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Background, Purpose, and Overview
• Background

– SNL initiated a blade research program in 2002 to investigate the use of 
carbon in subscale 9 m blades

– 7 CX-100 and 7 TX-100 blades were manufactured
– Blades from each set have undergone modal and static tests

• Purpose of Fatigue Tests
– Verify that blades met their design criteria
– Investigate unique structural aspects of the blades
– Examine the use of advanced sensors

• Overview
– Carbon in blades
– 9 m Blade Designs
– Test Setup
– Test Results
– Conclusions
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Carbon in Blades
• Advantages:

– High stiffness/weight ratio
– Highly orthotropic
– Excellent fatigue properties with straight 

fibers
• Disadvantages:

– Higher cost
– Limited availability
– Difficult to infuse
– Poor properties with wavy fibers
– Possible stiffness mismatch issues

• Potential solution: SAERTEX glass/carbon 
triax fabric

– Relatively inexpensive
– Infusible
– Dry fabric for conventional infusion 

techniques
– Maintains excellent fiber straightness

Common Dry 
Carbon Fabrics

SAERTEX 
Glass/Carbon Triax 

used in SNL 9 m 
Blades

*Studies of carbon materials performed by and in 
collaboration with GEC and MSU
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SAERTEX Carbon Tri-ax Fatigue Performance

Source:  Montana State University
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CX-100

• CX-100 (Carbon Experimental 100 kW)
• Manufactured using existing 9 m molds
• Based on ERS-100 blade with non-

scalloped root
• Glass-Epoxy blade with full length 

carbon spar cap

CX-100 Blade Skin
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TX-100

• TX-100 (Twist-Bend Coupled 
Experimental 100 kW)

• Identical geometry to CX-100
• Partial-length glass spar cap
• 20° off-axis carbon in outboard (~>3.5 

m) skins to produce material-induced, 
passive aerodynamic load alleviation

Material Induced Twist-Bend Coupling

Source:  NREL

TX-100 Blade Skin

Glass Spar Cap

Off-axis Carbon Skin



46th AIAA Aerospace Sciences 
Meeting and Exhibit

January 10th, 2008 7

9 m Blade designs

CX-100 (top) and TX-100 (bottom) Geometry and Major Laminate Regions
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Fatigue Test Methodology

• Test objective
– Demonstrate 20-year fatigue equivalent life
– Complete test in 1-4 million cycles

• Fatigue Equivalent Life Calculation Procedure
1. Perform system dynamics 

simulations
2. Count fatigue cycles/second
3. Extrapolate to 20-years
4. Compute damage fraction using 

damage model along with material 
data, appropriate safety factors, and 
damage accumulation counting 
method
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CX-100 and TX-100 Simulations

CX-100
(Static Driven Design)

TX-100
(Fatigue Driven Design)
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Test Setup: CX-100

• Fatigue analysis focused on carbon spar cap
• Slope parameter of 12 used (GL standards: 10 for glass, 14 for carbon)
• Single-axis flapwise point loading

– Hydraulic cylinder used to apply oscillating load at single point
– Robust, simple setup
– Only allows for target load matching in limited area

• 1.25-12.5 kN applied at saddle for 1M cycles, then increased by 10% every 
500k cycles

• 20-year fatigue equivalent life demonstrated in 6k cycles
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Test Setup: TX-100

• Fatigue analysis focused on both glass and carbon areas
• Slope parameter of 10 used (for off-axis loading)
• Single-axis flapwise resonant loading

– Uses oscillating mass to excite natural frequencies of blade-mass system
– Mean load adjusted by exciter and ballast masses
– Amplitude adjusted by exciter displacement
– Complicated setup required to produce correct shape and amplitude
– Potentially allows for load matching for large portion of blade span

• 1M, 2M, and 4M cycle test loads calculated
• Test began with 4M load and then increased 10% beginning at 1M cycle 

count and repeating every 500k cycles
• Unable to increase at 2.5M cycles, load was held constant thereafter
• 20-year fatigue equivalent life demonstrated at 2M cycles
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UREX

• Developed specifically for the 
unique aspects of testing bend-
twist coupled blades

• Pair of hydraulic actuators 
mounted to the blade through a 
ballast saddle

• Rotational inertia minimized 
compared to mounting actuator 
and resonant mass above the 
blade

• Possible to apply torsional 
loading by adjusting actuator 
phases

• Horizontally mounted cylinder 
can be used to excite edge 
movement

UREX Schematic
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Applied Loads

0

20

40

60

80

100

120

140

0 2 4 6 8 10

Span (m)

Fl
ap

 M
om

en
t (

kN
-M

)

Static Test Load
Fatigue Load Block 1
Fatigue Load Block 2
Fatigue Load Block 3

0

10

20

30

40

50

0 2 4 6 8
Span (m)

 

Target Max
Target Mean
Target Min
Applied Max
Applied Mean
Applied Min
Static Test Load

CX-100
(Single Point Loading) TX-100

(Resonant Loading)

Fatigue Test Applied Loads



46th AIAA Aerospace Sciences 
Meeting and Exhibit

January 10th, 2008 14

CX-100 Test Results

CX-100 Early in Fatigue Test
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CX-100 Test Results

CX-100 Dimple (left) and Tip Movement (right) just before Failure



46th AIAA Aerospace Sciences 
Meeting and Exhibit

January 10th, 2008 16

CX-100 Test Results

CX-100 Dimple (left) and Tip Movement (right) at Failure
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CX-100 Strain Gage Layout

CX-100 Test Results
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CX-100 Failure Mechanism

• Dimple formed early during test 
around max chord

• Low pressure skin pushed 
outward aft of sparcap and 
inward forward of sparcap

• At 1.5M cycles, crack began to 
grow along sparcap/aft-panel 
intersection

• Crack resulted in greatly 
decreased stiffness in the area 
and cause severe edgewise 
movement

CX-100 Crack Growth
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TX-100 Test Results

TX-100 Early in Fatigue Test
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TX-100 Test Results

TX-100 Sparcap Tip Stress Contours
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TX-100 Test Results

TX-100 Crack Growth Beginning (left) and Progression (right)
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TX-100 Test Results

TX-100 Strain Gage Layout
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TX-100 Failure Mechanism

• At 723k cycle count, crack 
began to grow just 
outboard of HP sparcap 
termination

• Cracks grew at 65° angle 
from blade axis until 2.4M 
cycles

• Crack then changed 
direction and grew along 
20° direction corresponding 
to carbon fiber direction

• Growth of crack continued 
until 4M cycles when 
excessive torsional 
movement of the blade tip 
occurred TX-100 HP Crack Growth
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Conclusions

• CX-100 failed due to buckle formation near max-chord which caused a 
fracture between the sparcap and aft balsa panel leading to excessive 
edge movement

• TX-100 failed due to crack which grew from sparcap termination on HP 
surface along carbon fiber direction causing excessive tip rotation

• Infused carbon was effectively implemented in a CX-100 and TX-100 blade 
designs

• Both blades failed in carbon areas
• Blades failed due to damage in off-axis directions, showing the difficulty in 

using fiber-direction fatigue calculations
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