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Abstract
This paper considers two distinct topics that arise in

reliability-based wind turbine design. First, it illustrates
how general probability models can be used to predict
long-term design loads from a set of limited-duration,
short-term load histories. Second, it considers in detail
the precise choice of probability model to be adopted,
for both flap and edge bending loads in both parked and
operating turbine conditions. In particular, a 3-moment
random peak model and a 3- or 4-moment random pro-
cess model are applied and compared. For a parked tur-
bine, all models are found to be virtually unbiased and to
notably reduce uncertainty in estimating extreme loads
(e.g., by roughly 50 percent). For an operating turbine,
however, only the random peak model is found to retain
these beneficial features. This suggests the advantage of
the random peak model, which appears to capture the ro-
tating blade behavior sufficiently well to accurately pre-
dict extremes.

Introduction
Probabilistic models have gained widespread accep-

tance and use within a range of engineering disciplines.
These models have formed the basis, either explicitly
or implicitly, for a number of design codes—especially
those of the LRFD (load and resistance factor design)
format. Recently developed wind turbine standards (e.g.,
IEC, 1999) have begun to adopt these code formats, in
analogy with long-standing practice in the building and
offshore structure communities.

In applying probabilistic models to design wind tur-
bines, a number of practical challenges remain. A first
question concerns how a particular probability model
may be used to satisfy design load checks as specified,
for example, in wind turbine standards (e.g., McCoy et
al, 1999). In particular, due to the wind turbine’s com-
plex dynamic behavior, an analyst may need to rely on
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a set of limited-duration load histories over a range of
wind conditions. These histories may result either from
measurements on prototype machines or from numerical
simulation. In either case, there is a fundamental ques-
tion as to how one can proceed from these short-term
load observations to specification of appropriate long-
term loads, as required in design codes. The first part
of this paper addresses this question, presenting a gen-
eral methodology to relate the short-term statistics to the
desired long-run design load.

A second question that arises concerns the pre-
cise details of the probabilistic modelling to be applied;
namely, which probabilistic model or models are best
suited to describe the dynamic behavior of wind tur-
bines. As will be noted below, a number of these have
been proposed and applied in the literature. These differ
first in which quantity they seek to model; for example,
some seek to model the entire load history x(t) as a ran-
dom process, others seek to model only the local peaks
(maxima) of x(t), while still others consider only more
global peaks (e.g., 10-minute maxima). Once this choice
has been made, various functional forms are available to
model the relevant probability distribution at hand. We
compare here various random process and random peak
models, for cases of both edge and flap bending loads in
both operating and parked wind turbine conditions.

Estimating Long-Term Design Loads from
Short-Term Histories

In general, LRFD code checks typically compare a
nominal load and resistance, Lnom and Rnom, weighted
respectively by factors γL and φR chosen to achieve a de-
sired reliability level:

φRRnom ≥ γLLnom (1)

The nominal values Lnom and Rnom are commonly de-
fined somewhat conservatively; e.g., Lnom=LT =the T -
year load, defined formally below.

1 Copyright  2001 by AIAA/ASME



In particular, one proposed wind turbine design
check (IEC, 1999) applies the 50-year wind to a parked
turbine. This suggests that other checks be made to en-
sure that this condition is satisfied with Lnom=L50, the 50-
year load, which may not always coincide with the 50-
year wind speed. For example, L50 may more likely be
caused in some cases by turbines operating at lower (but
more frequently occurring) wind speeds. We show in this
section how one may consistently estimate L50, properly
accounting for various wind speeds and their frequen-
cies of occurrence. In the final section of this paper, we
show the numerical consequence of underestimating the
50-year load, L50, by considering only the average load
under 50-year wind conditions.

As noted above, it is common that the wind turbine
analyst may have only limited-duration load histories—
formally, observations of MT , the maximum of the load
process, x(t), over a duration T much less than 50 years:

MT = max
0≤t≤T

x(t) ; T � 50 years (2)

The 50-year load, L50, is then commonly defined as
a specific fractile of MT ; i.e., a maximum value with a
prescribed probability of exceedance:

P[MT > L50] =
T
50

; T ≤ 1 year (3)

Here, P[·] denotes the probability that the bracketed
statement occurs. For example, with T=1 year Eq. 3
states that the annual maximum load, M1 year, exceeds
L50 with probability 1/50=0.02. (Note that we reserve the
“L” notation here for deterministic load levels, such as
prescribed fractile levels, that arise in design code check-
ing equations. In contrast, MT denotes the actual maxi-
mum load over duration T , which is a random variable.)

Significantly, because of the small probabilities in-
volved, Eq. 3 will return virtually the same L50 value
for all T < 1 year; e.g., by seeking the monthly maxi-
mum with exceedance probability .02/12, the daily max-
imum with exceedance probability .02/365, and so forth.
Therefore, in practice one typically reduces T to a dura-
tion that can be considered stationary; i.e., during which
the underlying environmental process (here, the wind
speed) can be considered to remain in a statistical steady-
state. For wind applications, this may commonly be
taken as T =10 minutes, for which Eq. 3 yields L50 as

P[M10 min > L50] =
10

50×365×24×60
= 3.8×10−7

(4)

By reducing T from 50 years to 10 minutes, we gain
the important advantage that the wind speed process re-
mains in a steady state, characterized for example by V ,
the mean speed during that 10-minute duration. We may
then perform a set of steady-state simulations at various
mean wind speeds, V , and weight their results by f (V ),
the long-term probability density of V at the site of inter-
est:

P[M10 min > L] =
∫

all V
P[M10 min > L |V ] f (V )dV (5)

Note that Eq. 5 separates the calculation of L50 into the
need to provide two separate terms, which respectively
describe the turbine (independent of the site) and the
wind conditions at the site:

Turbine-specific term: P[M10 min > L | V ] denotes the
probability that a 10-minute maximum load exceeds
a given level L, given a prescribed mean wind speed
V . This is commonly known as the short-term prob-
lem.

Site-specific term: The remaining term on the right
side of Eq. 5, f (V )dV , defines the fraction of time
the wind speed at the site lies between V and V+dV .
It is common to choose a Rayleigh probability den-
sity form for f (V ), whose mean depends on site con-
ditions. In general, this wind speed distribution may
be found from site-specific data, or specified for de-
sign purposes by wind turbine standards (e.g., IEC,
1999; wind site classes I–IV).

In summary, the 50-year load is calculated by first
solving the short-term problem—that is, estimating
P[M10 min > L | V ] across a range of L for various mean
speeds V . These results are combined with f (V ) through
Eq. 5, and L50 found as the L value returning the required
probability level in Eq. 4.

Note also that Eq. 5 is readily modified if the wind
process is instead characterized by another parameter
such as turbulence intensity I—replacingV by I—or by a
two-dimensional integration if both V and I are deemed
to significantly help explain the observed variations in
loading. In any case, a common challenge remains to
estimate the probability distribution of maximum load;
e.g., the 10-minute maximum M10 min. The remainder of
this paper considers and applies various models for this
purpose.
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Probability Models for Extreme Loads and Re-
sponses

To estimate the probability distribution of the maxi-
mum MT in time T , one may construct probability mod-
els over a number of different time scales. In order of de-
creasing time scales (and hence increasing use of data),
these include the following:

Global Extreme Models: These seek to directly model
the “global” (largest) extreme over T , or some
slightly lesser duration (e.g., T =1 min or 5 min if
not T=10 min directly). The advantage here is that
we work most directly with the extreme of interest;
i.e., M10 min. The drawback is that we discard all
time history values below these global maxima.

Local Extreme/Random Peak Models: These instead
model all local maxima of the load history x(t), pos-
sibly excluding those that fall beneath some user-
defined lower-bound threshold. (This is sometimes
referred to as a “peak-over-threshold” model.) Com-
pared with the global extreme models, local extreme
models have the advantage of including more data
in the fitting process. A potential disadvantage is
that some of these data—in particular the lower-
amplitude maxima—may come from a different sta-
tistical population, which should not be included in
extrapolating to large loads. (We show below that
this is avoided by appropriate choice of the lower-
bound threshold.)

Random Process Models: Finally, these seek to statis-
tically describe the entire time-varying load history,
x(t). These contain the largest possible information;
i.e., all data points in the digitized history. They may
yield little advantage, however, over random peak
models if there is little statistically independent in-
formation contained in the details of the time history
between its peak values.

Note that if we model global extremes directly, we
immediately have the desired probability, P[MT < L],
that the maximum value MT is less than any L. If we
instead model all random peaks (here denoted Y1, Y2,
...), the corresponding probability P[MT < L] can be es-
timated as

P[MT < L] = {P[Yi < L]}NT (6)

in which NT is the number of peaks (Yi values) in time
duration T . Eq. 6 assumes both that the number of peaks,
NT , is deterministic and that their levels are mutually in-
dependent. (Neither assumption is strictly correct, but
corrections generally become insignificant as we con-
sider extremes in the upper tails of the load’s probability

distribution.) Finally, if we instead model the entire pro-
cess x(t), consistent statistics of MT require somewhat
additional effort. Essentially, one first estimates statistics
of local peaks Yi consistent with the statistics of x(t), and
then uses Eq. 6 (see the discussion of functionally trans-
formed Gaussian processes, and their peaks, in Fitzwater
and Winterstein, 2000). As noted in that reference, an
algorithm (MaxFits) has been created to automate this
process, permitting the user to select between these three
types of models to estimate extreme statistics.

Numerical Results
This section considers how the foregoing probability

models can be applied to estimate extreme bending loads
on wind turbines. The database we use contains multiple
10-minute simulations of Gaussian wind fields, and cor-
responding in- and out-of-plane bending moment loads
on a specific horizontal axis wind turbine (the Aerody-
namics Experiment Phase III turbine; see Madsen et al,
1999 and its associated references). The turbine has a ro-
tor diameter of 10m and a nominal rotor speed of 1.2 Hz.
It is a three-bladed turbine with a hub height of 17m.

A total of 100 10-minute simulations have been
performed for various choices of the mean wind speed
V . These use a general-purpose, commercially avail-
able structural analysis code (ADAMS), linked with
special-purpose routines to estimate aerodynamic effects
(Hansen, 1996). We focus here on three cases:

1. V=14m/s, typical of nominal or “rated” wind condi-
tions;

2. V=20m/s, the maximum or “cut-out” wind speed at
which the turbine operates; and

3. V=45m/s, an extreme wind speed (e.g., 50-year
level) during which the turbine is parked.

The last case is somewhat analogous to extreme winds on
buildings and other stationary structures, and we may ex-
pect similar statistical behavior in this wind turbine anal-
ysis. The lower-speed cases, however, correspond to op-
erating conditions, in which the turbine blades rotation-
ally sample the stationary wind field. Also notable here
are the systematic effects of gravity on in-plane bending:
a strong sinusoidal trend is induced at the turbine oper-
ating speed. We investigate here whether various proba-
bilistic response models can remain accurate in the face
of these special features that wind turbines exhibit.

In particular, we study here the behavior of two dif-
ferent types of probabilistic models: (1) Hermite mod-
els of the load as a random process, and (2) quadratic
Weibull models of random load peaks (over a specified
threshold). The Hermite model generally utilizes four
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statistical moments of x(t) (Winterstein, 1988), although
a simplified three-moment version can be used in some
special cases of limited nonlinearity (Jha and Winter-
stein, 1997; Jha and Winterstein, 2000; Madsen et al,
1999). The quadratic Weibull model is based on the first
three statistical moments of the peak values, Yi (Lange
and Winterstein, 1996; Ronold et al, 1999; Winterstein
and Kashef, 1999). Note that the MaxFits routine im-
plements both the quadratic Weibull and Hermite mod-
els, as well as a number of others.

Results 1: Sample Time Histories
Figure 1 shows simulated wind and load time his-

tories from one 10-minute simulation. In particular, the
histories shown are brief, 5-second portions of the wind
and load histories during which the wind input is maxi-
mized. (This maximum wind episode does not generally
produce the maximum bending loads.)

To identify peaks from the response histories, we de-
fine a peak here as the largest value of the history be-
tween successive upcrossings of its mean level*. Fig-
ure 1 shows the mean levels of each history by horizontal
lines, and the circled response points indicate the set of
peaks that are obtained. The out-of-plane (flap) bending
loads are found here to roughly follow the wind speed
process, although additional high-frequency content is
observed. Note also that our definition of peaks (largest
response per upcrossing of the mean) serves to filter out
many of these high-frequency response oscillations. The
edge bending loads are of less interest in this case, show-
ing small oscillations about the mean load.

Figure 2 shows similar simulated wind and load time
histories, now from a wind speed V=20m/s during which
the turbine is operating. Now the effect of gravity is
clearly seen in the edge bending history, which shows
a strong sinusoidal component at the operating speed of
roughly 1.2 Hz. The flap bending history also shows sys-
tematic variations at this frequency, although it is com-
bined with significantly larger high-frequency content
here than in the edgewise case. Again, our peak iden-
tification method removes some of this high-frequency
effect. Note in the edgewise case, however, that a some-
what anomalous effect can arise. While only one “large
amplitude” peak is usually found per blade revolution,
other “secondary”, near-zero peaks are sometimes also
identified. This arises from the high-frequency small-
amplitude oscillations shown by the edgewise loads

*Many alternative strategies can be used to identify peaks; e.g., the
largest value per blade revolution. Note, however, that for these edge
load cases we find an optimal threshold to exclude somewhat more load
cycles; e.g., we retain roughly 1 peak per 2 blade revolutions.

about their mean level. The resulting distribution of all
peaks is found in such cases to be multi-modal; i.e., to
possess a probability density function with several dis-
tinct regions of relatively high probability (“modes”).
Because our models are unimodal—i.e., designed to be
fit to the single most important probability “mode”—
we shall find it useful in these edgewise cases to pass a
higher threshold (above the mean) to exclude these sec-
ondary peaks. We shall return to this issue below.

Finally, recall that to estimate the distribution of the
largest peak, it is common to assume that successive
peaks are mutually independent. This is the assump-
tion inherent in our current implementation of MaxFits
(see, for example, Eq. 6). To test this assumption, the
correlation coefficient ρ between adjacent peaks Yk and
Yk+1 has been calculated for various cases. Typical ρ val-
ues are effectively negligible; for example, ρ=0.21 (flap
bending, V=45m/s), ρ=0.28 (edge bending, V=45m/s),
and ρ=0.15 (flap bending, V =20m/s). These values, and
corresponding scatterplots of Yk vs Yk+1 (e.g., Figure 3),
confirm that the assumption of independence should not
induce large modelling errors in this application. This
conclusion may differ in other applications; for example,
the lightly damped slow-drift response of some moored
marine structures.

Results 2: Observed vs Predicted Distributions
of Peaks

We now test the ability of a three-moment, quadratic
Weibull distribution to accurately model the simulated
response peaks across various wind conditions. For il-
lustration purposes, we again show results for the first
(of the 100) 10-minute simulations.

We again consider first the parked turbine
(V=45m/s), whose statistical behavior may be expected
to be most well-behaved. Figure 4 shows the cumulative
probability distribution function FY (y)=P[Y ≤ y] of all
peaks, as estimated directly from the data. Specifically,
for both flap and edge cases, the peaks yi are first or-
dered so that y1 ≤ y2 ≤ ... ≤ yn, and associated with the
cumulative probabilities pi=FY (yi)=i/(n+ 1). Results
are plotted on a distorted “Weibull” scale, which plots y
not versus FY (y) but rather versus − ln[1−FY (y)]. The
results, when viewed on log-log scale, should appear as
a straight line if the data follow a Weibull probability
distribution model.

The data here show slightly positive curvature on
this Weibull scale. This suggests the value of the
quadratic Weibull model, which yields a quadratically
varying distribution when plotted on the Weibull scale
of Figure 4. This quadratic model is shown here to ac-
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curately follow both the flap and edge load data in this
case.

Figure 5 shows similar Weibull scale plots of flap
and edge loads in the V=20m/s case, during which the
turbine is rotating. While the distribution of flap load
peaks remains smooth, the distribution of edge load
peaks shows a sharp change in behavior, with a “cor-
ner” located at roughly y=1. This is a consequence of the
bimodal character of the edge load peaks, as discussed
earlier. No smooth, single-moded distribution model can
capture both the large, one-per-revolution primary peaks
and the small-amplitude, secondary peaks. For both ul-
timate and fatigue load modelling purposes, however,
these secondary peaks are of little consequence. We
therefore seek to model the shifted peaks, Y − 1.5; i.e.,
we remove all peaks below 1.5, and report the shifted
values y′i=yi − 1.5 of the remaining peaks. The shift-
ing is used to conform with quadratic Weibull mod-
els, which generally assigns probability to all outcomes
y′ ≥ 0. Figure 6 shows the quadratic Weibull model to ac-
curately follow the shifted edge loads, Y−1.5. (Note that
the optimal choice of shift parameter may require some
trial and error; e.g., comparing goodness-of-fit measures.
This is a topic of ongoing study. Note also that in using
these models to predict extremes, the shift value must
eventually be reinstated, to report loads in units consis-
tent with their input values. This is done automatically
in the MaxFits routine).

Results 3: Estimating 10-Minute Mean Maxima
Finally, we show predicted statistics of M10 min, the

maximum 10-minute load. In particular, we seek here
to estimate m, the mean value of M10 min to be expected
in an arbitrary 10-minute period. As shown below, this
mean value is critical in fitting the probability distribu-
tion of M10 min, for use in the long-term load calculation
of Eq. 5.

A simple, “raw” estimate of m can be found by av-
eraging the 100 observed maxima, Mi, from each of the
10-minute simulations:

M =
1

100

100

∑
i=1

Mi (7)

Alternatively, we can estimate m by fitting one of the
foregoing models; e.g, a quadratic Weibull model to all
response peaks (perhaps above a shifted level). Here we
fit such models separately to each of the 100 simulations.
Denoting µi as the estimated value of m from simulation i
(i=1,...,100), we may form an analogous average of these

estimates:

µ=
1

100

100

∑
i=1

µi (8)

One advantage of the simple, “raw” estimate M is
that it is always “unbiased”; i.e., correct on average. A
potential disadvantage is that because it is based on only
the single observed maximum in each 10-minute his-
tory, it may show considerable variability. By instead
fitting probability models to form estimates µ, we hope
to achieve results that (1) remain nearly unbiased and (2)
show reduced scatter (specifically, standard deviation)
compared with the raw estimate M. To quantify these
effects we define two factors: a bias factor, defined as

Bias (B) =
µ

M
(9)

and a sigma reduction factor, defined as

Sigma Reduction (SR) =
σµ

σM
(10)

We hope to achieve bias factors of nearly unity, and
sigma reductions far less than unity. Again, our hope for
sigma reduction lies with the fact that each estimated µi

uses more of the simulation history—specifically, each
peak-over-threshold value—than the raw estimate M,
which uses only the single maximum Mi from each 10-
minute simulation.

Figures 7 and 8 show bias and SR factors, respec-
tively, for the parked turbine (V=45m/s). Three prob-
ability models are fit: a 3-moment quadratic Weibull
model (“Peak Unshifted”), and both 3- and 4-moment
Hermite models of the complete random response pro-
cess x(t). (The four moment model has become the op-
tion of choice for general use. The three-moment simpli-
fication has been used in some mildly nonlinear wave ap-
plications, and has been recently derived independently
for wind turbine applications (Madsen et al, 1999)). Note
that all models yield roughly unbiased results (B near
1.0). The 3-moment models generally achieve a sigma
reduction of 0.5 or less. As might be expected, inclusion
of the 4th moment, with its attendant uncertainty, leads
to higher values of σµ and hence SR.

Figures 9–10 show analogous bias and SR factors
for V=20m/s, one of the operating wind speed condi-
tions. Here the random process (Hermite) models, which
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are intended to model rather general stochastic behav-
ior, fail to accurately capture the rotating nature of the
blade response. Biases of about 10% are found from
conventional (4-moment) Hermite models, with consid-
erably larger biases produced by the simpler 3-moment
Hermite models.

In contrast, the quadratic Weibull (“Peak”) models
remain essentially unbiased in all cases. For cases of
edge loads, models have been fit both to the original data
yi (“Unshifted”) and the shifted data yi−1.5 (“Shifted”).
For this particular choice of duration (T=10-minute max-
ima), even the unshifted models appear reasonably ac-
curate. Over longer durations, however, estimates be-
come increasingly tail-sensitive, and the use of the shift
has been found more beneficial in avoiding bias. This
is reflected in Figure 11, which shows the benefit of in-
cluding a shift when predicting maxima over a range of
T =10–1000 minutes. The shifted predictions also retain
the roughly 50% sigma reduction, as shown by the con-
fidence bands in Figure 12. In all operating and parked
conditions, sigma reductions for these peak models have
been found to remain at roughly 0.5 or less.

Note also that when averaging results over N simu-
lations, the standard deviation of an estimated parameter
decreases like σ/

√
N. Hence, the 50% sigma reduction

shown by the quadratic Weibull fit permits a four-fold de-
crease in the number of simulations. For example, fitting
a quadratic Weibull model to N=1 10-minute simulation
is roughly equivalent to using the “raw” 10-minute max-
ima from N=4 simulations.

Example of Long-Term Load Analysis
Finally, we show how the foregoing models of 10-

minute maxima, M10 min, can be used to predict long-
term loads as in Eq. 5. The 10-minute mean wind speed,
V , is assumed to have Rayleigh probability distribution
with mean Vave:

P[V ≥ v] = GV (v) = exp

[
−π

4

(
v

Vave

)2
]

(11)

Setting GV (v) to the 50-year exceedance probabil-
ity (Eq. 4) yields V50=4.34Vave. Here we assume
V50=45 m/s; i.e., the parked turbine simulations cor-
respond to 50-year wind conditions. This implies
Vave=45/4.34=10.4 m/s, roughly corresponding to a class
I wind site (IEC, 1999).

For load modelling purposes, we seek to estimate
m(V ) and σ(V ), the mean and standard deviation of

c [kN-m] d [kN-m]

V ≤ 20m/s 11.3 1.13

V > 20m/s 20.0 1.63

Table 1. Values of coefficients c and d used in Eq. 12 to fit flap

load moments as functions of the mean wind speed, V .

M10 min, as functions of V . To illustrate, we assume here
simple linear relations:

m(V ) = c · V
V50

; σ(V ) = d · V
V50

(12)

These results have been fit separately to the operat-
ing and parked turbine simulations (V ≤ Vcut out=20 m/s
and V >20 m/s). Table 1 shows corresponding c and d
coefficients for the flap load case. Figure 13 compares
the observed and fitted moments in this case. (Of course,
in practice these fits should use results over a greater set
of wind conditions, and different functional forms may
emerge. Our results here are intended only for illustra-
tion purposes.)

An important simplification arises if the mean load
m(V ) grows steadily with V , and the load variability
σ(V ) is small compared with the variability in V . In this
case we may estimate the 50-year load, L50, as m(V50),
the mean load in 50-year wind conditions. This is essen-
tially the current design load check for parked turbines
(load case 6.1 in IEC, 1999). Formally, this will be ex-
act in the “deterministic” load limit, i.e., as σ(V )→ 0.
More generally it will be somewhat unconservative. In
offshore structure design, for example, this unconser-
vatism is noted and commonly adjusted by (1) inflating
the environmental variable (here, the wind speed or asso-
ciated turbulence); or (2) inflating the fractile (from p=.5
to p=.80–.90) at which the load is evaluated. These in-
flation procedures are basically empirical, and have been
calibrated with respect to long-term probability analysis
(as in Eq. 5) across many cases (e.g., Haver et al, 1998;
Winterstein and Engebretsen, 1998).

Figure 14 shows the resulting long-term distribu-
tion of 10-minute flap loads. The “random” load case
uses Eq. 5, with the discretized probability f (V )∆V taken
as the difference between cumulative probability values
(Eq. 11) evaluated at the lower and upper v i values for
each bin. The remaining term in Eq. 5, P[M10 min > L|V ],
assumes that M10 min has a Gumbel distribution with
mean and standard deviation as given in Eq. 12. The
corresponding “deterministic” result sets σ(V )=0, so that
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P[M10 min > L] is P[m(V ) > L], which can be evaluated
analytically with Eq. 11. (It has also been evaluated here
by the numerical integration with σ(V )=0, to verify the
accuracy of the discretization.)

For example, in the deterministic case the 50-year
flap load is predicted as m(V50)=20 [kN-m], as seen by
evaluating m(V ) in Figure 13 at V50=45m/s. In contrast,
including realistic load randomness leads to L50=22.7,
an increase of 13.5%. This is not inconsistent with off-
shore structural responses, which show roughly 10–20%
increases due to load randomness.

Finally, note that the long-term results in Figure 14
include randomness in the loading, but ignore uncer-
tainty in load moments due to limited data. Figure 15
shows upper-bound 95% confidence results for this long-
term load distribution. These estimate the moments
m(V ) and σ(V ) by the raw sample mean and variance,
using either N=4 or N=8 10-minute simulations. (Re-
call that this is roughly equivalent to using a quadratic
Weibull fit, applied to N=1 or N=2 simulations.) Based
on the variability of sample means and variances, we
model m(V ) and σ(V ) as

m(V ) = m̂(V )+
σ̂(V )√

N
·U ; σ(V )2 = σ̂(V )2 · N−1

χ2
N−1

(13)
Here m̂(V ) and σ̂(V ) are our best estimates, as found
from Eq. 12, while U and χ2

N−1 are standard normal and
chi-square variables, the latter with N-1 degrees of free-
dom. Results here are based on 100 simulations, whose
resulting probabilities P[M10 min > L] have been sorted
(for various L) and the 95% fractile reported. Note the
marked consequence of limited data: with N=4 the 50-
year load estimate should be increased by roughly 50%
to achieve 95% confidence. This effect can be reduced
of course through additional data: with N=8 simulations
the 50-year load increases by about 20%. Recall also
that we may interpret these N=4 and N=8 cases as being
roughly equivalent to using the quadratic Weibull model
with only N=1 or 2 simulations. This again shows the
benefit of applying such a fit, to use data more efficiently
and hence reduce (for fixed N) our upper-fractile load
distribution estimates.

Summary
This paper has shown how, through the use of prob-

ability models, short-term loads data can be used to pre-
dict long-term design values. Regarding the specific
choice among these models, it has demonstrated the use
of both random process and random peak models of wind

turbine loads. In particular, it has applied 3-moment
random peak models (quadratic Weibull), and 3- and 4-
moment random process models (Hermite). Both the
quadratic Weibull and (4-moment) Hermite models are
available within MaxFits. Sample input and output file
have been created (Fitzwater and Winterstein, 2000) to
illustrate how this routine can be used to derive some of
the results shown here.

For a parked wind turbine experiencing 50-year
winds, all models have been shown to be nearly unbiased
(Figure 7) and to achieve a significant reduction in our
uncertainty (Figure 8) in estimating the mean 10-minute
maximum. For rotating blades during operation (at lower
wind speeds), the random process models can show no-
table bias: roughly 10% for the 4-moment models, and
appreciably more if only 3 moments are used (Figures 9–
10). In contrast, the random peak models remain con-
sistently accurate, and consistently beneficial (i.e., in re-
ducing uncertainty) in all cases. This suggests that by
modelling not the entire time history but rather its set of
peaks, enough information about the rotating nature of
the load process is retained to permit accurate estimates
of extreme behavior.

Acknowledgements
We wish to thank Kirk Pierce, Marshall Buhl, and

their associates for making available the simulation re-
sults of the Aerodynamics Experiment Phase III turbine.
More generally, we gratefully acknowledge a series of
useful—and ongoing—discussions with various mem-
bers of the Statistical Loads Extrapolation (SLEx) pro-
gram. This is an informal working group, with represen-
tatives from NREL, Sandia, consultants, industry, and
universities. Through interactions with this group, we
hope to make reliability methods more accessible to the
wind turbine community, and more directly tailored to
their specific needs. Finally, this work is supported by
the Wind Energy Program of the U.S. Department of En-
ergy, through Sandia National Laboratories.

References

Fitzwater, L.M. and S.R. Winterstein (2000). Estimation
of extremes from limited time histories: The routine
MaxFits with wind turbine examples, Rept. RMS–
39, Reliability of Marine Structures Program, Dept.
of Civ. & Environ. Eng., Stanford University. To be
issued as a technical report by Sandia National Lab-
oratories.

Hansen, A.C. (1996). Users guide to the wind turbine

7 Copyright  2001 by AIAA/ASME



dynamics computer programs YawDyn and AeroDyn
for ADAMS, Mech. Eng. Dept., Univ. of Utah.

Haver, S., G. Sagli and T.M. Gran (1998). Long term
response analysis of fixed and floating structures.
Proc., Wave’98—Ocean Wave Kinematics, Dynam-
ics and Loads on Structures, International OTRC
Symposium, Apr. 30–May 1, 1998.

IEC, 1400-1 (1999). Wind turbine generator systems,
part 1: safety requirements, International elec-
trotechnical commission, Report IEC 61400-1, ed.
2.

Jha, A.K. and S.R. Winterstein (1997). Nonlinear ran-
dom ocean waves: prediction and comparison with
data, Rept. RMS–24, Reliability of Marine Struc-
tures Program, Dept. of Civ. Eng., Stanford Univer-
sity.

Jha, A.K. and S.R. Winterstein (2000). Nonlinear ran-
dom ocean waves: prediction and comparison with
data. Proc., 19th Intl. Offshore Mech. Arctic Eng.
Symp., ASME, Paper No. OMAE 00–6125.

Lange, C.H. and S.R. Winterstein (1996). Fatigue design
of wind turbine blades: load and resistance factors
from limited data. Proc., Wind Energy 1996, ASME,
SED 17, 93–101.

Madsen, P.H., K. Pierce and M. Buhl (1999). Predicting
ultimate loads for wind turbine design. Proc., 1999
ASME Wind Energy Symposium, 37th AIAA Aero.
Sci. Mtg., 355–364.

McCoy, T.J., D.J. Malcolm and D.A. Griffin (1999). An
approach to the development of turbine loads in ac-
cordance with IEC 1400–1 and ISO 2394. Proc.,
1999 ASME Wind Energy Symposium, 37th AIAA
Aero. Sci. Mtg., 1–9.

Ronold, K.O., J. Wedel-Heinen, and C.J. Christensen
(1999). Reliability-based fatigue design of wind-
turbine rotor blades. Engineering Structures, 21,
1101–1114.

Winterstein, S.R. (1988). Nonlinear vibration models
for extremes and fatigue. J. Engrg. Mech., ASCE,
114(10), 1772–1790.

Winterstein, S.R. and K. Engebretsen (1998). Reliability-
based prediction of design loads and responses for
floating ocean structures. Proc., 17th Intl. Offshore
Mech. Arctic Eng. Symp., ASME.

Winterstein, S.R. and T. Kashef (1999). Moment-based
load and response models with wind engineering ap-
plications. Proc., 1999 ASME Wind Energy Sympo-
sium, 37th AIAA Aero. Sci. Mtg., 346–354.

8 Copyright  2001 by AIAA/ASME



522 523 524 525 526 527
20

40

60

80

time, sec

V
el

oc
ity

, m
/s

ec

Wind Speed

522 523 524 525 526 527
-10

0

10

20

time, sec

F
la

p 
B

en
di

ng
 K

N
-m

Flap Bending

522 523 524 525 526 527
-2

0

2

4

time, sec

E
dg

e 
B

en
di

ng
 K

N
-m

Edge Bending

Figure 1. Simulated wind and blade loads; V =45m/sec.

457 458 459 460 461 462
0

10

20

30

40

time, sec

V
el

oc
ity

, m
/s

ec

Wind Speed

457 458 459 460 461 462
-2

0

2

4

6

time, sec

F
la

p(
B

ea
m

) 
B

en
di

ng

Flap Bending

457 458 459 460 461 462
-5

0

5

time, sec

E
dg

e 
B

en
di

ng

Edge Bending

Figure 2. Simulated wind and blade loads; V =20m/sec.
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Figure 11. Estimated mean maxima over various time intervals;

edge bending V =20m/sec.
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edge bending V =20m/sec.
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