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Abstract  —  Variability and ramp rates of PV systems are 

increasingly important to understand and model for grid stability 
as PV penetration levels rise.  Using satellite imagery to identify 
cloud types and patterns can predict irradiance variability in 
areas lacking sensors. With satellite imagery covering the entire 
U.S., this allows for more accurate integration planning and 
power flow modeling over wide areas. Satellite imagery of 
southern Nevada was analyzed and methods for image 
stabilization, cloud detection, and textural classification of clouds 
were developed and tested.  Artificial Neural Networks using 
imagery as inputs were trained on ground-based irradiance 
measurements and were tested and showed some promise as a 
means for modeling the irradiance and variability for a location 
at a one minute resolution without needing many ground based 
irradiance sensors. 

Index Terms — solar energy, satellites, artificial neural 
networks 

I. INTRODUCTION 

 High ramp rates, intermittency, and unpredictable 

fluctuations continue to be a challenge for the integration of 

PV at high penetration levels into the electricity grid.  With 

more PV and bigger plants, the variability in the output will 

increasingly impact the stability of the grid.  In the coming 

years with Renewable Portfolio Standards (RPS) mandates, the 

rate at which PV is added will only continue to increase.  In 

order for integration planning of PV to be successful, 

modeling the short-term variability of the plant output for a 

given location and plant layout is critical, since increases in 

output variability may require more regulating reserves.  

Satellite imagery can be used to calculate irradiance and find 

clouds anywhere on earth.  In comparison to setting up an 

array of irradiance sensors in a location or using a ground 

camera setup, this has significant advantages such as cost, 

time, and the ability to use historical data.  National Oceanic 

and Atmospheric Administration (NOAA) makes satellite 

imagery of North America publicly available for the past thirty 

years.  The purpose of the research is to translate satellite 

imagery into a model of irradiance, variability, and PV output 

for a fleet of PV plants at one minute resolution that can be 

easily implemented into a power flow model of the area. 

 Current techniques of estimating high frequency (<1hr) 

solar resource data generally rely on direct measurements of 

irradiance.  Being able to estimate high frequency irradiance 

(~1 min) from satellite imagery allows the grid impacts of 

distributed and utility-scale solar generation to be evaluated.  

Utilities and energy planners need to know how solar 

photovoltaic plants will affect the operation of the grid in 

order for these plants to be built, and high frequency solar 

resource data is needed as input for these studies. 

II. DATA 

The satellite imagery is from the Geostationary Operational 

Environmental Satellite (GOES) which is owned and operated 

by NOAA through their Comprehensive Large Array-Data 

Stewardship System (CLASS).  The proposed method uses 

GOES West or GOES-11 which is located at longitude 

135.0W at 35,790 km above the equator and has been in 

operation since 6/21/2006.  The visible wavelength (0.55 to 

0.75 Âµm) silicon detector is used for images with 1 sq-km 

per pixel resolution taken approximately every 15 minutes [1]. 

There are several groups that have developed algorithms to 

model average ground irradiance using satellite imagery [2, 3].  

While these are often for a large geographical area (3 km grid) 

and one hour or 15-minute time resolution, they have been 

shown to be highly accurate [4], but they contain little 

information about the variability of a location.  Therefore, this 

research does not focus on methods for modeling ground 

irradiance, but instead develops methods for using satellite 

imagery to characterize and model the high-resolution solar 

variability and ramp rates.  By combining previously 

developed models and information with the variability 

modeling, a PV plant output model can be created. 

The model is verified with one minute irradiance and power 

output data provided by Las Vegas Valley Water District 

(LVVWD) from six of their PV plant sites in the Las Vegas 

area starting in August 2006.  NREL Measurement and 

Instrumentation Data Center (MIDC) also provides one minute 

irradiance data for two sites in the area starting in March 2006 

at Clark Station and the University of Nevada.  All of Southern 

Nevada has been chosen as the focus area for the year of 2008. 



 

 
Fig. 1. Three images from GOES 11 of Las Vegas region for 6/4/2008 around 4PM (PST) with corresponding measured irradiance at two 
ground locations. 

 

III. MODEL OVERVIEW 

To develop the model for variability, the GOES satellite 

images is compared to the irradiance measurements from the 

ground locations.  In Fig. 1, an example GOES images around 

4:00PM (PST) on June 4, 2008, shows the correspondence 

with the ground irradiance measurements at two ground 

locations, Fort Apache and UNLV. 

The model for the system is shown in Fig. 2.  The irradiance 

is modeled at one minute resolution between two historical 

satellite images 15 minutes apart.  First, the images go through 

image processing such as geographical subsetting, image 

stabilization, and cloud detection.  The processed images have 

the background image of the ground on a clear day subtracted 

out to leave only the clouds in the image.  The two images are 

translated into clearness indexes through the trained artificial 

neural network (ANN) model.  The ANN was trained using 

images and known historical 1-minute clearness indexes from 

measured irradiance data.  Finally, the clearness index is 

transformed back to irradiance measurements using the clear 

sky model. 

The image processing and background subtraction are 

described in more detail in the next section, and the main solar 

variability modeling is accomplished using an ANN to learn 

the correlation between identified clouds and the high-

resolution solar variability for the time period between the 

images.  This is a type of artificial learning to automatically 

categorize and cluster cloud types and the matching types of 

variability.  Training was done with multiple ground locations 

with thousands of satellite images throughout the year. 

 
 
Fig. 2. Model overview using two images 15 minutes apart to 
generate the irradiance profile for each minute between images. 

 

IV. IMAGE PROCESSING 

The downloaded satellite image includes the entire Study 

Area of southern Nevada (latitude 34N to 38 N, longitude -

118W to -112W), but the model focuses on a subset of the 

image around a site.  Using NOAA’s image coordinates, the 

satellite image is cropped ±25 pixels around each site.  This 

removes any clouds that are too far from the site to affect the 

irradiance during the 15 minute period and allows the model to 

be more specific to the given location. 

A. Image Stabilization 

While NOAA geographically locates each pixel and 

calculates its closest latitude and longitude, this geo-

referencing algorithm is not perfect due to slight vibrations 

and variations in camera, mirror, and scan parameters.  The 

result is that a visibly identifiable geographic location will not 
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have a consistent latitude and longitude through time as 

calculated by NOAA.  If uncorrected, the variability in a 

location’s latitude and longitude would result in movement of 

the apparent position of objects in the geographically 

segmented image.  This image jitter is typically very small and 

less than ±3 pixels (3km) in the x and/or y directions.  

Location variability includes both major movement of the 

image (>1 pixel) as well as sub-pixel image jitter.  An image 

stabilization routine was developed to correct for the jitter by 

comparing the image to a reference image created for each 

time.  The reference images is constructed using the closest 

image in time with a clear sky and scaling it for the correct 

intensity for that date and time.  The detection of clear sky 

images is described in the next section.   

Images are aligned to the present reference image by first 

expanding each image’s resolution four times by linearly 

interpolating in both x and y dimensions.  Correlation 

coefficients are calculated between the two images for each 

position with the expanded resolution image shifted by +/- 16 

pixels in the x and/or y directions.  The location with the 

highest normalized cross-correlation is chosen as the aligned 

image.  Finally, the shifted image is transformed to the original 

resolution through bilinear averaging and antialiasing.   

With interpolation to higher resolution and image 

stabilization, both pixel and sub-pixel jitter were corrected to 

the reference image location.  Fig. 3 demonstrates the 

necessity of performing image stabilization.  This process was 

done using High Performance Computing parallel processing 

algorithms to simultaneously stabilize a large timeseries of 

images. 

B. Cloud Detection 

Identification of visible clouds in the images is not a 

straightforward process.  Challenges include (1) variation in 

average image intensity and image contrast with time of day 

and time of year due to the variable solar intensity and angle of 

the sun on the land surface and (2) variability of the brightness 

of different ground features, such as dry lake beds and snow, 

which can appear very similar to clouds. 

Two main methods were used for identifying clouds in the 

satellite imagery.  The first method was thresholding the image 

based on simply finding pixels with intensity values above a 

certain threshold value.  The clouds are more reflective than 

most geographical features, so especially certain types of 

clouds can be easily identified this way.  Thresholding can be 

accomplished with a fixed threshold intensity value or with a 

moving threshold that depends, for example, on features 

within the image or the time of day.  The thresholding method 

works better under some weather conditions than others.  For 

example, cumulous clouds are easily distinguished from the 

background because they are the brightest features in the 

image, whereas broad thin stratus clouds are more difficult to 

distinguish from background.  Fig. 4 shows an example of 

cloud detection using a threshold determined by the brightest 

pixel technique. 

 

 
 
Fig. 3. Illustration of image stabilization algorithm: (a) image after 
jitter correction; (b) difference between original and reference image; 
(c) difference between aligned and reference image. 

 

 

 
 
Fig. 4. Example of Cloud Detection using Thresholding: raw image 
(left) and detected clouds (colored features, right). 

 

The second method used for detecting clouds was 

Movement Detection.  In this technique, the intensity is 

compared between pairs of sequential images at the pixel 

level.  After scaling each image so that there was no average 

change in the brightness of the image, the difference in 

intensity exceeding a certain threshold was assumed to be 

movement at that pixel.  With accurate jitter correction, the 

only features in the image that can move are clouds; therefore 

pixels with movement were assumed to be clouds.  One 

problem with this method is that it can only identify leading 

and trailing edges of clouds.  This is because a pixel may be in 

the middle of the cloud in both images and the difference 



 

between intensity at these pixels may not exceed the threshold.  

Another problem with this method is that it depends on the 

accuracy of the image stabilization method, since errors in 

stabilization can lead to apparent movement of ground features 

and misidentification of these features as clouds.  Fig. 5 shows 

an example of cloud detection using the movement detection 

technique, and illustrates the main problem with this method.  

Parts of the clouds recognized in the image are not identified 

as clouds by the movement detection technique.  Note how the 

large cloud in the center of the image appears thinner in the 

movement detection image.  Several shadows on the ground 

are also identified as clouds since they move between images. 

 

 
 
Fig. 5.  Example of Cloud Detection using Movement Detection: raw 
image (left) and detected clouds (white features, right). 

V. BACKGROUND SUBTRACTION 

In order for the neural networks to learn the correlation 

between the clouds and the ground irradiance, the background 

image of the ground must be removed.  This ensures that the 

neural network only models the impact of the clouds to the 

clearness index and not the geographical features.  

Background subtraction was accomplished by estimating what 

an image of the ground would look like and subtracting this 

image from the actual image.  Areas with clouds should then 

show up as areas where the intensity difference is above a 

certain threshold.  Fig. 6 shows an example of cloud detection 

by the method of background subtraction.  Note how the 

background disappeared (i.e., is colored black) in the right 

panel of Fig. 6 and all that remains in the subtracted image are 

the clouds. This method allows for better detection of clouds 

with lower intensity because of less reflectivity.  Even small 

changes in intensity can be detected between the image and the 

expected background.  For example, with background 

subtraction a cloud pixel could be detected if it is just slightly 

brighter than normal, even if it is still darker than another 

geographical feature in the image.  As a result of background 

subtraction, the subsequent image analysis depends only on the 

clouds in the image, and not on any of the background content. 

This method allows the ANN to learn the connection 

between cloud images and irradiance variability without the 

ground data included in the image.  An additional ANN can be 

used to generate the background image that varies with the 

seasonal and daily changes.  This ANN is automatically 

trained by detecting and using only images of the location 

without clouds throughout the year.  It can then generate what 

an image would look like for any date for that location without 

clouds.  The synthetic background images are verified to 

match the min, max, and mean intensity for each time and day 

of the year. 

 

 
 
Fig. 6. Example satellite image with background subtraction for 
southern Nevada.  Approximate state boundaries in yellow. 

 

A. Determining Background Portion of the Image 

Background Subtraction requires determination of a 

background image without the presence of clouds.  First, 

Movement Detection was used to select a subset from 

available images that contain no clouds.  If any movement was 

detected the image was flagged as having clouds, and every 

day that had images with clouds was classified as a cloudy 

day.  This high sensitivity in detecting clouds guarantees that 

only days that were completely clear are used to generate the 

background images. 

For each of the images with clear skies, image statistics 

(mean, minimum and maximum) of the pixel intensity are 

computed.  These statistics vary in a smooth manner during 

daylight hours and in a more complex but non-random manner 

annually.  Pixel intensity in an image of the background varies 

due to diurnal and seasonal changes in solar illumination.  

Because the background image varies by season and time of 

day, and clear sky images are not available at all times, a 

neural network that is trained on the clear images throughout 

the year was used to generate images for all other times during 

the year. 

B. Neural Network Learning of Clear Images 

Pixel intensities do not necessarily vary algebraically 

between clear sky images because of changes in earth’s 

albedo, the occurrence of snowfall, and atmosphere properties.  

In order to generate suitable background images of the ground 

for all times of interest, a neural network was developed and 

trained to produce reference background images.  The feed-

forward backpropagation ANN was set up with two hidden 

layers of 300 neurons with a log-sigmoid transfer function.  

The BFGS quasi-Newton backpropagation algorithm in 

MATLAB was used to train the ANN with the detected clear 

day images.  The ANN was trained to take the date and times 

as inputs and produce minimum, average, and maximum pixel 

values for any time when clear sky images were not available.  

This setup can be seen in Fig. 7. 

 



 

 
 
Fig. 7. Training ANN to generate clear background images 

 

C. Neural Network Generation of Clear Images 

Once the ANN has been trained, for any input time t, it 

produces minimum (It,min), average (It,mean), and maximum 

(It,max) pixel values.  Clear images for each day of the year 

were generated by scaling the pixels in the baseline image IB to 

the neural network generated statistics for every time t.  The 

closest clear sky image, as determined by the cloud detection, 

was selected as the base reference image IC.  The baseline 

image IC was normalized to IB using (1) to create an image that 

is easily scaled for any given time It.  This resulting image It 

represents what the image would look like for a clear, 

cloudless sky at that time. 
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Fig. 8 compares pixel intensities for synthetic images to 

those from images during clear sky days throughout 2008.  

The comparison shows that the neural network and scaling 

produced images for which the average pixel intensity follows 

the annual pattern.   
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Fig. 8. Comparison of average pixel intensity of clear sky images and 
ANN simulated output through the year. 

 

Moreover, for individual clear sky days, Fig. 9a 

shows the neural network was found to produce synthetic 

images which had statistics reasonably close to the statistics 

for the actual clear day images.  Fig. 9a shows that the 

synthetic image retains the general structure and characteristics 

evident in the GOES-11 image.  Fig. 9b shows that the ANN 

also learned the diurnal variation through the year to account 

for different lengths of days and solar intensity. 
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Fig. 9. Comparison of pixel intensity of clear sky images and ANN 
simulated output for a) Diurnal variation in image statistics and b) 
diurnal variation for different days of the year. 

VI. TRAINING THE NEURAL NETWORK MODEL 

The ANN model was trained using measured ground 

irradiance between the two images 15 minutes apart.  The 

irradiance was transformed to clearness index by dividing by 

the clear sky model irradiance.  The feed-forward back-

propagation ANN was set up with three hidden layers of 300 

neurons with a log-sigmoid transfer function.  The BFGS 

quasi-Newton backpropagation algorithm in MATLAB was 

used to train the ANN with the satellite images as inputs and 

the ground clearness index as the output as shown in Fig. 10.   

 

 
 
Fig. 10. Training the Neural Network model to generate clearness 
index from background subtracted satellite images. 



 

 

One week of images and data was used the train the ANN 

model.  An example of the model learning the training data is 

shown in Fig. 11 where the model learned the correlation 

between the images and irradiance very accurately. 
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Fig. 11. Measured and simulated (NN Output) irradiance for Fort 
Apache at 1 minute resolution for May 25, 2008. 

VII. RESULTS 

After the model has been developed using known ground 

irradiance values, it can be implemented anywhere with 

satellite images.  The current hypothesis is that the trained 

ANN will only be able to work with similar weather patterns 

as in the training data, so it may only work for geographically 

similar locations with relatively similar weather and clouds.  

The simulation results will have to be verified with some of 

the sample sites used in the model development process and 

some new sites with minute irradiance data to compare the 

model accuracy for weather type.  The correlation and 

residuals of the irradiance and variability can then be analyzed. 

Current model results can be seen in Fig. 12 for Fort Apache 

for the week after the training data.  The model very accurately 

models the large transitions of the cumulous clouds later in the 

day, but has more trouble with the variability produced from 

the high thin cirrus clouds earlier in the day. 
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Fig. 12. Measured and simulated (NN Output) irradiance for Fort 
Apache at 1 minute resolution for May 27, 2008. 

VIII. CONCLUSION 

A proof of concept model was developed to predict high 

frequency irradiance variability in areas with no ground 

sensors.  Artificial Neural Networks (ANN) can be used to 

generate clear background images to do background 

subtraction, cloud identification, and cloud classification in 

satellite imagery.  The ANN model has difficulty modeling all 

possible images to irradiance patters, but categorizing clouds 

and using separate neural networks for each cloud type could 

improve accuracy.  The overall processing is very intensive 

and utilizing High Performance Computing Resources is 

necessary.  For interconnection studies modeling solar power 

on the electric grid, a good model for system variability is 

needed.  This method shows the possibility of modeling high-

resolution solar variability using only satellite images.  
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