The Aerodynamic, Dual-Wavelength Optical Spectrometer

James C. Wilson Mechanical and Materials Engineering University of Denver

With the Agreement of: W. W. Szymanski Department of Experimental Physics University of Vienna

A. Czitrovszky Institute for Solid State Physics and Optics Budapest, Hungary Determination of Real and Imaginary Refractive Indices, Diameter and Density with a Compact Instrument (A-DWOPS)

DWOPS: Two Wavelengths, Two Angles.

- A. Nagy, W.W. Szymanski, P. Gál, A. Golczewski, A. Czitrovszky, "Numerical and experimental study of the performance of the dual wavelength optical particle spectrometer" (DWOPS) J. Aerosol Sci., 38 (2007), 467.
- Aerodynamic Particle Sizing
 - Wilson J.C., Liu B.Y.H., "Aerodynamic Particle Size Measurement by Laser-Doppler Velocimetry", *J. Aerosol Sci.* 11:139-150, 1980.

DWOPS

DWOPS

- Angles: 10 30 and 150 170 for each beam
- Wavelengths: 685 and 532 nm
- 4 Signals for each particle
- Size:
 - 1. Opto mechanical assembly: (45x45x15) cm
 - 2. Electronics: (45x25x10) cm
- Total instrument weight: ~15 kg.

Response of the DWOPS for Spherical, Homogeneous Particles

- Numerical Prediction of Performance
 - 0.1 μm <Dp<10 μm
 - 36 logarithmic intervals
 - Real Refractive Index: 1.1 to 2
 - 19 linear intervals
 - Imaginary Refractive Index: 0 to 1
 - 21 linear intervals
- Using the 4 measured signals and a numerical search, find the numerical particle that produces 4 values that are closest to the measured particle's values.
- Upon a match, announce the physical diameter, real and imaginary refractory index.

 Results of Numerical Experiments
 Signals plus noise and retrieval of Diameter (most particles sized to better than 10% for most sizes):

Results of Numerical Experiments
Signals plus noise and retrieval of Indicies of Refraction (10,000 particles):

DWOPS Numerical Experiment Results

- Retrieved particle sizes are typically within 10% of the challenge value
 Retrieved Indices are typically within 20%
- Retrieved Indices are typically within 20% of the challenge value

Lab Measurements

Material	DMA	DWOPS	DWOPS	DWOPS
	Dia.	Dp	Real	Imag
DHES	0.589	0.588 ±	1.55 ±	0.04 ±
1.45+0.0i		0.01	0.20	0.04
DHES 1.45+0.0i	0.846	0.834 ± 0.03	1.46 ± 0.02	0 ± 0.04
PSL 1.59+0.0i	1.00	0.949 ± 0.01	1.60 ± 0.02	0 ± 0.04
Ink (SM745)	0.845	0.811 ±	1.61 ±	0.32 ±
1.70+0.32i		0.08	0.20	0.2

Velocimetric Determination of Aerodynamic Diameter: Schematic From Wilson and Liu (1980)

Fig. 2. Schematic of the LDV system.

Experimental and Theoretical Test

J. C. WILSON and B. Y. H. LIU

Effect of Density and Increasing Velocity

- Reducing pressure will permit measuring submicron particles accurately
 - 50 mb, 1 mm nozzle, 4 scc/s
 - Reduces molecular (Rayleigh) scattering

Particle Density

 Physical Size from the DWOPS
 Aerodynamic Diameter from the Velocimetric Measurement
 Calculate particle density

Atmospheric Particles

Aerosol Type	Density, g/cm ³	Real Refractive Index	Imaginary Refractive Index
Organic Carbon	1.4	1.46	0.0
Elemental Carbon	1.9	1.93	0.66
Sulfate	1.77 – 1.84	1.47 – 1.54	0.0

Dick, W. D., Ziemann, P. J., & McMurry, P. H. (2007). Multiangle light-scattering measurements of refractive index of submicron atmospheric particles. *Aerosol Science and Technology*, 41, 549-569 (2007)..

Atmospheric Particles

- Expderiments show that coated particles with irregular cores scatter similarly to spherically symmetrically coated particles. Need to look at the DWOPS to coated particles
- Irregular particles constitute about 20% of the atmospheric aerosol and will be characterized in some way or another with the A-DWOPS.
 - TBD. How many angles to you need to usefully characterize the phase function?
 - I want to compare it with the Cavity Ring Down etc.