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ABSTRACT 

 
A variety of metrics are commonly used to assess whether 
or not a photovoltaic (“PV”) system is operating as 
expected, but to date no standard metric has been 
accepted. Three commonly used metrics for assessing PV 
system power performance are the Power Performance 
Index (“PPI”), PVUSA rating as contemplated in ASTM 
WK22009 (“ASTM”), and Performance Energy Ratio 
(“PER”). This paper evaluates the suitability of each of the 
three metrics for use with large Cadmium Telluride (CdTe) 
arrays. Of particular interest is the uncertainty and stability 
of each result and relative differences between their 
magnitudes. Two different approaches for propagating 
measurement uncertainty to final metric uncertainty are 
discussed: (1) analytical and, (2) bootstrapping (similar to 
a Monte Carlo method). Additionally, best practices to 
achieve low uncertainty and high stability of a metric are 
addressed including choice of regression method, 
reference conditions and filtering range.  
 
Iteratively reweighted least squares regression methods 
were found to improve the stability of metrics in cloudy 
climates relative to ordinary least squares methods. 
Choosing irradiance filtering ranges that are sufficiently 
large and asymmetrical about the chosen reference 
condition was found to bias the metrics on the order of 
0.6%. Final PPI uncertainty was found to be most 
sensitive to irradiance and power measurement errors and 
ranged from +/- 3% to +/- 8% for typical ranges of sensor 
accuracies. 

 
EXPLANATION OF METRICS 

 
Three different PV power rating metrics are examined: (1) 
the PPI, (2) the ASTM, and (3) the PER. All three methods 
use meteorological and PV system power data measured 
over a range of weather conditions to compare measured 
performance to expected performance. The PPI and 
ASTM methods take the approach of translating measured 
power to a reference meteorological condition by using a 
linear or multivariate regression, and then compare the 
measured power evaluated at the reference condition to 
the system nameplate power rating (typically defined at 
STC). The PER method takes the opposite approach, 
using a PV system simulation tool with measured weather 
data as an input to simulate expected power across a wide 
range of weather conditions for comparison to the non-
weather-adjusted measured power data. Methods of 
calculating these metrics are described in the following 
sections. 

The PPI Rating 
 
To calculate the PPI, measured system power, P is first 
translated to a module reference temperature, To (typically 
25oC) using the power temperature coefficient, γ and the 
measured module temperature, Tm: 
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The temperature corrected power, PTC, is then expressed 
as a linear function of measured irradiance, E: 
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Substitution of the irradiance reference condition value Eo 
into Eq. 2 with known coefficients then gives the AC or DC 
power, Po, at the reference condition which is defined by 
the user depending on the application:  
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The PPI is defined as the ratio of Po to the system 
nameplate rating, Pnameplate: 
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The ASTM Rating 
 
A multivariate regression is used to fit the non-temperature 
corrected measured power data to measured weather 
data: 
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Ta and v are ambient temperature and wind speed, 
respectively. Substitution of the reference condition values 
Eo, To, and νo into Eq. 5 then gives the AC or DC power, 
Po, at the reference conditions which are defined by the 
user depending on the application:  
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Finally, for comparison to the PPI, we compute the ratio of 
Po to the system nameplate rating: 
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The PER Rating 
 
The PER is given by Eq. 8: 
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where predicted power for each time interval, Pp, is 
determined using a comprehensive system energy 
simulation tool such as PVSyst [1] among others, and P is 
the measured AC or DC system power. Note that PER is 
largely a measure of energy production while the PPI and 
ASTM ratings are power/capacity-based metrics. 
 
There is an aspect of user subjectivity to all three metrics. 
For example, a number of inputs specific to the PV system 
being evaluated such as system tilt and azimuth, loss 
factors and module performance coefficients are required 
for any comprehensive PV system simulation tool, each of 
which will affect the PER. In the case of the PPI and 
ASTM methods, the range of meteorological conditions 
over which the regression is fit will affect the final rating as 
will the chosen reference conditions. In choosing the data 
filtering ranges and reference conditions, there is a 
tradeoff between having a metric directly comparable to 
100% of nameplate capacity and a metric with high 
stability and accuracy. For the purposes of this paper, the 
authors made the choice to use filtering techniques 
recommended in [2] to minimize bias error in the metric’s 
value. Due to inverter clipping and a lack of high-
irradiance data, this choice led to reference conditions 
other than STC, and consequently, the PPI and ASTM 
metrics reported in this paper are no longer comparable to 
100% of plant capacity. In some instances, it may be 
mandatory to use STC as the chosen reference condition. 
Potential consequences of doing this without sufficient 
data on either side of STC for the regression fit are 
discussed in subsequent sections. 
 

METHODOLOGY 
 

Because each metric is susceptible to user subjectivity, it 
is important to establish best practices for calculating each 
metric and a consistent method for estimating uncertainty. 
In this section, two different uncertainty analysis methods 
are first described: (1) analytical uncertainty propagation 
and (2) bootstrapping. This section also investigates best 
practices for (1) fitting regression models, (2) filtering data 
for fitting regression models, and (3) choosing reference 
conditions for metric evaluation.  
 
Uncertainty Analysis 
 
Error in power and meteorological measurements will 
affect each metric. Random error in measurements 
contributes to scatter about the regressions and is 

ameliorated by sufficiently large samples. Systematic 
measurement errors will result in biased values of metrics 
and are therefore of greater importance in this analysis 
than random measurement errors. Typical systematic 
uncertainties of measurements used in all three metrics 
are listed in Table 1.  
 
Table 1. Measurement accuracies 

Measurement Device 

Systematic 
Uncertainty 
(symbol) 

Nominal 
Value Units 

Thermopile 
Pyranometer 

+/- 3%  
(bE) 1000 W/m2 

Ambient Temperature 
RTD 

+/- 0.13 
(bTa) 20 ˚C 

Wind Speed +/- 2%  
(bWS) 1 m/s 

Module Temperature 
RTD 

+/- 0.13 
(bTm) 25 ˚C 

Module Temperature 
Coefficient 

+/- 0.01  
(bα) -0.25 %/˚C 

Inverter Measured DC 
Power 

+/- 4%  
(bP) 600 kW 

 
This uncertainty analysis does not account for factors 
other than measurement uncertainty that may introduce 
additional uncertainty into the PPI and ASTM metrics. For 
example, we use data from a single irradiance sensor. 
Use of the average of more than one irradiance sensor 
located within the array may significantly reduce the effect 
of irradiance measurement error if the sensors calibration 
errors are uncorrelated, and may also reduce error in the 
regressions. Other environmental conditions that are not 
considered are: spatial variations in wind speed and array 
and ambient temperature; spectral mismatch between the 
irradiance sensor (in this case, a thermopile pyranometer) 
and the array; differences between cell and module back 
surface temperature; and angle of incidence response 
differences between the pyranometer and the PV array.  
 
For the PPI method, total metric uncertainty is first 
estimated by propagating measurement uncertainty 
analytically using the methods outlined in ASME PTC 
19.1-2005 standard [3]. PPI uncertainty is also estimated 
using a bootstrap technique for comparison. Bootstrap 
uncertainty estimation is advantageous as it is 
comparatively easier to compute than the analytic method 
when multiple independent variables appear in the model 
as is the case for the ASTM metric. For this reason, only 
the bootstrap method was used to estimate ASTM 
uncertainty. 
 
Systematic error for the PPI is estimated analytically by 
propagating the measurement uncertainties through Eq. 1 
through Eq. 4. This propagation results in Eq. 9 which 
represents the total bias uncertainty in the power at 
reference conditions, �8 due to measurement error: 

 



( )( )( )
[ ] ( )[ ] [ ]

1/2

Po

P
 +   
 
 

2

22 2
�

1� -
� - �

m o

Tm m o α E

α T Tb
P  α b P T T b mb

P  b
(9) 

 
Random error <8  is evaluated per [3] using Eq. 10 below: 
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where j indexes the observations and corresponding 
calculated values of ��A. Note that because the number of 
observations, N, appears in the denominator as the 
number of data points becomes larger, the random error in 
the rating becomes small compared to systematic error. In 
the analytic determination of systematic uncertainty, the 
average module temperature and power are calculated 
within a window of +/- 50 W/m2 around the reference 
irradiance for use in Eq. 9.  Coefficients for Eq. 3 are 
estimated by least-squares to maintain theoretical 
consistency with Eq. 1 and Eq. 9.   
 
The PPI uncertainty was also estimated by a bootstrap 
approach. In our analysis, uncertainty in measured 
quantities is regarded entirely as resulting from systematic 
errors. Errors in irradiance, temperature, wind speed and 
DC power were characterized by uniform distributions with 
limits given in Table 1.  Error in the module temperature 
coefficient was characterized by a normal distribution with 
mean and standard deviation given in Table 1; use of a 
normal distribution is appropriate because this parameter 
is estimated from a large sample of measurements. A 
sample of size 1,000 was generated from each error 
distribution, the sampled errors were applied to measured 
quantities to obtain an ensemble of synthetic 
meteorological data, the regressions were performed for 
each element of the ensemble and the resulting models 
were evaluated at chosen reference conditions to obtain a 
sample of size 1,000 of the performance metric. The mean 
and standard deviation of this sample were taken to yield 
the metric rating and uncertainty, respectively. 
 
Results of using the analytical and bootstrapping 
techniques to estimate uncertainty for the PPI and ASTM 
metrics are discussed in subsequent sections. 
 
Best Practices for Metric Calculation 
 
Because there is user subjectivity present in the methods 
of calculating each of these metrics, it is important to 
discuss best practices that minimize uncertainty and 

improve stability of the ratings. Of primary interest are: (1) 
the regression method, and (2) choice of data filtering and 
reference conditions. 
 
When fitting the PPI and ASTM models in cloudy climates, 
the regressions exhibited residuals that depended strongly 
on irradiance. The heteroskedasticity in the residuals likely 
results from measuring irradiance at a point rather than 
across the area of the solar plant, and from the simple 
form of the models used for the performance metrics. 
Power from a solar plant is strongly correlated with total 
irradiance over the plant’s area, but less well-determined 
by irradiance measured at a single point proximal to the 
plant [5]. Due to spatial damping, extreme values of 
irradiance measured at a point are unlikely to be observed 
across the plant’s area, particularly during cloudy 
conditions. Consequently, regression between power and 
irradiance measured at a point favor over prediction of 
power when irradiance is low and under prediction of 
power when irradiance is high. We found that performance 
metrics estimated by ordinary least-squares (OLS) 
regression were biased toward low values in the cloudy 
climate due to this heteroskedasticity.  
 
Typically, a user will choose an OLS method because of 
its ease of application and availability for calculating both 
the ASTM and PPI metrics which can result in difficulty in 
calculating stable metrics under cloudy conditions. More 
robust regression methods may improve the regressions 
relative to OLS by eliminating the effects of outlier data 
points. To investigate this, PPIs were calculated on 11 
consecutive weeks of data using both the OLS and a 
robust regression methods (specifically, an iteratively-
reweighted least squares approach [4]). The OLS method 
yielded a mean PPI rating of 0.652 +/- 0.020 over the 11-
week window while the robust method yielded a PPI of 
0.655 +/- 0.013 (uncertainty intervals are 2 standard 
deviations calculated from the 11-week sample). This 
represents a 35% improvement in metric stability from 
week to week and an increase of 0.5% in the mean rating 
with the robust regression method (Fig. 1).  

 
 
Figure 1. Stability of PPI metrics over 11 weeks in a 
cloudy climate using the OLS and robust regression 
approaches. 
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Another known preventable source of systematic error is 
the inclusion of overly large windows of irradiance in the 
regression coupled with use of asymmetric filtering 
intervals. Asymmetric filtering about reference conditions 
will result in biased ratings due to the curvature in the 
power versus irradiance “line”. Fig. 2 depicts regression 
error (modeled minus measured) as a function of 
irradiance for the PPI regression fit using irradiance data 
between 400 and 1000 W/m2. At 1000 W/m2, the 
regression predicts power that is approximately 0.6% 
higher than the measured power. ASTM WKK2009 
guidelines [2] suggest including only data that is within 
20% of reference irradiance to avoid this type of error, but 
such filtering is not always possible if the desired 
reference irradiance is sufficiently high (i.e., 1000 W/m2

 in 
a low irradiance climate for comparison to published 
nameplate) or if inverter clipping is present at relatively low 
irradiances. In such cases, additional systematic error will 
be present in the rating due to choice of reference 
conditions. 

 
 
Figure 2. PPI regression residuals for data fit using an 
irradiance filter of 400 to 1000 W/m2. 
 
Based on the results described in this section, it is advised 
that robust regression techniques be used for calculating 
ASTM and PPI metrics for cloudy data sets and that 
symmetrical irradiance filtering be used whenever 
possible.  
 
EXAMPLE IMPLEMENTATION ON DATA FROM TWO 

CADMIUM TELLURIDE ARRAYS 
 
One week of system DC power, irradiance, ambient 
temperature, wind speed and module temperature data is 
collected at 1-minute time resolution for two comparable 
500 kWAC inverter systems in June. One system is located 
in a climate with variable irradiance while the other has 
predominantly clear skies. Each rating is calculated for 
both sets of data for comparison. For the ASTM method, a 
reference ambient temperature and wind speed of 20˚C 
and 1 m/s are chosen, respectively. For the PPI method, 
the reference temperature T0 is set to 25˚C. In the clear 

climate, only data measured with irradiance between 600 
and 1000 W/m2 was included and a reference irradiance of 
800 W/m2 is used (inverter clipping was present above 
1000 W/m2). For the cloudy climate, data was filtered for 
irradiance between 500 and 900 W/m2 with a chosen 
reference irradiance of 700 W/m2.  
 
Fig. 3 compares the DC power predicted by the PPI and 
ASTM regressions to the measured DC power for the 
clear climate; Fig. 4 shows the same results for the cloudy 
climate. Neither model reproduces the full scatter of the 
measured data, due to the regression of power to 
irradiance measured at a point rather than over the entire 
plant.  

 
 

Figure 3. Comparison of ASTM and PPI models and 
power in a clear climate. 

 
 

Figure 4. Comparison of ASTM and PPI models and 
power in a cloudy climate. 

 
To calculate the PER for both the clear and cloudy data 
sets, measured meteorological data was input to the 
PVSyst energy simulation tool along with: (1) known 
system specifications, (2) module input parameters 
estimated by First Solar for First Solar modules, and (3) 
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typical loss factors estimated by First Solar for use with 
PVSyst [6] to predict power production for the systems 
during the week of interest. The 1-minute meteorological 
data was reduced to hourly averages to accommodate 
PVSyst input requirements. Figure 5 shows the 
relationship between measured and modeled power at 
each hour, for both locations (inverter outages that 
occurred during this period have been disregarded in both 
datasets). The ratio of total weekly measured DC energy 
to and PVSyst modeled DC energy was taken to yield a 
weekly PER rating for both data sets (see Eq. 8). 

 
 
Figure 5. Comparison of PVSyst calculated DC power 
to measured DC power for the inverter for both the 
clear (blue crosses) and cloudy (red circles) climates. 
 
Uncertainty in the PPI metric was quantified analytically 
and using the bootstrap method; uncertainty in the ASTM 
rating was estimated with the bootstrap only. Uncertainty 
in the PER was not estimated due to the labor involved in 
running multiple PVSYST calculations. The magnitudes of 
each metric with corresponding uncertainties are shown in 
Table 2.  Nominal values for metrics computed by 
bootstrapping are the mean for the resulting ensemble; 
uncertainty values are 2 standard deviations about the 
nominal rating. 
 
Table 2. Final power metric results 
  Clear at 800 W/m2 Cloudy at 700 W/m2 
  Nominal Uncertainty Nominal Uncertainty 
PPI (a) 

(b) 
(c) 

0.722 
0.724 
0.724 

+/- 0.046 
+/- 0.044 
+/- 0.044 

0.656 
0.654 
0.657 

+/- 0.038 
+/- 0.038 
+/- 0.039 

ASTM 0.691 +/- 0.039 0.638 +/- 0.037 
PER 0.995 - 1.015 - 
(a) Robust regression; uncertainty estimated analytically 
(b) Bootstrap estimate using OLS 
(c) Bootstrap estimate using robust regression 
 

DISCUSSION OF RESULTS 
 
The PPI and ASTM metrics are significantly lower than the 
PER for a number of reasons. First, they are evaluated at 
non-STC reference conditions but are divided by the 
system nameplate rating which is defined at STC. Second, 
losses that reduce system performance are inherently 
included in the measured power in the numerators of 
these metrics, but not in the denominators. Examples of 
such loss factors are: (1) mismatch, (2) soiling, (3) DC 
health (i.e., open-circuited strings, disconnected modules), 
(4) Ohmic losses, (5) diffuse shading, (6) cell to module 
back-surface temperature differences, and (6) angle-of-
incidence losses. In contrast, the PER accounts for losses 
in its denominator at the level of detail of the model 
chosen to simulate performance. Because the PER 
accounts for such losses, it is a valuable metric for 
comparing the absolute magnitude of system performance 
to expected system performance when model inputs are 
well developed and understood. The PPI and ASTM 
metrics can also be used for this purpose only if they are 
corrected for losses and are evaluated at STC (or 
referenced to a manufacturer published nameplate at 
conditions other than STC). Because of these limitations, 
the PPI and ASTM methods are better suited for 
assessing relative system performance. They are 
especially useful for comparing a system to itself over long 
time-intervals (i.e., in degradation studies) or for 
comparing different PV technologies to each other (i.e., in 
competitive comparisons) as long as the effects of 
environment are similar across the systems. The ASTM 
metric is lower than the PPI in this case because the PPI 
chosen reference module temperature condition is lower 
than the actual operating module temperature that 
corresponds to the ASTM chosen reference conditions of 
20˚C and 1 m/s. 
 
Sensitivity analysis (using stepwise regression) can 
determine the proportion of total uncertainty attributable to 
each input and may guide measurement improvements 
that reduce uncertainty in the performance metrics.  For 
our analysis, variance in the PPI metric is attributed to 
error in DC power (60%), irradiance measurement error 
(30%), and error in temperature (10%).  Variance in the 
ASTM metric for our analysis is attributable to DC power 
error (65%) and irradiance error (35%) with very little 
contribution from temperature or wind speed error. The 
different sensitivities result from the different model 
formulations. 
 
In this analysis, a relatively high-accuracy irradiance 
sensor (+/- 3%) was used in conjunction with a relatively 
low-accuracy inverter reported DC power reading (+/- 4%). 
However, numerous other combinations of sensor 
accuracies may arise which will result in different overall 
metric uncertainties. The analytical uncertainty analysis 
method was utilized to generate Fig. 6 which shows 
overall PPI uncertainty as a function of irradiance sensor 
and power measurement uncertainty. 
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Figure 6. Analytical PPI uncertainty (2 standard 
deviations) as a function of irradiance sensor and 
power sensor accuracy 

 
CONCLUSIONS 

 
This analysis investigated three different PV power 
capacity rating metrics with respect to uncertainty, 
stability, and magnitude of the result. Best practices for 
calculating each of the metrics and assessing uncertainty 
were investigated. Major findings are summarized below: 
 

• The ASTM and PPI methods yield comparable 
results when best practices of implementation are 
used. Differences may arise in their magnitudes 
due to reference condition choice. Reference 
conditions should be chosen based on the 
intended application of calculating these metrics 
and additional bias error may be included in the 
model by choosing reference conditions that are 
outside of the range of actual operating 
conditions. 
 

• The PER was significantly higher than both the 
PPI and ASTM methods due to the choice of 
reference irradiance and comparison to the 
nameplate which does not include losses in the 
PPI and ASTM metrics.  
 

• Because the PER accounts for losses, it is most 
useful for comparing actual system performance 
to expected system performance for a single time 
period if model inputs (i.e., loss factors, module 
performance coefficients, etc.) are well 
developed and understood.  
 

• Because the ASTM and PPI metrics do not rely 
on assumptions about losses and module 
performance, they are well-suited for relative 
comparisons. Specifically, they are useful for 
tracking the performance of a single system to 
itself over time to determine degradation rates or 
for comparing performance of multiple systems to 
each other over a specified time period.  

 
• Use of a single irradiance sensor leads to biased 

ratings in cloudy climates when ordinary least 
squares regression is used. Robust regression 
which involves an iterative least-squares 
regression with outlier reweighting, improves 
regression stability in cloudy climates. 

 
• The bootstrapping method of uncertainty 

propagation showed comparable results to the 
analytical approach for the PPI and offers a 
method of uncertainty analysis for more 
complicated models like the multivariate ASTM 
regression. 

 
• The uncertainty of the PPI and ASTM metrics is 

most sensitive to irradiance and power sensor 
measurement accuracy. PPI uncertainties due to 
measurement can range between +/- 3% and +/- 
8%, depending on sensor accuracy. For precise 
power capacity ratings, high-accuracy power and 
irradiance sensors should be considered.  
 

Future work will focus on assessing the uncertainty of PV 
system simulation tool outputs such as PVSyst using the 
bootstrapping approach and developing a 
recommendation for the number of irradiance sensors and 
the best robust regression method to use to give stable 
ratings in cloudy climates. 
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