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 P R O C E E D I N G S 

 DR. RUBY: Good morning. I am Allen Ruby 

from IES. The impetus for this session today on 

difference-in-differences estimation was twofold. 

First, we‟ve noticed an increase in its use in 

grant applications. However, they‟ve been submitted 

almost solely by economists. So, we wanted to raise 

the question whether this is a method that might be 

useful for researchers in other fields.  

 Second, experiments are expensive, and so, 

we were wondering, could difference-in-differences 

estimation with its use of secondary data provide 

additional evidence regarding the impacts of an 

education intervention, and so, could it provide at 

a lower cost way a means to determine whether an 

experiment should be done, and, even under certain 

conditions, could it replace an experiment? 

 The goal of this session was to explicate 

difference-in-differences for researchers for many 

fields and also to evaluate the evidence that can 

be attained from it, and, to this end, we asked 

Larry Hedges to present on it. 
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 Larry joined the Northwestern faculty in 

2005 and is one of its eight Board of Trustees 

Professors at Northwestern. He has appointments in 

statistics and education and social policy. He was 

previously the Stella Rowley Professor at the 

University of Chicago, and his research has 

involved many fields, including sociology, 

psychology, and educational policy, and he‟s 

especially known for his work in methods for meta-

analysis. 

 Putting in a plug for his most recent 2010 

publication in the journal Research Synthesis 

Methods, in which he addresses nonindependent 

effect-size estimates when doing meta-analysis. 

 He has served in an editorial position on 

a number of journals including the AERJ, American 

Journal of Sociology, Journal of Educational and 

Behavioral Statistics, the Review of Educational 

Research, and others, and he‟s been elected a 

member or fellow of numerous boards, associations, 

and professional organizations, including the 

National Academy of Education, the American 
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Statistical Association, the American Psychological 

Association, and the Society of Multivariate 

Experimental Psychology, and, most recently, he was 

elected president of the Society for Research on 

Educational Effectiveness. 

 In response to our request for this 

session, Dr. Hedges has reached into his expertise 

in both design and analysis to consider the quality 

of evidence provided on the assumptions used with 

quasi-experiments, including difference-in-

differences estimation. 

 Please welcome Dr. Larry Hedges. 

 [Applause.] 

 DR. HEDGES: Thank you, Allen, and 

especially thank you for the plug for my most 

recent research. It‟s always nice to get that. When 

I was asked to talk about difference-in-

differences, well, actually they asked me a long 

time ago, I said “yes” because it was a long time 

between then and when I would actually have to do 

anything. 

 [Laughter.] 
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 DR. HEDGES: And after thinking a little 

bit about what I might say—I realized that it was, 

I thought it was important to say—to talk about 

something more than just difference-in-differences. 

So, to give you a sense of what I had hoped to 

speak about today, I made a slide of goals. 

 What I intend to do—because, I was asked 

to talk about difference-in-differences and setting 

them in the context of plausible causal inference, 

possible causal inference—I realized I really 

couldn‟t do that without talking a little bit about 

the modern theory of causal inference. 

 I‟d like to begin by speaking with you a 

little bit about that. Then, I‟d like to make the 

obligatory explanation in that framework of why 

experiments provide model-free estimates of causal 

effects, and I‟m going to emphasize the model-free 

aspect of inference for causal effects because 

there are lots of ways to get model-dependent 

estimates on causal effects—of causal effects. 

 The problem is model-dependent estimates 

of causal effects are only estimating the right 
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thing if the model is right, and, frequently, it‟s 

difficult or impossible to know if the model is 

right. 

 I want to turn from the easy case of 

experiments to the much more difficult and model-

based, in most cases, situations of quasi-

experimental designs. I‟m going to talk about three 

because they kind of lead up to difference-in-

differences in an important way. 

 One is assignment based on a covariate. 

Another is the regression discontinuity design. The 

third is the nonequivalent control group designs in 

which difference-in-differences kind of sits in a 

certain way, and then spend the remainder of the 

talk looking at the difference-in-differences 

approach in greater detail. 

 With that in mind, I think it‟s important 

to all of us at this conference to think about 

causal effects. I mean, we all, I think, claim that 

we‟re interested in finding out about the actual 

causal effects of the interventions and other 

objects of our study. 
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 Everybody kind of thinks they know what 

they mean by cause and effect and causal effects, 

but a formal treatment is actually useful, I think, 

and it actually helps to analyze situations in 

which the basis for causal claims is somewhat more 

tenuous than it is in randomized experiments. 

 The modern approach to causal inference is 

sometimes called the Rubin model or the Rubin- 

Holland model or the Rubin-Holland-Rosenbaum model 

of causal inference. It‟s important, I think, to 

recognize, though, that these ideas are very 

fundamental, and people had been thinking about 

them well before Don formalized them in the ‟70s. 

 In fact, it‟s interesting that the roots 

of modern way of thinking about cause and effect go 

back to that fertile period in the 1920s when 

statistics was, as we know it today, was really 

being developed. 

 I think everybody knows that one of the 

great triumphs of 20th century statistics was the 

development of the randomized experiment and the 

development of an understanding of why the 
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randomized experiment gave unbiased estimates of 

causal effects.  

 Most people don‟t know that Jerzy Neyman 

gave a very modern account of why agricultural 

experiments should yield unbiased estimates of 

causal effects. Fisher had his own account, and 

that‟s the one most people know. What most people 

don‟t know is that Jerzy Neyman, who at that point 

was a young Polish statistician, gave a remarkably 

modern account of how to think about causal 

inference in a paper in 1923 that was largely 

ignored until very recently. 

 Now, for those of you—as a minor 

digression—for those of you who don‟t know the name 

Neyman—you can‟t quite place it in the pantheon 

that you can place Fisher in—Jerzy Neyman was a 

remarkable statistician, a remarkable scholar, 

somebody whose stature is—he‟s one of the few 

people whose stature you could say is really equal 

to R.A. Fisher, and his accomplishments are really 

equal to R.A. Fisher‟s. 

 You may be—it‟s interesting that he made 
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contributions to experimental design in thinking 

about causal thinking, but Neyman is also 

associated with the other great triumph of 20th 

century statistics, and that is the development of 

the theory of probability sampling and the account 

that all of us are now familiar with, of how 

probability sampling allows you to make model-free 

generalizations to populations, and there‟s an 

important parallel here. 

 Experiments allow us to make—randomized 

experiments allow us to make model-free estimates 

of causal effects. Probability sampling allows us 

to make model-free generalizations. And it was, 

that is, so commonplace now that probably all of 

you think that statisticians always accepted 

surveys and probability sampling idea as just 

absolutely natural. 

 Well, in the beginning of the 20th 

century, statisticians didn‟t think of surveys as 

natural. They didn‟t think of sampling as a good 

way to get information about populations. And it 

was only after Neyman gave a very detailed 
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mathematical account of how this whole inference 

process could work that surveys became accepted in 

the statistical world. 

 So, Neyman has a key role as one of the 

people who is associated with the other triumph of 

20th century statistics besides experimentation, 

and Neyman was a mathematical genius of the same 

order as R.A. Fisher. You might be amused to know 

that the same paper in which Neyman gave the 

fundamental basis for probability sampling and 

generalization from probability sampling is also 

the paper where confidence intervals were invented. 

 All of you are familiar with that. You 

might even think Fisher invented it, but, in fact, 

Neyman invented it, and it was a side thought in 

this major paper on surveys. And just to say two 

other good things about Neyman, one is that in the 

early 1930s, Neyman was one of the key developers 

of many of the fundamental aspects of hypothesis 

testing that all of us take for granted. 

 For example, although Fisher advocated 

null hypothesis testing, he was not the guy who 
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invented the concept of power or Type I and Type II 

errors. It was Neyman, along with Egon Pearson, who 

developed the theory of the decision-theoretic 

basis for hypothesis testing. The idea of power is 

a Neyman idea, not a Fisherian idea, and as a 

matter of fact, they not only developed that 

concept but discovered the fundamental theorem on 

ways to find most powerful tests. 

 Neyman is a remarkable guy as a scholar, 

and it‟s interesting that his work intersects this 

early work—was, actually anticipated this early 

work on causal inference. 

 I‟ll say one other thing about Neyman is 

that those who knew Fisher—I didn‟t—said he was 

quite, well, they said he had a keen appreciation 

for his own genius. 

 [Laughter.] 

 DR. HEDGES: Neyman, on the other hand, I 

did know slightly as a graduate student. He was 

still tottering around Berkeley at the time and 

occasionally would rusticate in Palo Alto at 

Stanford, and Jerzy Neyman was really a sweet guy, 
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you know. That wasn‟t just my experience. Everybody 

who knew him saw him as a relatively humble decent 

fellow who treated graduate students and staff as 

well as he treated the most distinguished of his 

colleagues, which, I think, is a testament to him 

as a man. 

 Okay. Now, I‟ve ended my digression. Let‟s 

go on to talking about causal inference. The key 

concepts in the sort of modern causal inference 

theory, which actually goes back to Neyman, but we 

usually call it the Rubin-Holland model, is that 

there are units—I bet this thing is a pointer. Oh, 

no, it isn‟t. Is this a pointer? Yeah, that‟s a 

pointer. 

 The key concepts are units like 

individuals, treatments. I‟m going to assume two 

treatments, but it‟s easy to assume more than two 

treatments. It just makes the world more 

complicated, and so, for the purposes, it makes the 

notation more complicated—for the purposes of our 

discussion, it‟s sufficient to have two treatments. 

You might call one of them the intervention group 
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and the other one the control group. 

 There is another key concept: responses. 

And the basic idea is that each unit has two 

possible responses if there are two treatments. r0 

is the response that unit would produce if they got 

the comparison treatment—the control group—and r1 

is the response that unit would produce if it got 

the treatment. 

 Then, having defined these two possible 

responses associated with each unit, we can define 

the causal effect of treatment 1 versus treatment 0 

on unit i, and I use the symbol Tau i to indicate 

the treatment effect on unit i. 

 Well, treatment effect is just the 

difference between what you would have observed if 

that unit had gotten treated versus what you would 

have observed if that unit hadn‟t gotten treated. 

That‟s the sort of fundamental definition of the 

causal effect of treatment 1 versus treatment 0 on 

unit i. 

 There are some things to notice about this 

definition. I‟ve repeated it up here. One is it‟s a 
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relative definition. Treatment effects are always 

relative to something else, and so, to say 

treatment effect without a counterfactual that is 

attached to it is an incomplete statement. 

 Secondly, this definition of treatment 

effect is a counterfactual definition. It‟s 

counterfactual because you can‟t observe both what 

happens to the unit when it‟s treated versus what 

happens to the unit if it‟s not treated.  

 There‟s actually, and this leads to the 

conclusion that the relative causal effect of 

treatment on a single unit really can‟t, you know, 

can‟t be estimated without additional assumptions.  

 Now, there is one interesting situation in 

which additional assumptions can be made that seem 

pretty plausible, and that‟s the single subject 

design world in which repeatedly the same unit is 

made to experience both treatment conditions, and, 

although it‟s not a model-free way of estimating 

treatment effect on an individual unit, it is sort 

of a notable attempt to try to get at treatment 

effects on individuals, but, except for situations 
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like that, we really don‟t—we really can‟t have the 

ambition of estimating causal effects of treatments 

on individuals. 

 One of the things that‟s important to 

point out here—and this is more for your general 

cultural enlightenment perhaps than anything else—

is that causal inference is fundamentally a missing 

data problem. 

 That perspective is natural to some people 

but sounds bizarre to other people, but when you 

think about it, it‟s very sensible. The problem 

with causal inference is you can‟t observe both 

what happens to a unit if it‟s treated and what 

happens to the same unit if it isn‟t treated. 

 So, in a sense, trying to estimate Tau i—

the treatment effect on the ith individual—is a 

problem that‟s easy to solve if we can observe both 

r0 and r1 for that unit, and it‟s difficult to 

solve if we can‟t observe them both, and that‟s 

exactly a missing data problem. 

 Consequently, it shouldn‟t surprise 

anybody that modern ideas for causal inference 
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sometimes draw on modern ideas for handling missing 

data, and it‟s not a coincidence that Don Rubin, 

who is interested in causal inference and kind of 

has been a big proponent of this model, also is 

somebody who made part of his career working on 

missing data problems in statistics. 

 Essentially, missing data methods attempt 

to find conditions that reduce the missing data to 

be conditional on a set of covariates, conditional 

on some observed data, as if they were random, and 

I don‟t mean to trivialize the way these methods 

work because they‟re actually quite sophisticated 

and quite useful, but when you boil down what we 

try to do in many modern missing data methods, we 

try to figure out conditions under which we can 

treat the data that‟s missing as missing at random, 

usually conditional on a whole bunch of things we 

observe. 

 Well, because of the parallel between 

missing data methods and causal inference, modern 

methods for trying to do causal inference in 

nonexperimental situations frequently, in fact, 
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almost always, at some level of abstraction, try to 

reduce the problem of causal inference to saying 

that essentially the missing data that you need for 

causal inference is in a sense missing at random or 

the assignment is, to put it another way—which I 

won‟t draw the connection too carefully in this 

talk, but, trust me, it‟s easy to draw—that the 

modern methods for handling causal inference tend 

to try to construct a situation in which 

conditionally, given what‟s known, the assignment 

to treatments is “as if” random, and we‟ll talk a 

little bit more about some of these things later. 

 But I want to give you an example of the 

quite literal understanding of these potential 

responses in the Rubin-Holland causal model. The 

basic idea is that every unit is running around 

with these two responses. I mean that‟s the sort of 

conceptual framework. We can‟t observe them all, 

but every unit has got them. 

 Here‟s a case in which we have eight 

units, and each, I‟ve written in this table—I 

played the deity here or played the constructor of 
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the world, in some sense, this little miniworld—

each unit has a response under treatment and a 

response under control, and, because I know these 

two, I can compute the causal effect of the 

treatment on that unit. 

 The way I constructed my little world 

here, in the first four units, the causal effect of 

treatment is plus 10, and, in the last four units, 

the causal effect of treatment is minus 9, and 

this—I wanted to write down this data set just to 

illustrate a couple of things. 

 One is that the causal effect of treatment 

doesn‟t have to be the same for everybody. 

Frequently, it isn‟t. Also, if we imagine what a 

real experiment would be like, a real experiment 

would, or even a real quasi-experiment would, 

assign units to one or the other of the treatments, 

and thus, we would observe r1 for some of the 

units. In this case, units one, five, six, and 

eight are assigned to treatment, so we observe r1 

for those units. 

 Units two, three, four, and seven are 
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assigned to control, so we observe the outcome 

under control, and for none of these units can we 

directly estimate the causal effect of treatment. 

 By the way, because I‟ve sort of grayed 

out the things we don‟t observe there, but if you 

sort of look overall, you can see that the causal 

effect of treatment is about a quarter on the 

average, and you would also notice that in this 

particular experiment, the causal effect of 

treatment wouldn‟t be quite a quarter. 

 But, if we were to average all of those 

causal effects, that one-quarter that I talked 

about is the long-run expected estimated causal 

effect from an experiment. 

 I just want to make—well, I made that 

point there—the average overall possible treatment 

assignments would be our average causal effect. 

Sometimes, people, you know, talk about wanting to 

study causal effects by assigning people to the 

best treatment, and I just wanted to point out here 

that assignment to the best treatment in this 

little experimental world wouldn‟t—is not a very 
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good way to get at the average causal effect—and 

you can verify, if you wish, that if we assign the 

units that have the best outcome under treatment, 

that is one to four to treatment, and the units 

that have the best outcome under control to 

control, that is units five to eight, the estimated 

causal effect here would be zero. 

 And that‟s not the right answer, and it 

just illustrates that sometimes, something that 

sounds like a really good idea as a research 

strategy may, in fact, not be such a good idea. 

 To go on a little bit about randomized 

experiments and ask the question, “Why do 

randomized experiments give estimates of the 

average causal effect?” The usual—the usual 

strategy here is to define an assignment variable Z 

and say that we‟ll treat Z as zero if the unit is 

assigned to control and Z as 1 if the unit gets the 

treatment.  

 Random assignment means—and this is the 

technical answer for why randomized experiments 

give you the right estimate of the average causal 
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effect—the average value of the outcome under 

control for people who get control—that‟s what this 

conditional expectation is—says it‟s the average of 

the r0‟s, the outcomes under control for the people 

who get the control. It‟s the same as the average 

value of the control outcomes for people who get 

the treatment, and it‟s equal to the average 

overall of the control outcomes. 

 Similarly, the average of the outcomes, if 

you get the experiment, for people who actually do 

get the—I‟m sorry—the average of the outcomes 

people would have gotten under treatment for the 

people who get control is the same as the average 

value of the outcomes under treatment that the 

people who get treatment actually get, and that‟s 

equal to the average value of all of the outcomes 

under treatment. 

 One of the things that—if you recently had 

an elementary statistics course, and you remember 

hearing about independence or conditional 

probability, these two statements imply that these 

potential responses are independent of assignment. 
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This is a probability theory statement. 

 One of the ways of saying what‟s special 

about randomized experiments is that assignment is 

independent of the outcomes, and that means that 

the average—there should be a 1 on that guy—the 

average—the reason why randomized experiments give 

model-free estimates of the average causal effect 

is that the independence of assignment and the 

potential outcomes means that the difference 

between the average outcome—the average of the 

difference in outcomes between “if you got 

treatment” versus “if you got control” is the same 

thing as the difference of the averages. 

 The argument here is the average of the 

difference is the same as the difference in the 

averages, and each of the components of the 

difference in the averages actually is the same as 

the average for those who got treatment or the 

average for those who got control. 

 This is a little proof that randomized 

experiments have to give you unbiased estimates of 

causal effects, and it involves taking averages. 
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There‟s no modeling involved. You know, you don‟t 

need any fancy statistics to guarantee that the 

experiment gives you an estimate of the average 

causal effect of treatment. 

 Now, everything I‟ve said probably seems 

so—some of you are real familiar with this having 

courses. Those of you who haven‟t—probably both 

groups are saying this is so simple; this is almost 

stupidly simple. I can‟t believe this guy is 

spending time, you know, telling us all this stuff. 

We already knew it. 

 But it‟s deceptive. One of the things 

that‟s deceptive about it is, I already embedded an 

assumption in what I told you that seems natural, 

but it can be wrong. Why are there only two 

possible outcomes? What if the treatment that I get 

affects your outcome under treatment? Or your 

outcome under not treatment? 

 The assumption that I slipped in here 

without mentioning ‟til now is the “no interference 

between units” assumption, and people in 

experimental design have written about this. I 
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mean, the Cox book is a book on experimental design 

that really predates some of the—at least the Rubin 

exposition of this kind of, this kind of causal 

modeling. 

 Sometimes, this is called the stable unit 

treatment value assumption, and this is another 

kind of unfortunate term, but the “no interference 

between units” label actually is more intuitive. 

 The point of my mentioning this is that 

the stable unit treatment value assumption—or the 

assumption of “no interference between units” —can 

be wrong. And an obvious case in which that can be 

wrong is that, is the example of vaccines and the 

response to vaccines. Think about this. 

 The response to a smallpox vaccine or not 

depends on who else is vaccinated. The reason we 

can eliminate—eradicate—smallpox from the world is 

because, at some point, the effect of being not 

vaccinated is not the same as the effect of being 

vaccinated.  

 And, as a matter of fact, when everybody 

is vaccinated is exactly the point at which the 
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effect of not being vaccinated changes because 

you‟re not going to die of smallpox without a 

vaccination. 

 The fact that, you know, the “no 

interference between units” can be wrong has been 

known for a long time among people who study 

vaccines and contagion of various kinds.  

 It‟s also familiar to us. Consider the 

situation of classrooms or schools where we can 

have social interactions happening between the 

units. We worry about contamination if we were to 

assign people to different treatments within the 

same school, particularly to assign teachers to 

different treatments within the same school, and 

that kind of contamination is a violation of this 

stable unit treatment value idea. 

 Now, if it‟s true that the effect of a 

treatment on an individual classroom depends on 

whether or not another classroom in that same 

school was assigned to treatment or control, well, 

that‟s interference between units, and it‟s one of 

the reasons why IES and researchers outside of IES, 
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too, tend to favor a group assignment for some 

kinds of treatments where that kind of interference 

is possible. 

 Another point about causal inference and 

causal thinking, in general, is that some 

associations—some people would argue some 

associations—can‟t be causal, or it‟s not sensible 

to think of them as causal, and the primary case in 

which that occurs is when one of the two potential 

outcomes really is difficult to imagine existing 

because, remember, the whole premise of this sort 

of causal analysis is that there are these two 

potential outcomes. 

 If you have individuals who would never 

accept treatment no matter how they‟re assigned, if 

you have individuals who would always get in the 

treatment regardless of how they‟re assigned, if 

you have individuals who are defiers in the sense 

that they would always do the opposite of what you 

told them—you know, adolescents come to mind—then, 

it may not make sense to talk about causal effects 

on those units. 
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 If you can‟t imagine a unit getting 

treated or a unit not getting treated, that‟s sort 

of equivalent to saying that potential outcomes 

don‟t exist.  

 That‟s what has led to this concept of 

compliers and the idea of the complier average 

treatment effect rather than the average treatment 

effect overall, to sort of exclude the cases in 

which you can‟t talk about, sensibly about, causal 

inference. 

 On a more philosophical level, not all 

“what if” questions have causal answers—to borrow a 

phrase from Don Rubin. The idea of a randomized 

experiment—even if you‟re not going to do an 

experiment—the idea of an experiment can help 

clarify what effects might be causal and what you 

really mean by causal effects. 

 And Don would argue, I think, if you can‟t 

imagine an experiment that assigns people at random 

to treatments you‟re interested in comparing, it‟s 

probably not sensible to talk about causal effects 

of the treatment. 
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 For example, it might not be sensible to 

talk about sex differences as a biological 

phenomena having causal effects because you can‟t 

imagine the experiment of randomly assigning 

somebody‟s sex as a biological feature. 

 It might be sensible to talk about gender 

as a sort of social reaction to biological 

characteristics as having causal effects because 

you might imagine an experiment in which people 

were gender-blinded or the apparent sex of an 

individual was altered. But, anyway, that‟s in some 

ways a philosophical point. 

 But one thing that is important is that 

it‟s not so clear you can talk about causal effects 

on the people who are never takers of the 

treatment, who are always takers of the treatment, 

or who are defiers in the sense that they always do 

the opposite of what you ask them to do. That logic 

has led to people limiting the scope of application 

of causal inference.  

 Now, what we all know is that randomized 

experiments are wonderful in the sense that they 
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give model-free estimates of average causal 

effects. We know that randomized experiments are 

expensive, and they aren‟t the right answer for 

addressing every question, and they particularly 

aren‟t the right answer for addressing questions 

that are just at a more hypothetical stage, where 

we‟re trying to get evidence that there‟s a 

potential causal effect, and it‟s worth the time 

and energy and money to carry out an experiment to 

investigate them. 

 That naturally leads to questions about, 

well, is there any other way to get either solid 

causal effects or plausible causal effects? Point 

number one is that there are really no other model-

free methods known other than randomized 

experiments to get estimates of causal effects. 

Okay. What, we‟ll take that as a premise. 

 There are many other methods that can give 

estimates of causal effects given that a model is 

true, and the key problem with all of these methods 

is that the model has to be assumed to be true—

something that‟s often difficult to verify 
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empirically, sometimes impossible to verify. 

 But the whole point of these methods is to 

suggest plausible causal hypotheses that we can 

investigate, and I want to talk about three 

strategies that are very close to experiments but 

not exactly experiments. 

 Well, I guess the first—and to do that, 

the first thing that I want to do is just introduce 

a little notation here. And, whoops, pushed the 

wrong button. And here, suppose Y is an outcome 

variable, Z is an assignment variable, and suppose 

it‟s a dummy variable—you know, 1 for treatment, 0 

for control, the natural way to sort of analyze 

experimental data or even nonexperimental data to 

estimate treatment effects might be to regress Y, 

the outcome, on Z, the treatment dummy variable. 

 If we do that, the estimate of the 

coefficient for the dummy variable turns out to be 

just literally the mean difference between 

treatment and control plus a difference in the 

average errors. If we sort of use this regression 

equation and substitute 1 in for Z, we see that the 
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average in the treatment group is Beta-nought plus 

Beta 1, plus the average of the residuals in the 

treatment group. 

 If we substitute 0 into the equation, we 

see that the average score in the control group is 

just Beta-0 plus the average of the residuals in 

the control group, and so, the standard estimate of 

the treatment effect would be the mean difference, 

and, in terms of the model parameters, the mean 

difference would be Beta-1, which is the true 

effect of treatment, plus the difference in the 

average residuals in the two groups. 

 Now, when treatment is randomly assigned, 

then Z here is uncorrelated with the errors, and it 

turns out this is closely related to something 

about the potential values—potential outcome 

values—but we‟ll go into that later. 

 If the treatment assignment is 

uncorrelated with the residuals, then the average 

values of the two residuals, at least, you know, in 

large samples, are going to be the same, and, 

therefore, the treatment effect estimate, in fact, 
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estimates the true value of the treatment effect. 

 This implies that with standard methods, 

OLS gives you an unbiased estimate of our Beta-1, 

our effective treatment, which we‟ve already 

mentioned is the causal effective treatment. 

 Now, what goes wrong when we don‟t have 

randomization is that there is no guarantee that Z, 

the assignment variable, is uncorrelated with the 

residuals in the model, and, therefore, the 

treatment effect, the usual estimate of the 

treatment effect, estimates Beta-1, the treatment 

effect, plus this difference in average residuals. 

 And if the assignment is correlated with 

the residuals, if it‟s not exogenous, then we have 

the fact that the average values of the residuals 

are unequal, and so, the quantity that the analysis 

estimates as the treatment effect isn‟t the 

treatment effect; it‟s the treatment effect plus 

something. 

 And that means that the standard analysis 

you might do, even if you fancy it up a little bit, 

you know, may still give biased estimates of the 
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treatment effect. 

 One approach to dealing with this 

situation is the instrumental variables approach, 

and many of you have probably heard about this—and 

I‟ve actually talked about it at this meeting in 

previous years—and, in the instrumental variables 

approach, you make use of some more information. 

You make use of a so-called “instrumental 

variable,” which I‟m going to characterize as X 

here, and the basic idea of these two models 

together is that we want to know the effect of Z, 

which is assignment to treatment, on an outcome Y, 

but we don‟t have random assignment, so we make use 

of another variable X that has some useful 

properties. 

 The useful properties are that the 

instrument, the variable X, is correlated with 

assignment, so you can actually use the instrument 

to predict assignment, and, actually, I‟ll stop 

calling Z “assignment” and start calling Z “being 

treated” because this is the modal case in which 

you apply this methodology. 
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 You have a variable Z, which is whether 

you actually got the treatment frequently, and you 

have a variable X, which is whether you were 

assigned to treatment. You know, this is the 

problem of estimating treatment on the treated 

effects. 

 If Z is actually getting the treatment, 

and X is being assigned to treatment, it‟s pretty 

clear that X being assigned to treatment probably 

predicts whether you actually got treatment. Unless 

your experiment is really in bad shape, that ought 

to be true. 

 It‟s also probably true that assignment to 

treatment is uncorrelated with the residuals in the 

top model. Another way of saying that is the only 

way assignment to treatment can have an effect on 

outcome is through whether you actually get treated 

or not, and, if that‟s true, then some of the 

conditions for the instrumental variables analysis 

are satisfied, and I‟m not going to say how the 

analysis actually goes, but it roughly, you know, 

exploits solving these two equations in a sensible 
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way. 

 To be precise, one way to get the 

instrumental variables estimate is actually 

literally to regress the assignment—the did you get 

treatment variables, the Zs, on the assignment 

variables, the Xs, and then substitute in the top 

equation, not the actual assignment, but the 

predicted assignment, not the actual treatment 

received, but the predicted treatment received 

based on the assignment, and so, there‟s a standard 

analysis that goes with this model. 

 The reason I mention it is that among the 

class of quasi-experimental methods, this is one 

that can actually give you unbiased estimates of 

causal effects.  

 The famous paper by Angrist, Imbens, and 

Rubin showed that the instrumental variables 

analysis can estimate the average causal effects of 

getting the treatment on an outcome, provided this 

“no interference between units” assumption holds, 

provided that the instrument is randomly assigned, 

provided that this exclusion restriction holds 
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basically that assignment affects outcome only 

through actually getting the treatment or not, 

provided assignment is actually related to getting 

the treatment, and provided that there are no 

defiers. 

 That‟s important because it provides a 

different way of estimating causal effects than 

experiments. It‟s not model free. These assumptions 

are actually tough to meet in a lot of cases, 

particularly the exclusion restriction. The 

argument that I‟ve got something that predicts 

actually getting the treatment that can only have 

an effect on outcome through getting the treatment 

or not, that is an arguable and very difficult to 

verify assumption. 

 But the good news is that this is an 

example of a model-based method that can give valid 

estimates of average causal effects in the absence 

of randomization. 

 There is another strategy that is close to 

an experiment but not quite an experiment in the 

usual sense, and this is the idea of assignment to 
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treatment with a probability that depends on the 

value of a covariate. 

 One example of how you can imagine such an 

experiment working is that if you have a series of 

kind of mini-experiments, where people are grouped 

according to some covariate value, you may assign 

people, randomly assign people to treatment or 

control, with the probability that depends only on 

the value of the covariate. 

 This can actually lead to designs that are 

actually pretty interesting designs. They allow you 

to, for example, if X is a sort of pretest 

covariate, something that indicates need for an 

intervention, you can assign more people to get the 

intervention at the highest levels of need and 

smaller fraction of people to get the intervention 

at lower levels of need, and designs of that kind 

are sometimes useful. 

 One of the things that is true about a 

design of this kind is that you can show with the 

same kind of logic that we showed before about the 

randomized experiment that conditional on the 
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covariate, conditional on the assignment variable—

what you‟ve got is a little minirandomized 

experiment. 

 The way to think about all of this is you 

can either look at the conditional expectations, or 

I‟ll just say what the logic is. The logic is for a 

fixed value of the covariate, each one of these, 

you know, you have a kind of mini-experiment. 

Conditional on X, you make a random assignment, not 

necessarily with 50 percent probability, to 

treatment or control so that conditional on X, for 

each value of the covariate—think of it as 

discrete, if you like—for each of the discrete 

values of the covariate, we have a little mini-

experiment. 

 We can, in fact, estimate the average 

causal effect of treatment by estimating the local 

causal effect of treatment, so you estimate the 

treatment effect—the average treatment effect—for 

each value of the covariate, and then to estimate 

the average treatment effect for the entire 

population that is across the values of X, you just 
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create a weighted average of the treatment effects, 

and it can be shown that that‟s an unbiased 

estimate of the causal effect in the population.  

 There‟s an important thing about this 

design that you should know, and that is that you 

won‟t get the right answer if you just dump all the 

treated people into one group and the control 

people in another group and take the difference 

between the averages. That‟s not an unbiased 

estimate of the average causal effect. 

 You have to look at the causal effect at 

each value of the covariate in this design and then 

add those things up, weighting in a way that‟s 

sensitive to the representation of the values of X 

in the population. 

 Now, that design is very close to the 

regression discontinuity design, the RDD, and the 

regression discontinuity design, you can think of 

as being just like assignment based on a covariate, 

except it violates the principle that there are 

some people getting treated and some people getting 

control at every value of the covariate. 



 

 
 

 

 
 
 

 McLAUGHLIN REPORTING 

 703 820 5098 

VSM   41 

 In the regression discontinuity design, 

the probability of treatment is essentially 1 above 

some cutoff on the covariate and 0 below some 

cutoff on the covariate. So, it violates the 

principle that what you‟ve got is a lot of little 

mini-experiments. There is no real experiment going 

on anyplace here. 

 But, in the regression discontinuity 

design, you can show that you can estimate the 

local casual effect of treatment—local average 

causal effect of treatment—at the cut point. 

 The reason is, at least conceptually, that 

the RDD is almost a randomized experiment at the 

cut point. All the people just above the cut point 

versus just below the cut point are essentially, 

you know, that division is essentially random at an 

infinitesimal level.  

 Another way of saying this is that as the 

covariate value tends to the cut point, you‟ve got 

a randomized experiment. So the sort of technical 

way of putting it is that in causal terms, the 

limit of the outcome for treated people as X goes 
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to the cut point from the top minus the limit for 

people; the limit of the control outcomes for 

people who get control as they go from the—as they 

go towards the cut point from just the below side—

is actually the causal effect at the cut point. 

 It‟s possible with this design to estimate 

the causal effect at the cut point, but not every 

analysis can estimate that well. 

 The problem is that analyses that try to 

estimate the discontinuity—and the reason they call 

it a regression discontinuity design is that 

essentially the treatment effect at the cut point 

is how much different, you know, the control line 

is from—control regression line is from the 

treatment regression line. 

 The problem in actually estimating that 

gap is that we usually—the natural way to do it for 

people like me anyway is to use some kind of a 

model, and, as soon as you invoke the model, then 

the estimates of treatment effect are model 

dependent. 

 In principle, nonparametric regression 
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methods can provide model-free estimates of the 

causal effect of treatments in RDD designs, but the 

problem with these methods is they make their own 

set of technical assumptions about things like 

bandwidth and various smoothing parameters. 

 I think the best thing we can say is that 

the design is capable of yielding unbiased 

estimates of causal effects at a particular point, 

but the analyses that we use to actually get the 

estimates usually involve some kind of model 

dependency. 

 One other thing is that I‟ve emphasized 

RDDs as having one cut point in estimating causal 

effect at a certain value of X, but you can 

obviously create regression discontinuity designs 

that have many discontinuities at various points 

and estimate causal effects at many different 

places on the X dimension. 

 Okay. I‟m getting to differences in 

differences. You may not believe that. 

 [Laughter.] 

 DR. HEDGES: The nonequivalent control 
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group designs are really the workhorse quasi-

experimental designs. And you understand how they 

work. They compare a treatment group with a 

comparison group that wasn‟t randomized. There‟s a 

huge range in quality of these designs, and even 

the people who advocate quasi-experimental designs 

would tell you that the range of quality is from 

pretty good to really awful, and that probably most 

nonequivalent control group designs in the 

literature are really awful, although there are 

occasional good ones. 

 One of the things that is true about these 

designs is they almost always rely on matching or 

adjustment for covariates, which is, kind of, you 

know, a statistical adjustment, is a kind of 

pseudo-matching. The question that many people are 

very interested in right now—my colleague Tom Cook 

and Will Shadish and a whole set of people are very 

interested in the question of whether quasi-

experimental designs with a nonequivalent control 

group design, in particular, can they ever yield 

causal estimates that are close to the right 
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answer? It seems clear that they can, but the 

estimates are never model free. 

 The problem with nonequivalent control 

group designs is essentially the fundamental 

problem that you get with nonrandomization. The 

question is, “Do you have what a nonequivalent 

control group design is trying to do if it‟s trying 

to make the data „as if random‟ assignment 

controlling for covariates or subject to matching?” 

 If the design succeeds in making the 

treatment assignment “as if random” controlling for 

various other things, then it will give you the 

right answer. If it doesn‟t, if the analysis 

doesn‟t succeed in doing that, it will give you the 

wrong answer, and it‟s never very easy to tell 

whether or not you‟ve succeeded in creating the 

conditions necessary for making the treatment 

assignment essentially “strongly ignorable.” If we 

think of this in the missing data language, “as if 

random” is the same thing as “ignorable.” 

 If we get to the stage where we‟ve 

controlled for enough, the treatment assignment is 
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essentially random, of course, the analysis will 

give us the right answer. The problem is you never 

know when you‟ve quite gotten there.  

 I think I‟m going to—well, I‟ll say a word 

about this. It‟s easy to write down conditions in 

which the nonequivalent control group design will 

give you the right answer of the average causal 

effect. It all depends, of course, on what the 

response functions are. In other words, what these 

potential outcomes look like as a function of 

covariates and other things. 

 It‟s easy to write down models in which 

the design can give you the right answer. If, for 

example, the relationship between the response and 

covariate X is essentially linear, as I‟ve written 

here, and the relation between the covariate X and 

the response among treated people essentially 

follows the same regression except that there‟s a 

constant shift, then it‟s easy to show that, you 

know, most analyses will give you the right answer.

 You‟ll get an estimate of Tau that‟s 

unbiased pretty easily. 
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 But that‟s only one form the response 

functions can take, and we don‟t necessarily know 

what the functional form is. If you change the 

response function a little bit, if we say—and the 

only thing I‟m going to change is have a different 

slope for the response function for untreated and 

the response function for treated—if the covariate 

dependency is just a little bit different in those 

two, then it follows that the usual estimate of the 

treatment effect, the OLS estimate, will be the 

actual causal effect of the treatment plus some 

average of the slopes times the difference in the 

covariate values between treated and control. 

 It doesn‟t take much very tweaking to a 

model that gives the right answer to produce a 

model in which the analysis will give the wrong 

answer, and that‟s the problem with model-dependent 

estimates. 

 Now, what you may be saying is, “Well, I 

see how to fix that up. We could do an analysis 

that would fix up the situation and remove the 

bias.”  Well, but that‟s exactly the point. To get 
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an unbiased estimate of the causal effect, you have 

to know what the right model is, and, therefore, 

your analyses depend on the prescience of model 

specification.  

 It‟s not easy to know what those models 

might be—what the right models might be. And I 

picked an example that was really simple, and I 

could have made the example a lot more complex, and 

it would be obvious how difficult it would be to 

distinguish the right answer from the wrong answer. 

 Okay. Now, I‟m getting to the part that 

was promised, and that is differences in 

differences. The difference-in-differences idea can 

be seen as a particular kind of nonequivalent 

control group. I mean, it‟s, yes, economists use 

it, but that doesn‟t mean it doesn‟t fit into some 

framework for thinking about designs that you all 

know. It fits into a slot in the quasi-experimental 

design world that‟s well known to you. 

 Now, difference-in-differences is used 

often to evaluate effects of policies in education 

or elsewhere, and the way to think about 
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differences in differences is that assume that 

there‟s a series of longitudinal observations in 

various locations, like states where a policy has 

been implemented at some time and in some 

locations, maybe not in all locations, maybe not 

across an entire state, but maybe across part of a 

state. We can identify which people are subject to 

the policy and which aren‟t. 

 And crudely, what difference-in-

differences analyses do is they estimate the effect 

of a policy by comparing the difference in outcome 

before and after the policy is implemented on the 

individuals to which the policy applies. 

 Then we look at the same difference for 

individuals to which the policy doesn‟t apply, and 

the logic here is, well, if the policy makes a 

difference, then we‟ll see a change between before 

policy and after policy for the people to whom the 

policy applies. We won‟t see a change for 

individuals for whom the policy doesn‟t apply or at 

least whatever change we see for them is not a 

consequence of treatment. 
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 And so by comparing these differences, 

we‟ll get an estimate of what the policy effect—the 

treatment effect—is, and that‟s why they call it a 

difference-in-differences estimator. It‟s 

essentially taking the difference between, if you 

like, posttest minus pretest among those who got 

treated and posttest minus pretest among those who 

didn‟t get treated. 

 That‟s the absolute simplest version of 

this. Usually, the difference-in-differences 

estimators are set in a more complex and elaborate 

analytic scheme that is actually more convincing—

certainly more convincing to economists and more 

convincing to statisticians. 

 To give you an example of a sort of very 

typical setup for difference-in-differences 

analyses, suppose Yist is the outcome for 

individual i in location s—you might want to think 

“states” for locations—at time t. 

 What we‟re going to have is a whole bunch 

of Yist values for many individuals in many 

locations across a long time span. Then, we can 



 

 
 

 

 
 
 

 McLAUGHLIN REPORTING 

 703 820 5098 

VSM   51 

have an Xist that‟s a corresponding individual 

level covariate used as a control variable in the 

analysis, and then the analytic model that might be 

invoked is one in which we say Yist looks like a 

fixed effect of locations plus a fixed effect of 

time plus effects of covariates plus a sort of a 

treatment effect, and Beta here is going to be the 

treatment effect we tried to estimate, and T is a 

dummy variable for whether an individual in a given 

location gets—at a particular time, is subject to 

the policy or not. And then Epsilon is the 

residual. 

 This is one analytic scheme. Usually, 

there‟s a sense that there are important 

differences between locations and important 

differences between times that need to be taken 

into account, and you can either do that by what 

the economists would call doing a fixed-effects 

analyst—making a fixed-effects transformation, 

putting dummy variables in for those things. 

 You could also do it via random effect 

strategy, like centering or just modeling as random 
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effects. But forget about the analytic details for 

now. The fixed-effect strategy is understandable, 

and it‟s perfectly suitable for talking about this, 

and it‟s actually probably what most of these 

difference-in-differences analyses do. 

 Now, one thing that you would all—many of 

you would recognize about a model like this one, if 

we‟re talking about individuals who are located in 

various states, say, this error term here is, 

they‟re not—individuals are not—error terms are not 

all going to be independent of one another. There‟s 

a clustering problem here that you got to take into 

account. If you don‟t take the clustering into 

account, you have big troubles with this analysis. 

 If you think that people in the same state 

or the same location are more similar to each other 

than people in different locations, that induces 

clustering. So that has to be taken into account. 

That‟s a technical detail. 

 The idea of difference-in-differences as 

an estimation strategy has great appeal. If you 

have good longitudinal data sets, it‟s easy to use, 
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and that‟s why a lot of economic analyses have used 

it based on good economic longitudinal data sets. 

 But difference-in-differences has another 

virtue. It‟s easy to explain to policymakers. It‟s 

easy to understand yourself, and, as important, if 

you‟re trying to advocate policy based on some 

statistical analysis, you got to be able to explain 

it to policymakers. Experimenters, you know, like 

experiments because we can explain them to people, 

and people understand them. 

 We don‟t have to say, you know, there‟s 

this complicated model, and if you take all these 

things into account, blah-blah-blah. You can say 

something that‟s almost as simple as the experiment 

with differences in differences, and that‟s a great 

appeal. 

 In some ways, it seems to be the natural 

analysis to learn from natural experiments, where a 

policy has been tried in some places and not in 

others or tried at some times and not in others. 

So, there are plenty of reasons why people are 

interested in differences in differences.  
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 It may seem that the model I just gave—

with all the fixed effects and everything—is going 

to be hard to formulate in causal terms, and I 

agree, it‟s a little tricky to do, but the 

difference—but the way to think about it is—that 

the difference-in-differences analysis identifies 

the treatment effect by looking at the 

pretest/posttest change for those who got treated 

versus the pretest/posttest change for those who 

didn‟t, and that boils down in a technical sense to 

saying—well, that leads us to saying that what the 

difference-in-difference analysis estimates is this 

difference for the treated group minus the 

difference for the control group and—conditional on 

treatment or control. 

 The thing is, this is not the causal 

effect of the treatment. If you make the right set 

of assumptions, this becomes a causal effect of 

treatment, but I write this down basically to say 

to you when you think about it carefully, it‟s 

pretty clear that difference-in-differences does 

not automatically estimate the causal effect of the 



 

 
 

 

 
 
 

 McLAUGHLIN REPORTING 

 703 820 5098 

VSM   55 

treatment. 

 Other things have to be true. Other 

assumptions have to be true for that to be the 

case. Again, if you—it‟s easy to write down a 

response function. It‟s easy to write down a 

relation between treatment and response so that 

difference-in-differences will estimate the right 

answer. 

 But the question is, does, you know, are 

the conditions that are needed, namely, that the 

difference between pretest and observed outcome for 

the treated is an estimate of the difference 

between pretest and observed outcome for—would be 

the same as if it would be the same individuals had 

been assigned to control and vice versa? It‟s the 

same idea of whether assignment is independent of—

is independent of the two key differences that go 

in the difference-in-differences analysis or not. 

 You can think of many cases where this is 

not going to be true. If the actual pretest causes 

both the policy and is correlated with the outcome, 

then the necessary condition isn‟t going to be 
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true. It can be something else that causes both the 

preoutcome, the preintervention outcomes, and the 

assignment—the decision to make a policy.  

 In other words, what I‟m saying is if the 

thing you‟re observing—if the outcome you‟re 

observing over time—actually causes the policy to 

happen, then the difference-in-differences analysis 

is not going to give you the right answer, and this 

is sort of the fundamental kind of endogeneity 

problem that we encounter in a lot of different 

settings. 

 Now, there are informal checks about this. 

You can look at trends beyond the time of policy 

implementation and see if you can convince 

yourself. You can estimate the effects of 

treatments where there has been no policy change as 

a check, and this is very convincing. It‟s a very 

convincing deflation of a difference-in-differences 

estimate if you can show that if you had picked 

three years before the policy was implemented and 

done the same analysis, you get the same treatment 

effect. That would not be good. 
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 [Laughter.] 

 DR. HEDGES: This is an informal way that 

people go about checking, but these kinds of checks 

are not—they‟re suggestive—they‟re not definitive. 

They can invalidate the analysis, but they can‟t 

convince you the analysis is right. 

 Anybody who‟s interested in doing 

difference-in-differences analyses should plan on 

devoting a great deal of their time to carrying out 

these kinds of checks that could invalidate the 

analysis as a way of just protecting yourself 

against being really embarrassed when you get up to 

talk about your results in front of a room and 

somebody may have done that check and discovered 

that your analysis doesn‟t pass muster. 

 I think beyond the kind of analytic checks 

of looking at trends in the data, looking at what 

would happen if I had picked a different point in 

the time series to evaluate the treatment effect, 

there‟s also sort of conceptual analysis. What do 

you know about this? What do you know about the 

policy environment in the places where the policy 
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has been implemented? And that can help, too. 

 But there‟s a smaller problem associated 

with difference-in-differences analyses that you 

also ought to know about, and when I say it‟s a 

smaller problem, I don‟t mean that it‟s not enough 

to completely invalidate the analysis. I just mean 

that it‟s one that has more—it‟s more amenable to 

technical solution. 

 That is, that remember the kind of data 

you tend to use in difference-in-differences 

analyses are long time series. You have the 

observed outcome over a long sequence of time 

points, and then there is some point—I‟m speaking a 

little bit metaphorically here, but not entirely. 

You look at the outcome over a long series of time 

points, and then there is some place where the 

policy is implemented, and you say, “See, that 

change is a lot bigger than the changes everywhere 

else, and it‟s bigger than the change in these 

folks in this place where the policy wasn‟t 

implemented.” 

 There‟s a kind of a logical desire to have 
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a long time series so that you can show how 

outstanding the change is at the place where the 

policy is implemented. 

 It turns out that that—that sets you up 

for an interesting analytic shortcoming. There are 

two things that are true about analyses based on 

time series like this. If they have—first of all, 

the kinds of outcomes we tend to trace over time—

policy outcomes, we tend to trace over time—often 

have very high autocorrelations. There‟s very high 

correlation between one time and the next.  

 The second thing is that the policy 

variable, the independent variable, the dummy 

variable of policy or not, also tends to be very 

highly autocorrelated. Think about this for a 

minute. Suppose we have a 16-year time sequence, 

and we are looking at test scores every year, and 

then, at one point in that sequence, there‟s a 

policy change, and we want to evaluate the effect 

of the policy change. 

 Think about the independent variable of 

the dummy variable for treatment. The dummy 
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variable for treatment is zero, zero, zero, zero, 

zero, zero, zero, until you get to the point where 

the policy has been implemented. Then it‟s one, 

one, one, one, one, after that. 

 If you think of the independent variable, 

it has very high autocorrelation. The correlation 

between the value at one time and the value at the 

next time is perfect, all except for the place 

where there‟s a jump. 

 It turns out that if you ask the question, 

“How does, how do autocorrelations affect the 

results of OLS analyses, standard analyses,” the 

answer turns out to be that positive 

autocorrelations tend to mean that the standard 

errors—the uncertainty of the treatment effect 

estimates—are too small. In other words, you 

underestimate the uncertainty of the treatment 

effect estimate.  

 It also turns out that everybody knows 

that, but it‟s sort of less well known that 

autocorrelations among the independent variables 

have an impact on the standard error of estimated 
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treatment effects, and the higher the 

autocorrelation there, the higher the 

overestimation in precision of the treatment 

effect. 

 And the longer the time series, the more 

both of these things impact the estimate of the 

standard error.  And, you know, this is a 

mathematical fact, but it‟s also something that 

makes perfect sense. 

 What does it mean when you have 

observations that are correlated? Well, it means 

there‟s less information there than there is if 

they weren‟t correlated. So, these autocorrelations 

lead to dramatic underestimation of the real 

uncertainty of the estimated treatment effects. 

 When I say that this is dramatic effect, I 

don‟t mean, you know, you get—that the real 

significance level is .06 when it should be .05. I 

mean, the real significance level can be .4 when 

you think it‟s .05, or .6 when you think it‟s .05. 

 This, although it‟s a small problem, it‟s 

a small problem that can pretty much invalidate the 
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analysis just as much as ignoring clustering can 

invalidate the analysis. 

 There‟s an awful lot of published work 

that hasn‟t taken, you know, that hasn‟t addressed 

this problem at all—published work by good people 

in good journals, as a matter of fact. 

 The standard error problem I‟ve just been 

talking about is difficult but not really 

impossible to solve. One way to go about it is by 

using generalized least squares analyses. This can 

be done, but inference for the autocorrelation is 

usually not very good. This is not a perfect 

answer, but it‟s an answer that is a heck of a lot 

better than what people usually do. 

 Another answer is that you can use a 

variant of robust standard errors, which works 

pretty well provided you‟ve got enough locations to 

have a large sample of locations. We don‟t always 

have that in difference-in-differences analyses. 

 Randomization tests seem to work well in 

problems like this, and, by the way, this—all of 

this stuff—has a lot in common with the problems of 
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single-subject designs. It‟s really the time series 

aspect of both problems that respond to the same 

set of statistical solutions. 

 Sometimes, collapsing the data into just 

two time points—you know, before and after 

treatment—and analyzing them can improve 

performance of analyses. 

 There is not a completely simple answer to 

how to deal with the standard error problem that 

solves all of the issues. Probably the thing that 

comes closest is the use of robust standard errors, 

if you have a lot of locations, and, if you don‟t, 

then trying to parameter—then trying some of these 

other strategies may work. 

 The thing I want to leave you with is that 

difference-in-differences is an interesting 

strategy. It‟s an easy-to-use strategy if there‟s 

good data, and it can be suggestive, but, without 

randomization, causal inference is really much 

harder and much more model dependent than it is 

with randomization. 

 And so, even a technique as appealing as 
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difference-in-differences has to be scrutinized 

very carefully. You have to do a lot of sensitivity 

analyses, and, even then, you need to be very 

careful about what you conclude. But, if you think 

of it as a technique for generating suggestive 

causal hypotheses, there is probably some real 

virtue in it because the analyses are relatively 

easy to do. 

 Now, having said that the analyses are 

relatively easy to do, you probably have to do a 

few hundred analyses to convince yourself that it 

isn‟t so sensitive as to be unbelievable. So, I‟m 

not sure that I ought not to qualify the statement, 

“It‟s really easy to do,” by saying, “It‟s really 

easy to do one difference-in-differences analysis.”  

 To do all the sensitivity analysis that 

probably should accompany it, like, for example, 

choosing time points at random and seeing whether 

or not you get intervention effects there, that is 

quite a bit more complicated. And, if you have to 

do randomization tests, that‟s even more 

complicated. 
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 Having said that, I think I will now stop, 

and I won‟t stop just yet. I will say there‟s—I put 

some references on the technique, particularly 

differences-in-differences technique, in my slides 

here, not because I expect you to write them down, 

but I suspect these slides will be made available 

someplace. 

 In particular, the Bertrand, Duflo, and 

Mullainathan paper is—actually, I commend it to 

you. It‟s very readable, and it‟s also quite good. 

I‟ve got a set of references here, and, beyond 

that, I just will thank you all for enduring this 

unnaturally long talk, and I‟ll let Allen do 

whatever he wants to do now. 

 [Applause.] 

 DR. HEDGES: Do you want me to leave? 

 DR. RUBY: No.  

 DR. HEDGES: Okay. If there are questions, 

I‟ll take them. If you all just want to go home, 

that‟s okay, too. Well, it seems like people want 

to go home—oh, no, wait, wait. There‟s a lamb to 

the slaughter here, good. 
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 Go ahead. Maybe go to the microphone. 

 MR. VAN HOUDNOS: My name is Nathan Van 

Houdnos. I just finished my first year in the 

statistics Ph.D. program at Carnegie Mellon, so I‟m 

going to ask you what might even be a dumb 

question. 

 DR. HEDGES: They‟re usually not, actually, 

in my experience. 

 MR. VAN HOUDNOS: When you looked at all 

these different approaches, you made a big point of 

making sure that they were unbiased estimators. 

 DR. HEDGES: Yeah. 

 MR. VAN HOUDNOS: I was wondering if there 

are other methods that will allow for some bias if 

it squashes the variance of your estimators so that 

you can sort of approach it in a more mean-squared 

error kind of way? 

 DR. HEDGES: The answer is surely “yes,” 

and I can probably think of some, but I think the 

bias issue is a big deal because the bias usually 

dominate—in—well, the thing we‟re really worried 

about—I appreciate this problem because there are 
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other settings in which, you know, I‟ve argued just 

what you‟re arguing—that don‟t worry about unbiased 

because the variance is so big, it dominates. 

 But, in a lot of these cases, I think the 

problem is that it‟s the bias term that dominates 

the mean-squared error term. That the precision is 

already small, and, in fact, that makes the bias—

and, in effect, that makes the bias a bigger 

problem. 

 When you have a lot of variance, you can 

tolerate some bias because as long as it‟s not big 

compared to the variance, it doesn‟t mislead you. I 

think the problem with a lot of social experiments 

and other analyses—like analyses of big data sets 

with people from all 50 states, to give an example 

of how difference-in-differences is often used—the 

estimated precision is really high, and a tiny bias 

just swamps all of that, all of that variation. 

 It‟s still true that we want to get the 

variance right because frequently we‟re comparing a 

small effect with a small variance, and the example 

in difference-in-differences is if you get the 
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standard error wrong by 30 percent, even though 

it‟s an absolutely small number, it may make a huge 

difference in the rejection rate. 

 The answer is “yes,” it‟s important to 

consider variance, but, in a lot of cases, it‟s the 

bias that really is the driving term of the mean-

squared error. 

 MR. VAN HOUDNOS: Great. Thank you. 

 DR. HEDGES: Yeah.  

 DR. SCHMIDT: Hi. I‟m Stefanie Schmidt. I‟m 

with IES. I was wondering if there‟s a particular 

robust standard error estimation technique or a set 

of techniques that you would recommend for 

difference-in-differences? 

 DR. HEDGES: It boils down to—yeah. It 

boils down to essentially taking the location. Of 

course, now, I have to say it all depends on the 

details of the model, but, in the example I gave, 

which is a fairly typical setup where you have—let 

me see if I can go back to that—in this setup, 

where you have fixed effects for—oh, that‟s 

another—where you have fixed effects for locations 
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and times and then a bunch of individual level 

covariates, the natural robust standard error 

approach would be to treat the locations as 

clusters so that in the case of an analysis of 50 

states, then you‟d have states as clusters. 

 Therefore, a question that a reasonable 

person could ask is, “Is 50 states enough for the 

robust methods to work well?” And it‟s probably on 

the borderline. You know, it‟s probably—and a lot 

of people say, “Oh, it‟s just over the borderline, 

you know. Fifty is enough.” 

 But, if you had analysis with 20 schools, 

then I‟m not sure that I would say 20 schools is 

enough, or 20 school districts, so that‟s the bind 

you get into. 

 But the basic idea is if you were to use a 

standard kind of approach and treats locations—my 

S‟s—as clusters, that‟s the kind of approach that 

seems to get pretty good, pretty good Type I error 

rates. 

 I should add—I could add that it isn‟t 

actually just that you get the significance wrong. 
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The estimates seem to be inflated as well, so it‟s 

a little more than just you don‟t get the rejection 

rates right with standard methods. You don‟t get 

the estimates right either. 

 DR. BERNSTEIN: Hi, Larry. I‟m Larry 

Bernstein from RTI International. When we‟re 

analyzing experimental data, there‟s often debate 

amongst people who think you should estimate gain 

scores or you should estimate mean differences and 

control for a pretest, or some people even say you 

should estimate gain scores and control for some 

other covariate or a pretest. 

 And I wonder whether this same discussion 

is also applicable to your discussion when you‟re 

looking at, you know, nonequivalent designs, and if 

there are any apparent solutions to that question? 

 DR. HEDGES: Aah. Well, there I think if 

you‟re in the realm of—I‟m a little bit like a 

broken record on this—if you‟re in the realm of 

randomized experiments and pretty good randomized 

experiments, then lots of these—the problems that 

arise in quasi-experiments, you‟ve really gotten—
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you‟ve got clear of the biggest kind of problems.  

 But the problem you‟re talking about 

strikes me as much more of a conceptual problem of 

what treatment effect you want to estimate. It‟s—a 

famous paper I‟m sure you‟re familiar with and 

maybe a lot of people are, too—but I‟ll mention it 

because it‟s relevant here—is the paper that Fred 

Lord wrote which describes what‟s come to be known 

as Lord‟s paradox. 

 Lord‟s paradox can be described pretty 

simply in the following way: that—and this is how 

Fred Lord described it—somebody running a 

university has, you know, has just—is interested in 

evaluating the food service, and they measure the 

weight of all the individuals who come into the 

college as freshmen, and they measure the weight at 

the end of their freshman year, and they want to 

know what this means about the effectiveness of the 

food service, and, you know, you got pre/post 

design, you know—not the strongest design in the 

world but at least might be good enough to learn 

something from. 
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 And so, they give the data to two 

statisticians, and one of them, one of them 

computes the gain scores and discovers that the 

average, that on the average, neither the males nor 

the females have gained any weight over the year. 

 And another one, the other statistician, 

does another perfectly reputable analysis. They 

look at the effect—the gender effect on weight—

controlling for pretest. And they get a different 

answer. Both answers are right, but they‟re answers 

to different questions. 

 It strikes me that something we haven‟t 

been really good at in education research—but I‟m 

not sure people have been particularly good at it 

anywhere else either—is thinking about what 

question you want the answer to from your analysis. 

 If you‟re interested in the causal effect 

on gains, you know, Y minus X type gains, then 

that‟s what you ought to analyze. If you‟re 

interested in the causal effect on an outcome 

controlling for as if everybody started out at the 

same place, that‟s a different question—a subtly 



 

 
 

 

 
 
 

 McLAUGHLIN REPORTING 

 703 820 5098 

VSM   73 

different question—and the analysis of covariance 

answer is the right answer—is the right way to get 

the answer to that question. 

 But I think that it‟s at the conceptual 

level where we really need to think, and it‟s 

really hard to think about because most of us 

aren‟t really used to thinking about even that 

there‟s a difference between those two questions. 

 I think that‟s where in the experimental 

world we really have to think a lot, you know, 

about which, question do we want the answer to, and 

then make sure we can relate the analysis to the 

answer we want to get. 

 I mean, it‟s sort of funny because it‟s an 

elementary blunder in a lot of the proposals that 

people write. You know, you say, oh, well, the 

analysis doesn‟t have anything to do with the 

question they‟re asking.  

 But there are subtle variances of that 

that I‟m sure we all fall into—I‟m sure I‟ve fallen 

into it—and I don‟t know much about what—I don‟t 

know much about what to say except that it really 
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is trickier than it seems and requires more thought 

and more smart people sitting around a room before 

you go off and do something—thinking about it—than 

most of us are willing to give it. 

 We‟re about one minute to go, so we could 

either quit or I‟ll take one more question. I‟ll 

quit. 

 [Laughter and applause.] 

 [Whereupon, at 11:47 a.m., the panel 

session was concluded.] 


