bladed 17-m turbine and makes some comparisons with the earlier two-bladed test data in order to identify the trends and characteristics of increasing the rotor solidity. In aerodynamic terms, there is a difference in changing solidity through the addition of more blades or by increasing the chord of the original number of blades, although the calculated value of solidity may be the same in either case. For example, Rec will change. The test results and data comparisons of this report are attributable only to the former case. Reference 2 presents wind tunnel test results of a 2-m turbine in both two- and three-bladed modes with varying blade chords.

Test Results

Appendix A presents aerodynamic performance data of the 17-m turbine in the strutted three-bladed mode. Rotor speeds tested were 37, 42, 45.5, 48.4, and 52.5 rpm. As in Reference 1, the printed data, wind frequency, C_p , power, and K_p curves are presented for each rotational speed. Table 1 presents a summary of these test data. The K_{pmax} and P_{max} figures stated in Table 1 are 95% of the observed highest test data numbers.

In general, the $_{\rm p}^{\rm c}$, power, and $_{\rm p}^{\rm c}$ curves of the test data exhibited smooth contours, which is quite encouraging for field test data. $_{\rm pmax}^{\rm c}$ ranged from a high of 0.368 @ X = 5 for 37 rpm to a low of 0.323 @ X = 4.45 at 42 rpm. The windspeed at which the turbine rotor would begin producing power increases steadily from 9.5 mph at 37 rpm to 13.5 mph for 52.5 rpm. The highest aerodynamic power output achieved

Table 1
Three-Bladed Test Data Summary

	Breakeven V (mph)	C	K @ J Prnax	$\begin{array}{c} P & \otimes V \\ (k \mathbb{W}) & (mph) \end{array}$
37.0	9.5	.368 @ 5.00	.00775 @ .324	24.69 @ 23.5
l2.0	9.5	.323 @ 4.45	.00852 @ .346	39.70 @ 28.5
45.5	10.5	.340 @ 4.57	.00925 @ .353	54.77 @ 31.5
48.4	11.5	.352 @ 4.41	.00866 @ .332	61.75 @ 31.5
52.5	13.5	.346 @ 4.38	.00895 @ .335*	81.44 @ 34.5*

 \mathbf{V}_{∞} is at 44 foot reference height.

^{*}Higher ambient windspeeds needed.

by the 17-m turbine was 81.4 kW at 34.5 mph and 52.5 rpm. This figure might have been higher if ambient winds greater than 35 mph had been available.

The inherent characteristic of the constant-speed Darrieus turbine to level off in power output for increasing wind velocity (X < 3) is particularly evident in the power curve for 37 rpm. This is also seen at the other rotational speeds. Maximum turbine output power increased for higher rotational speeds, occurring at progressively higher ambient wind velocities.

One bothersome area of the field-test data was the C_p curve for 42 rpm. Unlike the other C_p curves, this one appears quite rough with no clearly defined maximum. (Note that the power curve for 42 rpm is indeed smooth, with a clearly defined maximum that does not depend upon a V^3 calculation as does C_p .) The range in question is 4 < X < 10 (20 mph to 8 mph). A review of the individual test records of 42 rpm showed that seven records were in this particular range, with the majority of sample points confined to three records. Each of the seven records was examined; no clear-cut errors were apparent. One noteworthy fact was that all seven records were taken in the last three days of testing before retrofit work began on the 17-m turbine.

Because there were no anomalies present in the data taken before the last three days of testing, it is suspected that some aberration, such as unusual wind conditions and/or instrument error, occurred during these last three days. Due to lack of further data, the combined performance record for 42 rpm is presented in its entirely with the wind range in question to be noted.

Data Trends and Comparison With Two-Bladed Results

It is the intent here to provide both the trends of the three-bladed data and to make a fundamental comparison with the earlier two-bladed data presented in Reference 1. The figures presented here combine both two- and three-bladed data at two selected rotational speeds of the turbine rotor.

Figure 2 plots the results of field testing of the DOE/Sandia 17-m turbine in both the two- and three-bladed modes at 37 and 52.5 rpm. The first impression of Fig. 2 is that the $\rm C_p$ curves for the three-bladed mode are shifted towards lower tipspeed ratios (higher $\rm V_{\infty}$) relative to those of the two-bladed configuration. This indicates that the 17-m turbine with three blades can produce more power in higher

^{*}This was the changeover to unstrutted aluminum-extruded blades with other modifications.

Figure 2. C_{D} as a Function of Tipspeed Ratio

ambient winds than with two blades at the same rpm, but less at lower V_{∞} . C_{pmax} of both two and three blades was higher at 37 rpm than at 52.5 rpm. The similarity of the relationship between the C_{p} curves is also particularly striking.

Figure 3 plots C_{pmax} for both the two- and three-bladed configurations over the

Figure 3. $c_{p_{max}}$ as a Function of Reynolds Number

range of rotational speeds tested. Although two data points of this figure are in question (45.5 rpm, σ = 0.14 as described in Reference 1, and 42 rpm, σ = 0.21 as described earlier), this figure is still presented as a matter of consistency. With

these points excluded, no definite conclusions can be drawn other than that c_{pmax} for both solidities is roughly the same, and the highest c_{pmax} for both solidities occurred at 37 rpm.

Figure $^{1}\!\!4$ shows a plot of $^{K_0}\!\!_{p}$ as a function of advance ratio for both solidities

Figure 4. K_{D} as a Function of Advance Ratio

at 37 and 52.5 rpm. What is clearly evident in this figure is that for V/Rw > 0.26, K_p is decidedly higher for σ = 0.21 than for σ = 0.14, with K_p favoring the higher rotational speeds for both solidities. At lower advance ratios, K_p slightly favors σ = 0.14 at 37 rpm. Not clearly evident in Fig. 4 is that K_p for the higher solidity mode is slightly shifted towards higher values of advance ratios relative to the lower solidity.

In conjunction with Fig. 4, Fig. 5 presents $K_{\rm pmax}$ as a function of Reynolds number, correlated to turbine rotational speed. Two distinct trends are apparent in Fig. 5. One is that $K_{\rm pmax}$ increases for increasing rpm for both solidities. Second, $K_{\rm pmax}$ for the higher solidity configuration is greater than for the lower solidity over the entire test range of turbine rotational speeds. Note that at 52.5 rpm, higher ambient winds than those encountered during testing are necessary to establish actual $K_{\rm pmax}$; the points shown are the highest for the available winds.

Figure 5. K_{pmax} as a Function of Reynolds Number

Figure 6 shows the power output of the DOE/Sandia 17-m turbine as a function of

Figure 6. Power Output as a Function of Ambient Wind Velocity

wind velocity. This is essentially analogous to Fig. 4, which was expressed in dimensionless parameters. This clearly shows the effect of shifting the $\frac{C}{p}$ curves

of Fig. 2 towards a lower tipspeed ratio for the higher solidity configuration. At higher V_{∞} (lower X) C_p for σ = 0.21 is greater than for σ = 0.14, which manifests itself as increased rotor power output. The converse is also true; at lower V_{∞} , C_p for σ = 0.14 is greater. This can also be seen in Fig. 6, although not as distinctly.

Conclusions

Field-test results of the DOE/Sandia 17-m wind turbine appeared to be quite acceptable and exhibited basic trends and characteristics seen in the earlier two-bladed data of Reference 1. Comparing the two- and three-bladed data revealed several interesting (though predictable) trends. For the same rpm:

- 1. The peak turbine power output was higher for three blades than two.
- 2. C_{pmax} was roughly the same for both two and three blades.
- 3. The C curves for three blades were shifted towards lower X relative to two blades. This manifests itself as increased turbine power output at high winds and less output in low winds when compared to two blades.

Again, the results presented in this report are based upon a rotor solidity increase through the addition of a third blade, not by increasing the chord of the two-bladed rotor.

The predicted and experimental power output of the three-bladed DOE/Sandia wind turbine is presented in Figs. 7 and 8 for 37 and 52.5 rpm, respectively. The theoretical prediction is based upon the aerodynamic computer model PAREP, described in References 3 and 4. Very good agreement was obtained for 37 rpm, with the theoretical model tending to overpredict at 52.5 rpm.

As stated earlier, the DOE/Sandia 17-m turbine was refitted with unstrutted extruded aluminum blades. These blades are of a NACA 0015 airfoil section with a 24-in. chord. The geometry of the rotor is the same as that described in Reference 1 except for the struts. Current testing is in the two-bladed mode. Test results obtained to date indicate a significant improvement in performance over the original strutted NACA 0012 21-in. chord blades.

Figure 7. Comparison of Predicted and Experimental Power Output at 37 rpm

Figure 8. Comparison of Predicted and Experimental Power Output at 52.5 rpm

References

- 1. M. H. Worstell, Aerodynamic Performance of the 17-Metre-Diameter Darrieus Wind Turbine, SAND78-1737, Sandia Laboratories, Albuquerque, NM, January 1979.
- 2. B. F. Blackwell, R. E. Sheldahl, and L. V. Feltz, <u>Wind Tunnel Performance Data</u> for the Darrieus Wind Turbine with NACA 0012 Blades, SAND76-0130, Sandia Laboratories, Albuquerque, NM, March 1977.
- 3. P. C. Klimas and R. E. Sheldahl, Four Aerodynamic Prediction Schemes for Vertical-Axis Wind Turbines: A Compendium, SAND78-0014, Sandia Laboratories, Albuquerque, NM, June 1978.
- 4. T. M. Leonard, <u>A User's Manual for the Computer Code PAREP</u>, SAND79-0431, Sandia Laboratories, Albuquerque, NM, April 1979.

APPENDIX A

Performance Data

37 rpm 3 Blades, σ = 0.21 Wind Range 2.5 to 31.5 mph

```
AIR DENSITY* .0625 LBS PER CU FT
17. M TURBINE, COMBINED DATA, RPM*37.0
NUMBER SAMPLES IN ACCUMULATION = 123392.
DATA RECORD MAME(S)* 130721. 131221. 131222. 120.

U N F POUER(KU) RU/U CP U/Rb
.5 11. .000 -3.2360 144.97-3094.99 .007 -
1.5 284. .002 -3.6655 48.32-129.843 .021 -.0
2.5 845. .007 -3.6290 28.99 -27.766 .034 -.7
937. .008 -3.6439 20.71 -9.882 .048 -
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829 16.11 -3.651 .062
1092. .009 -2.7829
                                                                                                                                                                                                                                                                                                                                                                                      .20821. 132421.

V/RU (F)

.007 -.00102

.021 -.00115

.034 -.00114

.048 -.00111

.062 -.00087

.076 -.00060

.000 -.00026

.100 -.00027

.117 -.00017

.131 .00012

.145 .00051
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         132422.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                132521.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     132721.
                                                                                          6241.
6873.
6761.
6758.
6943.
6993.
7236.
7295.
                                                                                                                                                                                                            1.6297
3.4454
5.32459
9.3934
11.3256
13.3869
15.5982
17.7742
19.7190
21.4113
22.8727
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .00:08
                                                                                                                                                                                                                                                                                                                                                 .326
.352
.368
.364
.356
                                                                                                                                                                                                                                                                                                                                                                                                                                                            .00167
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .00227
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .00356
                                                                                                                                                .059
.058
.056
.053
                                           16.5
17.5
                                                                                                                                                                                                                                                                                                                                                                                                          .228
.241
.255
                                                                                                                                                                                                                                                                                         4.39
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .00420
                                                                                                                                                                                                                                                                                                                                                .348
.336
.318
.297
.275
.250
.203
                                                                                                                                                                                                                                                                                        4.14
3.92
3.72
3.54
3.37
                                                                                                                                                                                                                                                                                                                                                                                                                                                          .00490
.00558
                                                                                        6891.
6563.
6391.
                                            18.5
                                            19.5
                                                                                                                                                                                                                                                                                                                                                                                                         .269
.283
.297
                                                                                                                                                                                                                                                                                                                                                                                                                                                        .00619
.00672
.00718
                                           21.5
                                                                                       5972.
5622.
4654.
                                                                                                                                                    .048
                                          22.5
                                                                                                                                                .046
.038
.032
.025
                                                                                                                                                                                                                                                                                       23.8147
24.6394
25.9321
25.4961
25.6689
25.889
26.9964
25.9584
26.9964
25.9584
25.2867
26.5539
27.7382
                                                                                                                                                                                                                                                                                                                                                                                                                                                          .00748
                                                                                                                                                                                                                                                                                                                                                                                                          .324
                                                                                                                                                                                                                                                                                                                                                                                                                                                          .00775
.00786
                                                                                       3914.
3032.
5573.
                                                                                                                                                                                                                                                                                                                                                                                                         .352
.366
.379
                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 90890
                                                                                                                                                                                                                                                                                                                                                .165
.149
                                                                                                                                                                                                                                                                                                                                                                                                                                                            .00806
                                                                                       1860.
1237.
                                                                                                                                                  .015
                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 00813
                                          28.5
                                                                                                                                                   .010
                                                                                                                                                                                                                                                                                                                                                .134
                                                                                                                                                                                                                                                                                                                                                                                                         .393
.407
                                                                                                                                                                                                                                                                                                                                                                                                                                                          .00814
                                                                                              841.
                                                                                                                                                                                                                                                                                       2.46
2.38
2.30
2.30
                                                                                                                                                .007
.005
.003
.002
.002
.001
.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 30812
                                         30.5
31.5
32.5
33.5
                                                                                              583.
                                                                                                                                                                                                                                                                                                                                                 .110
                                                                                                                                                                                                                                                                                                                                                                                                         .421
                                                                                                                                                                                                                                                                                                                                                                                                                                                            60819
                                                                                              416.
257.
208.
                                                                                                                                                                                                                                                                                                                                                   . 099
                                                                                                                                                                                                                                                                                                                                                                                                                                                           .00815
                                                                                                                                                                                                                                                                                                                                                  .090
                                                                                                                                                                                                                                                                                                                                                                                                          . 448
                                                                                                                                                                                                                                                                                                                                                                                                                                                          . 30315
                                                                                                                                                                                                                                                                                      2.16
2.16
2.04
1.99
                                                                                                                                                                                                                                                                                                                                                                                                                                                         .00795
.00794
.00334
.00732
                                                                                                                                                                                                                                                                                                                                                .681
.674
                                                                                                                                                                                                                                                                                                                                                                                                           . 462
                                         34.5
35.5
36.5
37.5
                                                                                              124.
51.
29.
                                                                                                                                                                                                                                                                                                                                                                                                        .476
                                                                                                                                                                                                                                                                                                                                                                                                        .490
.504
.517
                                                                                                                                                                                                                                                                                                                                                 .071
                                                                                                                                                                                                                                                                                                                                                  .657
                                                                                                                                                                                                                                                                                                                                                 .663
```


42 rpm $\text{3 Blades, } \sigma = \text{0.21}$ Wind Range 4.5 to 37.5 mph

```
AIR DENSITY - .0625 LBS PER CU FT
17. H TURBINE, COMBINED DATA, RPM-42.0
NUMBER SAMPLES IN ACCUMULATION - 105366.
DATA RECORD NAME(S) = 140821. 141421.

V POWER(KU) RU/V
2.5 1. .000 - .5135 32.91
                                                                                                                                                          141422.
CP
                                                                                                                   | • 105366.

141421.

1(KU) PU/U

35 32.91

58 23.51

58 23.51

665 12.66

673 10.97

660 9.68

118 8.66

105 7.84

779 7.15
                                                                                                                                                                                                 254921.
                                                                                                                                                                                                                                     522351.
                                                                                                                                                                                                                                                                          252021.
                                                                                                                                                                                                                                                                                                                 254021.
                                                                                                                                                                                                                                                                                                                                                      255021.
                                                                                                                                                                                                                                                                                                                                                                                            256021.
                                                                                                                                                                                                                                                                                                                                                                                                                                 255121.
                                                                                                                                                                                                         UZRU
                                                                                                                                                                                                                        - .0011
- .0061
- .0061
- .00640
- .00627
- .00022
- .00022
- .0065
- .0065
- .0083
- .00171
                                                                                                                                                             -3.929
-7.963
-3.304
-1.342
-.538
-.240
-.019
                                                                                                                                                                                                       .030
                                                               .000
.001
.004
.009
.021
.038
.054
.057
.060
.065
.058
.054
      234567896111
                                                                                               -2.8558
-2.5184
-1.8677
-1.2365
-.8473
-.0960
                              132.
444.
974.
2227.
4036.
5647.
6381.
6583.
6157.
5640.
5149.
                                                                                                                                                                                                       .055
.067
                                                                                                                                                                                                       . 879
                                                                                                                                                                                                      .091
.103
.115
                                                                                                                                                                        .142
.226
.240
.250
                                                                                                    1.0218
                                                                                                                                                                                                      .128
.140
.152
.164
.176
                                                                                                    2.1905
                                                                                                    3.0479
                                                                                               4.0837
5.8532
7.9494
9.6309
11.3066
13.6810
17.1033
                                                                                                                                        6.58
6.09
5.67
5.31
        12.5
      13.5
14.5
15.5
16.5
                                                                                                                                                                        .312
.309
.301
.305
.323
.314
.326
.292
.278
.256
.240
.205
.173
                                                                                                                                                                                                                                 .00171
                                                                                                                                                                                                                                .00207
.00243
.00294
.00367
                                                                                                                                                                                                      .201
.213
.237
.249
.261
                                                                                                                                        4.99
                                                               .040
.034
.029
.026
.028
.029
.029
.027
.025
.024
.024
                                4212
                               3556.
3080.
2747.
       17.5
       18.5
                                                                                                                                        4.45
4.22
4.01
2.23
5.66
3.36
3.30
2.92
2.89
2.79
2.70
                                                                                               17.1033
19.4760
23.4660
25.5933
27.8484
30.2296
32.8887
35.5593
37.3439
38.5636
40.6666
41.0154
                                                                                                                                                                                                                                .00418
.00495
.00549
        19.5
      .5195
                                3015.
                                                                                                                                                                                                                               .00598
.00649
.00706
                                 3024.
                                                                                                                                                                                                     .286
.298
.310
.322
.334
.346
.359
                                2891.
                                2679.
                                                                                                                                                                                                                                 .00202
.00202
.00202
.00252
                                2486.
                                2494.
                                2285 .
1796 .
                                                                                                                                                                                                                                .00852
.00888
.00888
.00900
.00904
.00904
                                1553
                                                                .015
                                 1644.
                                                                .016
                                                                                                                                        2.61
2.53
2.46
2.38
2.32
2.32
                                                                                                                                                                        .159
.146
.132
.123
                                1620.
1672.
                                                                . 915
                                                                                                 41.6533
                                                                                                                                                                                                       .383
.395
                                                                                               41.9097
41.6077
42.0988
       32.5
33.5
35.5
36.5
37.5
38.5
39.5
40.5
42.5
                                                                .016
                                1533.
1362.
1089.
                                                                                                                                                                                                       .407
                                                                .015
                                                                .013
                                                                                                                                                                                                       .431
.444
.456
.463
.480
.492
.564
                                                                .010
                                                                                                 41.9175
                                                                                                                                                                         .112
                                                                                                42.1079
42.3692
42.6840
41.9082
43.7804
41.0710
43.5254
                                                                                                                                                                                                                                 .00904
.00909
.00916
.00940
.00940
                                    655.
449.
225.
98.
22.
                                                                .006
.004
.002
.001
.000
                                                                                                                                                                        .104
.096
.089
.081
.079
                                                                                                                                        2.19
2.14
2.68
2.03
1.98
1.94
                                                                                                                                                                        .069
```

1

45.5 rpm 3 Blades, σ = 0.21 Wind Range 6.5 to 34.5 mph

```
AIR DENSITY - .0626 LBS PER CU FT
17. N TURBINE, COMBINED DATA, RPM-45.5
NUMBER SAMPLES IN ACCUMULATION - 87978.

DATA FECORD NAME($) = 142721. 142722. 15

V 5. 38. .000 -3.9004 16.21

6.5 459. .005 -3.5223 13.71

7.5 1930. .022 -2.9673 11.88

8.5 2668. .030 -2.5660 10.49

9.5 1737. .020 -1.5961 8.49

10.5 1069. .012 -.6810 8.49

11.5 753. .009 2.0669 7.75

12.5 1526. .017 3.4983 7.13

12.5 1526. .017 3.4983 7.13

13.5 2174. .036 5.1257 6.60

14.5 4577. .052 6.9954 6.15

15.5 5856. .067 9.1922 5.75

16.5 7097. .081 11.6436 5.40

17.5 7255. .082 14.4413 5.09

18.5 7106. .081 17.6451 4.82

19.5 6725. .077 21.0566 4.57

20.5 6517. .074 24.3810 4.35

21.5 5797. .066 27.9986 4.15

22.5 5032. .057 31.0806 3.36

23.5 3823. .044 34.4732 2.79

24.5 3209. .036 37.5928 3.64

25.5 2408. .027 46.5758 3.56

26.5 1527. .022 43.1552 3.36

27.5 1450. .017 46.4126 3.24

30.5 684. .027 46.5758 3.54

20.5 684. .027 46.5758 3.54

20.5 684. .027 46.5758 3.54

32.5 532. .010 50.6074 3.02

33.5 532. .004 58.2511 2.66

34.5 261. .004 58.1547 2.58

35.5 242. .003 58.1708 2.51

36.5 37. .006 58.2511 2.66

34.5 261. .004 58.1547 2.58

35.5 242. .003 58.1708 2.51

36.5 37. .006 58.2717 2.05

41.5 18. .006 57.7481 2.15

42.5 6. .006 57.7481 2.15

44.5 4. .006 63.7428 2.00

45.5 2.000 55.2828 1.96
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 25212:.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         151422. KP
- .00056
- .00059
- .00059
- .00053
- .00011
- .00037
- .00118
- .00155
- .00197
- .00298
- .00355
- .00473
- .00473
- .00585
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
- .00635
-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   151321 CPU -2.863 -1.533 -1.533 -1.533 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.633 -1.63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             151481.

VRU

•673

•674

•673

•674

•167

•118

•167

•188

•189

•189

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218

•218
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .00991
.01600
.00973
.00984
.00975
.00969
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .124
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .105
.097
.089
.096
.086
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .00933
```


48.4 rpm $\text{3 Blades, } \sigma = \text{0.21}$ Wind Range 6.5 to 34.5 mph

```
160421.
KP
                                                                                                                                                                               152421.
                                                                                                                                                                                                                                              160521.
                                                                                                                                                                                                                                                                               160522.
                                                                                                                                                                                                                                                                                                               162622.
                                                                                          POMER(KI
-5.0830
-4.3238
-4.3474
-4.0112
-3.1018
-2.0484
-1.2859
1.4780
2.9122
7.7416
10.7682
13.7109
17.5882
                                                                                                                                                                                    U/RU
                                                                                                                                                                                                    KP
-.00071
-.00061
-.00056
-.00056
-.00044
-.00029
-.00018
.00002
.00072
.00072
            34567899555555555
                                                               .000
.200
.001
.302
.004
.014
.028
.036
                                                                                                                                                                                   .047
.058
.069
.079
                                   42.
144.
312.
566.
1162.
1876.
2666.
3607.
4626.
5173
                                                                                                                                                                                  .199
.121
.132
.142
.153
.174
.135
                                                                                                                             .010
                                                                                                                                                       5470.
                                    5374.
5792.
6242.
                                                              .041
.048
.053
.055
.056
.056
.054
                                                                                                                                                                                                          .00109
                                                                                                                                                                                                         .00151
.00192
                                    6884.
7124.
7123.
                                                                                          17.5802
             .00247
.00238
.00352
                                                                                                                                                                                   . 195
                                                                                          21.2265
25.1161
29.2954
33.3923
36.9180
                                                                                                                              4.86
                                                                                                                                                                                  .206
.2167
.2377
.242
.253
.253
.301
.332
.332
.3353
.374
.385
.376
.417
                                                                                                                              4.63
                                    7123.
7245.
7353.
7685.
7273.
7639.
6779.
5669.
4774.
                                                                                                                             4.41
                                                                                                                                                                                                         .00411
                                                                                                                                                                                                         .00468
.00513
.00576
.00629
.00630
                                                                                                                             3.72
                                                                                           41.0735
                                                                                         41.0735
44.848:
48.4742
52.2154
54.6191
57.2587
59.9950
61.7543
62.9904
63.9774
64.4520
                                                              .052
                                                                                                                                                                                                        .00766
.00803
.00841
.00866
                                                               .031
                                    3994.
3128.
2154.
1462.
927.
488.
271.
152.
64.
27.
                                                               .024
                                                                                                                             3.01
2.92
2.83
2.75
2.67
                                                              .017
                                                               .e11
                                                                                                                                                                                                         .00283
.00883
.0087
                                                              .007
.004
.002
.001
.000
.000
                                                                                                                                                                                                        .00911
.00904
.00947
.00919
.01037
.01050
.01162
                                                                                                                             2.60
2.53
2.46
2.40
2.34
2.28
                                                                                          64.4520
                                                                                         67.5408
65.5347
73.9258
74.8466
82.8275
                                            6.
                                                                                                                                                        . 135
                                                                                                                                                                                  . 427
             41.5
```


52.5 rpm 3 Blades, σ = 0.21 Wind Range 4.5 to 36.5 mph

```
AIR DENSITY - .0625 LBS PER CU FT
17. N TURBINE, COMBINED DATA, RPM-52.5
NUMBER SAMPLES IN ACCUMULATION - 108573.
DATA RECORD NAME(S) - 161721. 161821. 162021.

V N F POUER(KU) RU/V CP
2.5 23. .000 -5.5790 4: 14 -42.687
3.5 231. .002 -5.2073 29.38 -14.520
4.5 1130. .010 -5.2052 22.85 -6.829
5.5 1720. .016 -5.2052 22.85 -6.829
5.5 1720. .016 -5.0393 18.70 -3.621
6.5 1832. .017 -4.7425 15.82 -2.0521
6.5 1832. .017 -4.7425 15.82 -2.0521
6.5 1832. .017 -4.7425 15.82 -2.0521
6.5 1832. .018 -4.7327 13.71 -1.358
8.5 2172. .020 -4.6984 12.10 -915
9.5 2254. .021 -4.3820 10.83 -611
10.5 2118. .020 -3.9812 9.79 -411
11.5 1399. .013 -2.5675 8.94 -202
12.5 1115. .010 -1.2964 8.23 -075
13.5 1144. .011 1.1672 7.62 .057
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 162122.

F P - 00061

- 00057

- 00057

- 00052

- 00052

- 00053

- 00052

- 00053

- 00052

- 00043

- 20044

1 - 20028

2 - 30014

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

1 - 20042

2 - 20042

2 - 20042

2 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

3 - 20042

4 - 20042

3 - 20042

3 - 20042

4 - 20042

5 - 20042

6 - 20042

6 - 20042

7 - 20042

8 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 20042

9 - 200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            162621.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              162121.
V/RU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       251921.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              254121.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .024
.034
.044
.053
.063
.073
.083
.092
.102
.112
.122
.131
                 14.5
15.5
16.5
17.5
                                                                                                                                                                                                                                     3.8476
6.5548
3.9677
11.5618
                                                                                                                                                                                                                                                                                                                                                                                                                  .151
.239
.258
                                                                                                                                                           .015
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .141
                                                                                 1577.
                                                                                                                                                                                                                                                                                                                                        7.09
                                                                                                                                                                                                                                                                                                                                       6.64
6.23
5.23
5.56
5.27
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .151
.150
.170
                                                                               2379.
3158.
                                                                                                                                                          .022
.029
.039
.046
.053
.054
.059
.061
.058
.052
                                                                             4208.
4986.
5746.
                                                                                                                                                                                                                                    15.0552
19.0673
22.9605
27.5599
32.61?3
37.5570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .130
                 .285
.307
.319
.332
.342
.348
.337
.326
.233
.211
.295
.266
.251
.237
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 190
                                                                                                                                                                                                                                                                                                                                       5.62
4.78
4.57
4.38
4.20
                                                                               5916.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .139
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .00252
.00363
.00358
.00413
.00466
.00517
.00623
.00623
.00770
.00808
                                                                             6442.
6647.
6323.
6673.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .209
.219
.228
.238
.258
.257
.277
.287
.316
.316
.315
.355
.355
.355
                                                                                                                                                                                                                                        41.8511
                                                                                                                                                                                                                                     47.9248
52.5313
56.6792
                                                                                 6323.
                                                                                                                                                                                                                                                                                                                                          4.83
                                                                               5661.
4878.
                                                                                                                                                                                                                                                                                                                                       3.88
                                                                                                                                                          .040
.037
.030
.025
                                                                                                                                                                                                                                                                                                                                        3.61
3.49
3.37
                                                                               4386.
3990.
                                                                                                                                                                                                                                       62.4663
66.7213
                                                                                 3307.
                                                                                                                                                                                                                                        70.0817
                                                                               2702.
2098.
1600.
                                                                                                                                                                                                                                        73.5160
                                                                                                                                                                                                                                                                                                                                          3.26
                                                                                                                                                                                                                                     76.4454
78.9251
81.4417
80.8289
83.9049
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . 99849
. 99866
. 99895
                                                                                                                                                           .019
                                                                                                                                                                                                                                                                                                                                          3.16
                                                                                                                                                           .015
                                                                                                                                                                                                                                                                                                                                          3.07
                 34.5
35.5
36.5
37.5
38.5
39.5
40.5
                                                                                 1126.
                                                                                                                                                                                                                                                                                                                                        2.98
2.90
2.82
2.74
                                                                                                                                                           .006
.004
.002
.001
.000
.000
                                                                                                                                                                                                                                                                                                                                                                                                                 .216
.206
.194
.173
                                                                                          637.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           55606°
                                                                                        390.
203.
107.
36.
18.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .00341
.00338
.00326
.00320
                                                                                                                                                                                                                                       85.3150
84.2483
                                                                                                                                                                                                                                                                                                                                          2.67
                                                                                                                                                                                                                                                                                                                                        2.60
2.54
2.48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .384
.394
.404
                                                                                                                                                                                                                                                                                                                                                                                                                  .163
                                                                                                                                                                                                                                                                                                                                                                                                                  .151
                                                                                                                                                                                                                                         83.6891
                                                                                                                                                                                                                                         93.9541
```


DISTRIBUTION:

TID-4500-R66 UC-60 (283)

Aero Engineering Department (2)
Wichita State University
Wichita, KS 67208
Attn: M. Snyder
W. Wentz

R. E. Akins, Assistant Professor
Department of Engineering Science
and Mechanics
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24060

Alcoa Laboratories (5) Alcoa Technical Center Aluminum Company of America Alcoa Center, PA 15069 Attn: D. K. Ai

A. G. Craig
J. T. Huang
J. R. Jombock
P. N. Vosburgh

Mr. Robert B. Allen General Manager Dynergy Corporation P.O. Box 428 1269 Union Avenue Laconia, NH 03246

American Wind Energy Association 54468 CR31 Bristol, IN 46507

E. E. Anderson
South Dakota School of Mines
and Technology
Department of Mechanical Engineering
Rapid City, SD 57701

Scott Anderson 318 Millis Hall University of Vermont Burlington, VT 05405

G. T. Ankrum
DOE/Office of Commercialization
20 Massachusetts Avenue NW
Mail Station 222lC
Washington, DC 20585

Holt Ashley
Stanford University
Department of Aeronautics and
Astronautics Mechanical Engineering
Stanford, CA 94305

Kevin Austin
Consolidated Edison Company of
 New York, Inc.
4 Irving Place
New York, NY 10003

F. K. Bechtel
Washington State University
Department of Electrical Engineering
College of Engineering
Pullman, WA 99163

M. E. Beecher Arizona State University Solar Energy Collection University Library Tempe, AZ 85281

K. Bergey University of Oklahoma Aero Engineering Department Norman, OK 73069

Steve Blake Wind Energy Systems Route 1, Box 93-A Oskaloosa, KS 66066

Robert Brulle
McDonnell-Douglas
P.O. Box 516
Department 341, Building 32/2
St. Louis, MO 63166

R. Camerero Faculty of Applied Science University of Sherbrooke Sherbrooke, Quebec CANADA J1K 2Rl

CERCEM
49 Rue du Commandant Rolland
93350 Le Bourget
FRANCE
Attn: G. Darrieus
J. Delassus

Professor V. A. L. Chasteau School of Engineering University of Auckland Private Bag Auckland, NEW ZEALAND

Howard T. Clark McDonnell Aircraft Corporation P.O. Box 516 Department 337, Building 32 St. Louis, MO 63166

Dr. R. N. Clark
USDA, Agricultural Research Service
Southwest Great Plains Research Center
Bushland, TX 79012

Joan D. Cohen
Consumer Outreach Coordinator
State of New York
Executive Department
State Consumer Protection Board
99 Washington Avenue
Albany, NY 12210

Dr. D. E. Cromack Associate Professor Mechanical and Aerospace Engineering Department University of Massachusetts Amherst, MA 01003

Gale B. Curtis Tumac Industries 650 Ford Street Colorado Springs, CO 80915

DOE/ALO (3)
Albuquerque, NM 87185
Attn: G. P. Tennyson
D. C. Graves
D. W. King

DOE Headquarters (20)
Washington, DC 20545
Attn: L. V. Divone, Chief
Wind Systems Branch
D. F. Ancona, Program Manager
Wind Systems Branch

C. W. Dodd School of Engineering Southern Illinois University Carbondale, IL 62901 Dominion Aluminum Fabricating Ltd. (2) 3570 Hawkestone Road Mississauga, Ontario CANADA L5C 2U8 Attn: L. Schienbein C. Wood

D. P. Dougan Hamilton Standard 1730 NASA Boulevard Room 207 Houston, TX 77058

J. B. Dragt Nederlands Energy Research Foundation (E.C.N.) Physics Department Westerduinweg 3 Patten (nh) THE NETHERLANDS

C. E. Elderkin Battelle-Pacific Northwest Laboratory P.O. Box 999 Richland, WA 99352

Frank R. Eldridge, Jr.
The Mitre Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102

Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94304 Attn: E. Demeo

James D. Fock, Jr.
Department of Aerospace Engineering Sciences
University of Colorado
Boulder, CO 80309

Dr. Lawrence C. Frederick Public Service Company of New Hampshire 1000 Elm Street Manchester, NH 03105

E. Gilmore Amarillo College Amarillo, TX 79100

Paul Gipe Wind Power Digest P.O. Box 539 Harrisburg, PA 17108 Roger T. Griffiths University College of Swansea Department of Mechanical Engineering Singleton Park Swansea SA2 8PP UNITED KINGDOM

Professor N. D. Ham Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139

Sam Hansen
DOE/DST
20 Massachusetts Avenue
Washington, DC 20545

C. F. Harris Wind Engineering Corporation Airport Industrial Area Box 5936 Lubbock, TX 79415

W. L. Harris Aero/Astro Department Massachusetts Institute of Technology Cambridge, MA 02139

Terry Healy (2) Rocky Flats Plant P.O. Box 464 Golden, CO 80401

Helion P.O. Box 4301 Sylmar, CA 91342

Don Hinrichsen Associate Editor AMBIO KVA Fack, S-10405 Stockholm SWEDEN

Sven Hugosson Box 21048 S. 100 31 Stockholm 21 SWEDEN

O. Igra
Department of Mechanical Engineering
Ben-Gurion University of the Negev
Beer-Sheva, ISRAEL

Indian Oil Corporation, Ltd. Marketing Division 254-C, Dr. Annie Besant Road Prabhadevi, Bombay-400025 INDIA

JBF Scientific Corportion 2 Jewel Drive Wilmington, MA 01887 Attn: E. E. Johanson

Dr. Gary L. Johnson, P.E. Electrical Engineering Department Kansas State University Manhattan, KS 66506

J. P. Johnston
Stanford University
Department of Mechanical Engineering
Stanford, CA 94305

B. O. Kaddy, Jr. Box 353 31 Union Street Hillsboro, NH 03244

Kaman Aerospace Corporation Old Windsor Road Bloomfield, CT 06002 Attn: W. Batesol

Robert E. Kelland The College of Trades and Technology P.O. Box 1693 Prince Philip Drive St. John's, NEWFOUNDLAND ALC 5P7

Larry Kinnett P.C. Box 6593 Santa Barbara, CA 93111

O. Krauss Michigan State University Division of Engineering Research East Lansing, MI 48824

Lawrence Livermore Laboratory P.O. Box 808 L-340 Livermore, CA 94550 Attn: D. W. Dorn

M. Lechner
Public Service Company of New Mexico
P.O. Box 2267
Albuquerque, NM 87103

G. G. Leigh
UNM/CERF
P.O. Box 188
University Station
Albuquerque, NM 87131

George E. Lennox Industry Director Mill Products Division Reynolds Metals Company 6601 West Broad Street Richmond, VA 23261

J. Lerner State Energy Commission Research and Development Division 1111 Howe Avenue Sacramento, CA 95825

L. Liljidahl
Building 303
Agriculture Research Center
USDA
Beltsville, MD 20705

P. B. S. Lissaman Aeroenvironment, Inc. 660 South Arroyo Parkway Pasadena, CA 91105

Olle Ljungstrom FFA, The Aeronautical Research Institute Box 11021 S-16111 Bromma SWEDEN

Los Alamos Scientific Laboratories P.O. Box 1663 Los Alamos, NM 87544 Attn: J. D. Balcomb Q-DO-T Library

Ernel L. Luther Senior Associate PRC Energy Analysis Co. 7600 Old Springhouse Rd. McLean, VA 22101 L. H. J. Maile 48 York Mills Rd. Willowdale, Ontario CANADA M2P 1B4

Jacques R. Maroni
Ford Motor Company
Environmental Research and Energy
Planning Director
Environmental and Safety Engineering Staff
The American Road
Dearborn, MI 48121

Frank Matanzo
Dardalen Associates
15110 Frederick Road
Woodbine, MD 21797

J. R. McConnell Tumac Industries, Inc. 650 Ford St. Colorado Springs, CO 80915

James Meiggs Kaman Sciences Corporation P.O. Box 7463 Colorado Springs, CO 80933

R. N. Meroney Colorado State University Department of Civil Engineering Fort Collins, CO 80521

G. N. Monsson
Department of Economic Planning
and Development
Barrett Building
Cheyenne, WY 82002

NASA Lewis Research Center (2) 21000 Brookpark Road Cleveland, OH 44135

Attn: J. Savino, MS 509-201 R. L. Thomas W. Robbins

K. Kaza, MS 49-6

V. Nelson West Texas State University Department of Physics P.O. Box 248 Canyon, TX 79016 Leander Nichols Natural Power, Inc. New Boston, NH 03070

Oregon State University (2)
Corvallis, OR 97331
Attn: R. E. Wilson
ME Department
R. W. Thresher
ME Department

Pat F. O'Rourke Precinct 4 County Commissioner City-County Building El Paso, TX 79901

H. H. Paalman
Dow Chemical USA
Research Center
2800 Mitchell Drive
Walnut Creek, CA 94598

R. A. Parmelee
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

Helge Petersen Riso National Laboratory DK-4000 Roskilde DENMARK

Wilson Prichett, III
National Rural Electric Cooperative
Association
1800 Massachusetts Avenue NW
Washington, DC 20036

Dr. Barry Rawlings, Chief Division of Mechanical Engineering Commonwealth Scientific and Industrial Research Organization Graham Road, Highett Victoria, 3190 AUSTRALIA Thomas W. Reddoch
Associate Professor
Department of Electrical Engineering
The University of Tennessee
Knoxville, TN 37916

A. Robb Memorial University of Newfoundland Faculty of Engineering and Applied Sciences St. John's Newfoundland CANADA ALC 5S7

Dr.-Ing. Hans Ruscheweyh Institut fur Leichtbau Technische Hochschule Aachen Wullnerstrasse 7 GERMANY

Gwen Schreiner Librarian National Atomic Museum Albuquerque, NM 87185

Arnan Seginer
Professor of Aerodynamics
Technion-Israel Institute of
Technology
Department of Aeronautical
Engineering
Haifa, ISRAEL

Dr. Horst Selzer
Dipl.-Phys.
Wehrtechnik und Energieforschung
ERNO-Raumfahrttechnik GmbH
Hunefeldstr. 1-5
Postfach 10 59 09
2800 Bremen 1
GERMANY

H. Sevier Rocket and Space Division Bristol Aerospace Ltd. P.O. Box 874 Winnipeg, Manitoba CANADA R3C 2S4

P. N. Shankar Aerodynamics Division National Aeronautical Laboratory Bangalore 560017 INDIA David Sharpe Kingston Polytechnic Canbury Park Road Kingston, Surrey UNITED KINGDOM

D. G. Shepherd
Cornell University
Sibley School of Mechanical and
Aerospace Engineering
Ithaca, NY 14853

Dr. Fred Smith Mechanical Engineering Department Head Colorado State University Ft. Collins, CO 80521

Kent Smith Instituto Technologico Costa Rica Apartado 159 Cartago COSTA RICA

Leo H. Soderholm Iowa State University Agricultural Engineering, Room 213 Ames, IA 50010

Southwest Research Institute (2)
P.O. Drawer 28501
San Antonio, TX 78284
Attn: W. L. Donaldson, Senior Vice President
R. K. Swanson

Rick Stevenson Route 2 Box 85 Springfield, MO 65802

Dale T. Stjernholm, P.E.
Mechanical Design Engineer
Morey/Stjernholm and Associates
1050 Magnolia Street
Colorado Springs, CO 80907

G. W. Stricker 383 Van Gordon 30-559 Lakewood, CO 80228

C. J. Swet
Route 4
Box 358
Mt. Airy, MD 21771

R. J. Templin (3)
Low Speed Aerodynamics Section
NRC-National Aeronautical Establishment
Ottawa 7, Ontario
CANADA KlA OR6

Texas Tech University (3)
P.O. Box 4289
Lubbock, TX 79409
Attn: K. C. Mehta, CE Department
J. Strickland, ME Department
J. Lawrence, ME Department

Fred Thompson Atari, Inc. 155 Moffett Park Drive Sunnyvale, CA 94086

United Engineers and Constructors, Inc. Advanced Engineering Department 30 South 17th Street Philadelphia, PA 19101 Attn: A. J. Karalis

University of New Mexico (2)
Albuquerque, NM 87106
Attn: K. T. Feldman
Energy Research Center
V. Sloglund
ME Department

Jan Vacek
Eolienne experimentale
C.P. 279, Cap-aux-Meules
Iles de la Madeleine, Quebec
CANADA

Irwin E. Vas Solar Energy Research Institute 1617 Cole Blvd. Golden, CO 80401

Otto de Vries National Aerospace Laboratory Anthony Fokkerweg 2 Amsterdam 1017 THE NETHERLANDS

R. Walters
West Virginia University
Department of Aero Engineering
1062 Kountz Avenue
Morgantown, WV 26505

E. J. Warchol Bonneville Power Administration P.O. Box 3621 Portland, OR 97225

D. F. Warne, Manager Energy and Power Systems ERA Ltd. Cleeve Rd. Leatherhead Surrey KT22 7SA ENGLAND

R. A. Watson Stanford University 546B Crothers Memorial Hall Stanford, CA 94305

R. J. Watson Watson Bowman Associates, Inc. 1280 Niagara St. Buffalo, NY 14213

R. G. Watts Tulane University Department of Mechanical Engineering New Orleans, IA 70018

Pat Weis Solar Energy Research Institute 1536 Cole Blvd. Golden, CO 80401

W. G. Wells, P.E. Associate Professor Mechanical Engineering Department Mississippi State University Mississippi State, MS 39762

T. Wentink, Jr.
University of Alaska
Geophysical Institute
Fairbanks, AK 99701

West Texas State University Government Depository Library Number 613 Canyon, TX 79015

Wind Energy Report
Box 14
104 S. Village Ave.
Rockville Centre, NY 11571
Attn: Farrell Smith Seiler

```
Richard E. Wong
Assistant Director
Central Solar Energy Research
  Corporation
1200 Sixth Street
328 Executive Plaza
Detroit, MI
             48226
1000 G. A. Fowler
1200 L. D. Smith
3141 T. L. Werner (5)
3151 W. L. Garner (3)
      For DOE/TIC (Unlimited Release)
3161 J. E. Mitchell (15)
3161 P. S. Wilson
4533 J. W. Reed
4700 J. H. Scott
4710 G. E. Brandvold
4715 R. H. Braasch (100)
4715 R. D. Grover
4715 E. G. Kadlec
4715 M. T. Mattison
4715 R. O. Nellums
4715 W. N. Sullivan
4715 M. H. Worstell
5520 T. B. Lane
5521 D. W. Lobitz
5523 R. C. Reuter, Jr.
5523 T. G. Carne
5600 D. B. Schuster
5620 M. M. Newsom
5630 R. C. Maydew
5632 C. W. Peterson
5632 P. C. Klimas
5633 S. McAlees, Jr.
5633 R. E. Sheldahl
8266 E. A. Aas
DOE/TIC (25)
      (R. P. Campbell, 3172-3)
```

SECOND PRINTING-R. H. Braasch,50