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VERTICAL AXIS WIND TURBINE TIE-DOWN DESIGN
WITH AN EXAMPLE

Robert C. Reuter, Jr.
Sandia Laboratories

Albuquerque, New Mexico 87115

ABSTRACT

Design of cable tie-down systems for vertical axis wind turbines

is discussed and guidelines are furnished. Topics such as the number,

size and material of the cables, cable elevation angle, tensioning, and

thermoplastic effects are discussed in detail. The tie-down system of

the existing Sandia 17 meter VAWT is used throughout as a numerical

example.



INTRODUCTION

Vertical axis wind turbines of the curved blade, Darrieus type that

have been designed and erected have had, in general, some type of guy

cable support at the top of the turbine. The purpose of this report is

Unguyed designs will not

as steady and vibratory

be

to discuss the VAWT guyingproblem and to provide guidelines for effi-

cient tie-down system design. Cantilevered,

discussed.

Lateral stability is essential in VAWTS

overturning loads caused by the action of the wind on the turbine must be

resisted. Guy cables directed from ground locations to some point on

the turbine tower (usually near the top) provide the necessary stabiliza-

tion, however, several problems may arise if cable selection is not made

carefully. For example, the number of cables must be selected to ease

turbine erection, provide uniform polar support and minimize wind blockage.

Consequences of non-uniform

metrically opposing cables)

is selected to control deflection of the tower, and support initial cable

tensions and subsequent tension changes. If the selected cable has a

limited tensile capability, for example, large cable sag may result caus-

ing 1) higher blade strike probabilities, 2) loss of support capability

due to non-linear cable stiffness/sagbehavior, and 3) cable vibration fre-

quencies which are incompatiblewith turbine operating speeds.

Initial tensions in the cables are selected to minimize cable sag, pro-

vide adequate tower support and eliminate cable vibrations from turbine

operating ranges. Cable vibration frequencies vary as the square root

polar support (an extreme

is obvious. The size and

example is two dia-

material of the cable



of cable tension, so that initial cable tension selection is tantamount

to locating cable natural frequencies. Unintentional cable tension

changes from carefully selected initial values may cause excess cable

sag and a loss of tower support, and will cause a relocation of natural

frequencies. Such tension changes may result from cable relaxation

(which practically disappears with time) and from ambient temperature

and insolation changes.

Several problem areas associated with VAW’Tguy cable design have been

mentioned. In what follows, four areas of concern will be discussed in

more detail. These areas are initial cable design and selection, sta-

tics of guy cable tensioning, cable vibrations, and thermal effects.

CABLE STATICS

Selection of the number of cables to be used in a tie-down system

cannot be made entirely on a technical basis. Along with technical

guidance the final design must include economic trade-offs between, for

example, the number of cables, their size, unit cost and ease of installa-

tion. These considerationsare beyond the scope of this report. A

technical requirement of interest, however, is that there be uniform

polar support, or polar symmetry in the tie-down system. Clearly, one

or two tie-down cables do not fulfill this requirement. Any tie-down

system with 3 or more cables, placed at equally spaced polar intervals,

does meet the symmetry requirement. It can be shown that the stiffness

of a system will be proportional to (~) times the single cable stiffness,

where n is the number of tie-down cables. Also, for a given overall
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tie-down stiffness, and for equal cable lengths, niAiEi = n.A.E
JJj’

where i and j represent two different tie-down systems. For example, in

changing a tie-down design from a 4 cable system (ni = 4) to a 3 cable

system (n. = 3) without changing the overall tie-down stiffness, or the
J

cable material, the cross-sectionalarea of each cable in the 3 cable

system must equal $ times the cross-sectionalarea of each cable of the

4 cable system; i.e., A3 = $A4. Therefore, for a given tie-down system

stiffness, the fewer the number of cables used, the greater will be their

individual cross-sectionalarea. This means their linear weight will be

greater and also their sag per unit of tension. The relationship between

sag and cable

The next

of a tie-down

cable and the

tension will be discussed later.

topic to be treated in this section covers the selection

cable elevation angle, the angle made between the tie-down

horizontal plane. A vertical tie-down cable protides no

stiffness to the top of the tower because horizontal tower loads have no

components which the cables can react. A nearly horizontal cable pro-

vides no stiffness because of its great length. Somewhere between these

extreme angles of 90 degrees and near zero degrees is an optimum value

which provides maximum stiffness. The nomenclature illustrated in Fig. 1

is adopted. This figure shows the turbine base (assumed rigid), blade

support tower, cable outriggers (also assumed rigid) and four tie-down

cables equally spaced in the polar direction. The view in Fig. 1 is

normal to a plane containing the tower and two of the cables.

The ith cable changes length according to

~Ci=~4Hi+#4V i (1)



Assuming that the deflection is confined to the plane of the figure, then

(2)

AI+$=AHh=O, AT.T3= AV4 = c

Equilibrium of forces and moments at the top of the tower requires that

:(P1 - P2)+PH-1=0

:(P1+P2+P3+P4)-PT=0 (3)

‘1 (Pl -M-y P2) = o

where Pi, i = 1,4 are the tensile loads in the cables, P is the result-
T

ing compressive load in the tower, PH and M are the horizontal load and

moment resistance offered by the tower and ~ is the external load applied

in the horizontal plane causing the deflection. Since the cables can

support tension only and no bending,

ACEC
Pi = ~ AC

i

Using (1) and (2), this gives

(4)

ACEC v

()
p3=p4=~~



Two tower base fixities are considered; they are pinned and clamped.

Using elementary beam theory,

Llm
J.

3ETIT
M= ~ (d + ~LT)

6ETIT
PH=~ (2d+ /9LT)

‘T

M=
2ET1T
~ (3d+~LT)
Llm

and P _ ‘TET ~
T

‘T

Ipinned tower
base

}

clamped tower
base

(5)

(6)

(7)

Substituting (4), (7) and (5) or (6) into the equilibrium equations (3)

yields three equations for determination of the three unknown displace-

ments, ~, c and ~. Our present interest is with the horizontal stiffness

at the top of the tower, a ProPerty clearly dependent upon the geometric

and material properties of the tie-down cables. After performing the

operations mentioned above the following expressions for a normalized

horizontal stiffness at the top of the tower are obtained.

(8)



for the pinned tower base, and

.

for the clamped tower base.

A numerical example

(?) =19 (-)= ‘*9X
T

for the stiffness given by Eq. (8) is provided using

10-3 1and two values of
()
— ; 0.01 and 0.1.
‘T

Results are shown in Fig. 2. Here it can be seen that when outrigger

lengths are small (l% of the tower length), the maximum stiffness occurs

at an elevation angle of about 35°. By increasing outrigger length

(tol@of the tower length) two undesirable effects occur. First, the

maximum stiffness has been reduced in value, and second, the peak has

shifted to the left suggesting longer cables, greater sag per unit of

tension, and greater land usage. Since the optimum elevation angle (that

which maximizes stiffness) is relatively shallow already, there is no in-

centive to provide outriggers in the tie-down system for blade clearance.

Allowing the outrigger length, ~, to approach zero, Eqs. (8) and (9)

become, respectively,

for a pinned tower base, and

()( )‘T:=
3ETIT

()

‘T 2
.—+27 sins cos a

cc ACECL:

(U.)

(lo)
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for a clamped tower base. These equations are valid for outrigger

lengths equal to about l% of the tower length, or less. Equation (10)

shows that the pinned base tower stiffness is independent of tower pro-

perties. Equation (n) shows that the top of a clamped base tower is

stiffened additionally by that amount appropriate for a cantilever beam

(tower). By differentiatingboth sides of (10) or (l-l)and setting the

result equal to zero, the optimum elevation angle can be found directly.

It is

-1
a = Cos

and is independent of all tower and

(2/3)+ = 35.3°

cable properties.

In the example above, where numerical values characteristic of the

Sandia 17 meter turbine were used, clamping the tower base increases the

overall tower/tie-down stiffness only by about 3%. There is no real incen-

tive, therefore, to provide

the blade support tower, at

This is consistent with the

a moment carrying capability at the base of

least from a tie-down stiffness viewpoint.

intended purpose of using tie-down cables in

the first place; they are present to support the tower so that it

doesn’t have to support itself.

The topics of sizing the cable and selecting initial tension were

treated fairly thoroughly in Ref. (1), however, some of the high-

lights are repeated here for completeness. The sag in a cable stretched

to connect two points, as in Fig. 3, is given by

48CX(S -x)
6P =

$ COS2CY
(12)



where de is the midpoint sag given by

(13)

Here, T is the chordwise component of cable tension and w is the linear

weight of the cable. Results for (12) and (13) are shown in Fig. 4

where numerical values characteristic of the Sandia 17 meter turbine

are used. The dashed line shows the sag at a point along the unreflected

cable which is closest to the passing

sag for small values of tension.

Cable stiffness, or the property

to support the tower, is given by

blade. Note the

characterizing a

rapid growth of

cable’s ability

,-1

1‘C”c 12(1 + b) We= COSCYj

()

8dc2

‘here b=m- “
It is seen that cable stiffness depends upon cable

sag (or equivalently, on cable tension) in a nonlinear fashion. Numeri-

cal results for cable stiffness of the 17 meter turbine are shown in

Fig. 5. When sag is low (tension is high), cable stiffness is high

since it is dominated by elastic stretch of the cable. When sag is high (ten-

sion is.low), cable stiffness is low since it is dominated by cable weight.

It is advisable to have enough tension present to keep stiffness high in

order to preserve tie-down support, however, it is not sufficient to use

Eq. (14), or Fig. 5, to determine what value of ~c (and therefore T) is

necessary to achieve a desired stiffness. The difficulty lies in deter-

mining the change in stiffness with change in chord length of a down

wind cable when the tower deflects. The down wind cable is of interest

9



because is will develop additional sag and therefore lose part of its

initial stiffness and load carrying capability. Equation (14), which

gives the instantaneous values of cable stiffness must be integrated to

give a relationship between chord length changes and tension changes.

This yields Ref. (1)

LAC . tiT + W2C3 COS2CY
AT(LIT+ 2Ti)-

CEC 24(1 + b) T?(AT + Ti)2
(15)

The horizontal component ofAC, ACh, is given by

ACh = secdflC

Tension change,AT, is shown in Fig. 6 as a function of both~C andACh,

along with the linear cable stiffness, K . It is seen that for small
s

values of Ac, all curves behave linearly and approach Ks. Equation (15)

may be used to size the cable as follows. An overall stiffness for the

tie-down system/tower is first selected by choosing an acceptable, maxi-

mum down wind deflection. For the Sandia 17 meter turbine, this value

was one inch in an 80 mph wind, yielding Ks s 9000 lb/in. After the geo-

metry of the turbine has been determined, it is necessary to select a

cable with a modulus, linear weight and cross-sectional

used in (15) for small values of AT, yields a stiffness

greater. Another cable property to

This value should be five times the

later) or greater. Initial tension

to Fig. 6 and selecting a value

linear behavior of the tie-down

10

for

keep in mind is its

maximum tension (to

area which, when

value of Ks or

ultimate load.

be determined

can be selected next by referring

Ti which will permit essentially

system. For the present example, a value



of 12,000 lbs. is suggested. Another set of curves of interest are pre-

sented in Fig. 7 where final strike point sag is shown as a function of

tower deflection. If the selection of initial tension is based on blade

clearance, these curves can be useful. For example, if a horizontal

tower deflection,ACh, of 2.5 in. is allowed then for a strike point sag

to be 1 foot or less, the initial cable tension should be 12,000 lbs. or

more. If a deflection ACh, of 3 in. is allowed, then 16,000 lbs. or

more of initial cable tension is required to keep the strike point sag

1 foot or less. For the 17 meter turbine, a 12,000 lb. initial cable

tension provides a maximum strike point sag of 0.3 feet when

deflection is approximately 1 inch, and the response remains

linear.

the tower

nearly

CABLE DYNAMICS

The problem of selecting initial tension for tie-down cables is

generally not limited to static considerations only. Natural frequen-

cies of tie-down

must be adjusted

In the case of a

cables are a strong function of the tension in them which

so as not to be excited by prevalent forcing functions.

two bladed

lateral cable vibrations is

function for one revolution

of the flatwise aerodynamic

VAWT the fundamental forcing function for

two/rev; i.e., two cycles of the forcing

of the turbine. This comes about by virtue

loads which act on the turbine blades.

Natural frequencies for taut, heavy cables are given by Ref. (2)

()mn ‘Q +
u =—
mc Cw

(16)



where m is the mode number (1,2,3,...), T is cable tension, g is the

acceleration of gravity, w is the cable linear weight and C is the cable

length. For the 17 meter turbine, (16) yields

(dmc = 9.58 x10-2 Lm(T)2 rad/sec

or

f = 1.53 x 10-2 m(T)~hz
mc

Variation of the first two modes with cable tension are shown in Fig. 8.

Turbine speeds which yield a two/rev forcing frequency equal to the

cable frequencies are indicated in the ordinate direction along the

right hand side of the figure. It can be seen in the figure that the

original, initial tension value of 12,000 lbs. would cause the first

cable mode to have a frequency of about 1.65 hz and it would be excited if

the turbine were operated at about 50 rpm. This was corroborated experi-

mentally. The initial tension was subsequently elevated to 16,OOO lbs.

in order to increase the turbine operating range below the first cable

mode.

This example illustrates that tie-down cables can be “tuned”

successfully in the field for cable vibration control. For higher speed

turbines, it may be more desirab>e to lower the initial cable tension in

such a way that the 2/rev frequency of the turbine is midway between the

first two cable modes. Whenever tension is reduced, however, care must

be taken to insure that too much nonlinear stiffness behavior has not been

induced which would cause significant loss in tie-down support capability.

12



A trade off evaluation between location of cable frequencies and the ten-

sioning guidelines of the previous section is implied.

THERMAL EFFECTS

VAWT

Another phenomenon occurs which effects initial tensioning of

tie-down cables. Diurnal (and longer) temperature and insolation

changes can cause enough differential thermal expansion between the

cables and the blade support structure to cause significant cable tension

changes. A model suitable for analysis of this problem consists of the

turbine blade support tower and four tie-down cables. (Other numbers

of cables could, of course, be used.) The tower of this model is an

equivalent tower consisting of the upper

port tower, and the turbine base. These

carry tie-down loads and act in series.

be one-dimensionalwith linear behavior.

bearing shaft, the blade sup-

are structural components which

Model components are assumed to

Total strain in a long, slender structure is the sum of mechanical

strain and thermal strain. Therefore, total length changes can be written

(17)

where q is the thermal expansion coefficient, A and E are cross-sectional

area and Young’s modulus, L and AL are length and length change, P is

load and AT is the temperature change. Solving (17) for P* and using

subscripts, T and C to denote tower and cable, respectively, yields

+These loads are actually load changes due to temperature changes,

length changes, or both. They do not contain initial tie-down loads.

13



()PT = ~ AL - (wq)T ATT
T

where the tower and cables are allowed different

The cable and tower deflections are related by

Ac=$AL

Equilibrium requires

PT = -4 P= sin~

Substituting (18) into (20) and using (19) gives

(18)

temperature changes.

(19)

(20)

(21)

Using (21) and (19) in (18) gives

(22)

14



Again, using the 17 meter turbine as an example, pertinent parameter an~

group values are

~ . 350

~T = vc = 6.5 X 10-6/oF

LT = 74.2 ft. = 890.4 in.

Lc = 129.4 ft. = 1552.8 in.

()AX-r-l = 2.28x 107 lb/in

()AE72 = 2.73 x 106 lb/in

()AET = 4.00 x 106 lb/in
3

(%),(?}2(%)3
‘)’ ‘R (32 ‘(32 (+}3 + (%), (%)3 = ‘“5’ x

(AE)T= 1.35x 1091b

(AEq)T= 8780 lb/°F

()

AE
Tc

= 9.60x 103 lb/in

(AE)C = 1.49 xlo71b

(AEq)c = 96.81b/°F

In general, during daylight hours,

predicted to be at a higher temperature

can be characterizedby writing

the cables were

than the tower,

106 lb/in

observed and

Ref. (3). This

ATC = kATT

15



where k > 1 during daylight hours and k = 1 otherwise. Numerical results

for Eqs. (21) and (22) are presented in Table 1 for various values ofk

and for (22-b) in Fig. 9. From Ref. (3), values of k = 1.1 occur almost

daily in Albuquerque (in the absence of clouds), with a maximum value

of k * 1.12. Another result of Ref. (3) is that the tower temperature is

generally above ambient temperature, TA, during daylight hours. The

difference between TT and TA varies, but when k reaches its maximum

(TT - TA) R 7 to 10 degrees. Therefore, during daylight hours

ATT =ATA + 10

as a worst case, and

ATT = ATA

otherwise. The ambient temperature change between dawn and the time of

maximum solar insolation can easily reach 30°F in Albuquerque. Using

ATT = 30 + 10 = 40°F and k = 1.12, each tie-down cable can lose approxi-

mately 3000 lbs. of tension from its initial value at dawn. Approxi-

mately 15% of this loss is due to the temperature difference between the

tower and cables. This value, however, represents a worst case since it

was calculated with the largest predicted value of k and since it was

assumed that all cables received the same insolation. On a cloudy day

when

lbs.

k = 1 and ATT=ATA = 30°, each cable can lose approximately 2000

of tension from its initial value at dawn.

Equation (22) can be rewritten in the form

16



4P .4 sin ~(AE)T (AE)C [~Ck - ??Tsin2a ATT

T

[
(AE)T + 4(AE)C sin3CY

1
(23)

(m)T (AE)c ~ck ] ATT
APC =

[
(AE)T+ 4(AE)Csin3u]

These expressions demonstrate that converting from a steel tower (as on

the 17 meter turbine) to an aluminum tower would reduce the magnitude of

the thermoplastic problem by virtue of the greater q and the lower E.

SUMMARY

Problems pertinent to the design of an efficient tie-duwn system

have been discussed above. The number of cables must be 3 or greater,

but otherwise will probably be guided by cost trade-offs based on size,

ease of assembly and availability. Guy wire outriggers were shown to

be more of a liability than an asset to a tie-down design. In their

absence, the cable elevation angle was shown to be approximately 35°.

Sizing the cable was shown to depend on a predetermined overall

tie-down stiffness. Once this value is known, cable size and material,

and a minimum value of initial tension can be determined. Cable natural

frequencies are also determined, based on initial tension values. If

they occur at or near the two per revolution fundamental frequency of a

two bladed turbine, then initial cable tension must be adjusted. The

final iteration of cable tension determination occurs when thermal ef-

fects are considered. Differential thermal expansion between the blade

17



suFport tower and tie-down cables will, in general, cause a 10ss of

initial cable tension as the ambient temperature rises. Initial cable

tensions prior to turbine operation must be adjusted accordingly.

18
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