Taking Advantage of Your Data to Increase Reliability

Optimizing Wind Power Performance Conference September 28-29, 2010

Bridget McKenney

Acting Manager
Wind & Water Power Technologies Department
Sandia National Laboratories
Albuquerque, NM

SPANDIA NATION

CREW: Continuous Reliability Enhancement for Wind database

Program Focus:

- Create national reliability database of wind plant operating data
 - Sub-component level
 - Characterize performance of US wind fleet
 - Identification of issues and technology improvement opportunities
 - Improved quality of nextgeneration components
 - Industry RAM benchmarks

Industry Maturity Level

2010: 35GW

2030: 305GW

☐ Still many **small** operators with little data expertise, running basic operations

Increasing Reliability:

□ Larger players with previous fossil experience growing □ Emerging supply chain: wide variance in quality and availability □ Market instability > players come

Fewer Failures = Increased Capital Utilization +

Decreased O&M Costs +

Increased Investor Confidence + ...

2010

and go

2030

Current operators care about capital utilization more than "new technology" – Strong need to reduce O&M costs;
Protection of proprietary data

Future operators will have stabilized operations and begin to focus on "new technology" – Jump to the next level of performance;

More collaboration across industry

CREW Database Program:Partner Maturity

LESS Mature

Data & Analysis

MORE Mature

Data & Analysis

Conversations with operators		Ear	ly Partners	ORAP Pilot Partners	ORAP Users & CREW Partners
	2007	2008	2009	2010	2011 2012+

Maintenance CMMS with true No documentation (tribal Paper work orders Data Scanning or typing electronic work orders knowledge) Scheduled & •"I've got my work orders paper forms Unscheduled up here" <taps head> Failure Data Not captured from Data captured; large SCADA data reviewed. SCADA amounts of time and errors addressed unaccounted (10-15%) Data Flat text files Data transfer processes •SCADA, CMMS, data Infrastructure •FTP sites SCADA & Work Orders historian linked SCADA "events" drive disconnected work orders

> Manual collection Hard copy

Data historian Automated

Data-Based Decision-Making

- Identify (high-level) performance drivers
- 6. Determine root cause
- Install/upgrade data collection systems
- 2. Collect and store data
 - SCADA (time series; faults)
 - Work Orders / CMMS
 - Other data (cost, inventory, etc.)
- 3. Integrate data (symptoms vs. resolutions)

Sandia National Laboratories

Data Collection & Data Storage/Retrieval

- 1. Install/upgrade data collection systems
- 2. Collect and store data
- 3. Integrate data

Collecting the Data

Translate Plant Knowledge To Corporate Knowledge!

Data Collection Systems

- Reconfigure, upgrade, install
- Staff skills and abilities

Collect & Store Data

- SCADA:
 - Time Series: real-time, data points (~25 fault tags), granularity (1' averages)
 - Events and Alarms (Automatic Reset, Remote Reset, Technician Reset)
- CMMS data: centralized for linking with SCADA data and analysis
 - Paper Work Orders: At minimum enter them in an electronic format
 - Ultimate Goal SCADA Faults Generate Work Orders
- Environmental data (failure context)
- Centralized database/historian real-time and historical data, data integrity

Integrating Data

Operational data must be linked to maintenance and repair data in order to understand performance issues

Link SCADA summary, SCADA events/alarms, and work orders

- Relational database products: use relationships between data pieces to meet storage and access management requirements
- Data historians: store time series data, using compression to manage storage of very large data streams
- Knowledgeable staff to apply emerging automated tools for data linkage

Operations Command Center (OCC) approach

- Real-time SCADA data flowing from plant to centralized monitoring and control
- Data stored in single large database
- Robust, secure, reliable high-speed connection from plant to OCC

For smaller operators

- Site storage system to collect finite time-period SCADA data
- Send subsets of data to central office for storage and analysis

Data Analysis

- 4. Establish baseline performance
- 5. Identify (high-level) performance drivers
- 6. Determine root cause

Baseline Performance

- Establish baseline performance
 - Understand the current situation: What is it? How good is it?
 - Calculate basic operations and reliability metrics (Availability, MTBE, Mean Downtime)
 - How does performance compare to OEM expectations?
 - Power curve (wind speed vs. power output), including outliers
 - How does a typical turbine spend its time:
 - Non-generating (no wind, down for scheduled maintenance, curtailed, etc.)
 - Generating (power rating vs. wind speed)
 - Transitional/Unaccounted (no data)/Illogical (positive generation with no wind)
 - What data is missing: e.g., identify when turbine state cannot be determined
 - Document assumptions (if 5% of SCADA records are not usable, was the turbine up or down during that time?)

Time Allocation

How does a "typical" turbine spend its time?

- Transition: Turbine changes from running to not running (or vice versa) during Measurement Period
- Unknown: Either turbine's status or environmental conditions are not captured;
 OR they are captured, but are illogical
- Unaccounted: Missing records and/or time lost due to rounding of small Measurement Period lengths

Percent of Time		Wind					
		Above Cut Out	Rated	Moderate	Below Cut In		
	Rated	0.0%	3.4%	3.6%	0.0%		
Generation	Moderate	0.0%	1.8%	43.9%	0.0%		
era	Low	0.0%	0.0%	9.1%	4.7%		
gen	None (Online)	0.0%	0.0%	1.6%	8.6%		
_	None (Offine)	0.0%	1.4%	7.0%	8.1%		
		0.0%	6.7%	65.2%	21.4%		

Unknown = 5.2% Unaccounted = 0.2%

DISCLAIMER: This chart contains only notional (fictional) data to demonstrate the type of results which reliability analysis may provide.

Transition = 1.3%

7.0% 45.7% 13.8%

10.3%

16.5% 93.3%

Power Curve

Determining the issues

Identify high-level performance drivers

- Explore trends, outliers, good performance and surprising results
- Which are the good turbines? Which are problematic and why?
- Which types of downtime events are driving poor performance
 - Pareto analysis is simple but powerful
- Compare multiple metrics
 - Event frequency vs. event duration
 - Generation vs. turbine's recorded wind speed
 - Outliers are very revealing
 - Where is performance roughly the same? Where is there great variability?

Determine root causes

- Why are good turbines good, and vice versa?
- Why are certain aspects of operations having such a negative impact?
 (investigate de-rates, unexplained performance, unexpected patterns)
- What are root causes of the top problems? (fishbone chart, etc.)

Determining the issues

Identify High-level Performance Drivers

- Explore trends, outliers, good performance and surprising results
- Which are the good turbines?Which are problematic and why?
- Which types of downtime events are driving poor performance
 - Pareto analysis is simple but powerful
- Compare multiple metrics
 - Event frequency vs. event duration
 - Generation vs. turbine's recorded wind speed
 - Outliers are very revealing
 - Where is performance roughly the same? Where is there great variability?

Determine Root Causes

- Why are good turbines good, and vice versa?
- Why are certain aspects of operations having such a negative impact? (investigate de-rates, unexplained performance, unexpected patterns)
- What are root causes of the top problems? (fishbone chart, etc.)

Data-Based Decisions

- 7. Isolate possible improvements
- 8. Select improvements with largest ROI
- 9. Implement and track improvements

Data-Based Decision Making

16

Business Decisions

Improving in areas you know you should be looking into - Discovering areas you didn't think to look at.

- Minimizing O&M Costs (Isolate possible improvements)
 - Maintenance schedules: Decrease component failure and early replacement
 - Schedule downtimes to minimize impact to generation and grid
- Maximizing Capital Investment (Select improvements with largest ROI)
 - Funding improvement efforts
 - Equipment purchase selections (performance to spec)
 - Reduce cost of financing and insurance
- Policy & Public Sector
 - Increase pace of development
 - Grow public support (drives policies)
 - Influence developing standards
 - Implement and Track Improvements

Other Value

- Doing a good job with reliability data collection, analysis, and decision-making sets the foundation for all kinds of other analysis & decision-making
 - Grid integration (ex: impact of curtailment)
 - Labor analysis
 - Understanding weather & seasonal impacts
 - Supply chain analysis
 - Data-based input to investment decisions (your own & others)
 - Insurance
 - Tax-payers, rate-payers
 - Policy-making

Path Forward

- □ Improve your capability to collect, store and analyze your operational data.
 □ Decrease COE through reduced O&M cost and higher availability.
- SNL report to be published October,2010
- Participate as a pilot site in the CREW database project
 - Courtesy reliability analysis
 - Early use of ORAP for Wind tool to collect and link SCADA to CMMS data

