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VOLUME I - EXECUTIVE SUMMARY 


Abstract 

The economic analysis of the Darrieus vertical axis wind turbine is contained 

in four separate volumes. This first volume summarizes the complete study, present

ing a description of the technical approach used, key results, and major conclusions. 
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Introduction 

The Darrieus vertical axis wind turbine (VAWT) is an aerodynamic device for 

extracting mechanical energy from the wind. This concept has been investigated 

recently to establish its potential for producing useful electrical or mechanical 

energy. Figure I shows a typical Darrieus turbine. Dominant features of the design 
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Figure I - Typical Darrieus VAWT System and Nomenclature 

are its vertical axis and the use of curved, fixed-pitch blades rigidly attached to 

the central rotating tower. 

Several advantages inherent in the VAWT concept have led to its consideration 

as a possibly superior alternate to conventional propeller-type systems. These 

advantages include: 

- The ability of the VAWT to accept winds from any direction without devices 

to direct the rotor into the wind. 

- The placement of all heavy mechanical equipment at ground level, which eases 

maintenance and structural problems. 

- The amenability of the rotor to simple, low-cost blade fabrication techniques. 

- The aerodynamic stall characteristics of the rotor preclude the need for 

blade pitch-control mechanisms in constant rpm applications. 
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There are also certain disadvantages of the VAWT, such as somewhat lower theore

tical aerodynamic performance (about 10% lower than for a propeller-type machine 

with the same swept area), and the need for higher peak power ratings in a VAWT 

drive train due to the nature of its aerodynamic power curve. 

The economic utility of the VAWT applied toward production of usable energy 

has not been thoroughly investigated. Recently, Sandia Laboratories, at the request 

of the DOE, made a detailed economic analysis of the VAWT. This summary report is 

the first volume of a four-volume final report on this economic analysis. The 

other three volumes detail the development and results of the entire study. 

The primary objective of this study is simply to estimate the cost of utility 

grid electrical energy supplied by profitably manufactured, optimized, and struc

turally acceptable Darrieus VAWT systems. This cost is estimated as a function of 

rotor size, the scale of the business venture producing the systems, and the wind 

characteristics of the turbine site. Results indicate that the largest rotors 

investigated (from 500 to 1600 kW peak electrical output) can provide energy for 

4 to 6¢/kWh at wind sites with a 15 mph median annual windspeed if these rotors are 

mass-produced. The cost of energy, which is roughly halved or doubled, respectively, 

at 18 or 12 mph median annual windspeed sites, is very sensitive to median annual 

windspeed. 

This study was designed to be accurate based on current knowledge of VAWT 

technology and available cost data. Nevertheless, certain unavoidable approxima

tions and conservatisms exist in the cost-estimating process. The overall accuracy 

is intended to be adequate for judging current economic feasibility, identifying cost 

trends, and determining the future course of the VAWT concept. Continued capability 

for accurate and up-to-date analyses should be obtained by incorporating new techni

cal developments and economic data into the framework of this study as they become 

available. 

The cost of energy estimates presented in this study can probably be improved 

upon in actual production systems if an effort is made to reduce design conserva

tisms, improve aerodynamic performance, and develop more cost-effective mechanical 

design features. The major conservatism in this study involves the structural re

quirements imposed on the designs investigated. The ability to reduce these struc

tural conservatisms depends on the development of improved structural dynamic models 

and field experience with operational systems. 

The following two sections summarize the technical approach used to produce the 

cost estimates and discuss the major results. A final section discusses conclusions, 

limitations of the study, and recommendations for future work. 
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Technical Approach 


A block diagram (Fig. 2) describes the overall program approach. The first 
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Figure 2 - Overall Organization of the Economic Study 

task, to establish ground rules, restricts the scope of the study in order to reduce 

uncertainties. The most influential ground rules are as follows: 

1. 	 Utility Grid Application The rotor is assumed to be maintained at con

stant rpm by an existing utility grid, using a direct~coupled induction 

or synchronous generator. No storage capacity is provided; the grid is 

assumed to be capable of absorbing the energy produced at all times. 

2. 	 Existing Technology -- All system components are designed using manufactur

ing technologies (or modest extensions of those technologies) that have 

been applied successfully on operational research systems. In cases where 

several demonstrated technologies are available, the lowest-cost technology 

is used. 

3. 	 Structural Reguirements -- Structural components are sized to produce 

fatigue stresses consistent with a 30-year life in a 15 mph median annual 

windspeed environment. The system design operational windspeed is taken as 

60 mph and the parked-rotor survival design windspeed is 150 mph. 

4. 	 Cost of Energy Calculation -- The annual cost of owning and operating a 

VAWT system is calculated by taking a fixed percentage (18%) of the installed 

system selling price and adding estimated annual operation and maintenance 

SELECTESTABLISH 
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(O&M) costs that have been levelized* by a factor of 2. This cost, divided 

by annual energy delivered by the system, yields the cost of energy (¢/kWh). 

Energy delivery of the system is based upon 90% machine availability. 

Capital costs are estimated based on analysis of six hypothetical system designs. 

These systems, referred to as point designs, were designed primarily by Sandia Labora

tories. The point designs, ranging in size from 10 kW to 1600 kW peak electrical 

output, are technically feasible and use the most economical technologies available 

at the time they were formulated. Volume III of this report contains detailed design 

data on the point designs. 

Point design specifications (such as number of blades, rotor rpm, annual energy 

output, etc.) were selected using an economic optimization model. This model, de

scribed in Volume II, is a computer-adapted model of system cost and performance fac

tors. It was used to determine combinations of specifications that minimize the cost 

of energy. In addition to its function in specifying the point designs, the econo

mic optimization model remains a useful tool for rapidly investigating the effects 

on cost of energy due to changes in the original point design specifications. 

Two consultants were contracted to carry out independent cost estimating on the 

point designs. A. T. Kearney, Inc. (a management consulting firm), and Alcoa labora

tories (a product development laboratory) were to estimate a profitable selling 

price for the individual point designs if they were manufactured, delivered, and 

installed by private industry. Toward this objective, the consultants constructed 

a business scenario in which a hypothetical company with appropriate overhead and 

profit is included as part of the system selling price. Both consultants used 

actual component cost quotes from industrial suppliers as their primary source of 

cost data. The scale of the business producing the systems is governed by the 

number of units produced annually; both consultants considered a range of production 

rates varying from 10 to 100 MW of peak capacity installed annually. Prices for 

preproduction prototype versions of the point designs were also estimated. Volume 

IV provides complete results from the consultants along with analyses, interpreta

tions, and modifications. 

Results 

A principal result of this study is the completion and application of a com

puterized economic optimization model. The model was used to examine the effect 

*The levelizing factor is included to account for inflation of operation and 
maintenance costs during the lifetime of the system. 
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of varying system specifications on the cost of energy. The specifications varied 

in this process include the ratio of the rotor height to its diameter (HID), the 

number of blades, whether to use blade support struts,* rotor solidity (the ratio of 

blade area to rotor projected area), the distance from the ground to the lower 

blade connection (rotor ground clearance), and rotor rpm. Table I summarizes the 

specifications found most desirable for the VAWT point designs. 

Six point designs were considered for economic analysis. These designs have 

rotors ranging in size from 18 to 150 feet in diameter. Table II lists the dimen

sions and performance characteristics of the designs. Major elements of the designs 

are the use of extruded aluminum blades, thin-walled tubular steel central towers, 

and a three-cable tiedown system for supporting the top of the rotor. Field assembly 

joints are provided for the blades and central tower on the largest systems to per

mit shipping of completed subassemblies to the site by conventional trucks. The 

central tower and blades for all the systems are designed to be assembled at the 

site horizontally at ground level. The entire rotor is then raised to its ultimate 

vertical position by crane, hydraulic lift, or winch. This procedure substantially 

limits expensive aboveground site operations. The point designs also are relatively 

easy to maintain since critical mechanical components are at ground level. 

A. T. Kearney and Alcoa Laboratories estimated the installed per-unit selling 

prices for the point designs as listed in Table III. As shown in Table III, the 

consultants estimated selling prices for single prototypes and for continuous pro

duction rates varying from 10 to 100 MW of installed peak capacity per year. These 

production rates correspond to an approximate annual sales volume ranging from $5 to 

$50 million. Table III gives the number of units produced annually for these pro

duction rates. The decrease in unit cost as production increases from 10 to 100 

MW/yr is typically 20-35%. The major sources of this decrease are economies of 

scale in business overhead expenses and discounts for quantity purchases of shelf 

components. 

*Blade support struts connecting the central tower to the curved blade section (see 
Fig. 1) have been used in some rotor designs. They may be eliminated provided the 
curved blade section is appropriately strengthened. 
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Table I 

T~ical Properties of Optimized Systems 
(15 mph Median Windspeed Distribution) 

Rotor 	 HID = 1.5, two blades, unstrutted (struts may be desir

able for diameters above 150 feet). 

Solidit~ 	 Ranges between .12 and .14 depending on rotor diameter. 

Rated Windspeed 	 Approximatel~ 30 mph @ 30 foot reference height. 

Cut-In Windspeed 	 Approximatel~ 10 to 12 mph @ 30 foot reference height. 

Plant Factor 	 From 20 to 25%, depending on rotor size. 

Rotor Ground Clearance 	 As low as possible, with enough room for drive train 

placement, except for smaller rotors (< 30 foot diameter) 

where a 10 to 20 foot clearance is advantageous. 

NOTES: (l) 	 Plant factor is the ratio of the average annual power output to the 

rated output. 

(2) 	 Rated windspeed, cut-in windspeed, and plant factor are all governed 

b~ the rotor rpm. The rotor rpm is selected to minimize the cost of 

energy. 
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Table II 

Point Design Specifications 

Nominal Rating (kW) lO 30 l20 200 500 l600 

Rotor Diameter (ft) 
x Height (ft) 

l8 x 27 30 x 45 55 x 83 75 x l20 lOO x l50 l50 x 225 

Rotor Area 2(ft ) 324 900 3000 5600 lO,OOO 22,500 

Number of Blades 2 2 2 2 2 2 

Blade Chord (in) 6 II 24 29 43 64 

Total System Weight 
(lbs) 

l450 4970 l8,lOO 40,800 95,200 284,000 

Actual Rated Output 
(kW) @ 30' Ref. 
Height Windspeed 
(mph) 

8 @ 34 26 @ 32 n6 @ 3l 226 @ 30 53l @ 3l l330 @ 30 

Annual Energy Output 
(MW-hrs), lOr:f'/o 
Availability, l5 
mph Median Distri
bution 

l3.7 5l.6 246 490 l070 2950 

\0 



f-' o 

Table III 


Installed Turbine Cost Summary (K$) 


Nominal Production RateSystem 
Size (kW) Source l Prototype Cost _____ 10 MiI/yr Cost (Units/Year)* lOO MiI/yr Cost (Units/Year)* 

lO Alcoa 77.2 l1.9 (ll30) 9 (7460) 

30 Alcoa 97.9 20.3 (3l0) l4.l (483l) 

l20 Kearney 226.2 77.l (83) 68.8 (830) 

Alcoa 193.5 89.8 (84) 69.4 (l285) 

200 Kearney 375.3 l50.7 (50) l33.6 (500) 

Alcoa 289.5 l54.l (46) ll7.5 (704) 

500 Kearney 600.7 291. 7 (20) 249.0 (200) 

Alcoa 5l7.3 367.5 (l8) 270.0 (270) 

l600 Kearney l425.8 766.3 (6) 6l9.l (62) 

Alcoa l263.2 l020.0 (6) 7l4.0 (99) 

*Unit production for Alcoa does not precisely correspond to the stated annual megawattage. 
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Sandia used the prices from Table III to calculate the cost of energy. In 

making this calculation, Sandia corrected minor omissions made by the consultants, 

added the capital cost of automatic control hardware,* and included estimated annual 

operation and maintenance costs. Figure 3 presents the cost of energy so calculated 
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Figure 3 - Total System Energy Cost for All Point Designs in 
Three Median Annual Windspeeds 

for all the point designs at 100 MW/yr production in three median annual windspeed 

sites (12, 15, and 18 mph). 

It is evident from Fig. 3 that the cost of energy is quite sensitive to median 

annual windspeed. Relative to the 15 mph median annual windspeed distribution, the 

cost of energy is reduced by 33% and increased by 86% for the 18 and 12 mph sites, 

respectively. 

There is a trend in Fig. 3 toward decreasing energy cost as rotor size increases. 

This trend is due primarily to the presence of costs that vary slowly or not at all 

with system size. The slowly varying costs become significant relative to the total 

*The point designs are complete systems for manual operations. The automatic con
trol hardware provides the additional capability for unattended operations of the 
turbine. 
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system cost as system size decreases, thereby causing large increases in the" cost of 

energy for small systems. Major sources of slowly varying costs are the annual 

operation and maintenance charges, automatic control hardware, and "the labor charges 

on all components. 

Figure 3 indicates that reduced energy costs may be possible by considering 

rotors larger than 150 feet in diameter. However, experience with the economic opti

mization model and examination of the results from the consultants suggest that as 

rotor size increases, the cost of energy decreases at a much slower rate and will 

probably increase for rotors above 150 to 250 feet in diameter. This is because 

as rotors increase in size, the rate of growth of raw materials required for a sys

tem slightly exceeds the rate of growth of energy production. 

The results of Fig. 3 are quite sensitive to certain assumptions made in this 

study. Figure 4 shows the effect of wind shear (the tendency of the windspeed to 
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Figure 4 - The Effect of Wind Shear Exponent, A Site-Dependent 
Quantity, On the Cost of Energy 

increase with height above the ground) on the cost of energy. The quantitative 

measure of wind shear is the wind shear exponent, a site-dependent quantity assumed 

to be .17 for this study. As shown in Fig. 4, sites with larger wind shear expo

nents favor larger (and hence taller) rotors, while lower wind shear sites penalize 

larger rotors. 
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Figure 5 indicates the importance of structural conservatism on the ultimate 
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Figure 5 - Possible Cost of Energy Reductions Associated 
with Relaxed Structural Requirements 

cost of energy. In this figure the economic effects are estimated for reducing the 

design operational windspeed from 60 to 40 mph, the rotor survival design speed from 

150 to 120 mph, and relaxing certain stiffness requirements on the cable tiedown 

system. More experience and technical development are required to establish if 

such reduced conservatism can be achieved without undue compromise of system life 

and reliability. 

Energy costs are sensitive to the circumstances of the VAWT user. This study 

assumes that in 1978 utility owns and operates the wind turbine. As a result, the 

cost of energy includes dispatching* costs and an 18% annual charge on capital 

investment. Different charges might be appropriate depending upon the existence 

*Dispatching refers to the standard utility procedure of regular inspection of 
machine output to record output, redirect output, and check for abnormality. 
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of tax incentives, special interest rates and financing, or the type of applications. 

The assessment of professional fees for dispatching may be particularly inappro

priate for small machines « 30 kW) operated by their owners. Figure 6 shows the 
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Figure 6 - The Effect of Annual Charge Rate and Dispatching 
Costs on the Cost of Energy 

sensitivity of energy cost to annual charge rate and dispatching cost. The cost of 

energy curve is nearly flat for rotor sizes 30 feet and larger if dispatching charges 

are eliminated. 

Conclusions and Recommendations 

Conclusions from this study are as follows: 

The most favorable systems investigated can, in production, apparently pro

vide utility electricity with a cost in the range of 4 to 6¢/kWh with exist

ing technology. The most promising means for improving this cost appears 

to be through reducing structural conservatism in the design. Estimates 

indicate that a 1-2¢/kWh reduction in cost of energy may be possible by 

eliminating excessive structural conservatisms. 

Energy cost decreases as VAWT rotor size increases up to the largest system 

investigated (1600 kW), primarily because of the presence of costs that vary 
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slowly or not at all with rotor size. These costs are associated with opera

tion and maintenance, automatic control hardware, and labor charges on all 

components. These slowly varying costs dominate the smaller systems and 

tend to limit their cost-effectiveness in this application. 

- The cost of energy of each system is sensitive to the median annual wind

speed and the annual charge rate for financing. Larger systems (above 100 kW) 

are sensitive to the wind shear exponent. 

The economic trend of energy cost-dependence on system size indicates an incen

tive to develop larger Darrieus rotors. This development should be paralleled by 

periodic reexamination of these conclusions accounting for new technical and econo

mic data as they are acquired in the R&D program. 

In this application, small systems are less cost-effective. However, small 

systems do have certain inherent advantages over large systems, such as reduced 

development costs and technical risks and lower capital investment requirements per 

unit. There are also markets that can use only small systems effectively because 

of energy demand limitations. These factors can increase the value-effectiveness 

of the energy produced by small systems. This potential should be recognized in 

attempting to assess the fUture significance of small VAWT systems as energy pro

ducers. 

It is important to associate the conclusions and cost estimates in this summary 

with the study's principal ground rules (see Technical Approach section). These 

ground rules are generally conservative; i.e., they are biased toward obtaining 

reasonable accuracy rather than lower bounds on the possible cost of VAWT-produced 

energy. Of particular importance is the restriction concerning proven, existing 

technology. Obviously, there is potential for different technologies to reduce the 

costs of virtually all components and operation and maintenance, and to increase 

aerodynamic performance. Another important ground rule concerns structural design 

requirements. The appropriateness of these requirements needs to be examined with 

improved structural dynamic models to ensure that excessive structural conservatism 

is not unduly affecting energy costs. Future research efforts aimed at reducing 

the cost of energy for next generation VAWT systems should focus on these areas. 
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