Planning for a Second Target Station at SNS

R. Kent Crawford

ICNS-2009 Town Hall Meeting May 7, 2009

OAK RIDGE NATIONAL LABORATORY

Overview

- Background
- Process
- Reference concept
- Performance summary
- Technical choices
- Next steps
- Summary

Background

- The Spallation Neutron Source (SNS) is a 60 Hz short-pulse neutron source designed to operate at 1.4 MW and to be upgradeable to at least 2 MW. SNS construction was completed in June, 2006.
- The inclusion of a second target station at SNS has been part of the Department of Energy (DOE) longrange plans.
- The current planning for a second target station (STS) began in Summer, 2006, shortly after SNS completion.
- A Reference Concept for the STS was produced and documented in an internal "white paper" in 2007.
- DOE has now authorized SNS to proceed to a full conceptual design for the STS.

Development of STS Reference Concept

- Science drivers and other requirements
 - Support the SNS Mission of excellence in science
 - Complementary to SNS First Target Station and to HFIR
 - Extend limits beyond present capabilities
 - High reliability
- Scoping workshop (local and international experts), August 2006
 - Recommend focus on producing a high flux of cold neutrons
- Neutronics workshop (local and international experts), December 2006
- Instrumentation workshop (local and international experts), February 2007
 - Concepts for instruments (short and long pulse)

Development of STS Reference Concept -cont'd

Working group

- Refined these ideas to produce the Reference Concept and evaluate its performance for science
- Documented in a White Paper, October 2007
- Submitted to DOE and externally reviewed

REFERENCE CONCEPT

Present SNS Accelerator Systems

• SNS linac accelerates the beam to full-energy

- Present installation designed for 1.4 MW at 1 GeV
- Upgrade underway to increase this to > 2 MW at 1.3 GeV
- Operates at 60 Hz with 1 ms macro-pulse length
- Accumulator ring compresses pulse length to ~ 1 μs
 - Requires chopping segments out of the linac macro-pulse

STS Reference Concept - Accelerator

- "Pulse stealing mode" for second target station
 - Second target station takes every third pulse to operate at 20 Hz (50 ms intervals)
 - First target station operates at "pseudo 60 Hz" (40 pulses/ second with alternating intervals of 16.7 ms and 33.3 ms)
- "Long-pulse mode" with unchopped (and uncompressed) 1 ms linac beam pulse used for STS
 - Eliminating chopping provides 50% more power for the same linac peak current
 - 1 ms pulse length
- Power to first target station 1.33 MW (33 kJ/pulse)
- Power to second target station 1.00 MW (50 kJ/pulse)

STS Reference Concept - Neutronic Model

Moderators – parahydrogen 22 cm dia; ~14 cm high

- Reflector beryllium
- Target mercury

Neutron beams – 20

STS Reference Concept - Target and Moderators

STS Reference Target Building and Instrument Suite

proposed at the STS Instrumentation Workshop. Magnetic-studies High-resolution Backscattering Powder Diffractometer Spectrometer Wide-angle NRSE Very-fast Powder Low-Q Diffractometer Vertical-surface NRSE Diffractometer Imaging Ultra-cold Neutrons Macromolecular SERGIS Diffractometer Vertical-surface Reflectometer SESANS Horizontal High-resolution CNCS -surface NRSE GID/GISANS Horizontal-surface Asymmetric placement of target Reflectometer station in target building allows **Biology SANS** essentially all instruments on one High-resolution CNCS side to fit within target building. High-throughput SANS High-resolution SANS

Instrument concepts

Performance for Science - Short vs Long Pulse

Performance for Science with Reference Instrument Suite - Short vs Long Pulse

First Target Station @ 1.33 MW Short Pulse STS @ 0.67 MW Long Pulse STS @ 1.00 MW

Instrument

Performance for Science – Reference Instrument Suite

Reference instrument suite provides:

 More than an <u>order of magnitude improvement</u> in performance for broad areas of forefront science (relative to the present target station)

- Opens up totally new areas to exploration

- Complementary to the first target station and to HFIR
- Provides opportunity to re-optimize moderators and instruments at the first target station

Performance for Science - Potential

An order of magnitude in performance gain offers the opportunity for new developments to extend the experimental range.

Some possible examples include:

- Slow dynamics at length scales up to 1 micron
- Focused 10 micron beams
- Lateral surface structures at 10 to 1000 nanometers
- Full dynamical range from picoseconds to minutes

Reference Concept - Conventional Facilities

Reference Concept - General Layout

Major Choices

- Optimization for <u>intense cold neutron beams</u>
 - Strong recommendation from 2006 scoping workshop.
 - Cold neutrons important for current and future science
 - More intense beams would enable new capabilities
 - First target station is optimized for very short pulses to provide timing resolution → cold neutron intensity compromised
 - STS optimization for intensity provides a much higher intensity even with its lower repetition rate → order of magnitude increase in useful neutrons on sample

<u>Pulse stealing</u> vs pulse interleaving

- Pulse interleaving technically challenging, would require major overhaul of the linac \rightarrow too expensive
- Pulse stealing at 20 Hz still leaves high power for the first target station

Major Choices – cont'd

- 20 Hz repetition rate
 - Allows increased bandwidth, even for longer flight paths
 - Minimizes impact on first target station
- <u>Long-proton-pulse</u> vs short-proton-pulse
 - Neutronic response to a short proton pulse is a long neutron pulse (~300 μ s) in the cold-neutron regime
 - Using the full 1 ms pulse directly from the linac is not a big timing penalty
 - 50% more power \rightarrow more neutrons
 - Already have short-pulse station, and can re-optimize the mix of moderators and instruments between the two stations
 - Technically much simpler operation \rightarrow higher reliability
 - Provides opportunity for new types of instrumentation to enable new science

Activities to Prepare for Critical Decision 1

• Finalize major design choices

- Short vs long pulses
- Site for target station
- Target type
- Moderator types and geometry

Develop conceptual design

- Accelerator systems modifications
- Target station
- Initial instruments
- New buildings, utilities, and site layout

Document

- Write Conceptual Design Report
- Prepare realistic and defensible preliminary cost and schedule estimates
- Develop other CD-1 documents

Summary

- A reference concept for a second target station (STS) at SNS has been developed and evaluated.
 - Intense cold neutron beams
 - 1 MW at 20 Hz
 - Long-pulse operation (1 ms)
- Such an STS at SNS would provide exciting new scientific capabilities.
 - Order-of-magnitude increase in useful cold flux compared to first target station
 - Qualitatively new scientific capabilities
- DOE has recently authorized SNS to develop a full conceptual design for the STS.
- We would like your feedback on what we are doing ! (crawfordrk@ornl.gov)