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ABSTRACT

Four aerodynamic models/design tools used to predict the performance

for the vertical -axis wind turbine (VAWT) are described. These models

are all based upon the conservation of momentum, and are either cur-

rently being used at Sandia Laboratories or have been recently used

there. A number of comparisons both with the experiments and between

the mathematical treatments is made.
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Nomenclature

c

Cp

KP

L

N

Q

R

Rec

V.

x

Pm

OJ

Cr

Turbine swept area

Blade chord

Power coefficient, QU/(1/2)0mVm3As

Power coefficient, QU/(1/2)p~As(Rw)3 = Cp/X3

Blade length

Number of blades

Turbine torque

Turbine maximum radius

Chord Reynolds number, p~Ruc/#m

Freestream velocity

Turbine tip-speed ratio, RU/Vm

Freestream viscosity

Freestream density

Turbine rotational speed

Solidity, NcL/As
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FOUR AERODYNAMIC PREDICTION SCHEMES FOR

VERTICAL -AXIS WIND TURBINES: A COMPENDIUM

Summary

Schemes for predicting aerodynamic performance of vertical-axis wind turbines in use at

Sandia Laboratories are described. The power coefficients generated by these models are com-

pared to those measured in a wind tunnel using a 2 -metre turbine and free -air data of a 5-metre

and a 17-metre turbine. All the prediction schemes are based upon the conservation of momentum

and vary in complexity. The simplest aerodynamic model, SIMOSS, yields the poorest agreement

with experimental data. Schemes involving more complexity better represent the data. The choice

of method will depend upon the intended application.

Introduction

A large collection of models exist which predict aerodynamic performance of vertical -axis

wind turbines. These models range from the relative simplicity of calculations based on conserva-

tion-of-momentum principles to those using rather complex vortex representations and may or

may not include unsteady effects. Reference 1 lists and briefly describes many of the quasisteady

approaches while Reference 2 discusses some of the dynamic treatments. Sandia Laboratories has

used four basic computer models to predict overall aerodynamic performance of vertical -axis wind

turbines; each has its physical basis in the conservation-of-momentum principle and is quasisteady.

The assumptions and descriptive equations are quite reminiscent of the classical actuator-disc

model of propeller aerodynamics. The four models are known as SIMOSS, DART, DARTER and

PAREP.

Model Description

;SIMOSS (S&mple Momentum single Qtreamtube)—

The simplest momentum mode13 takes the rotor to be enclosed in a single streamtube. Wind

velocity across the area swept by the rotor is assumed constant. By choosing some value of this

velocity, a combination of the simple actuator-disc momentum model and blade-element theory

will give the far-field wind speed, turbine pwer, torque, and drag for a turbine with given blade
4

characteristics, rotational speed, and geometry. In SIMOSS, an iteration is incor~rated which

idlows the far-field wind speed to be treated as an input while wind velocity across the rotor-swept



area is calculated. The blade planforms that SIMOSS will handle are parabolic, straight blade,

and trapezoidal.

DART (Darrieus ~urbine )——

DART5 differs from SIMOSS in that a multiple streamtube system is used; i. e. , the swept

area is modeled by an arbitrary number of adjacent and aerodynamically independent areas over

which the conservation-of-momentum principle is applied. Advantages gained by this refinement

stem from allowing disc -area-wind speeds to vary from section to section. Specifically, this

enables airfoil -section data based on elemental Reynolds numbers and wind-shear effects to be

included. The computational approach is somewhat different from that of the single streamtube

3
version. For a given geometry, rotational speed, and ambient-wind speed, it is necessary to

iterate between the conservation-of-momentum expression and the blade-element formulae to ob-

tain the streamtube wind speed at the rotor. This must be done for each individual streamtube.

Rotor power, torque, and drag are obtained by summing the contributions of each tube. DART is

restricted to sinusoidal blade planforms.

DARTER (DART, Qlemental Qeynolds Number)

The differences between DART and DARTER
5, 6

are that in the latter there is a capability of

using airfoil data based on elemental Reynolds numbers (as opposed to using data based on a single,

a priori-determined Reynolds number in DART) and of examining a number of different blade plan-

for ms. DARTER may treat (i) troposkein, (ii) straight -line/circular-arc, (iii) parabolic, or

(iv) straight-blade geometries.

PAREP (~arametric @presentation)*

The last model, PAREP,
7.

IS more of a design tool than a mathematical model. The multiple-

streamtube models do a reasonable job of predicting maximum power coefficients (Cp’s and KP’s)

and the tip-speed/ ambient-wind-speed ratios at which they occur, However, for high blade loadings

and high solidifies, there is often considerable discrepancy between theory and experiment away

from the maximum power coefficients. PAREP is a sequence which combines theory with results

of wind-tunnel testing to better represent overall aerodynamic performance. Specifically, PAREP

operates by first referencing curve fits of relevant output from DARTER for a given turbine design.

This is due to the fact that, over a reasonable range of blade Reynolds number and turbine solidity,

c Pmax, X @ Cpmax, KPmax, and X @ KPmax can be expressed as simple functions of Re and u.

Next, 2-metre wind-tunnel -test results are used to provide the value of X at “runaway” (high-speed

ratio at which zero aerodynamic torque is produced). After the user chooses some low value of the

zero aerodynamic torque -speed ratio (between one and two, as the final results are relatively in-

sensitive to a choice in this range), a curve is fit between the two zero -power speed-ratio points

which passes through the two power coefficient maxima. The shape of this curve is predicted from

the 2-metre wind-tunnel -test results.

*Formerly called CPPARM/TVSV
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Model Capability

Figures 1 through 5 summarize the power coefficient predicting capability of three computer

models. The DART model is not compared directly since it is no longer operational at Sandia

Laboratories; it was replaced by the improved version known as DARTER. Reference 5 presents

a comparison of the DART model with some early wind-tunnel data. The standards of comparison

are actual data gathered during the testing of Sandia’s 2-, 5- and 17 -metre vertical-axis wind

turbines with near unit height-to -diameter ratios (H/D ~ 1). These turbines cover a broad range

of solidifies (O. 13 to O. 30), rotational speeds (29. 6 to 600 rpm), number of blades (2 or 3), and

turbine heights (2, 5, and 17 m). In addition, both wind-tunnel
8, 9 10,11

and field-test operations

are included.

Figures 1 and 2 present comparisons of the computer models with wind-tunnel data for the

2 -metre vertical-axis wind turbine.
8, 9

The two figures differ in turbine solidity and rotational

speed. Two sets of aerodynamic section data are used. The primary set was taken in the Wichita

State University (WSU ) wind tunnel for an NACA -0012 airfoil. The section data for Reynolds num-

bers of 3.5 x 105 and 5.0 x 105 are listed in Reference 9. The secondary set was recently made

available by Sharpe (Reference 12) for the same section. The latter set differs from the WSU data

in that it extends to a much lower Reynolds number (4. O x 104 vs 3. 6 x 105) and much of it was

gathered in a high-turbulence tunnel. DARTER predictions using Sharpe data show better agree-

ment with experiments than do the DARTER predictions using WSU measurements, indicating the

importance of using drag information for the proper Reynolds numbers. The results show the

SIMOSS model to overpredict the measured maximum-power coefficients and to grossly overpredict

the values of the runaway tip-speed ratio (highest ratio at which zero aerodynamic torque is

produced). These calculations were based upon an equatorial blade Re and could be improved by

using some average Re. DARTER more closely predicts the maximum-power coefficients but

overpredicts the runaway tip-speed ratio in all but the low solidity Sharpe -based calculation.

.PAREP produces the best overaH representation of the actual data.

The comparisons of the models with free-air data obtained for the 5-metre vertical -axis

10
wind turbine are presented in Figure 3. The results of SIMOSS and DARTER are similar to the

results for the higher u 2-metre turbine. Two curves are presented for PAREP because of the

geometry of the 5-metre turbine blades. They were not of continuous cross section from hub-to-

hub, but rather each blade was made in three sections
10

with the two straight sections near the

rotating axis not of aerodynamic cross section. Curve 1 is the PA REP model with the inclusion

c)f the straight sections which had higher aerodynamic drag than the airfoil cross section. Curve 2

is the PA REP model assuming hub-to-hub airfoil cross-section blades. PAREP, as expected, gives

the best representation of the actual field-test data.

11
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The 17-metre vertical-axis wind-turbine data obtained in free-air testing
11

are presented in

Figures 4 and 5 for two different rotational speeds andare compared with the models. The results

are similar to the previous low-solidity findings with SIMOSS overpredicting the maxima and the

runaway tip -speed ratio. DARTER more closely predicts the maximum-power coefficients and

properly predicts the runaway tip-speed ratios only when using the Sharpe compilation of airfoil

data.

Conclusion

Generally speaking, SIMOSS overestimates both the maximum-power coefficients and the run-

away tip-speed ratios, with the latter’s disagreement increasing with increasing solidity. This is

dso a problem with DARTER, but power-coefficient maxima are more closely computed. These

uniformly overestimated maxima are the same as those of PAREP, as expected. The improved

runaway-ratio predictions seem reasonably good for the free-air running 5- and 17-metre turbines,

even though these speeds are based upon wind-tunnel operation of the 2-metre models. For low

solidifies, runaway ratios are well predicted by Sharpe-based DARTER computations. The tip-

speed ratios at which positive aerodynamic torque is first produced are generally between one and

two and are so predicted by all computational schemes. The recently acquired NACA-0012 airfoil

data of Sharpe used with DARTER best predicts the wind-tunnel and free-air experimental wind-

turbine data for low Solidifies.
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