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ABSTRACT 
 
Power from proposed photovoltaic power systems is 
commonly estimated by a performance model using 
hourly averaged weather data, such as TMY data.  Use of 
hourly averaged weather data introduces error in model 
estimates independent from other sources of error.  We 
isolate and quantify the error in DC energy that results 
solely from using time-averaged model inputs.  We 
demonstrate that error in estimated energy arises from two 
separate approximations: 1) the approximation of PV 
performance as linear in time-averaged inputs, such as 
irradiance; and 2) the treatment of time-averaged inputs 
for partially-lit hours including sunrise and sunset.  We 
show that the net error in DC energy from these 
approximations can be predicted from characteristics of 
the PV modules and the frequency of clear-sky 
conditions.  For a typical cSi PV module, error in annual 
energy ranges between -0.3% for locations with primarily 
clear-sky conditions to +2.0% for locations with highly 
variable conditions; errors are greater for systems with 
amorphous silicon modules and less for systems with 
CdTe modules.  Our analysis permitted quantifying the 
error, identifying the underlying causes, and proposing a 
model to estimate the error in annual energy resulting 
from time-averaged weather data.  With current modeling 
practices, the error in annual energy resulting from time 
averaging is substantially reduced by use of weather data 
at 15 minute intervals or less. 
 
 
1.  INTRODUCTION 
 
Power from photovoltaic (PV) systems can be calculated, 
using one of several models (e.g., [1], [2], [3]), from 
measurements of weather data such as irradiance, air 
temperature and wind speed.  Weather measurements are 
generally obtained as averages over time intervals ranging 
from a few seconds to as long as an hour.  Models for 

power generally assume that the PV system responds 
rapidly to changes in external variables, and thus power is 
calculated at discrete times corresponding to the averaged 
weather values. 
 
Uncertainty in model output may result from uncertainty 
in: (i) model parameters that characterize the PV system; 
(ii) model inputs such as irradiance and temperature; and 
(iii) misspecification of the model itself, referred to as 
model uncertainty.  Quantifying uncertainty in model 
output is currently of interest because such uncertainty 
informs decisions about investment risk for large-scale 
PV power plants. 
 
Power from a PV module is not precisely described by a 
linear function of the incident irradiance, as is 
demonstrated by the nonlinearities formulated in the 
various models of PV module performance.  Also, the 
inputs to performance models do not change linearly in 
time; for example, irradiance under clear skies tends to 
follow a sine curve.  Because calculating power and 
energy from time-averaged inputs implicitly assumes (as 
we will illustrate) a linear relationship between inputs and 
outputs, using time-averaged inputs introduces some 
amount of uncertainty in the model results that is separate 
from other sources of uncertainty. 
 
In our analysis we regard the error introduced by time-
averaged inputs as model uncertainty, because it results 
primarily from the implied assumption of linearity.  To 
isolate this uncertainty from other sources of uncertainty, 
we will assume that the system parameters are known 
exactly, and the model inputs (e.g., irradiance) are known 
precisely on any time interval over which the input has 
been averaged.  By this assumption we exclude any 
effects of error in measurement of array characteristics or 
of weather, or from the models used to transform weather 
measurements into inputs to the array performance model. 
 



 

 
2.  METHODS 
 
We obtained one month of measured data as follows: 

• global horizontal irradiance (GHI), direct normal 
irradiance (DNI), diffuse horizontal irradiance 
(DHI), air temperature and wind speed recorded 
at three-second intervals in Albuquerque, NM; 

• GHI, air temperature and wind speed recorded at 
one-minute intervals in Las Vegas, NV; 

• GHI, DNI, DHI, temperature and wind speed 
recorded at one-second intervals in Lanai, HI. 

In each case, the recorded values represent averaged 
measurements over the stated time interval.   
 
For each location, we also calculated one year of clear-
sky irradiance at one-minute intervals using a clear-sky 
model.  We paired the estimated clear-sky irradiance with 
a constant temperature of 25°C and wind speed of 1 m/s. 
 
Using these data we computed the beam and plane-of-
array (POA) diffuse irradiance in order to run the Sandia 
Array Performance Model (SAPM) [1] to estimate array 
power and energy.  In all cases, we assumed a flat-plate 
PV system at latitude tilt.  For Albuquerque, NM, and 
Lanai, HI, we calculated beam irradiance by multiplying 
DNI by the cosine of the solar angle of incidence on the 
panel, and we calculated POA diffuse irradiance using an 
empirical model developed by Sandia.  For Las Vegas, 
NV, we calculated DNI from GHI using the DISC model 
[4], obtained DHI as the difference between GHI and 
DNI, and then estimated POA diffuse irradiance using the 
Perez model [5]. 
 
We used the Sandia model to estimate cell temperature 
from beam and POA diffuse irradiance, air temperature 
and wind speed.  We then created averages of beam, POA 
diffuse irradiance and cell temperature for a range of 
averaging intervals, ranging from one minute to one hour. 
 
In order to estimate power using SAPM, we still needed 
to determine values for the solar angle of incidence (AOI) 
and air mass (AMa); SAPM uses these quantities with 
empirically determined functions to calculate effective 
irradiance, which is the irradiance available to converted 
to electricity within a module ([1], Eq. 1).  Consistent 
with common modeling practices [6], for each time 
interval that does not include sunrise and sunset, AOI and 
AM were determined using geometric models at the 
midpoint of each interval.  For intervals during which 
sunrise or sunset occurs, AOI and AM were determined at 
the midpoint of the sunlit portion of the interval.  As we 
will show, the approximations inherent in estimating 
effective irradiance, by combining time-averages of beam 
and POA diffuse irradiance with these representative 

values, have a substantial effect on the error in calculated 
energy. 
 
With all necessary inputs in hand, we applied SAPM to 
representative latitude-tilt PV systems, each comprised of 
a single module, for a range of module technologies.  We 
selected modules which have been characterized through 
Sandia’s outdoor characterization test processes, and for 
which well-calibrated coefficients for SAPM are 
available.  We calculated power for time series of weather 
for a range of averaging intervals, from original data to 
one-hour averages, and computed the corresponding 
hourly and daily energy.  We regard the power calculation 
for the original data as exact, i.e., not subject to error of 
any other source, in order to isolate the errors resulting 
from using time-averaged input data.  Specifically, for 
each averaging interval, we determine the error in energy 
as the difference between the energy estimated for time-
averaged data and the energy calculated with the original 
data. 
 
 
3.  RESULTS 
 
Following these methods, a lengthy analysis was 
conducted of the errors in power and energy that result 
from using time-averaged data [7].  For a representative 
230W cSi module, the left panels of Figure 1 show power 
for a clear day and a day with variable irradiance, for 
three-second and hourly-averaged inputs.  For each day, 
the right panels of Figure 1 illustrate error in energy for 
each hour, for 15-minute and hourly-averaged data.  
Energy error is substantially different on days with clear 
skies than on days with variable irradiance.  On clear 
days, error in hourly energy appears primarily during 
early and late hours, whereas for days with variable 
irradiance the largest errors occur in the middle of the 
day.  By analyzing intermediate steps in the calculation of 
energy, we determined that the errors in early and late 
hours for clear-sky days result from approximations 
involved in determining effective irradiance, whereas the 
errors for variable day calculations arise primarily from 
the implied assumption of linear module performance. 
 
3.1.  Error from Approximation of Effective Irradiance 
 
Effective irradiance ( eE ) is the solar radiation that is 
captured by the module’s cells.  For the Sandia Array 
Performance Model, effective irradiance is calculated in 
watts by ([1], Eq. 21): 
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where ( )1f AMa  is the air mass ( AMa ) dependent 

spectral correction; ( )2f AOI  is the angle-of-incidence  
correction; bE  and diffE are the beam and diffuse 
irradiance, respectively, incident on the module; df  is the 
fraction of diffuse irradiance captured by the module 
(typically 1df = ); and SF  is the soiling derate factor 
( 0.98SF = in this analysis). 
 

bE  and diffE are calculated from available irradiance 
measurements (e.g., direct normal irradiance or global 
horizontal irradiance) using various models as described 
earlier.  AMa and AOI are typically calculated 
deterministically using only the solar ephemeris ([8]).  
 

As is common practice, we averaged bE  and diffE  over 

various time intervals to obtain bE  and diffE , 
respectively, and we associated the values of AMa and 
AOI at each interval’s midpoint, denoted by *AMa  and 

*AOI , respectively, to the entire interval, with 
modification for intervals containing sunrise or sunset.  
We then used Eq. (1) to calculate a single value ˆ

eE  of 
effective irradiance for each interval. 
 
The value of ˆ

eE  which results from time-averaged data is 

not equal to the average eE  of effective irradiance eE  
over an interval because eE  is not linear with respect to 
the independent variables (Eq. (1)).  We found that the 
error in energy for early and late hours (e.g., between 6 
am and 6 pm in Fig. 1, top row) results almost entirely 
from the inexact approximation of eE  by ˆ

eE . 
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Fig. 1.  Power and Error in Energy for a Clear Day and a Variable Day (Albuquerque, NM). 

 



 

The error due to the approximation of effective irradiance 
can be significantly reduced by decreasing the interval for 
time averaging, as shown in Fig. 1.  We explored whether 
other methods, such as a regression model for the errors, 
could be used to correct the error.  We used a clear-sky 
model for Albuquerque, NM, to estimate irradiance at one 
minute intervals, and calculated power for a single 
representative cSi module at latitude tilt assuming a 
constant ambient temperature of 25 °C and a constant 
wind speed of 1 m/s.  For various time averaging 
intervals, we calculated the error in energy for each hour 
of the year and normalized the error to each day’s total 
energy.  Fig. 2 shows that the normalized hourly error 
varies in a complex manner throughout the year; Fig.3 
shows the normalized error for one day selected from Fig. 
2 and illustrates that the error may be positive and 
negative for different hours of the same day.  For other 
locations (Lanai, HI, and Las Vegas, NV) we found 
different, yet similarly complex, patterns of normalized 
error, indicating that any correction method must take site 
location into account.  However, for all locations we 
observed that the error is significantly reduced for all days 
when the averaging time interval is reduced from one 
hour to 15 minutes.  Due to the complex pattern evident 
for normalized error at long averaging times, and the 
dependence of this pattern on site location, we did not 
pursue other methods for correcting this error. 
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Fig. 2.  Normalized Error in Hourly Energy for One Year 
of Clear-Sky Days (Albuquerque, NM). 
 

128 128.2 128.4 128.6 128.8 129

-1.5

-1

-0.5

0

0.5

1

x 10
-3

Day of year

N
or

m
al

iz
ed

 e
rro

r i
n 

ho
ur

ly
 e

ne
rg

y

 

 
60 min
15 min
5 min

 
Fig. 3.  Normalized Error in Hourly Energy for One Day 
(Albuquerque, NM). 
 
3.2.  Error from Assumption of Linear Module 
Performance 
 
Conceptually, we can represent the calculation of power 
from a PV module by a function, P, which takes as input 
the effective irradiance eE , temperature (cell, module or 
ambient), parameters which describe the module’s 
electrical characteristics (e.g., current at the maximum 
power point and standard test conditions), and possibly 
other inputs.  Power calculated from time-averaged 
weather data, denoted by ( ),eP E   is an approximation 

to the time-average of power, denoted by ( ),eP E   that 
is calculated from weather data at each time step: 
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( )e iE t  indicates the value of effective irradiance at time 

it , and the time average is computed over 1, , Nt t .  Thus, 
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calculation of power (and energy) from time-averaged 
inputs implicitly introduces error associated with the 
approximation in Eq. 2. 
 
The approximation results because module performance, 
described by the function P, is not exactly linear in the 
various inputs.  Fig. 4 illustrates how this approximation 
can be in error due to the curvature in the module’s 
response to effective irradiance.  The concave downward 
shape of the module’s response at high levels of effective 
irradiance is typical of semi-conductor photovoltaic 
devices.  Current generally increases proportionally with 
effective irradiance ([1], Eq. 1 and Eq. 2), while voltage 
generally increases with the logarithm of effective 
irradiance and decreases linearly with temperature ([1], 
Eq. 4), with the net effect being that power increases 
sublinearly with increasing effective irradiance and 
decreases linearly with increasing temperature.  Irradiance 
and temperature tend to increase together, and because 
changes in effective irradiance have a greater effect on 
power than do changes in cell temperature, the net result 
is that power increases sublinearly with increasing 
effective irradiance.  The concave downward curvature 
evident in Fig. 4 reflects the combined effects of changes 
in both effective irradiance and temperature. 
 

 
Fig. 4.  Illustration of Curvature in a Representative 
Module’s Response to Effective Irradiance 
 
We measured the degree of curvature in a module’s 
response to effective irradiance by the difference between 
power at effective irradiance of 1000 W/m2, and power 
projected by a line fit to power for effective irradiance 
less than 400 W/m2, scaled by the module’s maximum 
power at standard test conditions.  We remark that the 
smallest value of the measure (0.004) was observed for a 
Cu-In-Se module, and the greatest values (0.2) were 
associated with several triple junction amorphous silicon 
modules; with crystalline and multi-crystalline modules 

spanning the range between these two extremes.  
Additional values are given in [7], Table 4. 
 
Because the effective irradiance vs. power curve is 
concave downward, power calculated from average 
effective irradiance will inherently be greater than the 
average of power computed at each value of effective 
irradiance.  More formally, if 1eE  and 2eE  are two 
irradiance values, we have 
 

 ( ) ( )( )1 2
1 2
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2 2

e e
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E E
P P E P E
 +   ≥ +  
  

    (4) 

 
as is illustrated by Fig. 5. 
 
The error due to the assumption of linear performance 
will be most significant during hours when changes in 
irradiance are large in magnitude.  During midday hours 
with clear sky conditions (e.g., between 11 am and 2 pm 
on Fig. 1, top row), the error in energy arising from the 
approximation of time-averaged power is relatively small 
because there is little variability in irradiance.   
 

 
Fig. 5.  Effect of Time Averaging on Power Calculation. 
 
Each irradiance measurement in a time interval is similar 
to the average irradiance over the interval; thus power 
computed from the time-average of irradiance is similar to 
the time-average of power.  However, when irradiance is 
variable within the time interval (e.g., between 11 am and 
2 pm on  Fig. 1, bottom row), time-averaged power (and 
hence energy) are overestimated from time-averaged 
weather.  Error magnitude decreases with decreasing 
averaging interval. 
 
3.3.  Net Error in Energy 
 
The net error in energy results from the combined effects 
of the two approximations discussed above.  Fig. 4 also 
shows that the magnitude of the net error is influenced by 



 

the degree of curvature in the effective irradiance vs. 
power curve, and Fig. 5 indicates that the frequency of 
variable irradiance conditions also will affect the net 
error.  We explored these relationships by computing 
error in daily energy, for various averaging intervals, for 
one month of measured irradiance and temperature in Las 
Vegas, NV and Lanai, HI, for a selected group of PV 
modules for which well-calibrated coefficients for SAPM 
are available.  We chose modules to obtain a wide range 
of values for the measure of curvature indicated in Fig. 4. 
 
Fig. 6 illustrates the relationship between module 
curvature and average (over one month) error in daily 
energy for Lanai, HI.  For each averaging interval, the 
relationship is remarkably linear, increasing as module 
curvature increases.  Moreover, the slope and intercept of 
each least-squares fit line changes in a regular manner as 
the averaging interval increases.  However, different 
results were obtained for Las Vegas, NV (Fig. 7).  The 
linear relationship between module curvature and error 
remains evident.  Unlike the results for Lanai, HI, the 
slope and intercept of the best-fit lines do not change 
regularly; at hourly averages, the slope increases sharply 
and the intercept becomes negative.  This different 
behavior results because the weather in Las Vegas, NV, 
included many clear days.  During clear days, when 
hourly averages are used, the contribution to error 
resulting from the linearity assumption is small relative to 
the contribution to error from the approximation of 
effective irradiance during early and late hours, which 
itself is negative (underestimates energy) for the 
particular month chosen. 
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Fig. 6.  Average Error in Daily Energy as a Function of 
Module Curvature: Spring Weather in Lanai, HI. 
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Fig. 7.  Average Error in Daily Energy as a Function of 
Module Curvature: Spring Weather in Las Vegas, NV. 
 
3.4.  Model for Net Error in Annual Energy Resulting 
from Time Averaging 
 
Analysis of the components which comprise the net error 
resulting from time averaging allow us to propose an 
empirical model for the range of values for this error, as a 
function of module curvature and the relative frequency 
of variable and clear-sky conditions.  During clear-sky 
conditions, the error will be dominated by the 
approximation of effective irradiance, and will tend to 
underestimate annual energy (as is suggested by Fig. 2 
and Fig. 3).  Accordingly, we calculated a lower bound 
for the error in annual energy by using a clear-sky model 
for both Lanai, HI and Albuquerque, NM, and obtained 
approximately the same values for the error in annual 
energy for a given module curvature.   
 
When irradiance conditions are frequently variable, the 
net error in annual energy will be dominated by the error 
resulting from the linearity assumption, and this error will 
overestimate annual energy.  We calculated an upper 
bound for the error in annual energy by considering one 
year of weather recorded at Lanai, HI, as a surrogate for 
sites with consistently variable irradiance conditions.  For 
a site with conditions between these two extremes, we 
considered one year of weather measured in Las Vegas, 
NV, where clear days interspersed with days showing 
variable irradiance conditions.   
 
The proposed model for error in annual energy involves 
selecting a surrogate site from those listed in Table 1, then 
linearly interpolating between the error values for the 
averaging interval and module curvature desired.  We did 
not find that a regression surface fit to these data (with 
curvature and averaging interval as predictors) resulting 
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in a useful model for any site, because of non-linear 
changes of error either as a function of curvature or of 
averaging interval.  Moreover, a regression model that 
subsumes selecting a surrogate site would require a 
predictor to indicate the frequency of variable irradiance 
conditions. 
 
Table 1.  Proposed Model Quantifying Error Associated 
with Time-Averaged Weather Data 
Location: 
Irradiance 
condition 

Av’ing. 
Interv’l 
(min) 

Curvature (fraction of 
power at 1000 W/m2) 
1.7% 9.6% 20.1% 

Lanai, HI (2010): 
Consistently 
variable 
throughout the 
year 

5 0.17 0.3 0.36 
15 0.28 0.6 0.61 

60 0.37 0.8 1.8 

Las Vegas, NV 
(2010): 
Many clear days 
with infrequent 
cloudy periods 

5 0.02 0.03 0.06 
15 0.04 0.09 0.17 

60 –0.04 0.04 0.34 

Lanai, HI (clear 
sky model): 
Completely clear 

5 –0.002 –
0.003 –0.003 

15 –0.012 –0.01 –0.014 
60 –0.23 –0.3 –0.19 

 
 
4. SUMMARY AND CONCLUSIONS 
 
We isolated the error in performance predictions of a PV 
module that results from using time-averaged inputs.  We 
found that the error results from two approximations that 
underlie performance predictions: 

− The approximation of effective irradiance by the 
combination of average irradiance values and 
representative values for air mass and angle-of-
incidence.  This error is greatest in magnitude 
during early and late hours of a day, and tends to 
underestimate energy. 

− The approximation, inherent in the use of time-
averaged data, that a module’s response to 
effective irradiance is linear.  This error is of 
greatest effect when irradiance is variable during 
mid-day hours, and tends to overestimate energy.  
We show that this error in energy depends on the 
degree of curvature in a plot of effective 
irradiance vs. module power, with errors 
increasing as the curvature increases.   

We propose a model to quantify the error in annual 
energy resulting from the use of time-averaged inputs.  
For hourly-averaged data, the error ranges between -0.3% 
for locations where clear-sky conditions dominate, to +2.0 
for locations with consistently variable irradiance and for 
systems with modules that have significant curvature. 

 
Due to the complex behavior of the two components of 
error over the course of a year, and their offsetting effects, 
we do not believe it will be practical to develop an 
effective correction of these errors without reducing the 
time interval for input data.  However, errors for 15-
minute averages of weather are substantially reduced 
compared to hourly averages.  Consequently, if correction 
of these errors is desired, we recommend use of weather 
data at intervals of 15 minutes or less. 
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