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ABSTRACT  1
The fatigue analysis of a wind turbine component typically

uses representative samples of cyclic loads to determine lifetime
loads.  In this paper, several techniques currently in use are
compared to one another based on fatigue life analyses.  The
generalized Weibull fitting technique is used to remove the
artificial truncation of large-amplitude cycles that is inherent in
relatively short data sets.  Using data from the Sandia/DOE 34-
m Test Bed, the generalized Weibull fitting technique is shown
to be excellent for matching the body of the distribution of
cyclic loads and for extrapolating the tail of the distribution.
However, the data also illustrate that the fitting technique is not
a substitute for an adequate data base.

INTRODUCTION
The analysis of component fatigue lifetime for a Wind Energy

Conversion System (WECS) requires that the component load
spectrum be formulated in terms of stress cycles.  Typically,
these stress cycles are obtained from time series data using a
cycle identification scheme such as the “rainflow” counting
algorithm.  As discussed by many authors [e.g., see Sutherland
and Butterfield (1994)], the matrix or matrices of cycle counts
that describe the stresses on a turbine are constructed from
relatively short samples of time series data.  Thus, these cycle
counts are representative samples of the cyclic loads on the
turbine.

Several techniques are currently used to convert these
representative samples to the lifetime cyclic loads on the
turbine.  Many designers simply scale the sample loads with
time.  They note that these limited time measurements or
simulations define the main body of the distribution, and
assume that they capture all of the necessary loads on the
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turbine to define its service lifetime.  Other designers note that
the infrequent occurrences of high-stress events contained in the
"tail of the distribution" are affected by the specific data set, and
that the distribution tails fill in as more and more data are added
to the record.  They note that the existence of a “high stress tail”
on the distribution has significant influence on the predicted
service lifetime of the turbine, and they believe that it must be
well defined for an accurate analysis.  The latter group of
designers typically extrapolate from the body of the cycle count
distribution into this tail region.

The ability to correctly represent the long-term behavior of
the distribution of stress cycles with only a representative
sample of time series is of critical importance.  This paper
examines the effects of using various models for the distribution
of stress cycles.  The models are compared to one another based
on fatigue life analyses that include the entire range of
operating wind speeds.  The analyses use the LIFE2 fatigue
analysis code (Sutherland, 1987).  There are basically three
models to test:  the histogram of the measured cyclic stress
counts (Sutherland and Schluter, 1990), a Rayleigh distribution
fitted to the measured RMS of the stress time series (Veers,
1989), and a generalized Weibull fit to the histograms with
which we extrapolate the tail of the distribution (Winterstein
and Lange, 1995).

Time series data from the Sandia/DOE 34-m Test Bed
turbine are used for example calculations.  These data were
previously analyzed by Sutherland and Schluter (1990) using
the direct scaling technique discussed above.  In addition,
simulated time series data synthesized from a frequency domain
representation (Sutherland, 1992) are used as an example in
which arbitrarily long data sets were generated to examine the
development of the tail of the distribution as more and more
data are "collected."  The results for two different candidate
materials are summarized and discussed.
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GENERALIZED WEIBULL FITTING ALGORITHM
Assumed distribution types have been applied to wind turbine

cyclic loads data in the past.  Emphasis has been placed on
exponential (Jackson, 1992) or Rayleigh (Malcolm, 1990)
distributions.  In fact, both the exponential and Rayleigh are just
special cases of the more general Weibull distribution.  Weibull
distributions can model a wide range of behaviors with two
parameters to describe the central tendency of the distribution
(i.e., the body of the distribution) and the spread of the
distribution (i.e., the tail of the distribution).  The Rayleigh, for
example, is a distribution that has about half the spread about
its mean (as described by the ratio of the standard deviation
over the mean) as the exponential.  The spread of the
distribution is particularly important in fatigue analyses.

Typically, the tails of distributions that are found in nature
are difficult to infer from the bodies of the distributions,
because the tails are often found to differ even when the bodies
are similar.  The differences are due to behavioral changes that
occur when the most severe environments are encountered (e.g.,
due to nonlinearities, or the initiation of a different mode of
response).  This causes a skewing, or distortion of the tail from
what might be found in a standard distribution model.

Winterstein and Lange (1995) have introduced a technique
that optimally retains the statistical information of the high-
level response data.  Their "generalized Weibull" fitting
technique distorts a parent Weibull distribution to fit the first
four statistical moments of the data.  Most distribution models
use only the first two moments.  Fitting to the higher moments2

of the distribution enhances the fit to the largest values in the
data.  Thus, this fitting technique distorts the parent distribution
when the data indicate that tail behavior differs from the parent
distribution.

                                                            
2The ith moment of a distribution equals the average value of  the

difference between each value and the mean value of the distribution raised
to the ith power.

EXAMPLE PROBLEM
Fatigue analyses of the Sandia 34-m Test Bed Vertical Axis

Wind Turbine (VAWT) were conducted previously by Ashwill,
Sutherland and Veers (1990) and Sutherland and Schluter
(1990).  The first analysis uses a narrow-band Gaussian
approximation to model the turbine response to dynamic
loading.  This assumption results in a Rayleigh distribution of
cyclic stress amplitudes.  The second analysis uses rainflow
counting techniques to convert measured time series data to
fatigue cycles and uses histograms of these cycle magnitudes to
define the long-term loading.

All of these analyses use the LIFE2 fatigue analysis code for
wind turbines (Sutherland, 1987) to estimate service lifetime
from the loading models.

The Sandia 34-m VAWT
As discussed by Ashwill, et al. (1987), Sandia National

Laboratories erected a research-oriented, 34-meter diameter,
Darrieus VAWT near Bushland, Texas.  This variable speed
turbine, commonly described as the 34-m Test Bed, has been
operated at fixed speeds throughout its operating range of 28 to
38 rpm and in a true variable speed mode.  The turbine blades
are made from extruded aluminum.  The turbine and its site are
equipped with a large array of sensors that permit the
characterization of the turbine under field conditions.3

Ashwill (1987) and Ashwill and Veers (1990) found the
highest stressed region of the turbine blade, both in the flatwise
and lead-lag directions, to be at the upper blade-to-tower joint
(upper root), where the blade attaches to the tower.  For this
example, the flatwise stress in the blade at this joint will be
analyzed for constant-speed operation at 28 rpm over the entire
range of operating wind speeds.

Wind Regime
The fatigue analysis of the Test Bed presented here is based

on the annual wind speed distribution for the Bushland Test
Site.  These wind distribution data, see Fig. 1, were obtained
from Clark, 1989.  The distribution has a 5.8 m/s (13 mph)
average and is based on 1-hour averages obtained at a height of
10 m (30.5 ft).

S-N Diagram
The blades of the Test Bed are constructed from extruded

6063 aluminum.  The S-n properties for this aluminum have
been determined by Van Den Avyle and Sutherland, 1989.
Their formulation uses a Goodman rule with "effective" stress
levels based upon the ultimate stress.  In this formulation, the
effective stress is equal to the cyclic stress amplitude at zero

                                                            
3Veers (1990) has put together a compendium of the technical papers

written on this turbine.
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Figure 1.  Annual Wind Speed Distribution for the
Bushland Test Site.
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mean stress (Sutherland, 1989).  The ultimate stress for the
extruded aluminum was measured to be 244 MPa (35.4 ksi).

The S-n behavior of the material is shown in Figure 2.  For
this example we will use the least squares curve (LSC) fit to the
data, which approximates a 50% confidence limit.

Rainflow Counting (Histogram) Analysis
Sutherland and Schluter (1990) analyzed measured time

series data using a rainflow counting algorithm to predict the
service lifetime of the 34-m Test Bed.  In their analysis, the
operational stress states of the turbine were divided into the six
wind speed intervals (bins) summarized in Table I.  To insure
that the time series data were sufficiently long for the rainflow
analysis, each wind speed bin contained data from a minimum
of 200 turbine rotations.  To further insure that the total
duration of the time series data was sufficiently long for this
analysis, the distribution of the alternating stress cycle ranges
was monitored as a function of the total time contained in the
data segments.  Each time series data record was chosen to have
an average wind speed near the center of its respective interval
and to have minimal excursions outside that interval.

A typical plot of the cycle count histogram of these data, for

the 12 to 15 m/sec wind speed interval, is shown in Figure 3.  In
this figure, the cycle count histogram is divided into 2 MPa
intervals.  To allow direct comparison of the data counted over
various time lengths, the cycle counts are normalized to a 100-
second time duration.

Keeping all operational parameters constant and using the
annual wind speed distribution shown in Figure 1 and the S-N
data shown in Figure 2, the service lifetime of the turbine blade
based on the histogram representation of the cyclic loading was
predicted to be 2250 years.

Narrow-Band Gaussian (Rayleigh) Analysis
A detailed parametric study of the fatigue life of the critical

joint was conducted first by Ashwill, Sutherland and Veers
(1990) using a narrow-band Gaussian assumption for the stress
response of the turbine (Veers, 1987).  In this approach, the
RMS stress level of the time series is measured as a function of
wind speed with a "bins" technique, and a Rayleigh distribution
is assumed for the ranges of the cyclic stresses at each wind
speed.  Malcolm (1990) has suggested that this formulation is a
good approximation of the distribution for flatwise stress cycles
in this class of turbine blades.

Using the data shown in Figure 1 and 2, the predicted
lifetime for the blade, when the machine is operated in a
constant speed mode at 28 rpm, is 950 years.  This prediction is
based on hundreds of hours of measured data.  A complete set of
the assumptions used to obtain these predictions is presented in
a report by Ashwill, Sutherland and Veers (1990).  The
essential point for comparison here is that the stress cycles were
assumed to be Rayleigh distributed with the magnitude of the
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Figure 2.  S-N Diagram for 6063 Aluminum.

Table I.  Summary of Wind Speed Intervals

Wind Total
Speed Time Stress Summary (MPa)
Interval (sec) Histogram Long Term Bins
(m/sec) Mean RMS Mean RMS

5-7 600 0.5 2.2 -1.1 2.2
7-9 750 -1.2 2.8 -1.1 3.1

9-12 445 -1.5 4.8 -1.1 4.5
12-15 700 -1.0 6.2 -1.1 6.6
15-18 680 -2.5 9.4 -1.1 8.9

Rainflow Counted Cycles
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Figure 3.  Rainflow Counted Stress Cycles.
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distribution defined by the long-term RMS stress response at
the critical location.

In the following discussions and figures, the narrow-band
Gaussian model is compared to experimental data and to fits of
that data.  The data samples used in these comparisons have
relatively large wind speed bins that preclude them from being
modeled by a single Rayleigh distribution.  Therefore, the
comparisons shown in the following discussions and figures are
the sum of several Rayleigh distributions that cover the
indicated of wind speed range.  For this analysis, each Rayleigh
distribution is based on a half m/s interval. Thus, the narrow-
band Gaussian model for the wind speed bin from 12 to 15 m/s
bin is the sum of six Rayleigh distributions.  The RMS values
reported for this wind speed interval in Table I are the root-
mean-square of the RMS levels in that wind speed bin.  Thus,
the 6.6 MPa reported for the 12-15 m/s range is the root-mean-
square of six RMS levels.

Comparison of Rayleigh and Histogram Analyses
Stress States Comparison.  A statistical comparison of the

measured stresses used in the histogram analysis and those from
long-term RMS bins data (used in the Rayleigh analysis) are
listed in Table I.  As seen in the table, the relatively short
duration histogram RMS (based on several hundred seconds of
turbine operation) varies slightly from the "bins" RMS (based
on hundreds of hours of turbine operation), while the mean of
the rainflow counted data is in very good agreement with the
bins data.

The histogram of the rainflow counted data for the 12 to 15
m/s wind speed interval is compared to the narrow-band
Gaussian model (sum of six Rayleigh distributions) in Figures 3
and 4.  Figure 3 compares the two on a linear plot and Figure 4
compares the two on a Weibull scale.4  The cycles in both
distributions are displayed in 2 MPa intervals.  The low-
amplitude stress counts in the histogram have been eliminated
from Figures 3 and 4 and are not modeled in this approximation
because they do not contribute significantly to fatigue damage.5
Also, in these figures, the cycle counts have been normalized to
a 100-second time interval to allow direct comparison of the
data collected over various time lengths.  As seen in these two
figures, the distributions compare favorably.

The Rayleigh distributions are, however, displaced slightly
from the rainflow counted data.  Table I indicates that the RMS
values for the “Long Term Bins” and the “Histogram” differ
slightly, sometimes higher and sometimes lower.  This
difference is attributed to the sample lengths for the two data
                                                            

4In a plot of this form, a single Rayleigh Distribution will plot as a
straight line.

5There are subtleties in how the low amplitude stress cycles are treated
by the narrow-band Gaussian model which make the comparison’s of CDFs
from this model to CDFs from the rainflow counted results almost
equivalent to comparing apples and oranges.  However, this slight problem
is not significant in the high-stress tail of distribution where most of the
damage is accumulated.

sets.  Namely, the “Bins” data is based on relatively long data
records that have been developed over many hours of operation
of the turbine (Ashwill and Veers, 1990), and the histogram
data are based on relatively short data records of between 445
and 750 seconds.

Service Lifetime Comparison.  The prediction of service
lifetime based on the Rayleigh distributions is less than half that
predicted by the rainflow counted histogram.  As shown in
Table I and in Figures 3 and 4, the differences between the two
distributions are relatively slight.  However, for the prediction
of service lifetimes, the difference is significant.  There are
three possible sources of difference: (1) differences in
distribution shape, (2) a shift in the entire distribution due to
the different RMS levels listed in Table I, and (3) the longer tail
on the Rayleigh distributions shown in Figure 4.  In the tail
region, the Rayleigh model predicts that the turbine will be
subjected to some very high stress cycles over the course of its
lifetime.  The rainflow counted histogram data has a similar
nominal distribution, although shifted to lower stress
amplitudes, and the high stress tail is truncated.

The effect of the difference between the RMS values for the
two distributions may be evaluated by artificially shifting the
Rayleigh distributions to the RMS stress levels measured in the
rainflow counted histograms.  The resulting lifetime, using the
histogram RMS levels from Table I, is 1900 years which
compares favorably with the histogram analysis of 2250 years.

Normalization.  We will use the histogram results to
normalize all subsequent fatigue life predictions.  Table II
summarizes the results to this point.  The shift in the RMS level
results in a change in the normalized Rayleigh prediction from
0.42 to 0.84.  It is a generally accepted truth that fatigue
predictions within a factor of 2 are within the "noise" of
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prediction capability.  Therefore, the difference between the
Rayleigh and the histogram approaches is essentially accounted
for by the differences in RMS levels obtained when short-term
versus long-term data are used in the analysis.

TAIL SENSITIVITY
The previous example illustrates how, for one specific

example of machine type, material, and environment the
assumptions on cyclic loading distributions influence the
predicted fatigue life.  We now examine the issue of tail
behavior and the ability to fit and extrapolate that behavior from
finite data sets.

In our examination of the effect of distribution tails on fatigue
lifetime calculation, two additional tools will be brought into
play.  The first is the generalized Weibull fitting technique
described above, and the second is the frequency domain
techniques developed by Sutherland (1992).  The former is
applied to both the rainflow histogram data and the frequency
domain simulations, and the latter will be used to generate
arbitrarily long data sets.

Frequency Domain Analysis
 As noted by Akins (1990) and Malcolm (1990), the fatigue

loads on a turbine may also be determined from the frequency-
domain stress spectra. Simply stated, the technique converts
frequency-domain stress data into time-series data (stress-time
history) suitable for rainflow counting using a Fourier
transform.  This technique permits the synthesis of very long
time series data to fill the population of the stress distribution in
the high-stress region; thus, the technique simulates the effect of
having longer data samples.

The Test Bed cycle count distribution was analyzed using the
frequency domain representations of small data samples
(Sutherland, 1992).  In that analysis, Sutherland demonstrated
that over 150,000 seconds of time-series data were required to
achieve a stable, relatively smooth, and monotonically
decreasing distribution of the cycle counts in the high-stress tail.
The distributions of stress cycles, for synthesized time series of
10,200 seconds and 2,700,000 seconds, produced by this
technique are shown in a generalized Weibull plot in Figure 5.

Generalized Weibull Fits
In the analysis presented here, the generalized Weibull fitting

technique developed by Winterstein and Lange (1995) is used to
fit the measured cycle count data from the Test Bed, presented
above.  The results will be compared and contrasted with the
previous analyses.  In addition, the generalized fits are
artificially truncated to the highest cycle found in the histograms
of the sample measurements to check the generalized fit to the
histogram and to examine tail sensitivity.

Histograms.  The generalized fit of the Test Bed histogram
data is illustrated in Figures 6 and 7 (linear histogram and
Weibull plot, respectively).  It is difficult to see the difference
between the histogram data, the Rayleigh distribution and the
generalized Weibull fit in the linear plots, Figures 3 and 6.
However, the differences are much clearer in the Weibull plots,
Figures 4 and 7.  As illustrated in Figure 7, the generalized
Weibull fit is able to follow curvature in the body of the
distribution and, more important, follows and extrapolates the
tail of the distribution.  The predicted service lifetime using the
generalized fit is 2300 years.  If the distribution is truncated at
the level of the largest cycle in the histogram, the lifetime is
extended to just 2450 years, virtually no change from the
histogram analysis of 2250 years.

Frequency Domain.  The frequency domain analysis of the
Test Bed 12-15 m/s wind speed bin was evaluated with the
generalized Weibull technique to examine its ability to
extrapolate the tail of the distribution.  The cyclic stress
histogram for 10,200 seconds was fit using the generalized
Weibull technique.  Both the histogram from the synthesized
time series data and the fit are shown in Figure 5.  These results
are compared to the histogram for over 2,700,000 seconds of
synthesized time series data.  As noted above, the Rayleigh

TABLE II:  Normalized Lifetime Predictions for the
Upper Root:  Histogram vs. Rayleigh

Loading Definition Normalized Lifetime

Histogram 1.0
Rayleigh: Long Term RMS 0.42
Rayleigh: Short Term RMS

(same as Histogram)
0.84
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distribution, shown in Figures 3 and 4, is included in the figure
for reference.  As illustrated in Figure 5, the curve fitting
technique applied to the shorter data set fits the long-time
synthesized results very well.

Service Lifetime Comparison.  The service lifetime
predictions using the long duration simulations to determine the
long-term stress cycle distributions are very close to the original
histogram predictions.  Table III summarizes the ratios of the
"Spectral" simulations analyses to the original predictions.
Notice that the RMS level of the spectral definition is identical
to the measured histogram data of Table I.  They are identical

because the spectral representation of the stress response was
determined from the histogram data.  The “Generalized Weibull
Fit” predictions are also nearly identical to the histogram
predictions, as expected because of the high fidelity of the
distribution fit to the histogram data.

Truncating the tail of the distribution again provides no
substantial increase in the fatigue life calculation.

The Material Property Influence
As was observed by Winterstein, see the discussion in

Sutherland and Butterfield (1994), there is a direct link between
material fatigue properties and the sensitivity of predicted
service lifetimes to the tail of the load distribution.  The Test
Bed example is based on the fatigue properties of the extruded
aluminum blades.  This aluminum has an S-N exponent (slope
of the S-N curve) that is roughly mid-range (about 7), see Figure
2, between welded steel (about 3) and fiberglass composites
(greater than 10).  The higher the exponent, the greater will be
the tail sensitivity.

As an example, we replaced the aluminum material
properties in the fatigue life calculations with the fiberglass
composite properties obtained by Mandell, et al. (1993).  The
resulting normalized service lifetimes are summarized in Table
IV.  Two big differences are obvious.  First, the spectral
simulation predicts a lifetime approximately half of that
predicted by the histogram data.  Second, the extrapolation of
the tail of the distribution using the generalized Weibull results
in a 25% shorter lifetime, a much greater tail sensitivity than
the 2% increase in lifetime seen in the aluminum example.

TABLE IV:  Normalized Service Lifetime
Predictions for the Upper Root for Fiberglass

Blades.

Data Analysis Technique
Source Histogram Generalized

Weibull Fit
Truncated

Generalized
Weibull Fit

Measured 1.0 0.75 0.95
Spectral 0.57 0.57 0.83
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TABLE III:  Normalized Service Lifetime Predictions
for the Upper Root for Aluminum Blades.

Data Analysis Technique
Source Histogram Generalized

Weibull Fit
Truncated

Generalized
Weibull Fit

Measured 1.0 1.02 1.09
Spectral 1.02 1.02 1.04
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Even Shorter Data Samples
Table I illustrated that sample lengths on the order of ten

minutes can result in small difference in the level of response,
as characterized by the RMS stress, when compared with long
sample lengths of many hours.  These differences, even though
they may be relatively small, can produce large differences in
predicted lifetimes.  Here we examine the effect of using even
shorter duration records to determine the cyclic stress
distributions.

Five 100-second time series were extracted from the 15 to 18
m/s wind speed time series used in the Test Bed example.  Each
was rainflow counted.  A cumulative damage calculation was
then done on each time segment and a resulting "lifetime"
(actually, the inverse of the damage in the 15 to 18 m/s bin) was
compared with the same computation for the entire 680-second
record.  Ratios of the results are shown in Table V.  It is clear
that these short records cannot even guarantee an order of
magnitude estimate of the fatigue damaging potential of
operation in a particular wind speed.  The difference between
the most damaging and least damaging is a factor of 110.  For
this example, a VAWT blade root in Bushland, at least ten
minutes of data is required, if only to get within a factor of 2 of
the long term results.  And in our example the short-term
response level was high in some bins and low in others.  One
could imagine possibilities where the difference would be
significantly greater as when most of the wind speed bins are off
in the same direction.  Therefore, significantly longer time
series are recommended to reduce the uncertainty in fatigue life
estimates due to cyclic stress distribution.

DISCUSSION
Our examples in this paper, because they are taken from a

single machine, focus on the nature of tail sensitivity and
sample length for a particular class of problems.  Specifically,
the distributions of rainflow counted stress cycles are slight
distortions of the Rayleigh distribution.  Typical distributions
describing wind turbine components are expected to be

generally Weibull in nature (because they are always one-sided
distributions) with the Rayleigh on one end of the range of
possibilities and the exponential on the other.  As stated earlier,
the exponential distribution [which is also found in wind turbine
applications (Jackson, 1992)] is a special case of the Weibull
family of distributions that has twice the spread about its mean
value as the Rayleigh.  Exponential-like distributions will likely
exhibit much greater tail sensitivity than we have seen in this
nearly Rayleigh case.  Here, we see a clear example of a type of
loading that is not particularly tail sensitive.

It is also worth noting the facility of the generalized fitting
technique in matching the rainflow counted distribution shape
and extrapolating into the tail of the distribution.  Comparing
Figures 4 and 7 illustrates that the distortion of the parent
Weibull distribution allows the generalized fitting technique to
match very closely the field data.  In the case of the frequency
domain synthesis of long-time data, the fitting technique not
only matched the body of the distribution from a shorter data
sample, but the extrapolation into the tail of the distribution
predicted the actual tail obtained by simulating orders of
magnitude more time series.

There are caveats to blindly extrapolating limited data.  First,
the short sample often simply misses the long term level of
response.  No amount of fancy curve fitting to match the
distribution shape will negate that error.  Second, unlike the
simulation example where the long-term response is forced to
be determined by the short-term spectral density, long-term data
have the possibility of containing events where the turbine
enters a different kind of response, a nonlinear response or just
a fundamentally different response than anything seen in the
short term.  The examples here indicated none of this behavior,
but it is always a possibility and a good motivation to continue
data collection and analysis.

Service lifetimes, in the examples used here, are thousands of
years.  It is tempting to consider fatigue a non-problem and to
move on the other issues when confronted with such results.  A
reminder is in order, that the lifetimes calculated here are based
on average quantities for loading and material durability.
Analyses that consider the complete range of possibilities
(Veers, 1993) indicate that there can still be a substantial
probability of early failure even with very long average
lifetimes.  The point of this paper is to examine the bias built
into the lifetime calculation due to stress distribution effects.

SUMMARY
As the analyses presented here cover a rather large spectrum

of variables, the results of this investigation warrant a concise
summary.  The following six comments summarize our results.

1. Fitting analytic distribution forms to rainflow counted
stress data removes the artificial truncation of large amplitude
cycles that is inherent in finite data samples.

2. Errors in determining the level of stress response as
characterized by the RMS level can have a substantial effect on
fatigue life estimates, even for sample lengths of over ten
minutes.

TABLE V:  Normalized Lifetime In 15-18 m/s Wind
Speed Bin.

Data Normalized Lifetime
Length

sec
Histogram Generalized

Curve Fit
680 1.00 1.07
100 16. 9.5

30. 33.9
0.27 0.27
0.99 .97
3.1 2.1
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3. Stress distribution tail truncation did not contribute
significantly to differences in service lifetime predictions for the
Test Bed VAWT in Bushland, Texas.  The peculiarities of the
response on this turbine are that the levels are generally low
(average lifetimes are thousands of years), the blades are
aluminum and the stress distributions have a nearly Rayleigh
character.

4. Stress distribution tail truncation did contribute
significantly to differences in service lifetime predictions for
materials with relatively large fatigue exponents.  When the
Test Bed data example is applied to fiberglass composite
material fatigue properties the tail sensitivity increased
markedly (from no effect to a 25% effect on predicted lifetime).

5. The generalized Weibull fitting technique does an
excellent job of both matching the body of the distribution and
of extrapolating the tail of the distribution.  This is
demonstrated using a frequency domain simulation to generate
relatively short and very long samples from the spectral content
of measured data.

6. If time series samples are too short (e.g., 100 seconds),
the lifetime prediction errors will be tremendous whether or not
there is what we might call "tail sensitivity."  The source of the
errors is a combination of a wrong definition of the overall level
of response (i.e., RMS level of the stresses on the turbine at that
particular wind speed) and tail truncation.

As noted above, the examples in this paper are taken from a
single machine and they focus on the nature of tail sensitivity
and sample length for a particular class of problems.  Similar
analyses are required for machines with different architectures
and different response functions.  Exponential-like distributions
will likely exhibit much greater tail sensitivity than we have
seen in this nearly Rayleigh case.
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