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Abstract 

Recent expansions of the DOE/MSU Composite Fatigue Database permit the construction of a 
high resolution Goodman Diagram with detailed information at thirteen R-values (minimum 
stress / maximum stress).  This Goodman diagram is the most detailed to date, including several 
loading conditions which have been poorly represented in earlier studies.  The data for a single 
E-glass/polyester material system are extracted from the MSU/DOE Fatigue Database to 
construct the Goodman diagrams.  Diagrams are constructed using both mean fits to the data and 
95/95 fits.  These formulations allow the effects of mean stress on damage calculations to be 
evaluated.  Two sets of load spectra are analyzed.  The first set is experimentally-determined 
load spectra obtained from operating wind turbines, and the second is the WISPERX load 
spectrum.    The analysis of the turbine load spectra illustrates a significant overestimation of the 
equivalent fatigue loads when the mean stress is not considered in the calculation.  The analysis 
of coupon data using the WISPERX spectrum illustrates that the Miner’s rule does not predict 
failure very well. 

                                                 
1 *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. 
Department of Energy under contract  DE-AC04-94AL85000 
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Introduction 

 Most turbine blades are constructed from low cost forms of composite materials, with 
manufacturing primarily by wet hand lay-up or resin infusion using woven or stitched E-glass 
fabric architectures. Some blades also use relatively low cost, low cure temperature forms of 
prepreg. While finished blade costs are on the order of $10/Kg, the performance required of 
blades is impressive, with higher levels of fatigue cycling than for most fixed wing or rotary 
aircraft blades [1]. As wind turbines expand in both size and importance, improvements in 
materials and lifetime prediction methodologies are essential. Reviews of blade loadings and 
material response may be found in References 1 through 4. References 1 through 3, as well as 
most of the remaining cited papers and the database are available through the Sandia National 
Laboratories website: http://www.sandia.gov/wind/. 

The damage analysis of wind turbine blades requires a detailed description of the fatigue load 
spectra and the fatigue behavior of blade material.  The latter is typically presented as a 
Goodman diagram in which the cycles-to-failure are plotted as a function of mean stress and 
range along lines of constant R-values [1].  The R-value for a fatigue cycle is defined as: 

min

max

R = σ
σ

     ,                       (1) 

where σmin is the minimum stress and σmax is the maximum stress in a fatigue stress cycle 
(tension is considered positive and compression is negative).  

As the Goodman diagram is a non-linear function for typical wind turbine blade materials, many 
analyses completely ignore the effects of mean stress on the determination of damage in 
composite wind turbine blades.  Even when a “complete” Goodman diagram is used, available 
Goodman diagrams for the fiberglass composite materials typically used in wind turbine blades 
are relatively sparse with material characterization at only five or six R-values [1, 5 and 6].   

In recent publications, Mandell et al [7 and 8] have presented a detailed Goodman diagram for 
these fiberglass materials. Their formulation uses the MSU/DOE Fatigue Database [2, 3] to 
develop a Goodman diagram with information at thirteen R-values.  This diagram is the most 
detailed to date, and it includes several loading conditions that have been poorly represented in 
earlier studies.  Both mean and 95/95 fits of the data are developed.  These formulations allow 
the effects of mean stress on damage calculations to be evaluated with greater accuracy.   

To illustrate the effect of the updated Goodman diagram on the fatigue analysis of wind turbine 
blades, two applications are presented.  In the first, Sutherland and Mandell [9] analyze the load 
spectra from two operating wind turbines using Equivalent Fatigue Loads, EFL [1].  In the 
second application, Sutherland and Mandell [8] examine the failures of coupons subjected to the 
WISPERX spectrum [10].     
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Figure 1a: Data for R= -1. 
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Figure 1b: Data for R=0.1 
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Figure 1c: Data for R= 10 
 

Figure 1: Maximum Absolute Stress 
versus Cycles to Failure for Thirteen R-

Values for Database Material DD16

Fatigue Data 

The DOE/MSU fatigue database contains over 
8800 test results for over 130 material systems.  
The database contains information on composite 
materials typically used in wind turbine 
applications that are constructed from fiberglass 
and carbon fibers in a variety of matrix materials.  
References 2, 3 and 11 provide a detailed 
analysis of data trends and blade substructure 
applications.   

Recent efforts to improve the accuracy of 
spectrum loading lifetime predictions for 
fiberglass composites have led to the 
development of a more complete Goodman 
diagram than previously available, and a more 
accurate fatigue model. 

Constant Amplitude Data 

The material under consideration here is a typical 
fiberglass laminate that is called DD-16 in the 
DOE/MSU Database.  This laminate has a 
[90/0/±45/0]S configuration with a fiber volume 
fraction of 0.36.  The 90° and 0° plies are D155 
stitched unidirectional fabric, the ±45° plies are 
DB120 stitched fabric, and the resin is an ortho-
polyester. Mandell et al [2, 12] described the test 
methodologies used to obtain the data cited here.  
This material has a static tensile strength of 625 
MPa and a compressive strength of 400 MPa.  
The 95/95 strength values are 510 MPa and 357 
MPa, respectively.  These strength values were 
determined at a strain rate similar to that of the 
fatigue tests.  

For illustrative purposes, the constant amplitude data at R = -1, 0.1 and 10 are shown in Fig. 1.  
A complete set of the data for all thirteen R-values is available in Refs. 2 and 8.  

Curve Fits 

Mean Fit 

As presented by Mandell et al [2], the constant amplitude data at 13 R-values were fit with a 
three-parameter equation of the following form: 
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 ( 1)O
O

b
ca Nσσ σ σ

σ
⎡ ⎤

− = −⎢ ⎥
⎣ ⎦

     ,      (2) 

where σ is the maximum applied stress, σo is the ultimate tensile or compressive strength 
(obtained at a strain rate similar to the 10 Hz fatigue tests), and a, b, and c are the fitting 
parameters. 

The results of these fits are summarized in Table I and in Fig. 1. 

The parameters in these curve fits were selected to provide the best fit to the experimental data 
and to provide a 109 cycle extrapolation stress which was within ten (10) percent of the 
extrapolation from a simple two-parameter power law fit to the fatigue data having lifetimes 
greater than 1000 cycles.  [2] 

95/95 Fit 

Sutherland and Mandell [8] used these 
data to construct the “95/95” Goodman 
diagram.  The 95/95 implies that, with a 
95 percent level of confidence, the 
material will meet or exceed this design 
value 95 percent of the time. 

The number of cycles to failure for the 
95/95 fit is given by: 

 [ ] [ ] [ ]10 95/95 10 10 olog N  = log N  + log N  ,   (3) 

where N is determined from Eq. 2 and 
log10[No] is shown in Table I for each of 
the thirteen R-values. 

As shown in Fig. 1, this technique works 
well for the fatigue data, but in many 
cases, it predicts a 95/95 static strength 
that is not in agreement with the 
calculated value (see the dotted line in the 
figure).  To rectify this situation, the 95/95 
fatigue curve was “faired” into the 
measure 95/95 static strength, as shown by 
the solid lines in the figure [13]. 

Table I:  Parameters for the Thirteen R-
Values for Material DD16 and for Small 
Strands 
 

Model  
 (Eq. 2) 

95/95 
(Eq. 3) 

R-
Value 

a b c log10(No)

1.1 0.06 3 0.05 4.43 

1.43 0.06 3 0.15 1.85 

2 0.06 4 0.25 2.67 

10 0.1 4 0.35 0.87 

–2 0.01 4 0.55 0.59 

–1 0.02 3 0.62 0.53 

–0.5 0.45 0.85 0.25 0.64 

0.1 0.42 0.58 0.18 0.70 

0.5 0.075 2.5 0.43 0.79 

0.7 0.04 2.5 0.45 0.65 

0.8 0.035 2.5 0.4 0.79 

0.9 0.06 2.5 0.28 1.20 

1* 0.21 3 0.14 3.03 

*Assumes a frequency of 10 Hz. 
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Goodman Diagrams 

For the analysis of S-N data, the preferred characterization is the Goodman diagram.  In this 
formulation, the cycles-to-failure are plotted as functions of mean stress and amplitude along 
lines of constant R-values.  Between R-value lines, the constant cycles-to-failure plots are 
typically, but not always, taken to be straight lines.  

Various Goodman diagrams for the DD-16 fiberglass composite are shown in Figs. 2 and 3.   
These figures are presented in increasing level of knowledge about the S-N behavior of the 
fiberglass composite material.  Figures 2a and 3a illustrate the “linear” Goodman diagram.  In 
these two figures, the diagrams are constructed using the static strength values for the tensile and 
compressive intercepts of the constant life curves with the horizontal axis of the diagram and the 
S-N data for the R = –1 (see Fig. 1a) for the intercepts of the vertical axis.  The “bi-linear” 
Goodman diagrams, shown in Figs. 2b and 3b, are constructed by adding the R = 0.1 S-N data 
(see Fig. 1b) to the diagram.  The “full” Goodman diagrams, shown in Figs. 2c and 3c, are 
constructed by adding the data for the remaining eleven R-values. 

Mean and 95/95 Diagrams 

The Goodman diagrams shown in Fig. 2 were constructed using Eq. 2 and the information in 
Table I.  Figures 2a and 2b, use the mean static strengths for the intercepts of the constant-life 
curves with the mean stress (horizontal) axis.  Fig. 2c departs from traditional formulations in 
that the intercept for tensile mean axis (R = 1) is not the mean static strength.  Rather, the 
intercept is a range of values based upon time-to-failure under constant load.  These data were 
converted to cycles by assuming a frequency of 10 cycles/second, typical of the cyclic tests.  
Nijssen et al [14] have hypothesized a similar formulation previously. 

The Goodman diagrams cited in Fig. 3 were constructed using Eqs. 2 and 3, the information in 
Table I, and the fairing of the S-N curves into the 95/95 static strengths.  Again, the tensile 
intercept in Fig. 3c is a range of values based upon time under load.    

Comparison 

The Goodman diagrams presented in Figs. 2 and 3 are compared with one another in Fig. 4.  The 
significant differences in the Goodman formulations are highlighted in Fig. 4. The area near the 
R = –1 axis is very important.  This is the region where the fiberglass composite is in transition 
between compressive and tensile failure modes and many of the stress cycles on a wind turbine 
blade have an R-value near –1.  The effect of the mode change on fatigue properties is illustrated 
by the direct comparison of the constant life curves for the three Goodman diagrams.  In Fig. 4, 
the constant life curves for the three formulations of the Goodman diagram at 105 cycles are 
compared to one another.   

Four distinct regions of comparison are noted:  (1) the region of relatively high compressive 
mean stress (1< R < ∞, i.e., essentially the region to the left of R = 10); (2) the region of 
relatively low compressive stress (–∞ < R < –1; i.e., essentially the region between R = 10 and R 
= 1); (3) the region of relatively low tensile stress (–1 < R < 0; i.e., essentially the region 
between R = –1 and R = 0.1); and (4) the region of relatively high tensile stress (1 < R < 0; i.e.,  
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Fig. 2a: Linear Goodman Diagram 
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Fig. 2b: Bi-Linear Goodman Diagram 
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Fig.  2.  Mean Goodman Diagrams for 
Database Material DD16, Fit with Eq. 2 
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Fig. 3a:  Linear Goodman Diagram 
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Fig. 3b: Bi-Linear Goodman Diagram 
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Fig. 4:  Comparison of the Three Goodman 

Diagrams at 105 Cycles 

essentially the region to the right of R = 0.1).  
In the first and third regions, the three 
formulations lie close to one another.  Thus, 
each of the three formulations will predict 
approximately the same damage rate for the 
stress cycles in this range.  For the fourth 
region (high tensile stress) the database 
formulation is below the linear and bi-linear 
formulations.  Thus, the database formulation 
is more severe (i.e., it produces a shorter 
predicted service lifetime) than the other two.  
And, finally, for the second region (low 
compressive stress), the database formulation 
is above the linear and bi-linear formulations.  
Thus, it is less severe.  Regions 2 and 3 are where the composite is in transition between 
compressive and tensile failure modes. 

Analysis of Load Spectra 

To evaluate the effects of the improved Goodman diagram on damage calculations requires a 
detailed knowledge of the load (and stress or strain) spectra.  For this analysis we will examine 
both experimental and test load spectra.  Sutherland and Mandell [8, 9] originally conducted the 
analysis of these spectra. 

Experimental Load Spectra 

The LIST (Long-term Inflow and Structural Test) program has obtained long-term load spectra 
for two turbines.  The first is a three-bladed Micon 65/13M wind turbine[15-17].  This turbine is 
being tested at a USDA site located near Bushland, Texas.  This site is representative of most 
Great Plains commercial sites [18, 19].  The second turbine is the ART (Advanced Research 
Turbine). This Westinghouse 600-kW wind turbine is currently located at the National Wind 
Technology Center (NWTC) near Boulder, Colorado.  Typical load spectra from these turbines 
are shown in Figs. 5 and 6.   

WISPER Load Spectra 

Wahl et al [12] have conducted spectral loading tests of coupons using the WISPERX spectrum 
[10].  The WISPERX spectrum is the WISPER spectrum with the small amplitude fatigue cycles 
removed.  The remaining spectrum, see Fig. 7, consists of over 25,000 peaks-and-valleys (load 
reversal points).  The original formulation of the spectrum is in terms of load levels that vary 
from 0 to 64 with zero at load level 25.  For testing, the load levels were changed to the 
normalized form shown in the figure. In this form, the load at each reversal is ratioed to the 
maximum load. Thus, the test spectrum is a simple multiple of these reversal points by the 
maximum load in the spectrum.  In this form, the maximum load in the spectrum is 1.0 and the 
minimum is –0.6923. 
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Results and Discussion 

Experimental Load Spectra 

The LIST data from both the Bushland turbine and 
the ART are analyzed using the Goodman diagrams 
shown in Figs. 2 and 3.  The three Goodman 
diagrams are used to convert the load spectra, at 
various mean wind speed bins, to equivalent fatigue 
loads (EFLs) [1, 9].  For comparison purposes, the 
EFL using a constant fatigue exponent of 10 and a 
reference cycle count of 2000 cycles.  This value of 
the fatigue exponent is typical of fiberglass 
composite materials. 
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Fig. 5a:  Edge-Bending in the Root of 
Blade 1 
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Fig. 5b:  Flap-Bending in the Root of 
Blade 1   

 
Fig. 5:  Fatigue Load Spectrum for the 

11-13 m/s Wind Speed bin for the 
Bushland Turbine 
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Fig. 6a: Edgewise Bending Moment 
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Fig. 6b:  Flatwise Bending Moment 

Fig. 6:  Typical Fatigue Spectra for Root Bending 
Moments, >17 m/s Wind Speed Bin for the ART 
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Fig. 8a:  Edgewise Bending Moment 
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Fig. 8b:  Flapwise Bending Moment 
 

Fig. 8:  Equivalent Fatigue Loads for the 
LIST Turbine on the Tensile Bending Side
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Fig. 9a:  Edgewise Bending Moment 
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Fig. 9:  Equivalent Fatigue Loads for the 
ART on the Tensile Bending Side 

The comparison of the four formulations in Figs. 8 and 9 indicates that there is a major 
difference between the power law model and Goodman diagrams.  In particular, the power law 
model predicts a significantly higher EFL at all values of wind speeds for both turbines. For the 
Bushland turbine, the linear and bi-linear Goodman diagrams (Figs. 2a and 2b, respectively) 
predict similar EFL, while the full diagram (Fig. 2c) predicts a relatively small decrease in the 
EFL from the other two Goodman diagrams for three of the four load spectra.  For the fourth 
spectra (Fig. 8b), the MSU/DoE model predicts similar results.  Similar results are shown for the 
ART data. 

While the comparisons to the power law formulation cited here have some very important 
implications, the reader is cautioned against drawing a broad interpretation from these 
comparisons.  In particular, the power law formulation is not dependent on the mean stress.  
Thus, the EFL at R = –1 (reverse tension and compression) and R = 0.1 (all tensile loads) are the 
same for this formulation.  This result is not consistent with experimentally determined S-N 
curves for fiberglass composites because the failure mode for fiberglass is different in 
compression than it is in tension.  Thus, the comparisons are almost like comparing “apples to 
oranges.”  To minimize any discrepancies, all of the comparisons presented here are based an R-
value of –1 and to the ultimate compressive strength.  Comparisons to other R-values will have 
different results. 
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Fig. 10:  Comparison of Experimental Data to Predicted Failure using Linear Miner’s Rule

WISPERX Load Spectra 

The experimental cycles-to-failure as a function of the maximum stress in the spectrum for 
material DD16 are shown in Fig. 10  [10].  In these figures, Miner’s rule [1] was used to predict 
failure of the coupon specimens subjected to WISPERX spectrum using the mean-value and the 
95/95 Goodman diagrams (see Figs. 2 and 3).  The linear Goodman diagram predicts the longest 
lifetimes (cycles-to-failure) and the full Goodman diagram predicts the shortest lifetimes.  Notice 
that the mean-Goodman-diagram fits do not pass through the mean of the data:  rather, all three 
formulations predict service lifetimes that are significantly higher than the measured lifetime.  
The comparison of the predictions using the 95/95 Goodman diagram illustrates that they also 
predicted service lifetimes that are higher than the measured lifetime, with the full 95/95 
Goodman diagram predicting lifetimes near the mean of the experimental data. 

Thus, Miner’s rule does not predict the measured lifetimes very well.  And, even the 95/95 
Goodman diagrams are non-conservative in that they predict longer service lifetimes than those 
measured in the tests using the WISPERX load spectrum.  At best, the full 95/95 Goodman 
diagram predicts the mean of measured data.  Although not discussed here, non-linear residual 
strength rules do offer better predictions of the failure data [8,12]. 

Concluding Remarks 

The effect of mean stress on the prediction of damage from typical wind turbine load spectra is 
analyzed using a detailed Goodman diagram.  This detailed formulation of the S-N behavior of 
fiberglass composites is obtained by constructing a Goodman diagram using S-N curves at 
thirteen different R-values.  The data used in this process is contained in the MSU/DoE Fatigue 
Database for composite materials.  This diagram is the most detailed to date, and it includes 
several loading conditions that have been poorly represented in earlier studies. 

The analysis illustrates the effect of the detailed Goodman diagram relative to other formulations 
of the S-N behavior of the fiberglass composite.  The results of the comparison using 
experimentally-measured fatigue loads illustrates that a power law formulation is the most 



 p. 11 

conservative; namely, it produces the highest EFL.  When compared to one another, the linear 
and bi-linear formulations yield essentially the same damage estimates, with the bi-linear 
formulation being slightly less conservative than the linear.  Depending on the nature of the load 
spectrum, both the linear and the bi-linear formulations are conservative when compared to the 
detailed MSU/DoE formulation. 

The results of the analysis of the WISPERX experiments illustrate that when a Miner’s rule 
damage criterion is used, the mean fits of the data do not predict failure very well, while the 
95/95 predicts failures near the mean of measured data.     

Thus, the MSU/DoE formulation of the Goodman diagram with a detailed representation of 
thirteen R-values indicates that the effects of mean stress are more important than previously 
thought.  The region where the composite is transitioning between compressive and tensile 
failure modes in particularly important and the updated Goodman diagram provides a better 
description of this region. 
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