UNITED STATES DEPARTMENT OF AGRICULTURE

Farm Service Agency Washington, DC 20250

Common Land Unit	
8-CM (Revision 1)	Amendment 4

Approved by: Deputy Administrator, Farm Programs

Huan M. Dan

Amendment Transmittal

A Reasons for Amendment

Part 8 has been added to:

- provide instructions for GIS specialists/geospatial officers for emergency preparedness and response
- correspond with 1-SEM, paragraphs 126 through 132.

Page Control Chart			
TC Text Exhibit			
3	7-1	1, page 1	
4 (add)	8-1 through 8-72 (add)	page 2 (add)	
	8-73 (add)		

.

Page No.

Part 6 Releasing Data (Continued)

Section 2 Servicing Requests

251	Basic Policy	6-55
252	Requests for Ortho-Imagery	6-56
253	Requests for CLU	6-57
254	Requests for Wetland Point Data	6-58.5
255	Requests for CRP Data	6-59
256-2	80 (Reserved)	

Part 7 Metadata

281	General Information	7-1
282-29	0 (Reserved)	

Part 8 GIS in Emergency Preparedness and Response

Section 1 Roles and Responsibilities

291	GIS Specialist Duties for Emergency Management	8-1
) (Reserved)	

Section 2 Supporting Geospatial Hazards

301	Hail	8-31
302	Heavy Precipitation	8-34
303	Floods	8-41
304	Tornadoes	8-46
305	Hurricanes	8-52
306	Droughts	8-58
307	Wildfires	8-62
308	Earthquakes	8-67

Exhibits

- 1 Reports, Forms, Abbreviations, and Redelegations of Authority
- 2 Definitions of Terms Used in This Handbook
- 3-5 (Reserved)
- 6 Example of DOQ
- 7 Example of Digitized CLU's on Top of DOQ
- 8 Example of Digitized CLU's With Soils Layer on Top of DOQ
- 9 Example of Digitized CLU's With Labels on Top of DOQ
- 10-12 (Reserved)
- 13 CLU Tools
- 14 Available Standards
- 15-16 (Reserved)
- 17 CLU Attributes
- 18 Land Classification Codes`
- 19 Charging for Data
- 20, 21 (Reserved)
- 22 Example of CLU Metadata

281 General Information

A Background

Metadata essentially describes the information in a dataset. For GIS data, it answers questions such as:

- what does the dataset describe
- who produced the dataset
- why was the dataset created
- how was the dataset created
- and how reliable are the data.
- who wrote the metadata
- how can someone get a copy of the dataset.

See http://geology.usgs.gov/tools/metadata/tools/doc/ctc to see a more detailed explanation of metadata.

Metadata is included when you provide a copy of digital data to someone who requests it. It is also used to describe the datasets that are searchable by using the web. For maps of CLU and related data, it will be necessary to provide metadata that accurately describes the data whenever data is released.

B Metadata Standards

Metadata for Service Center Agency datasets is to conform to FGDC Metadata Content Standards. See **http://www.fgdc.gov/metadata/meta_stand.html** to download the standards.

C Creating Compliant Metadata

FGDC compliant metadata will be available to Service Centers after certified CLU files are sent to APFO at **http://www.apfo.usda.gov**/. Metadata files for certified CLU's already sent to APFO will also be posted to the same web site for Service Centers to download their metadata using FTP.

D Example of CLU Metadata

See Exhibit 22 for an example of FGDC compliant metadata for a CLU file.

282-290 (Reserved)

.

*--Part 8 GIS in Emergency Preparedness and Response

Section 1 Roles and Responsibilities

291 GIS Specialist Duties for Emergency Management

A Overview

The State Office GIS specialist has critical job functions relevant to both general program administration and emergency events. 1-SEM has established National and State Emergency Response Teams. Unless otherwise designated by SED, GIS specialist shall serve as the geospatial officer as part of the State Emergency Response Team. The geospatial officer provides geospatial support to the State Office, Service Centers, and emergency response teams at the National, State, and local levels for emergency planning, response, and recovery. For the purpose of this Part, the State Office **GIS specialist** and State Office **geospatial officer** are considered the **same resource** and used interchangeably.

The geospatial officer shall work and coordinate efforts with the:

- CEB, as needed
- national geospatial officer
- SEB
- SED
- State Emergency and Homeland Security Offices
- other FSA GIS specialists, as appropriate
- other Federal Agencies supporting a large scale event in the respective State.

The State Office geospatial officer shall use geospatial information and GIS software to support emergency management activities. Responsibilities for emergency management include, but are **not** limited to:

- assessing possible structural impacts or damage for agriculture
- assisting in activities for preparedness, response, recovery, and mitigation efforts
- assisting in coordinating efforts with Field Offices, SEB's, and CEB's in assessing and completing LAR's using GIS
- evaluating the location and spatial extent of damage
- identifying affected areas of damage of CLU.--*

B Preparedness

The geospatial officer's responsibilities to emergency management directly concerns GIS operations and should be employed in each State. These operations support day-to-day program activity and are also paramount for data preparation and overall readiness for response and recovery efforts during an emergency. The geospatial officer shall ensure that the data requirements in the following table are met.

Note: Geodata files should be stored in both Statewide and county format. Geospatial officers **must** have access to files if network access is unavailable. A designated laptop and/or external drive are necessary for GIS specialist/geospatial officer job functions.

	Program	Timeframe to	
Activity	Area	Complete	Notes
Bookmark Geodata and	Security and	Update as	Takes time to enter sites
Disaster Resources	Emergency	needed.	and bookmark references.
	Management		
C:\geodata replicated to local	Geodata	Update	Redundant backups are
drive and external drive	Management	monthly.	critical for FSA readiness.
Create County Emergency	Security and	Update yearly.	Prepare a county template
Management Map Template	Emergency		with basic legend,
	Management		disclaimers, title, and
			logos that is ready to use.
Create State CLU	Common	Create	Create and archive State
	Programs	monthly.	CLU by month.
Create State CRP Layer	Conservation	Create	
		monthly.	
Create State Emergency	Security and	Update yearly.	Prepare a State template
Management Map Template	Emergency		with basic legend,
[Cannot use EM because	Management		disclaimers, title, and
already in 1-CM.]			logos that is ready to use.
Create State FFSF Point Layer	Security and	Create and	DR 1800 requirement.
	Emergency	update yearly.	
	Management		
Create State Service Center	Geodata	Update as	Maintain locations of all
Point Layer	Management	needed.	Service Centers.
Create Statewide Grain Storage	Facility Loans	Create	Updated as sites are added
Bin Point Layer		monthly.	using the ArcGIS Grain
			Storage Bin Tool.

B Preparedness (Continued)

	Program	Timeframe to	
Activity	Area	Complete	Notes
Create Tract Emergency	Security and	Update yearly.	1-SEM, paragraph 127
Management Map Template	Emergency		provides map standards.
	Management		Prepare a tract template
			with basic legend,
			disclaimers, title, and
			logos that is ready to use.
F:\geodata\Cadastral Folder	Geodata	Check yearly.	Ensure that PLSS and
Maintenance	Management		national grid are available
			on F drives and on an
			external hard drive in the
			State Office.
F:\geodata\Disaster_events\Stor		Check yearly.	Ensure that year folders
m_summaries Folder	Management		are created and subfolders
Maintenance			are added for each
			date_event.
F:\geodata\Disaster_events\US	Common	Update	Ensure that year folders
DM Folder Maintenance	Programs,	weekly during	are created.
	Security and	drought	
	Emergency	events.	
	Management,		
	and Disaster		
	Programs		
F:\geodata\geology Folder	Geodata	Check yearly.	Ensure that seismic zones
Maintenance	Management		are ready to use.
F:\geodata\government_units	Geodata	Check yearly.	Ensure that county
Folder Maintenance	Management		boundaries, city
			boundaries, and townships
			are ready to use.
F:\geodata\Hazard_site Folder	Geodata	Check yearly.	Ensure that FEMA
Maintenance	Management		floodplains, sink holes,
			and other hazard sites are
			ready to use.
F:\geodata\Hydrography Folder	Geodata	Check yearly.	Ensure that streams and
Maintenance	Management		lakes are ready to use.
F:\geodata\hydrologic_units	Geodata	Check yearly.	Ensure that hydrologic
Folder Maintenance	Management		unit codes are ready to
			use.

B Preparedness (Continued)

	Program	Timeframe to	
Activity	Area	Complete	Notes
F:\geodata\ortho_imagery Folder Maintenance	Geodata Management	Check yearly.	Ensure that current NAIP is available and ready to use.
F:\geodata\soils Folder Maintenance	Geodata Management	Check yearly.	Ensure that Soil Survey Geographic Soils are ready use.
F:\geodata\topographic_images Folder Maintenance	Geodata Management	Check yearly.	Ensure that 1:24000 topographic images are ready to use by county.
F:\geodata\transportation Folder Maintenance	Geodata Management	Check yearly.	Ensure that roads, rail, and airports files are ready to use.
Geocode FSA Employee Home Locations	Security and Emergency Management	Update quarterly.	Used for identification of impacted employees.
Install and Prepare HAZUS-MH Software	Security and Emergency Management	Update as needed.	OCIO, TSD distributes. Also load State-level data.
Install FSA Map Series	Security and Emergency Management	Update as needed.	OCIO, TSD distributes.
Install HURREVAC Software	Security and Emergency Management	Update yearly before hurricane season.	OCIO, TSD distributes. Not required in all States.
Maintain External Geodata Access Login Accounts	Security and Emergency Management	Update as needed.	Ensure that data access accounts and passwords are current for external emergency data sites.
Setup and Bookmark NCDC Weather and Climate Toolkit	Security and Emergency Management	Update as needed.	No OCIO, Technical Support Division permissions required. Ensure that bookmark is available.

C Response

The geospatial officer must be able to quickly respond to an event, using data and resources either already staged or available through outside sources at the time of the event. Successful response during disaster events is directly linked to effective preparation. The following table identifies general tasks the geospatial officer is responsible for during an emergency event.

Activity	Knowledge Areas	Timetable	Notes
Create Maps and	Apply MXT files, spatial	Updated throughout	Numerous map types
Reports	statistics, and tabular	the event.	may be required for
	reports.		each event that
			include State, county,
			and tract level maps.
Identify Area of	Digitize, create shape	Create Immediately.	Create a shapefile and
Impact (Scope)	file, and theme		begin taking notes of
	selections.		event for metadata.
Imagery	Data transfers from	High Priority -	Provides a picture to
Prioritization	external web sites.	Satellite sources vary	identify the impact
		in timing, availability,	and severity of event.
		and usability.	
Incorporate	GPS data, NEXRAD,	High Priority - Make	Begin augmenting
External Geodata	HURRIVAC,	requests for external	disaster response with
(Magnitude)	HAZUS-MH, SPC, plot	data after location	data from external
	locations, and hot	and data is	sources showing
	linking.	established.	magnitude of the
			event.
Locate Service	Geocode, spatial	As needed for SEB	Required for major
Center Locations	selection, and intersect.	and National Office.	event situations.
Metadata	ArcCatalog, XML,	Create for each event	Needed to archive
Maintenance	projections, and	and shapefile.	files.
	attributes.		
Spatial Analysis	Intersect, spatial	As needed.	This will vary by
	selections, predictive		event type.
	models, image		
	comparisons, image		
	interpretation, overlay		
	operations, buffer, and		
	query.		

D Recovery

Recovery activities provide an opportunity for the geospatial officers to summarize the overall event and create maps that display/designate damaged areas, county eligibility for a Secretarial disaster designation, Administrator physical loss notification, and Presidential disaster declarations. Tasks in the following table shall be considered for each event and completed as appropriate.

Activity	Timeframe	Audience	Notes
Archive Event	1 week after	GIS specialists	Archives and finalizes data
Geospatial Data	event	and National	developed for event
	completion.	Office.	response/recovery.
Complete Process and	1 week after	GIS specialists	Identifies what worked, what did
Event Notes	event	and National	not work, and details steps used
	completion.	Office.	for the event.
Finalize Metadata	1 calendar day	GIS specialists	Helps in updating the geospatial
	after completion	and National	data and developing geospatial
	of event.	Office.	data in the future.
Identify Needs And Key	Throughout	SEB, National	Maps created with this
Recovery Areas	recovery phase.	Office, and	information are primarily used
Through Shapefile		CEB.	after major damage events, such
			as floods, hurricanes, tornadoes,
			and wildfires.
Map Creation (Includes	Throughout	SEB, SED,	Provide overview maps (such as
maps showing	event.	State Office,	State, county, and area maps) that
Presidential, Secretarial,		National Office,	define the scope, extent, and
and Administrative		and CEB.	magnitude of the event.
physical loss			
notifications.)			
Obtain Post-Event	Approximately	GIS specialists	Image comparisons of the event
Satellite Imagery	1 month after	and SEB.	before, during, and after, as
	event, as needed.		needed.
Geospatial Data	Throughout	Government	FSA may only share aggregate
Coordination During	event.	Agencies	data (totals, generalized statistics,
/After Events		addressing	State- or county-level reference
		Emergency	maps), and shall not share actual
		Management	FSA geospatial data, such as
			CLU, CRP, wetlands, or bin
			information with non-USDA
			Federal, State, or local agencies
			during an event. All maps for
			public release must be cleared by
			SED. If additional guidance is
			needed, contact EPD for
			emergency management issues or
			the FSA FOIA officer for privacy
			concerns.

E Mitigation

Mitigation efforts are a core component of geospatial officer responsibilities. Effective mitigation improves FSA's ability to respond to and recover from disaster events. Mitigation tasks should be considered ongoing and are summarized in the following table.

Activity	Timeframe	Notes/Examples		
County Agricultural Assets and Mapping	Review for each SEB meeting.	Identify FFSF facility locations and Service Center points locations with elevation, bin locations, prime farmland, soils susceptible to flooding, CLU cropland, CRP, FLP		
Develop County Risk Maps	Develop and maintain.	easements, employee locations, etc. Create a set of State maps that show counties thematically for overall risk, flood risk, prevent plant claims, tornado touchdowns, drought, etc.		
Develop Service Center Risk Maps	Develop and maintain.	Use NAIP and Service Center location overlay risks, such as flood zones, seismic zones, sink hole locations, etc.		
GIS Drill Exercises	After every 3 years.	 Participate in State and FSA emergency drills run by FEMA, State, or local emergency groups. Note: FSA may only share aggregate data (totals, generalized statistics, State- or county-level reference maps), and shall not share actual FSA geospatial data, such as CLU, CRP, wetlands, or bin information with non-USDA Federal, State, or local agencies during an event. All maps for public release must be cleared by SED. If additional guidance is needed, contact EPD for emergency management issues or the FSA FOIA officer for privacy concerns. 		
Identify Risk Areas/Hazard Identification for the State	Ongoing updates.	Flood risks, earthquake zones, inundation zones, high risk areas, and prevent plant areas.		

F Emergency Training Requirements

To successfully prepare for and respond to an emergency or disaster events, some specialized training is necessary. Free, online and self-paced emergency preparedness and response training resources are available to FSA employees and shall be added to the GIS specialist/geospatial officer IDP in consultation with their supervisor. The courses in the following table are part of a curriculum that will build overall skill sets in emergency management. Optional courses discussed later further strengthen skills in emergency management and geospatial concentration. Skills acquired, particularly in the geospatial arena, translate into GIS support for other FSA program areas. Listed classes are free resources provided by USDA (AgLearn or USDA ESRI Enterprise Contract) or FEMA at http://training.fema.gov/is/crslist.asp. The classes last an average 1 hour and the curriculum can be spread out over 2 calendar years for the core emergency management classes identified.

		Year 1	
Course Number	Course Title	Training Location	Contact Hours
	Emergency and Disaster Preparedness	AgLearn	0.5
	Reading and applying the national grid	http://publicintelligence.net/us- national-grid-training-information- and-maps/	1.0
	SEB and CEB Training	AgLearn	0.5
ICS-100	Introduction to the Incident Command System	AgLearn	3.0
ICS-200	Incident Command System	AgLearn	1.5
ICS-288	The Role of Voluntary Agencies in Emergency Management	AgLearn	0.5
IS-271	Anticipating Hazardous Weather & Community Risk	FEMA EMI at http://training.fema.gov/IS/crslist.asp	1.0
SEC-NIMS-001	Introduction to National Incident Management System	AgLearn	1.0

	Year 2					
Course Number	Course Title	Training Location	Contact Hours			
IS-1	Emergency Manager: An Orientation to the Position	AgLearn	10.0			
IS-111.a	Livestock in Disasters	FEMA EMI at	3.5			
IS-120.a	An Introduction to an Exercise	http://training.f	1.0			
IS-230.b	Fundamentals of Emergency Management	ema.gov/IS/crsli	1.0			
IS-241	Decision Making and Problem Solving	st.asp	0.5			
IS-331	Introduction to Radiological Emergency Preparedness		1.0			
IS-800.b	National Response Framework		0.3			
IS-811	Emergency Support Functions #11 Agriculture and Natural Resource Annex		.25			

F Emergency Training Requirements (Continued)

The following table provides additional courses beyond the 2-year curriculum for consideration when developing IDP's.

Course			Contact
Number	Course Title	Training location	Hours
IS-10a	Animals in Disasters: Awareness and	FEMA EMI	0.4
	Preparedness		
IS-11a	Animals in Disasters: Community Planning		0.6
IS-102a	Deployment Basics for FEMA Response	http://training.fema.go	1.0
	Partners	v/IS/docs/IS%20Broch	
		ure.pdf	
IS-241.a	Decision Making and Problem Solving	FEMA EMI	0.8
IS-393.a	An Introduction to Hazard Mitigation	AgLearn	1.0
IS-546.a	Continuity of Operations Awareness	FEMA EMI	1.0
	Course		
IS-547.a	Introduction to Continuity of Operations		2.0
IS-814	Emergency Support Function #14 – Long		1.0
	Term Community Recovery		

F Emergency Training Requirements (Continued)

The USDA ESRI Enterprise Contract offers free online GIS courses through the ESRI Virtual Campus and should be considered a resource when IDP's are developed. ESRI courses provide the geospatial officer an opportunity to refine existing GIS skill sets and develop new GIS skill sets as they relate both to emergency management and daily activities for GIS responsibilities within FSA. State Office GIS specialists can contact Amy Penechar by e-mail to **amy.penechar@slc.usda.gov** to register for Virtual Campus courses. Some course examples are as follows:

- Basics of the Geodatabase Data Model
- Geocoding with ArcGIS Desktop
- Geoprocessing with ArcGIS Desktop
- HAZUS-MH Flood Model Output and Applications
- Introduction to the HAZUS-MH Comprehensive Data Management System
- Introduction to Using HAZUS-MH for Earthquake Loss Estimation
- Introduction to Using HAZUS-MH for Hurricane Loss Estimation
- Introduction to Using HAZUS-MH to Assess Losses from a Riverine Flood Hazard
- Learning ArcGIS Spatial Analyst
- The 15-Minute Map: Creating a Basic Map in ArcMap
- Understanding GIS Queries
- Using LiDAR Data in ArcGIS.

G Software

The following software that is available from OCIO, TSD, directly supports emergency management and shall be installed on all GIS specialist/geospatial officer workstations/laptops:

- ArcGIS Geostatistical Analyst
- ArcGIS Spatial Analyst
- Desktop ArcGIS Arc/Info
- FEMA HAZUS-MH
- FSA Map Series
- HURREVAC (all States with hurricane risk, or as needed, if providing support/assistance).--*

H Outreach for Emergency Management

State and local groups in both emergency management and geospatial fields have resources, training, and information that are beneficial for FSA. Opportunities to partner with and develop an awareness of State-based activities occur at both State and regional meetings and conferences throughout the year. The geospatial officer shall engage in outreach efforts to build partnerships with outside groups and agencies as they relate to emergency management and GIS. Examples of these activities include the following.

Activity	Frequency	Benefit/Considerations	Notes
Emergency	Develop and	Educational resource for	The geospatial officer shall
Brochures	maintain, as needed.	producers and other	work with the State
	Consider only major	emergency management	communication coordinator
	events impacting the	groups to define FSA	to obtain existing brochures
	State.	involvement and resources.	or develop local materials
			that meet visual standards.
			Powerful and easy to
			maintain outreach tool for
			State and local governments
CIG			and producers.
GIS Consortium	Once per year.	Valuable partnership	Opportunities for FSA
Conference		opportunities, resource awareness, and ongoing	presentations about how GIS is used in the State for FSA.
Conference		education.	is used in the State for FSA.
Newsletter or	Periodic, as needed.	Outreach opportunity for	Quantifiable outreach
Professional	renouic, as needed.	FSA to further define what	component that serves as an
Articles		FSA is doing in each State as	FSA resource for producers,
7 Hiteles		it relates to emergency	stakeholders, and partners.
		management and GIS.	Sumericitette, und partiere.
State	Once or twice per	Allows for FSA to develop	Outreach opportunity to
Emergency	year.	and maintain contacts in the	educate emergency
Management		emergency management area	management groups of
Associations		Statewide.	USDA, FSA role in disaster
			recovery and available
			resources.
State GIS	Periodic throughout	Allows FSA to have a	Powerful partnership
Committees	the year.	visible role in GIS	opportunities for NAIP and
and Regional		nationwide.	other FSA- and GIS-based
GIS Groups			programs.
Table Top	Once per year with	Develop and practice	Required in 1-SEM.
Exercises	Executive Board and	response and recovery plans	
	once every 3 years	for FSA to protect and serve	
	for FSA.	producers. Ensure readiness	
	<u> </u>	for FSA, when needed.	

292-300 (Reserved)

.

*--Section 2 Supporting Geospatial Hazards

301 Hail

A Overview

Hail may cause damage to crops, livestock, buildings, and equipment, including:

- complete destruction of crops from large amounts of hail
- damage to USDA buildings
- damage to USDA employee homes
- damage to farm buildings, such as roof damage, broken windows, or damaged siding
- severe injuries or death of livestock because of very large hail
- yield losses to crops that are damaged, but not destroyed, by hail.

B Recommended Data Sources

Hail events can be mapped based on reports from the public, observations by FSA personnel, analysis of radar data, or analysis of post-event satellite imagery.

Potential data sources for hail location and estimated size include the following:

- NOAA NCDC at http://www.ncdc.noaa.gov/nexradinv
- NOAA NWS at http://www.nws.noaa.gov
- NOAA SPC at http://www.spc.noaa.gov.

C Best Practices for Analysis

GIS analysis can be effective in determining the location and estimated size of hail damage, but **cannot** be used in place of a field visit to determine actual damage. Typical analysis of hail data may require the GIS specialist to complete the following processes and tasks:

- provide preliminary location data to CED based on storm reports catalogued on the SPC web site
- extract hail index data from NCDC archives to identify more refined point locations of potential hail storms
- extract storm total precipitation data from NCDC archives to identify areal extents of potential hail storms--*

*--301 Hail (Continued)

C Best Practices for Analysis (Continued)

- heads-up digitizing of aerial extents of hail storms
- create attribute and spatial queries
- union and intersect overlay operations
- data manipulation
- process GPS data.

When a hail storm has occurred in an area, the GIS specialist shall determine the best available data to use in analysis. Preliminary data within 24 hours of a storm tends to be less refined and may be limited to SPC reports, but as data becomes available through NCDC, location data may become more usable. Extreme hailstorms that cause large amounts of defoliation may be visible on satellite images acquired after the storm event.

D Presentation of Analysis Results

Maps generated in response to a hail event are generally designed to provide CEB with spatial information to assist in locating damage and completing LAR. Hail maps should be designed to:

- depict the general location and extent of a hail storm in relation to known landmarks like roads or cities
- differentiate between radar-estimated hail size and location and observer reports
- support local and national reporting requirements.--*

*--301 Hail (Continued)

D Presentation of Analysis Results (Continued)

Datasets that should be included on hail analysis maps include:

- city locations
- CLU's
- county boundaries
- FFSF facilities
- hail report locations (points)
- highway or other road data
- other farm data as available
- section and/or township boundaries
- storm total precipitation
- USDA Office locations.
- **Note:** Maps containing CLU and FFSF data are for internal distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies **only** if data has been sufficiently aggregated to protect sensitive data covered under 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.--*

*--302 Heavy Precipitation

A Overview

Heavy precipitation events can cause significant property, soil, and crop damage or loss. This type of event can occur in very short bursts or over a more prolonged period of time. The damage from these events can be modeled over a couple hours, a 24-hour period, a 48-hour period, a week, or longer accumulations. Crops, feed, and hay supplies are the most susceptible to heavy precipitation events. Doppler weather radar can be used for the detection of heavy precipitation within a storm system.

Common agricultural losses for heavy precipitation include:

- crops
- feed and hay supplies
- fence damage
- transportation infrastructure damage or loss.

GIS analysis can be very effective in assessing damage and losses caused by heavy precipitation events. State Office GIS specialists shall use GIS analysis to assist with program administration for heavy precipitation in disaster, conservation, and prevented plant program requirements. This includes tracking and compiling weather events, imagery analysis, and map development.

B Recommended Data Sources

The following are heavy precipitation data sources/resources for GIS specialists.

Note: In addition to the following resources, local data is often available from many State agencies and may provide more detailed information.

Data Source/Resource	Purpose	Resource Location	Notes
AHPS	Single-day shapefile archive for precipitation data that are quality- controlled, multi-sensor (radar and rain gauge) precipitation estimates obtained from NWS River Forecast Centers.	http://water.weather .gov/precip/downloa d_nonjs.php	The original data are in XMRG format and projected Hydrologic Rainfall Analysis Project grid coordinate system.
GLOVIS	Access to several types of imagery, including Landsat and MODIS.	http://glovis.usgs.go v/	

__*

B Recommended Data Sources (Continued)

	D		
Source/Resource	Purpose	Resource Location	Notes
	ccess to pre-and	http://hdds.usgs.gov/	A log-in account
	ost-event imagery for elected disaster events.	hdds2/	must be established
se.	elected disaster events.		to access restricted data and can be
			requested on the web
			site.
	ccess and download	http://www.ncdc.noa	1-hour precipitation
2	EXRAD data files in	a.gov/nexradinv/	(N1P/78), 3-hour
	apefile format by		precipitation
	ational Doppler Radar		(N3P/79), and Digital
sit	tes.		Precipitation Array
			(DPA/81).
	ocumentation and	http://www4.ncdc.no	Users can query State,
	Immary reports for all eather-related events	aa.gov/cgi-	county, date, and type of weather event.
	or the entire U.S.	win/wwcgi.dll?wwev ent~storms	of weather event.
	ummary reports for the	http://www.ncdc.noa	Users can select,
	eather stations	a.gov/oa/climate/stat	State, county, city, or
th	roughout the U.S.	ionlocator.html	latitude and
			longitude, if known.
	rchival mosaiced	http://www.ncdc.noa	
	flective images from	a.gov/extremes/scec/	
	EXRAD that can be	searchrecs.php	
-	earched by day, month, nd year.		
NOAA Heavy U.	.S. climate monitoring	http://www.ncdc.noa	
Precipitation we	eekly products that	a.gov/oa/climate/sev	
su	immarize NCDC for	ereweather/rainfall.	
we	eekly temperatures	html	
	ap, weekly		
-	recipitation maps, and		
	e Palmer Crop		
	loisture Index Map.		<u> </u>
	rchival information for	http://www.ncdc.noa	Summaries occur for
	immaries of major	a.gov/oa/documentli	the entire country and
	ecipitation events in e U.S.	brary/rainfall.html	can be isolated by State.

B Recommended Data Sources (Continued)

Data Source/Resource	Drawnogo	Degennes Legetier	Natas
	Purpose	Resource Location	Notes
NOAA Satellite	Information and	http://www.ncdc.noa	
and Information	summary maps for both	a.gov/temp-and-	
Services for	temperature and	precip/maps.php	
Temperature and	precipitation based by		
Precipitation	1-month to 1-year		
Maps	increments.		
NOAA U.S. State	Summarizes major	http://www.ncdc.noa	
Climate Extremes	weather events for all-	a.gov/extremes/scec/	
Committee	time extremes for	searchrecs.php	
	temperature,		
	precipitation, and snow		
	depth.		
NWS CPS	Various outlook	http://www.cpc.ncep	
	forecasts for temperature	.noaa.gov/	
	and precipitation.		
USDA FAS Crop	Access to daily MODIS	http://www.pecad.fa	
Explorer	imagery.	s.usda.gov/cropexplo	
1		rer/modis_summary	
		/index.cfm	
USGS Earth	Access to several types	http://earthexplorer.	A log-in account
Explorer	of imagery including	usgs.gov/	must be established
1	Landsat and SPOT.	0.0	to access restricted
			data and can be
			requested on the web
			site.
USGS Landsat	Landsat 5 and Landsat 7	http://landsat.usgs.g	
Acquisition	acquisition schedule.	ov/tools_acq.php	
Schedule		_	

C Best Practices for Analysis

Heavy precipitation events are characterized by point data that can be interpolated to define the severity and extent using spatial analysis techniques in GIS. The damage for heavy precipitation events is often characterized by saturated soils, washouts, and standing water that can often be further identified using satellite imagery, and ground truthing using GPS and digital cameras. Typical analysis requires the State Office GIS specialist to complete the following geospatial techniques:

- create thematic maps to summarize various aspects of the data by State, county, and tract
- IDW, Trend, and Kriging interpolations
- perform attribute and spatial queries
- perform table manipulations
- perform union and intersect overlay operations
- plot and project precipitation point data
- rasterize data
- use cartographic displays to depict precipitation intensity
- use spatial selections to identify impacted CLU's.

The State Office GIS specialist shall use the following table to better understand and depict damage for heavy precipitation.

Note: The period of time that is covered and spatial analysis techniques that need to be used are often determined by the severity of the event and the amount of damage that has occurred. A combination of multiple days of worth of data to possibly weeks or months of data may be needed depending on the situation. The following table is a guide.

IF	THEN				
heavy	follow	v steps 1 through 5.			
precipitation	Step	Action	Purpose	Notes	
events	1	Obtain the	Needed to create	Data source is AHPS at	
occurs		precipitation	rainfall	http://water.weather.gov/pr	
		shapefile for the past	interpolation	ecip/download_nonjs.php.	
		days event.	map.		
	2	Interpolate rainfall	Creates a gridded	ArcToolbox - Interpolation -	
		data.	shapefile to	IDW.	
			display rainfall.		

C Best Practices for Analysis(Continued)

IF	THEN	N		
heavy	Step	Action	Purpose	Notes
precipitation	3	Request Field	Support	Used in APLN requests and
events		Offices to obtain	information for	Secretarial disasters.
occurs		GPS points and	disaster requests.	
(Continued)		digital photos.		
	4	Plot field GPS	Assists in	
		points and add to	developing	
		Map Document	damage reports.	
		(Hot Links).		
	5	Determine if	Assists in	Improves data accuracy and
		Imagery is	identifying areas	assists the field in addressing
		available and	of standing water	standing water issues in fields.
		needed	or flooding.	Possible data sources are SPOT,
				LandSat TM (30-Meter),
				AWiFS (56-Meter), or MODIS
				(250-Meter).
exceptional	compl			h the following steps.
precipitation	6	Obtain imagery	Valuable support	Requires a number of satellite
is sustained		to show standing	information for	images to show length of time
over time		water over time.	heavy	water inundated fields or
			precipitation	impacted land. Possible Data
			events.	Sources are SPOT, LandSat TM
				(30-Meter), AWiFS (56-Meter),
				or MODIS (250-Meter).
	7	Use AHPS.	Obtain the	Data source is AHPS at
			gridded rainfall	http://water.weather.gov/preci
			data for length of	p/download.php.
			time precipitation	
	C C		has occurred.	
	8	Use imagery	Show	Used in APLN requests and
		analysis to show	concentrations of	Secretarial disasters. Look for
		standing water.	water standing on	Bands 5 and 3 combine to a
			the ground or	numeric grid. High values will
			flooded areas.	reflect water reflectivity.

--*

5-1-12

IF	THEN	N		
exceptional	Step	Action	Purpose	Notes
precipitation	9	Request	Streamline field	Used in APLN requests and
is sustained		additional GPS	data collection and	Secretarial disasters.
over time		and digital	document event.	
(Continued)		images of		
		impacted areas.		
	10	Check NCDC	Create additional	Can create a base weather
		NEXRAD	documentation of	image of event path using
		inventory.	rainfall event, if	Level II data. Useful for SEB
			needed.	and CEB discussions of rain
				events to make factual decisions
				on storm paths.
	11	CLU intersect	Identify areas	Allows for identification and
		or overlay.	impacted by a	statistical summary of total
			heavy precipitation	farmland impacted.
			event.	

C Best Practices for Analysis(Continued)

D Reports and Maps

At the conclusion of heavy precipitation events, the State Office GIS specialist shall create a series of reports and maps that assist in the local Field Offices, SEB's, CEB's, and the National and State Offices in assessing the scope, magnitude, and extent of the event. Reports and maps can be created to determine the scale of damages and the impact to agriculture. To evaluate the location and spatial extent of damage:

- assess possible structural impacts or damage concerning agriculture
- assist in coordinating efforts with Field Offices, SEB's, and CEB's in completing LAR's
- identify areas in the State or county that are highly susceptible to crop damage because of standing water, hydric soils, and/or flooding conditions
- pinpoint areas of damage that include CLU.--*

D Reports and Maps (Continued)

The following table provides examples of reports and maps that will be prepared for heavy precipitation depending on the damage impact and situation.

Note: Maps containing CLU and FFSF data are for internal distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies **only** if data has been sufficiently aggregated to protect sensitive data covered under 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.

TT			D •	
Heavy Precipitation Event	Base Tasks to Accomplish	Timeframe to Complete	Primary Product Recipients	Primary Data Sources/Resources
Multi-Day Events	FSA Map Series Emergency Management	Defines farms impacted by standing or flood water.	CED and producers impacted.	Current NAIP, CLU, national grid, and bin locations.
Multi-Day Events	Landsat Map Comparisons	Approximately 16 calendar days after event. Requires before and after satellite images.	GIS specialist/ geospatial officer.	Satellite imagery, county boundary, and digitized path location.
Single-Day Events	County Precipitation Extent Maps (Use FSA map series to create individual county maps based on the Precipitation Extent State Map.)	Next workday after event.	CED and CEB.	AHPS, county boundary, national grid, major roads, Service Center locations, and major geographical features.
Single-Day Events	Damage Point Map (If needed, based on the situation.)	Completed and updated as field data is provided.	CEB and SEB.	County boundary, major roads, Service Center locations, national grid, and major geographical features.

D Reports and Maps (Continued)

Heavy Precipitation	Base Tasks to	Timeframe to	Primary Product	Primary Data
Event	Accomplish	Complete	Recipients	Sources/Resources
Single-Day	Precipitation Extent	Next workday	SED and	AHPS and county
Events	State Map	after event.	CED.	boundary.
Single-Day or	PowerPoint	Compiled before	SEB.	Maps in this table,
Multi-Day	Overview of Storm	SEB Meeting.		statistics from
Events	Damage Report			analysis, digital
				photos, news articles,
				and other related
				information.

303 Floods

A Overview

Flooding is the most common natural disaster in the U.S. and can negatively impact both agriculture and USDA business functions. Potential negative impacts from flooding include:

- damage or destruction of homes of FSA employees
- damage or destruction of USDA buildings
- inability of FSA employees to report to work because of inundated roads
- losses to crops because of prolonged inundation, inability to plant, or inability to access fields
- losses to dairy production because of the inability to deliver product because of inundated roads
- losses to farms, including damaged or destroyed buildings, fences or livestock feed supplies
- losses to livestock either because of inundation or inability to graze.--*

*--303 Floods (Continued)

B Recommended Data Sources

Floods are classified according to whether they are slow- or fast-rising. The type of flood may dictate the data used to perform flood impact analysis. For preliminary situation reports, modeled flood extents may be the most accurate data available. For slow-rising flood events, remotely sensed data (satellite imagery, radar data, or aerial photography) may be available to determine actual flood extents after the event has occurred.

Potential data sources for modeled flood extents include:

- FEMA floodplain maps at http://www.fema.gov/hazard/map/flood.shtm
- flood extents developed by local emergency management groups or engineering firms
- HAZUS-MH-generated flood extents
- U.S. Bureau of Reclamation at http://www.usbr.gov/pmts/flood/index.html
- USACE modeled discharges (for rivers managed by USACE).

Analysis of flood extents should be performed using the best available data.

The geospatial officer should communicate with local emergency managers to identify availability of modeled data.

Data sources for remotely sensed data include:

- GLOVIS at http://glovis.usgs.gov for access to several types of imagery, including Landsat and MODIS
- HDDS at http://hdds.usgs.gov/hdds2 for access to pre- and post-event imagery for selected disaster events

Note: A log-in account **must** be established to access restricted data and can be requested on the web site.

- USDA FAS Crop Explorer MODIS Rapid Response at http://www.pecad.fas.usda.gov/cropexplorer/modis_summary/index.cfm for access to daily MODIS imagery
- USGS Landsat Acquisition Schedule at http://landsat.usgs.gov/tools_acq.php that provides the Landsat 5 and Landsat 7 acquisition schedule.--*

Par. 303

C Best Practices for Analysis

GIS analysis can be effective in assessing impacts of flooding to agriculture. Typical analysis may require the GIS specialist to complete the following processes and tasks:

- attribute and spatial queries
- data manipulation
- heads-up digitizing
- processing GPS data
- processing satellite imagery
- union and intersect overlay operations.

When flooding is predicted for an area, preliminary analysis shall be done to determine potential flood impacts, as follows:

- if modeled flood extent data is available for the area that may be affected, use the modeled flood extent data that corresponds with the forecast flood magnitude (for example 100-year flood, 500-year flood)
- if no modeled flood extent data is available, but historical imagery from a flood event of similar magnitude is available, use the historical imagery for analysis
- use the Intersect Tool in ArcToolbox to "cut" CLU polygons based on the flood extent
- update the "Calculated Acres" column of the resulting CLU data to reflect the updated geometry
- summarize the attribute table of the resulting data by land classification code, including the sum of the calculated acres as a summary statistic
- use a spatial query to identify all Service Centers, FFSF points, and grain storage bins within the affected area.--*

C Best Practices for Analysis (Continued)

When flooding has occurred in an area, the GIS specialist shall determine the best available data for use in analysis. Data sources, in preferred order, may include:

- high resolution imagery (for example SPOT satellite imagery, FEMA aerial photography, etc.)
- medium resolution imagery (LandSat TM 30-Meter satellite imagery and AWiFS 56-Meter satellite imagery)
- low resolution imagery (MODIS 250-Meter satellite imagery)
- modeled flood-extent data from USACE or other authoritative source
- modeled flood-extent data from HAZUS-MH
- observations from field personnel.
- **Note:** Observations from field personnel may be impossible to obtain for a large flood area and do not necessarily lend themselves to large-scale analysis.

After a flood extent has been obtained for the flood event:

- use the Intersect Tool in ArcToolbox to "cut" CLU polygons based on the flood extent
- update the "Calculated Acres" column of the resulting CLU data to reflect the updated geometry
- summarize the attribute table of the resulting data by land classification code, including the sum of the calculated acres as a summary statistic
- use a spatial query to identify all Service Centers, FFSF points, and grain storage bins within the affected area.--*

*--303 Floods (Continued)

D Presentation of Analysis Results

Maps and reports generated in response to a flood event should be designed to:

- depict the general location and extent of flooding
- distinguish flooded cropland from other agricultural land
- identify other impacts to agriculture, including farm buildings, USDA offices, and FFSF facilities
- support local and national reporting requirements.

Datasets that should be included on flood analysis maps include:

- CLU
- FFSF facilities
- flood extent
- satellite imagery
- USDA office locations
- other farm data as available.
- **Note:** Maps containing CLU and FFSF data are for internal distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies **only** if data has been sufficiently aggregated to secure data according to 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.

Because flood-extent data of riverine floods may not be suited for detailed presentation (for example, the flood extent is extremely narrow in relation to the length of the river), textual summaries and charts are useful for identifying flooded cropland totals.--*

*--304 Tornadoes

A Overview

Tornadoes are violent storms that arrive with little or no notice. The damage inflicted by tornadoes can be devastating in the areas that are directly impacted by the event. Crops, farm buildings, equipment, infrastructure, and lives can be wiped out in an instant. Doppler weather radar can detect rotational algorithms that indicate the likely presence of a strong mesocyclone that is in some stage of tornadic development. This data can be used to further address tornado impacts when combined with satellite imagery.

Common agricultural losses for tornadoes include:

- barns and other structures
- crops
- equipment and machinery
- feed and hay supplies
- fences
- forests
- grazing/pasture losses
- homes
- livestock
- transportation infrastructure
- utilities.

GIS analysis is very effective in assessing damage and losses caused by tornadoes. GIS specialists shall assist in tornado-related program administration by tracking tornado events, compiling imagery, and develop maps in support of emergency management efforts for tornado events impacting agriculture.--*

*--304 Tornadoes (Continued)

B Recommended Data Sources

Potential data sources for tornado analysis are provided in the following table.

Note: In addition to the following resources, local data is often available from many State agencies and may provide more detailed information.

Data Source	Purpose	Resource Location	Notes
GLOVIS	Access to several types of imagery including Landsat and MODIS.	http://glovis.usgs.g ov/	
HDDS	Access to pre- and post-event imagery for selected disaster events.	v/hdds2/	A log-in account must be established to access restricted data and can be requested on the web site.
NCDC Data Inventory Search	Access and download NEXRAD data files in shapefile format by National Doppler Radar Sites.	http://www.ncdc.n oaa.gov/nexradinv/	Mesocyclone (NME/60) and Tornadic Vortex Signature (NTV/61).
NCDC NEXRAD Data Inventory Search	Documentation and summary reports for all weather-related events for the entire U.S.	http://www4.ncdc. noaa.gov/cgi- win/wwcgi.dll?ww event~storms	Users can query by State, county, date and type of weather event.
NCDC Weather Station Results	Summary reports from weather stations throughout the U.S.	http://www.ncdc.n oaa.gov/oa/climate /stationlocator.htm l	Users can select by State, county, and city, or latitude and longitude, if known.
NOAA Severe Weather for Tornadoes NOAA State of the	Information for tornado activity in the U.S. Includes recent tornadic activity and historical information.	http://www.ncdc.n oaa.gov/oa/climate /severeweather/tor nadoes.html	
Climate Tornadoes	Access monthly tornado reports by month and year.	http://www.ncdc.n oaa.gov/sotc/torna does/	

*--304 Tornadoes (Continued)

Data Source	Purpose	Resource Location	Notes
SPC	Access to preliminary storm	http://www.spc.no	CSV files can be
	reports for hail, tornadoes,	aa.gov/climo/repor	downloaded and
	and high winds for the past	ts/yesterday.html	plotted using
	24 hours.		latitude and
			longitude.
USDA FAS Crop	Access to daily MODIS	http://www.pecad.	
Explorer	imagery.	fas.usda.gov/crope	
		xplorer/modis_su	
		mmary/index.cfm	
USGS Earth	Access to several types of	http://earthexplore	A log-in account
Explorer	imagery, including Landsat	r.usgs.gov/	must be
	and SPOT.		established to
			access restricted
			data and can be
			requested on the
			web site.
USGS Landsat	Landsat 5 and Landsat 7	http://landsat.usgs.	
Acquisition	acquisition schedule.	gov/tools_acq.php	
Schedule	-		

B Recommended Data Sources (Continued)

C Best Practices for Analysis

GIS analysis can be effective in assessing the damage inflicted by a tornado for agriculture. Analysis may require the following tasks be completed:

- create thematic maps to summarize various aspects of the data
- heads-up digitizing
- hot link digital photos of the area
- imagery comparisons
- insert buffer zones around line and area layers
- perform attribute and spatial queries
- perform table manipulations
- perform union and intersect overlay operations
- process GPS data
- process satellite imagery
- process XY event theme data from NWS.--*

*--304 Tornadoes (Continued)

C Best Practices for Analysis (Continued)

The following table of spatial analysis options can be used to understand and depict damage from tornadoes.

Note: The amount of damage inflicted by a tornado will dictate the spatial analysis techniques that will need to be applied.

IF	THEN	THEN				
a tornado with	follow	follow steps 1 through 4.				
EF0 to EF2	Step	Action	Purpose	Notes		
winds occurs	1	Plot the latitude and	Identifies	Data source is SPC.		
		longitude of the tornado	touchdown			
		in a shapefile/	locations.			
		geodatabase.				
	2	Request Field Offices	Supporting	Supports APLN		
		collect GPS points and	information for	requests and Secretarial		
		digital photos.	disaster requests.	disaster designations.		
	3	Plot GPS points and add	Assists in			
		to map document.	developing			
			damage reports.			
	4	Use hot links to include	Overview			
		GPS point data linked	information for			
		with digital photos.	overall damage.			
a tornado with	comple	ete steps 1 through 4 and c	continue with the fo	ollowing steps.		
winds	Step	Action	Purpose	Notes		
exceeding	5	Determine best imagery	Imagery	Possible data sources		
EF3 or greater		available before and	analysis.	are SPOT, LandSat TM		
occurs		after tornado.		(30-Meter), AWiFS		
				(56-Meter) or MODIS		
		<u> </u>	<u> </u>	(250-Meter).		

*--304 Tornadoes (Continued)

IF	THEN	THEN				
a tornado with	Step	Action	Purpose	Notes		
winds	6	Create tornado path	Identify tornado	See tornado methodology		
exceeding		(shapefile) based on	damaged areas.	using imagery. Use pan		
EF3 or greater		imagery		sharpening or principle		
occurs		comparison.		component analysis.		
(Continued)	7	Obtain weather	Narrow down	Data source at		
		warning polygons.	and verify	http://www.nws.noaa.gov/		
			tornado location.	regsci/gis/shapefiles/.		
	8	Intersect CLU with	Quantify damage	See tornado methodology.		
		tornado path.	to cropland.	Intersect in ArcToolbox.		
	9	Summarize CLU to	Provide CED	Used as supporting		
		define damage based	and CEB	documentation for STORM		
		on land class codes	statistical	Reports.		
		and total farms/tract impacted.	support for LAR.			
	10	Use spatial query to	Identify	Used as supporting		
		identify all Service	agricultural	documentation for STORM		
		Centers, FFSF	resources	Reports.		
		points, and grain	impacted by	_		
		storage bins in	tornado.			
		tornado path.				

C Best Practices for Analysis (Continued)

D Presentation of Analysis Results

In the aftermath of a tornado, the geospatial officer shall create a series of reports and maps that assist local Field Offices, SEB's, CEB's, and the National Office in assessing the scope, magnitude and extent of the tornado. This information can be used to:

- assess possible structural damage concerning agriculture
- assist in coordination efforts of Field Offices, SEB's, and CEB's in assessing and completing LAR's
- evaluate the location and spatial extent of damage
- pinpoint CLU in damage areas.--*

*--304 Tornadoes (Continued)

D Presentation of Analysis Results (Continued)

Use following table as a guide for reports and maps for tornadoes:

Note: Maps containing CLU and FFSF data are for internal distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies **only** if data has been sufficiently aggregated to secure data according to 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.

Tornado Scale	Tasks to Accomplish	Timeframe to Complete	Primary Product Recipients	Primary Data Sources and Resource Sites
EF0 - EF5	Tornado Touchdown Map	Day of or next workday after event.	SED and CED.	SPC and national grid.
EF1 - EF5	Damage Point Map	Completed and updated as local offices provide field data.	CEB and SEB.	County boundary, major roads, Service Center locations, national grid, and major geographical features.
EF1 - EF5	Initial Tornado Path Overview Map	Day of or next workday after event.	SED, CED, and CEB.	SPC, county boundary, national grid, major roads, Service Center locations, major geographical features, and bin locations.
EF2 - EF5	PowerPoint Overview of Storm Damage Report	Compiled before SEB meeting.	SEB.	Maps listed in this table, statistics from analysis, digital photos, news articles, and other related information.
EF3 - EF5	FSA Map Series Emergency Management	After the path has been delineated.	CED and producers impacted.	Current NAIP, CLU, tornado path, national grid, and bin locations.
EF3 - EF5	Landsat Map Comparisons	Approximately 16 calendar days after event. Requires before and after satellite images.	GIS specialist.	Satellite imagery, county boundary, and digitized path location.
EF3 - EF5	Updated Tornado Path Overview Map	After the path has been delineated.	CEB and SEB.	County boundary, national grid, tornado path, major geographical features, and CLU.

*--305 Hurricanes

A Overview

Hurricanes are predictable, seasonal, maritime storms that arrive with significant advance warning. Hurricanes largely affect the Gulf of Mexico and southern Atlantic Coast regions. They occur less frequently in the northeast Atlantic coastal region and rarely in the Hawaiian Islands. Although a hurricane is primarily a coastal event, the powerful storms can travel deep inland causing far reaching negative impact. The widespread damage caused by hurricanes can affect crops, livestock, structures, and equipment. Damage can be because of high winds, tornadoes, excessive precipitation, storm surge, and flooding.

Hurricane can cause damage or destruction to:

- barns and other structures
- crops
- equipment and machinery
- feed and hay supplies
- fences
- forests
- grazing lands/pasture
- homes
- levees and dams
- livestock
- soils
- transportation infrastructure
- utilities.

GIS analysis can be effective in assessing hurricane damage. It can assist in storm-tracking, disaster-related program administration, disaster recovery, and provide analysis and supporting documentation for Secretarial disaster declaration or Administrator's loss notification.--*

B Data Sources

In addition to the following resources, local data is often available and may provide more detailed information.

Data Source/Resource	Purpose	Resource Location
GLOVIS		http://glovis.usgs.gov/
HAZUS-MH	Nationally applicable	http://www.fema.gov/plan/preven
	standardized methodology	t/hazus/
	that contains models for	
	estimating potential losses	http://hazus.org/
IIDDa	from hurricanes and floods.	
HDDS		http://hdds.usgs.gov/hdds2/
HSIP Gold		http://www.hifldwg.org
HURREVAC	Software used by	http://www.hurrevac.com/
	emergency managers to	
	track hurricanes and assist	
	in decisionmaking.	
NOAA Historical	Comprehensive historical	http://csc-s-maps-
Hurricane Tracks	hurricane and typhoon track data worldwide.	q.csc.noaa.gov/hurricanes/
NOAA, NWS, AHPS	Archived precipitation data.	http://water.weather.gov/precip/
NWS, NHC	Continually updated alerts, warnings, and status of tropical storm activity.	http://www.nhc.noaa.gov/
The National		http://hisz.rsoe.hu/alertmap/index
Association of Radio		2.php
Distress		
USDA FAS Crop		http://www.pecad.fas.usda.gov/cr
Explorer		opexplorer/modis_summary/inde
		x.cfm
USGS Earth Explorer		http://earthexplorer.usgs.gov/
USGS Landsat		http://landsat.usgs.gov/tools_acq.
Acquisition Schedule		php

C Best Practices for Analysis

Hurricane data can be used effectively before and after the storm occurs. It can assist in making agriculture-related damage assessments within a hurricane affected area. Typical analysis may require the geospatial officer to complete the following tasks:

- classify soil types
- create thematic maps to summarize various aspects of the data
- insert buffer zones around line and area layers
- perform attribute and spatial queries
- perform table manipulations
- perform union and intersect overlay operations
- use HAZUS-MH to model hurricane scenarios
- use NWS AHPS to provide precipitation data
- use NWS NHC and HURREVAC to provide geospatial data (tracks, wind).
- **Note:** The damage inflicted by a hurricane will often dictate the spatial analysis techniques that need to be used and the time needed to complete them. Prestaged data (paragraph 291) is particularly important in hurricane prone areas.

The following spatial analysis steps can be used to better understand and depict damage from hurricanes.

Step	Action	Purpose	Notes
1	Plot hurricane track	Needed to track hurricane path and	
	using latitude and	predict landfall sceneries.	
	longitude.		
2	Complete HAZUS-MH	Scenarios should have already been	HAZUS-MH
	scenarios for review.	run as part of a exercise and testing	hurricane
		process for FSA according to 1-SEM.	module.
3	Use HURREVAC to	Support information for disaster	
	track predicted path.	requests.	

Follow these steps **before** a significant hurricane is expected.

C Best Practices for Analysis (Continued)

Follow these steps **after** landfall of a hurricane.

Step	Action	Purpose	Notes
1	Obtain imagery to show standing water over time.	Valuable support information for heavy precipitation events.	Requires a number of satellite images to show length of time water inundated fields or impacted land. Possible data sources are SPOT, LandSat TM (30-Meter), AWiFS (56-Meter), or MODIS (250-Meter).
2	Use AHPS.	Obtain the gridded rainfall data for length of time precipitation has occurred.	Data source at http://water.weather.gov/precip/ download.php.
3	Use imagery analysis to show standing water.	To show concentrations of water standing on the ground or flooded areas.	Used in APLN requests and Secretarial disasters. Look for Bands 5 and 3 combine to a numeric grid. High values will reflect water reflectivity.
4	Use imagery comparison from previous month for damage assessments.	Assists in addressing high damage areas and crop losses.	Used in APLN requests and Secretarial disasters.
5	Request additional GPS and digital images of impacted areas, as appropriate, from County Offices.	To streamline field data collection and document event.	
6	Check NCDC NEXRAD inventory.	To create additional documentation of rainfall event, if needed.	Can create a base weather image of event path using Level II data. Useful for SEB and CEB discussions of rain events to make factual decisions on storm paths.
7	CLU intersect or overlay.	To identify areas impacted by heavy precipitation from hurricane.	Allows for identification and statistical summary of total farmland impacted.
8	Identify proximity risk to Service Centers.	For status reports.	

D Presentation of Analysis Results

The geospatial officer shall create maps and reports to assist local Field Offices, SEB's, CEB's, and the National Office in assessing the scope, magnitude, and extent of the event. Maps and reports should be designed to:

- assess possible structural impacts or damaged concerning agriculture
- assist in coordinating efforts with Field Offices, SEB's, and CEB's in assessing and completing LAR's
- evaluate the location and spatial extent of damage
- identify areas of risk for Service Center employees
- identify areas of risk for Service Centers
- implement and support State and County Emergency Operations Plans and cooperative activities
- pinpoint affected areas of damage for CLU.

GIS can also be used to create maps and reports to assist SEB's and CEB's in damage assessments and National and State Offices with information dissemination.

Note: The types and number of maps and reports needed, and the updates required to properly assess the situation, will be based on the severity of the hurricane.--*

D Presentation of Analysis Results (Continued)

Hurricane		Completion	Primary					
Maps	Purpose	Timeframe	Recipients	Primary Data Sources				
	Before Landfall							
Track Maps	Depicts potential hurricane path.	Days to hours before landfall.	National Office, SED, and CED.	County boundary and wind speeds.				
HAZUS-MH Scenario Maps	Defines possible damage expected from a landfall event.	Months to days before event.	SED, CED, and CEB.	HAZUS-MH scenario, county boundary, national grid, major roads, Service Center locations, and major geographical features.				
Destruction Point Map	Compiles field information from GPS and digital photos defining the hurricane impact.	Completed and updated as Field Offices provide data.	CEB and SEB.	County boundary, major roads, Service Center locations, national grid, and major geographical features.				
	1	After Landfa	<u>11</u>					
Landsat Comparisons	Compares previous month imagery by county or localized areas of concern.	Approximately 16 calendar days after event. Requires before and after satellite images.	GIS specialist.	Satellite imagery, county boundary, and digitized path location.				
FSA Map Series	Identifies farms impacted by standing or flood water.	If needed based on the situation.	CED and producers impacted.	Current NAIP, CLU, national grid, and bin locations.				
Report	PowerPoint overview of Hurricane Damage Report.	Compiled before SEB Meeting.	SEB.	Maps in this table, statistics from analysis, digital photos, news articles, and other related information. Includes images submitted by local offices to document extent, scope, and magnitude of the event.				

*--306 Droughts

A Overview

Although defining a drought event can be difficult, the basic premise is the deficiency of precipitation over a period of time compared to normal conditions. Drought conditions take time to develop and can last for long periods. In addition, drought conditions may be localized in a small area or persist across many States.

Determining impact to agriculture can be complicated. Many factors must be considered, such as timing of precipitation in relation to the growing season, wind, and temperature. Common agricultural losses for drought include:

- crops
- grazing/pasture losses
- water resources.

GIS analysis is effective in assessing impacts of a drought event. GIS specialists shall assist by monitoring drought events and developing maps and reports in support of emergency management efforts and program administration.

B Data Sources

The following are core data sources for drought.

Note: In addition to the following resources, local data is often available and may provide more detailed information.

Data Source/Resource	Purpose	Resource Location	Notes
CPC	Various precipitation	http://www.cpc.ncep.n	
	and drought outlook	oaa.gov	
	maps.		
Crop Moisture Index	Weekly crop moisture	http://www.cpc.ncep.n	
	index.	oaa.gov/products/analy	
		sis_monitoring/regiona	
		l_monitoring/cmi.gif	
NASS Vegetation	Vegetation condition	http://www.nass.usda.g	Includes
Condition	images derived from	ov/research/avhrr/avhr	comparison
	AVHRR NDVI data.	rmnu.htm	map from
			previous year.

*--306 Droughts (Continued)

B Data Sources (Continued)

Data Source/Resource	Purpose	Resource Location	Notes
National Integrated	Comprehensive	http://www.drought.gov	
Drought Information	source of drought	/portal/server.pt/comm	
System, U.S. Drought	information and data.	unity/drought_gov/202	
Portal			
NWS AHPS	Multiple gridded	http://water.weather.go	Use
	precipitation	v/precip/download.php	"Normal",
	products. Cumulative		"Departure",
	data is based on		and
	various timeframes.		"Percent"
			datasets.
NWS Drought	Access to regional	http://www.drought.gov	
Information Statements	NWS drought	/portal/server.pt/comm	
	statements that	unity/drought.gov/drou	
	include summaries	ght_information_State	
	and impacts.	ments	
Palmer Drought Severity	Access to weekly	http://www.cpc.ncep.no	
Index	Palmer Drought	aa.gov/products/analysi	
	Severity Index.	s_monitoring/regional_	
		monitoring/palmer.gif	
U.S. Drought Monitor	Access to weekly	http://www.drought.unl	
_	drought level	.edu/dm/dmshps_archiv	
	shapefiles and tabular	e.htm	
	data.		
U.S. Drought Monitor	Customized drought	http://www.drought.gov	
Graphics	monitor statistics in a	/portal/server.pt/comm	
	time-series chart	unity/drought.gov/drou	
	format.	ght_monitor_graphics	
USDA FAS Crop	Download access to	http://www.pecad.fas.us	
Explorer, MODIS NDVI	regional NDVI	da.gov/cropexplorer/mo	
Image Gallery	composites and	dis_imageview2.cfm?re	
	NDVI departure from	gionid=us&product=mo	
	5-year average.	dis_ndvi	

*--306 Droughts (Continued)

C Best Practices for Analysis

Typical analysis requires the GIS specialist to complete the following processes and tasks:

- attribute and spatial queries
- data manipulation
- spatial interpolation
- union and intersect overlay operations.

The following table provides specific analysis steps associated with disaster response and reporting during a drought event.

Note: The extent and duration of a drought event will often dictate the time period and spatial analysis techniques to be applied.

Step	Action	Purpose	Notes
1	Download USDM weekly shapefile.	• To evaluate the extent and intensity of the drought event.	Archive in F:\geodata\disaster_events\ USDM folder.
		• For requests for managed haying and grazing on CRP and prevented planting purposes.	
2	Clip CLU based on the weekly USDM shapefile.	Overview of the types of acreage affected.	Display CLU's by land class code.
3	Join acreage report data to CLU.	Allows for displaying specific crops and acreage reported as failed.	For large events, summarize failed acreage at the county level.
4	Interpolate AHPS precipitation data.	Displays percent of normal and departure from normal precipitation estimates.	Use "Departure" and "Percent" datasets. Timeframes available are previous 7, 14, 30, 60, 90, and 180 calendar days. Month, year, and water year to date is also available. Determine appropriate timeframe based on time of year, length of drought, and local conditions.

*--306 Droughts (Continued)

D Maps and Reports

Maps and reports are needed to assess impacts to agriculture and support various reporting requirements at the local, State, and national level. See 1-SEM for guidance when including maps with disaster situation reports.

Note: Maps containing CLU, CRP, or acreage report data are for internal FSA distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies only if data has been sufficiently aggregated to secure data according to the 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.

		Primary	
Map/Report Description	Timeframe	Recipient	Notes
General overview of areas	Update weekly.	SED and	
impacted by drought.		CED.	
Assemble supplemental maps	Bi-weekly.	SED and	CPC drought outlook,
and graphics from other		CED.	NASS vegetation condition,
sources.			CPC precipitation outlook,
			Crop Moisture Index, etc.
Precipitation (percent of	Monthly.	SED and	More frequent updates may
normal and departure from		CED.	be needed depending on
normal).			normal precipitation
			amounts.
NDVI and NDVI departure	Monthly.	SED.	
from average.			
Land use map based on CLU,	Update	SEB and	For large events,
identifying failed acreage.	throughout	CEB.	summarize failed acreage at
	growing season.		the county level.
Map of approved haying and	Update as	SEB.	Include effective dates.
grazing on CRP.	needed.		
Tabular report of failed	Update	SEB and	
acreage by crop type and	throughout	CEB.	
intended use.	growing season.		

See this table for maps and reports as they relates to drought events.

*--307 Wildfires

A Overview

Wildfires are a major threat to agriculture and generally occur with little or no notice. Wildfires vary in size, are unpredictable, and have the potential to spread quickly. While row crops are usually not affected, grass, rangeland, and timber losses can be significant.

Common agricultural losses for wildfires include:

- barns and other structures
- equipment and machinery
- feed and hay supplies
- fences
- grazing/pasture losses
- livestock
- timber
- watering systems.

GIS analysis is effective in assessing damage and losses caused by wildfires. GIS specialists shall assist in wildfire-related activities by tracking wildfire events, compiling imagery, and developing maps and reports in support of emergency management efforts and program administration.

B Data Sources

The following are wildfire data resources for GIS specialists.

Note: In addition to the following resources, local data is often available and may provide more detailed information.

Data Source	Purpose	Resource Location	Notes
FS Active Fire	Access to daily MODIS imagery	http://activefiremaps.fs	
Mapping	and fire detection shapefiles.	.fed.us	
	Available shapefiles include		
	MODIS fire detections for the		
	previous 7 days, and cumulative		
	fire detections for the year, are		
	updated hourly.		

B Data Sources (Continued)

Data Source	Purpose	Resource Location	Notes
FS Active Fire Mapping	Access to several datasets through ArcMap including active watches/warnings and current	http://activefirema ps.fs.fed.us	Create an ArcIMS server connection in
ArcIMS Service	MODIS, AVHRR, and Geostationary Operational Environmental Satellite fire detections.		ArcMap.
FS Burned Area Reflectance Classifications	Access to burn severity data for selected fires. Burned area reflectance classifications data has 4 classes; high, moderate, low, and unburned.	http://activefirema ps.fs.fed.us/baer/d ownload.php	
GeoMAC	Access to fire perimeter shapefiles.	http://rmgsc.cr.usg s.gov/outgoing/Geo MAC	
GeoMAC ArcIMS Service	Access to several wildfire related datasets through ArcMap including satellite detected fires and fire perimeters.	http://www.geoma c.gov	Create an ArcIMS server connection in ArcMap using http://activefire maps.fs.fed.us.
GLOVIS	Access to several types of imagery including Landsat.	http://glovis.usgs.g ov	
HDDS	Access to pre- and post-event imagery for selected disaster events.	http://www.firedet ect.noaa.gov	A log-in account must be established to access restricted data and can be requested on the web site.

B Data Sources (Continued)

		Resource	
Data Source	Purpose	Location	Notes
NOAA National	Access to several fire-related	http://www.fire	Create an
Environmental	datasets through ArcMap,	detect.noaa.gov	ArcIMS server
Satellite, Data, and	including satellite analyzed		connection in
Information Service	fires.		ArcMap.
Hazard Mapping			
System			
ArcIMS Service			
USDA FAS Crop	Access to daily MODIS	http://www.pec	
Explorer, MODIS	imagery.	ad.fas.usda.gov/	
Rapid Response		cropexplorer/m	
		odis_summary/i	
		ndex.cfm	
USGS Earth Explorer	• •	http://earthexpl	A log-in account
	imagery including Landsat and	orer.usgs.gov	must be
	SPOT.		established to
			access restricted
			data and can be
			requested on the
			web site.
USGS Landsat	Landsat 5 and Landsat 7	http://landsat.us	
Acquisition Schedule	acquisition schedule.	gs.gov/tools_acq	
		.php	

C Best Practices for Analysis

Typical wildfire analysis requires the GIS specialist to complete the following tasks:

- attribute and spatial queries
- data manipulation
- heads-up digitizing
- process GPS data
- process satellite imagery
- union and intersect overlay operations.--*

C Best Practices for Analysis (Continued)

The following table provides specific analysis steps associated with disaster response and reporting during and after a wildfire event.

Note: The location and size of a wildfire will often dictate the time period involved and spatial analysis techniques to be applied.

Step	Action	Purpose	Notes
1	Acquire and process	To evaluate the	MODIS should only be used when preparing
	satellite imagery.	location and	initial estimates and maps when other
		spatial extent of	imagery is not available. Do not use in
		the wildfire.	detailed analysis or program administration.
		Higher resolution	When using MODIS, the 7, 2, 1 False Color
		imagery can also be used in program	product is recommended.
		implementation,	When using Landsat imagery, the 7, 4,
		such as ECP.	2 band combination is recommended.
2	Determine the fire	Essential for	This task is typically accomplished by
-	perimeter.	detailed analysis.	heads-up digitizing from satellite imagery.
	r	j	
			Accuracy may be supplemented or validated
			with GPS data collected by field personnel.
			Perimeters for larger fires are often available
			from GeoMAC.
3	Clip CLU based on	Necessary to	When possible, join acreage report data to
	the fire perimeter	determine affected	the CLU layer before intersecting with the
	layer.	acreage.	fire perimeter layer.
			Depending on the location and scale of the
			event, join acreage report data at either the
			tract or field level.
4	Calculate affected	Data and statistics	If using acreage report data, also summarize
	acreage and	to support various	by crop and intended use.
	summarize by land	reporting	
	class code.	requirements.	
5	Intersect other layers	Data and statistics	
	such as grazing	to support various	
	allotments or CRP	reporting	
	with the fire	requirements.	
	perimeter, as needed.		

D Maps and Reports

Maps and reports are needed to assess impacts to agriculture and support various reporting requirements at the local, State, and National level. Since wildfires have the potential to last several weeks, maps and reports should be updated as needed. See 1-SEM for additional requirements when including maps with disaster situation reports.

Note: Maps containing CLU, CRP, or acreage report data are for internal FSA distribution **only**. Cropland and other land use data may be included on maps for use outside of Service Center Agencies only if data has been sufficiently aggregated to secure data according to the 2008 Farm Bill, Section 1619. Guidance about protected data can be found in 2-INFO.

See this table for maps and reports for wildfire events:

		Primary	
Map/Report Description	Timeframe	Recipient	Notes
General overview of wildfire	Day of or next	SED and	Display initial wildfire
activity (State or county	workday after event.	CED.	activity as point data
level, as appropriate).			until fire perimeter is
			available.
Initial fire perimeter.	One or 2 calendar	SED, CED,	Can be estimated using
	days after event.	and CEB.	MODIS imagery.
Land use map based on	When wildfire	SEB and	When possible, include
CLU.	perimeter is	CEB.	acreage report data.
	determined.		
Maps showing other acreage	When wildfire	SEB and	
affected, such as CRP and	perimeter is	CEB.	
grazing allotments.	determined.		
Tabular report of affected	When wildfire	SEB and	When possible, acreage
acreage by land class code.	perimeter is	CEB.	should also be
	determined.		summarized by crop
			type and intended use.
Updated fire perimeter.	After imagery is	SEB and	Use Landsat, SPOT, or
	available or perimeter	CEB.	AWiFS 56-Meter
	data is provided from		imagery.
	other sources.		

*--308 Earthquakes

A Overview

Earthquakes are destructive events that arrive with little or no notice. The damage inflicted by an earthquake can be devastating in areas that are directly impacted by the event in terms of infrastructure damage. Crop damage for most types of earthquakes is a secondary concern because only those directly adjacent to the epicenter are typically destroyed. Damage moving out from the epicenter is moderated by distance and terrain type. Crops, farms, equipment, infrastructure, and lives can be wiped out in an instant during an earthquake, but the major damage is also associated with secondary events such as levee breaks, flooding, fires, and loss of infrastructure connections.

Common agricultural losses for earthquakes include:

- barns and other structures
- crops
- ditches
- equipment and machinery
- feed and hay supplies
- fences
- fish hatcheries
- forests
- grazing/pasture losses
- homes
- infrastructure damage or destruction
- irrigation infrastructure.
- levees and dams
- livestock
- nurseries
- pipelines
- ranches
- transportation infrastructure
- utilities.

GIS analysis is very effective in assessing damage and losses caused by earthquakes. GIS specialists shall assist in earthquake-related program administration, disaster recovery, and tracking. The assistance shall include tracking and compiling earthquake data, imagery analysis, HAZUS-MH support, and map development in support of emergency management efforts for FSA support and recovery of events impacting agriculture.--*

B Data Sources

The following are earthquake data resources for GIS specialists:

Note: In addition to the following resources, local data is often available from many State agencies and may provide more detailed information.

Data Source	Purpose	Resource Location	Notes
Advanced	Access to accurate and	http://earthquake.	
National	timely information products	usgs.gov/monitorin	
Seismic	for seismic events, including	g/anss	
System	their effects on buildings and		
	structures, and employing		
	modern monitoring methods		
	and technologies.		
Earthquake	Shows maps for the past	http://earthquake.	
Animations	7 calendar days for the U.S.,	usgs.gov/earthqua	
	world, California/Nevada,	kes/recenteqsanim	
	and the Intermountain West		
	(Utah and Yellowstone).		
Earthquake	USGS historic inventory of	http://earthquake.	
Lists and	earthquakes, including maps,	usgs.gov/earthqua	
Maps	statistics, and history of	kes/eqarchives	
	earthquakes in the U.S.		
GLOVIS	Access to several types of	http://glovis.usgs.g	
	imagery, including Landsat	ov	
	and MODIS.		
HAZUS-MH	HAZUS-MH data disks have		HAZUS-MH
Seismic Data	seismic zones and software	ov/plan/prevent/ha	
	models for assessing	zus	http://hazus.org.
	earthquake damage.		
HDDS	Access to pre- and post-event	http://hdds.usgs.go	A log-in account must
	imagery for selected disaster	v/hdds2	be established to
	events.		access restricted data
			and can be requested
			on the web site.

B Data Sources (Continued)

Data Source	Purpose	Resource Location	Notes
HSIP Gold	A unified homeland infrastructure	http://www.hifldw	Data is provided
	geospatial data inventory	g.org	by a national
	assembled by National Geospatial-		level agreement
	Intelligence Agency in partnership		through Citrix
	with the Homeland Infrastructure		Systems, Inc.
	Foundation-Level Data community		
	for common use by the Homeland		
	Security, Homeland Defense and		
	Emergency Preparedness, and		
	response and recovery		
	communities.		
The National	Map and tabular placement of	http://hisz.rsoe.hu/	
Association of	major events occurring and	alertmap/index2.p	
Radio Distress	ongoing around the world.	hp	
U.S.	State-level summaries of	http://earthquake.	
Earthquake	earthquake information, maps, and	usgs.gov/earthqua	
Information by	other earthquake-related data or	kes/States	
State	links.		
USDA FAS	Access to daily MODIS imagery.	http://www.pecad.	
Crop Explorer		fas.usda.gov/crope	
		xplorer/modis_su	
		mmary/index.cfm	
USGS Earth	Access to several types of	http://earthexplore	A log-in account
Explorer	imagery, including Landsat and	r.usgs.gov	must be
	SPOT.		established to
			access restricted
			data and can be
			requested on the
			web site.
USGS	USGS general information	http://earthquake.	Provides links to
Earthquakes	following current earthquake	usgs.gov/earthqua	really simple
	events.	kes	syndication
			feeds, maps,
			earthquake
			reporting,
			notifications
			signups, and
			seismogram
			displays.

B Data Sources (Continued)

Data Source	Purpose	Resource Location	Notes
USGS	USGS general information	http://earthquake.usgs.g	
Earthquakes	following current earthquake	ov/regional/neic	
Regional	events displayed regionally.		
USGS Hazard	Data for past events that document	http://earthquake.usgs.g	
Mapping	historical earthquakes.	ov/hazards/products	
USGS Landsat	Landsat 5 and Landsat 7	http://landsat.usgs.gov/t	
Acquisition	acquisition schedule.	ools_acq.php	
Schedule			
USGS Shakemap	USGS information and summary	http://earthquake.usgs.g	
Products	data for earthquake information	ov/earthquakes/shakem	
	collected by year and event.	ap/list.php?y=2011	
USGS	Maps that depict shaking intensity.	http://earthquake.usgs.g	
Shakemaps		ov/earthquakes/shakem	
		ap/formats.php	

C Best Practices for Analysis

Earthquakes typically exhibit damage along a slipped fault that radiates damage from the epicenter. Damage and strength of the earthquake are correlated with the earthquake's measured Richter Magnitude Scale. Events with magnitudes of over 4.5 are measured worldwide and typically result in damage that can be quantified. The damage inflicted by an earthquake can be analyzed and correlated using geospatial techniques that assist FSA in addressing damage assessments for the agricultural community within a given area impacted by an earthquake. Typical earthquake analysis may require that the GIS specialist complete the following tasks:

- classify soil types
- create epicenter analysis based on earthquake locations
- create thematic maps to summarize various aspects of the data.
- identify seismic zones and fault lines
- identify slope risks using triangulated irregular network, digital elevation model, or LiDAR data [Can't use "TIN", in 1-CM and DEM only used once so spell out.]
- insert buffer zones around line and area layers
- perform attribute and spatial queries--*

C Best Practices for Analysis (Continued)

- perform table manipulations
- perform union and intersect overlay operations
- use HAZUS-MH to model earthquake scenarios.

The geospatial officer shall use spatial analysis to better understand and depict damage for earthquakes by completing the following steps.

Note: The damage inflicted by an earthquake will often dictate the period of time and spatial analysis techniques that will need to be applied. GIS specialists should have staged data and scenarios based on real-time exercises completed in preparation for the eventual need to respond to an earthquake event.

Complete the following steps to **prepare** for an event.

Step	Action	Purpose	Notes
1	Identify Seismic zones and known	Identifies what areas	
	fault lines Statewide.	to focus HAZUS-MH	
		earthquake scenarios.	
2	Run HAZUS-MH scenarios for	Prepare State and	GIS specialists must
	earthquake in high risk areas.	County Offices with	practice using the
		scenarios.	HAZUS-MH software
			to become proficient.
3	Identify areas of high risk from	Identifies areas of high	Targets focus areas for
	previous earthquakes.	risk in a county.	planning purposes.
4	Assemble earthquake monitoring	Preload the web sites	
	web sites.	so they can be used.	

Complete the following steps **after** an event.

Step	Action	Purpose	Notes
1	Identify area impacted by		
	earthquake and intensity.		
2	Plot earthquake epicenter.		
3	Identify earthquake damage areas.		
4	Complete HAZUS-MH scenario		
	real-time using actual data.		
5	Request Field Offices to collect	Support information	Used in APLN requests
	GPS points and digital photos.	for disaster requests.	and Secretarial
6	Plot field GPS points and add to	Assists in developing	disasters.
	map document.	damage reports.	

Step	Action	Purpose	Notes
7	Use hot links to include	Overview information	Used in APLN requests and
	GPS point data linked	for overall damage.	Secretarial disasters.
	with digital photos.		
8	Determine best imagery available before and after.	Imagery analysis.	Possible data sources are SPOT, LandSat TM (30-Meter), AWiFS (56-Meter), or MODIS (250-Meter).
9	Intersect CLU with earth quake area.	Quantify damage to cropland and agricultural structures.	Intersect in ArcToolbox.
10	Identify proximity risk to Service Centers.	Status reports.	
11	Identify proximity risk to FSA staff home locations.	Status reports.	

C Best Practices for Analysis (Continued)

D Presentation of Analysis Results

In the aftermath of an earthquake, maps and reports can be used to help assess impacts to agriculture and support various reporting requirements at the local, State, and National level. The purposes of the maps and report analysis are to:

- assess possible structural impacts or damaged concerning agriculture
- assist in coordinating efforts with Field Offices, SEB's, and CEB's in assessing and completing LAR's.
- evaluate the location and spatial extent of damage
- identify areas of risk for Service Center employees
- identify Service Center areas of risk
- implement and support State and County Emergency Operations Plans and cooperative activities
- pinpoint affected areas of damage as they relates to CLU.
- **Note:** Maps containing CLU, FFSF, and CRP are for internal FSA distribution **only**. If data is sufficiently aggregated, cropland and other land use data may be included on maps for use outside of Service Center Agencies. Guidance about protected data can be found in 2-INFO.--*

D Presentation of Analysis Results (Continued)

			Primary	Primary Data
Earthquake		Completion	Product	Sources and
Severity	Task	Timeframe	Recipients	Resource sites
3.0 magnitude	Complete Earthquake	Next workday	SED and	County boundaries.
and greater	Epicenter Map.	after event.	CED.	
5.0 magnitude	Complete Earthquake	Next workday	CED and	HAZUS-MH
and greater	Event Overview Map,	after event.	CEB.	scenario, county
with impacts	if needed based on			boundary, national
to agriculture	the situation.			grid, major roads,
				Service Center
				locations, and major
				geographical
				features
	Complete Damage	Completed and	CEB and	County boundary,
	and Destruction Point	updated as local	SEB.	major roads, Service
	Map, if needed based	offices provide		Center locations,
	on the situation.	field data.		national grid, and
				major geographical
				features
	Complete Landsat	Approximately	GIS	Satellite imagery,
	Map, if needed based	16 calendar days	specialist.	county boundary,
	on the situation.	after event.		and digitized path
		Requires before		location.
		and after		
		satellite images.		
	Complete FSA Map	Defines farms	CED and	Current NAIP, CLU,
	Series, if needed	impacted by	producers	tornado path,
	based on the	standing or flood	impacted.	national grid, and bin
	situation.	water.		locations.
	PowerPoint overview	Compiled before	SEB.	Maps in this table,
	of Earthquake	SEB Meeting.		statistics from
	Damage Report.			analysis, digital
				photos, news
				articles, and other
				related information.

This table provides maps and reports for earthquakes.

.

Reports, Forms, Abbreviations, and Redelegations of Authority

Reports

None

Forms

This table lists all forms referenced in this handbook.

Number	Title	Display Reference	Reference
AD-1026	Highly Erodible Land Conservation (HELC) and Wetland Conservation (WC) Certification		Ex. 10

Abbreviations

The following abbreviations are not listed in 1-CM.

Approved		
Abbreviation	Term	Reference
AHPS	Advanced Hydrologic Prediction Service	302, 305, 306
APLN	Administers Physical Loss Notification	302, 304, 305, 308
AVHRR	advanced very high resolution radiometer	306, 307
AWiFS	Advanced Wide-Field Sensor	302-305, 307, 308
CD	compact disc	253, Ex. 13, 19
CEB	County Executive Board	291, 301, 302, 304-308
СМ	Conservation Management	92, 195
CPC	Climate Prediction Center	302, 306
DOQ	digital orthophotography quadrangle	134, Ex. 6-9
EF	Enhanced Fujita	304
EMI	Emergency Management Institute	295, 301, 306
ESRI	Environmental Systems Research Institute	291
FFSF	food, feed, seed, and fertilizer	291, 301-304, 308
FGDC	Federal Geographic Data Committee	281, Ex. 22
FTS	file transfer protocol	251, 253, 281
GeoMAC	Geospatial Multi-Agency Coordination Group	307
GLOVIS	USGS Global Visualization Viewer	302-305, 307, 308
GPS	global positioning system	94, 95, 97, 291, 301-305,
		307, 308
GUID	globally-unique identifier	161

Reports, Forms, Abbreviations, and Redelegations of Authority (Continued)

Approved Abbreviation Term Reference HAZUS-MH Hazards U.S. Multi-Hazard 291, 303, 305, 308 HDDS USGS Hazards Data Distribution System 302-305, 307, 308 IDW inverse distance weighting 302 land satellite thematic mapper 302-306, 307, 308 Landsat/ LandSat TM LAR Loss Adjustment Report 291, 301, 302, 304, 305, 308 291, 308 LiDAR light detection and ranging **MDOQ** mosaicked digital orthophotography 92, 31-133 Moderate Resolution Imaging Spectroradiometer MODIS 302-308 NAIP National Agriculture Imagery Program 291, 302, 304, 305, 308 NCDC National Climatic Data Center 291, 301, 302, 304, 305 NDVI Normalized Difference Vegetation Index 306 Next-Generation Radar NEXRAD 291, 301, 302, 304, 305 NHC National Hurricane Center 305 National Oceanic and Atmospheric Administration 301, 302, 304, 305, 307 NOAA NWS National Weather Service 301, 302, 304-306 PLSS Public Land Survey System 291, Ex. 13 OC **Ouality Control** Ex. 13 SCI Service Center Initiative 281 SEB State Executive Board 291, 302, 304-308 SPC Storm Prediction Center 291.301.304 SPOT Spot Image, a public limited company. 302-305, 307, 308 Systematic Tracking for Optimal Risk Management **STORM** 304 TSD **Technical Service Division** 291 303 USACE U.S. Army Corps of Engineers U.S. Drought Monitor 291, 306 USDM

Abbreviations (Continued)

Redelegations of Authority

None