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Abstract 
 

Power from photovoltaic systems can be calculated from measurements of weather 
data such as irradiance, air temperature and wind speed.  Weather measurements are 
generally obtained as averages over time intervals ranging from a few seconds to as 
long as an hour.  We examine the effects on estimates of photovoltaic power system 
power and energy of using weather measurements averaged over time intervals of 
various lengths. 
 
We found that, in general, average power is overestimated and the distribution of 
power is narrowed when time-averaged weather is used.  The largest changes in 
power, i.e., ramp rates, are reduced.  We also found that energy calculated from time-
averaged weather is subject to error that increases as the averaging interval lengthens; 
at hourly averaging intervals, for a representative system in Albuquerque, NM, 
absolute error in energy may be as large as 2%.  Hourly energy error depends in a 
complex manner on the time of year and the power system’s location.   
 
We show that error in annual energy can be predicted from the frequency of clear-sky 
conditions and the degree of non-linearity in the photovoltaic module’s response to 
increasing irradiance.  Error in annual energy ranges from -0.3% for locations where 
clear-sky conditions dominate, to +2.0% for locations with variable irradiance 
conditions and for a module with significantly non-linear response.   
 
We show that errors in energy are significantly reduced when the time interval 
between weather measurements is shortened.  For example, reducing the weather-
averaging interval from one hour to 15 minutes generally reduces the error in energy 
by a factor of 10.  Consequently, for analysis of energy produced from photovoltaic 
systems, we recommend use of weather data at a time interval of 15 minutes or less. 
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1.  INTRODUCTION 
 
 
Power from photovoltaic (PV) systems can be calculated from measurements of weather data 
such as irradiance, air temperature and wind speed.  Weather measurements are generally 
obtained as averages over time intervals ranging from a few seconds to as long as an hour.  We 
examine the effects on estimates of PV power system performance of using weather 
measurements averaged over time intervals of various lengths. 
 
We use common modeling practices to calculate PV module performance with the Sandia Array 
Performance Model [1].  We calculate power at three-second and one-minute intervals from 
weather data measured in Albuquerque, NM, Las Vegas, NV, and Lanai, HI, and also calculate 
power at longer time scales using time-averages of the same weather data.  We compare results 
calculated at different averaging intervals to examine the effect of time-averaging on the 
distribution of power, variability in power, and energy from the PV system. 
 
In Section 2.3 we examine the effects of using time-averaged weather on the calculated 
distribution of power.  In particular, we investigate the effects on the average (over time) power, 
the standard deviation and percentiles of the distribution of power, and on the ramp rates of 
changes in power.  
 
In Section 2.4, we analyze the potential error in energy resulting from the integration of power 
calculated with time-averaged weather.  We investigate the sources of error, the dependence of 
error on irradiance conditions and PV module characteristics, and the potential for development 
of error correction methods.  From estimates of PV system performance at different locations, we 
quantify a range of values for the error in aggregate annual energy that results from the use of 
time-averaged weather. 
 
In Section 2.5, we discuss the effect of using time-averaged weather on a PV system design, in 
particular, the selection of the inverter size for a PV system. 
 
Finally, we conclude with a brief survey of the effect of time-averaged weather on the 
representation of a PV system in analyses of the electric grid (Section 2.6). 
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2.  ANALYSIS 
 
Photovoltaic (PV) system power is generally estimated by a mathematical model.  Several 
models with different formulations and implementation in software are available [1, 2, 3, 4].  
However, all performance models require irradiance as an input, and most require other weather 
quantities such as air temperature and wind speed.   
 
Models for power generally assume that the PV system responds rapidly to changes in external 
variables, and thus power is calculated at discrete times using instantaneous weather values.  
Weather values are generally obtained as time averages, although the time interval over which 
measurements are averaged varies greatly, from a few seconds to as long as an hour.   
 
The analysis presented in this section examines the effects on model results due to using 
different time scales for the weather variables.  We first establish notation, then discuss in turn 
the following calculations: estimating power output; estimating energy; determining power 
quality on a grid with connected PV; as well as implication for PV system design. 
 
 
2.1. Notation 
 
The weather variables can be represented by a vector V , e.g., ( ), , ,eV E T WS= …  where eE  
indicates effective irradiance (i.e., the solar radiation captured and used by the module), T  
indicates temperature, WS  denotes wind speed, and so forth.  These quantities are functions of 
time, indicated by ( ) ( )( ), ( ), ( ),eV V t E t T t WS t= = …  and typically are determined from 
measurements at regular intervals.  For convenience, we assume the measurement interval t∆  is 
fixed. 
 
Let ( )P t  denote the power (in watts) produced by the PV system at time t .  The performance 
model used to calculate ( )P t  can be represented as a function of the weather variables V  and a 
fixed parameter vector S  that describes the properties of the PV system, i.e.,  
 
 ( ) ( )( ),P t f V t S= . (1) 
 
Because values for the weather variables V  are given at a sequence of discrete times 

0 1, ,  , , , ,0 ,0kt t t t k t… …= ∆ … ∆= …  we obtain a sequence of values for ( )P t : 
 
 ( ) ( )( ),P k t f V k t S∆ = ∆  (2) 
 
With this notation in hand we can readily represent statistics for the power sequence, and for 
results calculated using environmental variables on various time scales. 
 
Given a weather vector V  (i.e., a vector where each component ( ){ }i iV V k t= ∆  is a time series of 
values for a weather variable) using a performance model (Eq. (1)) we obtain a time series of 
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power ( ){ },   0, ,P k t k N∆ =   with the same time interval t∆  as the weather variable time 
series.  The time series in the weather vector may be summarized by averaging over intervals 
wider than t∆ ; for example, irradiance measurements may be made every three seconds but 
reported as one-minute averages (i.e., as the average of measurements over the preceding 
minute); the one-minute values may be further reduced to hourly averages.  We denote the finest 
time interval available by t∆ ; power obtained using weather quantities averaged over time 
intervals that are multiples of this interval (i.e., at M t∆  for an integer M ) is denoted by 

( ){ }P kM t∆  where it should be understood that the index k  takes values such that the sequence 

of times kM t∆  takes values in the interval [ ]0, N t∆ .   When considering averages that are 

calculated over blocks of time; the notation ( )P K t∆  indicates the time series of averages of 

( )P t∆  over blocks of length K t∆ , and the notation ( )P kK t∆  indicates the kth value in this time 

series.  The bar over P  indicates an average and distinguishes ( )P K t∆  from ( )P K t∆ , which 
denotes the (un-averaged) power at time K t∆ . 
 
 
2.2. Weather Data and Calculation of Power 
 
To illustrate the effects of time scale on weather variables and associated power, we use a set of 
concurrent weather measurements collected at Sandia National Laboratories in Albuquerque, 
NM in late August through early September 2008.  Measurements of global horizontal irradiance 
(GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), ambient temperature 
and wind speed were recorded at intervals usually ranging from 2.8 to 4 seconds.  While all 
weather data was sampled instantaneously, some instruments respond to environmental changes 
with response times longer than the sampling interval, thereby introducing a smoothing or 
averaging effect.  In particular, the irradiance instruments employed thermopile (broadband) 
sensors with 99% response times on the order of 13-17 seconds, and the sampled wind speed is 
representative of a 15 second moving average.  Because measurements are not always reported at 
a consistent time interval of three seconds, due to data transmission timing or missing data, we 
regularized the weather data to three-second intervals by linearly interpolating between 
measurements.  Regularization facilitates the calculation of time averages and of statistics that 
summarize the weather and resulting power data and should not adversely affect the validity of 
this analysis. 
 
Measured weather data are paired with calculated values for solar azimuth and zenith angles and 
absolute air mass (AMa), which was calculated as  ( )secAMa z=  where z  is the solar zenith 
angle ([5], Eq. 22.12).  Solar angle of incidence (AOI) was then computed, assuming a PV 
module fixed at latitude tilt and facing southward.  Figure 1 illustrates GHI, ambient temperature 
and wind speed measurements on August 24, 2008 (clear day) and August 15, 2008 (cloudy 
day), and the resulting time series of DC power calculated using the Sandia Array Performance 
Model [1] for a Yingli Y230 (230WDC) cSi module.  Figure 2 shows the estimated power from a 
Yingli module for each of the sixteen selected days.  The Yingli module was chosen because its 
performance characteristics are representative of current crystalline silicon (c-Si) PV module 
technology. 
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Figure 1.  Example irradiance, temperature and wind speed, and corresponding power 

from a 230W cSi module: (a) Clear Day; (b) Cloudy Day. 
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Figure 2.  Estimated Power for Sixteen Days in Albuquerque, NM. 
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2.3. Effect of Averaging on Power Estimates 
 
When weather variables are specified at a point in time, the power calculated at that time does 
not depend on the time scale of the weather vector V , because power is an instantaneous 
quantity.  Rather, error in the calculated power depends on: 

• Measurement error in the weather variables; 
• Model error (misspecification) in the model used to calculate power; 
• Estimation error in the parameters (i.e., the vector S ) that characterize the PV system. 

Discussion of the magnitudes and sources for these errors is beyond the scope of this paper; we 
mention only that analyses are available which report on measurement error for weather sensors 
[7; 8] and on model and parameter error for PV modules [9; 10]. 
 
Most often, available weather data are time-averaged measurements over the measurement 
interval t∆  rather than instantaneous measurements at each time kt .  If the performance model is 
linear in each weather variable, i.e., the model has the form ( ) ( ) ( )eP t aE t bT t= + +  where a 

and b are constants, then the model’s average value for power, ( )P t , is equal to that obtained by 
using the average weather values: 
 
 ( ) ( ) ( )eP t aE t bT t= + +  (3) 
 
However, PV system response is not linear in general, although for many purposes, acceptable 
approximations can be made by assuming linear response.  Figure 3 illustrates the measured 
power the selected Yingli module plotted against effective irradiance (i.e., the solar radiation that 
is captured by the module’s cells).  The concave downward shape of the module’s response at 
high levels of effective irradiance is typical of semi-conductor solar photovoltaic devices.  
Current generally increases proportionally with effective irradiance ([1], Eq. 1 and Eq. 2), while 
voltage generally increases with the logarithm of effective irradiance and decreases linearly with 
temperature ([1], Eq. 4), with the net effect being that power increases sublinearly with 
increasing effective irradiance and decreases linearly with increasing temperature.  Irradiance 
and temperature tend to increase together, and because changes in effective irradiance have a 
greater effect on power than do changes in cell temperature, the net result is that power increases 
sublinearly with increasing effective irradiance.  The curvature evident in Figure 3 reflects the 
combined effects of changes in both effective irradiance and temperature 
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Figure 3.  Module Response to Increasing Irradiance. 
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towards one minute or shorter, distributions of irradiance become distinctly bimodal where the 
two modes result from the intermittent interposition of clouds between the sun and sensor.  We 
suspect the time scale at which a bimodal shape emerges is the average time for a cloud to pass 
over the sensor but have no empirical evidence of this relationship between time scale and cloud 
movement. 
 
Figure 4 illustrates histograms of irradiance measured on three-second intervals, averages of 
measured irradiance over five-minute and one-hour periods, and corresponding histograms of 
power calculated from the measured and averaged irradiance.  Measurements are from 16 days in 
August, 2008, in Albuquerque, NM, between 7 am MST and 6 pm MST; power calculated from 
these irradiance measurements is illustrated in Figure 2.  The bimodal character of the 
distribution is evident at the short (i.e., three-second and five-minute) time intervals, but appears 
only weakly in plots of the hourly-averaged quantities.  Also, averaging reduces the extreme 
values of the distributions: brief excursions of irradiance above 1200 W/m2 are indicated in the 
distribution of three-second irradiance averages, but are not present in the hourly averages. 
 
Statistics summarizing the distribution of power can be affected by averaging.  Table 1 lists the 
means, standard deviations and high quantiles for the distributions of power for averaging 
intervals ranging from three seconds to one hour.   
 
 

 
Figure 4.  Distributions of Measured Irradiance and Modeled Power for Several Averaging 

Intervals. 
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Table 1.  Statistics for the Distribution of Power (W) for Different Averaging Times. 

 Mean 
Standard 
deviation 

50th 
percentile 

95th 
percentile 

99th 
percentile 

3 sec. 116.4 62.8 125.5 193.7 206.7 
1 min. 116.4 62.4 125.6 193.4 204.8 
5 min. 116.6 61.4 125.5 192.6 200.0 
15 min. 116.8 59.9 124.0 191.8 194.8 
1 hour 117.1 56.6 126.1 191.0 194.1 
 
The mean of the distribution of power increases with time averaged weather data, whereas the 
median is generally unaffected.  The increase in the mean with increasing averaging time results 
from the non-linear response of the module (as described by the performance model) with 
increasing irradiance (Figure 3).  When power is calculated from hourly-averaged weather, one 
obtains a value for power that is generally greater than the average of power computed over the 
same hour from weather data at shorter time intervals.  More formally, because module response 
to effective irradiance is sublinear, if 1eE  and 2eE  are two irradiance values, power at the 
average of 1eE  and 2eE  will in general be greater than the average of power computed for each 
value of irradiance: 
 

 ( ) ( )( )1 2
1 2

1, , ,
2 2

e e
e e

E EP P E P E +   ≥ +  
  

   . (4) 

 
The relationship between the quantities on each side of the inequality in Eq. (4) is illustrated by 
Figure 5. 
 

 
 

Figure 5.  Illustration of Effect of Time Averaging on the Average Values for Power. 
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Consequently, calculating average power with averaged weather variables results in an 
overestimate of the average power; the overestimate is greatest for mid-day hours when 
irradiance is at its greatest values.  If average power is calculated for a time period while 
irradiance is low and in this range of irradiance, module response is supralinear (i.e., power 
output increases more rapidly than linearly as irradiance increases), then the mean value for 
power for this interval of time would be underestimated from time-averaged weather variables.  
However, because power is generally low when irradiance is low, and low values of power have 
less influence on the average value for power than do high values of power, we conclude that, in 
general, the average value of power is likely overestimated when using time-averaged weather 
variables. 
 
We expect averaging to decrease variability in the averaged data due to the removal of extreme 
values.  Increasing averaging from three seconds to one hour reduces the standard deviation by 
about 10%, the 95th percentile by roughly 2%, and the 99th percentile by roughly 7%.  The 
reductions indicate that the distribution for power calculated from averaged weather data is 
somewhat narrower (i.e., is less variable) as compared to the distribution for power at short time 
scales.   
 
We conclude that averaging weather data has two primary effects on the distribution of power 
from a PV system: mean values are likely overestimated because module response is sublinear at 
high irradiance levels; and extreme values are removed and variability is reduced. 
 
Other authors have observed similar effects on model results from using time-averaged model 
inputs.  For a representative crystalline Si module, Riley et al. [12] examined the effects of time-
averaging on calculated power.  They quantified the effects by calculating the mean absolute 
error (MAE) and root mean squared deviation (RMSD) between the time series of three-second 
power, and the time series of power averaged over intervals, where within an interval the power 
was assumed to be constant at the average value.  They found that increasing the averaging 
interval increases the MAE and RMSD between three-second time series and averaged time 
series, indicating a widening discrepancy between the model results, by amounts similar to the 
percentage changes shown in Table 1.  However, their work examines statistics that summarize 
the differences between time series, whereas we compare statistics for the power distributions 
(i.e., the marginal distributions of the time series).  Our results can be compared qualitatively, but 
not quantitatively, to those in Riley et al. [12]. 
 
Changes to the distribution of power may propagate to changes in other quantities, such as 
energy, that are calculated from power.  For example, if selection of system components (e.g., 
inverters) is based on extreme values of power, system performance can be affected by time 
averaging.  A less variable distribution of power may result in underestimating the effects of PV 
output variability on the electrical system to which it is connected.  In Section 2.3.2, we further 
examine the effect of time-averaging on variability in power output as measured by the rate of 
change of power (i.e., ramps).  In Section 2.4 we analyze the effects of time-averaging on the 
calculation of energy.  In Section 2.6 we examine the loss of total energy production due to 
inverter clipping that may occur if the inverter capacity is determined by a percentile of 
estimated power and power is, in turn, determined from time-averaged weather data.   
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2.3.2. Variability in Power 
 
The power output of a PV system is inherently variable due to natural variability in weather, and 
in particular, irradiance.  The magnitude of changes in power, the time rate of change (e.g., 
kW/min) and the frequency with which changes occur are all of interest. 
 
A time series of changes in power, ( )P k t∆ ∆ ,  is obtained from the time series of power ( )P k t∆  
by differencing consecutive power values:  
 
 ( ) ( ) ( )( )1P k t P k t P k t∆ ∆ = ∆ − − ∆ . (5) 
 
The time series of changes in power is converted to a time series of ramp rates by dividing by 
time interval length: 
 

 ( ) ( )1R k t P k t
t

∆ = ∆ ∆
∆

 (6) 

 
so that ramp rates can be compared for different time intervals.  Visually, the time series of ramp 
rates is the time series of the slopes of line segments connecting consecutive power values. 
 
Time series of ramp rates at more coarse time scales (i.e., those which result from a time series 
of time-averaged power) are inherently less variable than are time series of ramp rates at finer 
time scales.  The reduction in variability results because the power values at coarser time scales 
are averages and will naturally cluster closer to the overall average value of power than power 
values that are not time averaged; thus changes between power values will occur at lower rates. 
 
Figure 6 illustrates the reduction in variability (quantified here by the cumulative distribution of 
ramp rates) for various averaging intervals.  Ramp rates in Figure 6 are aggregated for all times 
between 7 am and 6 pm over all 16 days with measurements.  For relative short averaging times 
(e.g., one minute) large ramps are possible (e.g., exceeding 50 W/min) and the largest ramps 
effectively represent transition between full power and minimal system power over a single time 
interval.  As averaging interval increases, the largest ramps are smoothed out of the time series, 
and at hourly averages, changes in power occur at relatively slow rates (e.g., at a maximum rate 
of 2 W/min in the ramp rates resulting from 60-minute averaging). 
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Figure 6.  Effect of Time Averaging on Changes in Power Output. 

 
Ramps in grid-connected PV power output can affect voltages and frequency of power on the 
grid.  Grid operators must maintain system voltage and frequency within specified tolerances, 
and so conduct grid integration studies to quantify the effects of variability in PV systems and to 
determine appropriate mitigation measures.  In these studies, it is often the extremes of the ramp 
rate values that are of interest.  Because time-averaging affects the tails of the distribution of PV 
power ramp rates in a dramatic fashion, it is essential to select a time scale for weather data that 
results in an accurate representation of power ramps at the time scales appropriate to the study’s 
objectives.   
 
 
2.4. Estimating Total Energy 
 
The total energy produced from a PV system over a period of time (e.g., annually) is of primary 
interest when considering the economic value of the system.  Estimates of energy can be affected 
by the numerical method used to calculate energy, and statistics for energy can be biased as a 
result of averaging the underlying environmental variables. 
 
Energy is the integral of power over time.  Because power is estimated at a discrete sequence of 
time points, more coarse time scales (i.e., larger values for t∆ ) intuitively suggest less accuracy 
in the estimation of energy.  Moreover, calculating energy requires selecting a method of 
numerically integrating the time series of power, which also contributes to error in the estimate 
of energy.  We first compare the values of energy calculated using different time scales and 
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different methods for numerical integration to determine the error in estimated energy arising 
from its numerical calculation.   
 
2.4.1. Numerical Error in Calculation of Energy 
 
Integration over time implicitly entails choice of a method to approximate power within each 
interval.  If energy is estimated by a straightforward summation of power over time, weighted by 
the interval length, i.e., 
 

 ( )
1

*

0

N

k
k

E t P t
−

=

= ∆ ×∑  (7) 

 
where *

kt  is a value in the time interval [ ]1,k kt t +  (i.e., *
1k k kt t t +≤ ≤ ), the result is equivalent to 

assuming that over each interval [ ]1,k kt t +  power remains constant at the selected value ( )*
kP t .  

Here we adopt the convention that the time series of interest is indexed from 0 to N, and thus the 
upper limit 1N −  in the sum in Eq. (7) ensures that power is estimated over the time period 
[ ]0 , Nt t .  Rearranging the terms in Eq. (7) shows the relationship between the summation and the 
integral defining energy: 
 

 ( ) ( ) ( )
0

1 1
* *

0 0

N
N Nt

k kt
k k

E P t dt P t t t P t
− −

= =

= ≈ ×∆ = ∆ ×∑ ∑∫  (8) 

 
The approximation in Eq. (8) is known as the rectangle or midpoint integration method, and is 
one of the simplest methods of integration.  The rectangle method is most suited to calculation of 
energy when power is estimated as a representative value for each [ ]1,k kt t + , as may be the case 
when using weather values that have been averaged over intervals.  The accuracy of Eq. (8) 
depends on the accuracy of the representative values ( )*

kP t , which can be assumed to improve as 
the time interval decreases.  
 
When power is known at the interval endpoints, rather than as representative values for intervals, 
other assumptions can be made regarding the values of power interior to each time interval.  The 
simplest assumption is that power is constant at ( )kP t  over the interval [ ]1,k kt t + ; under this 
assumption energy is calculated using Eq. (8) by setting ( ) ( )*

k kP t P t= .  This method is known 
as the left-endpoint rule for numerical integration and is one of the simplest yet least accurate 
methods. 
 
Other assumptions may produce more accurate estimates of energy from end-point values with 
little added complexity.  For example, one may assume that power changes linearly from ( )kP t  

to ( )1kP t +  over each interval [ ]1,k kt t + .  This assumption is implemented by using the trapezoid 
rule for numerical integration: 
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 ( ) ( )( ) ( )
1

0
12 2

N

k N
k

t tE P t P t t P t
−

=

∆ ∆
≈ + ×∆ +∑ . (9) 

 
Integration by Eq. (9) is essentially the same as integration by Eq. (8) when the representative 
quantity is chosen as the average over each interval.  Other methods can be used to approximate 
power within each interval [ ]1,k kt t +  (e.g., cubic spline interpolation) which, if chosen, are 
implemented by corresponding numerical integration rules (e.g., Simpson’s 3/8 rule). 
 
For the power illustrated in Figure 2, which is computed at a time interval of 3 seconds, we 
calculated energy using several different numerical integration schemes, to illustrate the potential 
error introduced by the numerical integration schemes.  The midpoint, left-endpoint, trapezoid 
and Simpson’s 3/8 rules all yielded essentially the same value for energy (20.485 kWh), which 
indicates that numerical error in the integration method is negligible for calculation of energy at 
the shortest time interval (3 seconds). 
 
2.4.2. Effect of Averaging on Calculation of Energy 
 
We calculated energy from power that was computed from weather variables averaged over 
several intervals t∆ , ranging from 3 seconds to 1 hour, using the midpoint rule (Eq. (8)).  We 
chose the midpoint method because we believe that this method is the common practice.  This 
method regards the values of power computed from averaged weather quantities as 
representative of each time interval.  Table 2 compares the results.  Because we determined that 
numerical error in the integration is negligible for the shortest time interval, we may estimate the 
error introduced by averaging the weather variables over intervals of increasing t∆ , by 
comparing energy estimates to those obtained with the shortest value of t∆  (3 seconds).  
 

Table 2.  Comparison of Energy Calculated Using Averaged Weather Values 
 Time interval ( t∆ ) for averaging weather values 
 3 sec 15 sec 1 min 15 min 60 min 
Energy (kWh) 20.485 20.494 20.515 20.548 20.606 
 
Table 2 demonstrates that as the averaging interval increases, estimates of energy also increase, 
resulting in an overestimate of energy from hourly average weather of 0.6%.  We next examined 
the energy produced on each of the 16 days, to elucidate the reasons for the overestimate of 0.6% 
for the aggregate energy. 
 
Figure 7 shows energy (Wh) produced each day for three-second weather data, five minute 
averaged weather data, and for hourly-averaged weather, superimposed on a plot of the power 
for each day.  For mostly clear days (i.e., Days 6, 8 and 9), energy estimated from three-second 
and five-minute average weather are approximately equal.  However, energy is consistently 
underestimated using hourly average weather, by approximately 0.2%.  In contrast, energy is 
overestimated on days with variable irradiance (e.g., Day 10), by increasing amounts as the 
averaging interval lengthens: at hourly averages, energy is overestimated by as much as 1.6%.  
For days exhibiting both clear and variables periods, e.g., Day 4 and Day 15, energy may be 
underestimated or overestimated.  Error in calculated energy results from the approximation of 
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power in each interval [ ]1,k kt t +  by the representative value ( )*
kP t  in Eq. (8).  Theory guarantees 

the existence of a value ( )*
kP t  which, if used, would result in zero error in the calculation of 

energy.  However, in our calculations the representative values ( )*
kP t  are determined by using 

time-averaged weather and representative values for AMa and AOI.  Thus, the causes for error in 
energy can be traced back to the calculation of power from time-averaged weather data. 
 

 
 

Figure 7.  Energy by Day for a Y230 Module: Three Second Weather Intervals (blue), Five 
Minute Average (green) and Hourly Average Weather (red). 

 
We next investigated the dependence of energy error on the time of day.  When the error in 
energy is calculated for each hour, we observe that the error depends on the time of day and the 
variability in irradiance as well as on the averaging interval.  To illustrate these dependencies, 
Figure 8 shows calculated power for 3 second and 60 minute averages of weather, and error in 
energy for each hour of the day, for 15 minute and 60 minute averages of weather.  For a clear 
day (Figure 8, top row), the largest errors are underestimates of energy which occur early in the 
morning or late at night; during midday, errors are small.  The pattern of energy errors for clear 
days illustrated in Figure 8 (top right plot) is typical: energy is underestimated for early or late 
hours that have relatively low but rapidly changing effective irradiance, whereas errors for 
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midday hours followed a shallow U shape.  On a variable day (Figure 8, bottom row), the largest 
errors are overestimates of energy and occur at midday when irradiance is most variable.   

 
Figure 8.  Power and Error in Energy for a Clear Day (Day 6; top) and a Variable Day (Day 

2; bottom) 
 
The errors illustrated by Figure 8 result from two different approximations:  

1) the approximation of effective irradiance from time-averaged weather data and point 
values for AMa and AOI; and  

2) the approximation of time-averaged power (i.e., ( ),eP E  ) by the power computed from 

the time-averaged weather (i.e., ( ),eP E  , see Figure 5).   

Energy errors for clear days can be traced primarily to the first source, whereas energy errors for 
days with variable irradiance result from the combined effects of both sources. 
 
Approximation of Effective Irradiance  
 
Effective irradiance ( eE ) is the solar radiation that is captured by the module’s cells.  For the 
Sandia Array Performance Model, effective irradiance is calculated in watts by ([1], Eq. 21): 
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( )
( ) ( )( )1 2

, , ,e e b diff

b d diff

E E E E AMa AOI

f AMa E f AOI f E SF

=

= + ×
 (10) 

 
where  
 ( )1f AMa  is the air mass ( AMa ) dependent spectral correction; 

 ( )2f AOI  is the angle-of-incidence ( AOI ) correction; 
 bE   is the beam irradiance incident on the module; 
 diffE   is the diffuse irradiance incident on the module; 

 df   is the fraction of diffuse irradiance captured by the module (typically set  
   equal to 1); 
 SF   is the soiling derate factor (set to 0.98 in this analysis). 
 

bE  and diffE  are calculated from available irradiance measurements (e.g., direct normal 
irradiance or global horizontal irradiance) using various models (see [5] for a survey of 
methods.).  AMa and AOI  are typically calculated deterministically using only the solar position 
(ephemeris) [5]. 
 
As discussed in Sect. 2.2, as is common practice, we averaged bE  and diffE  over each time 

interval to obtain bE  and diffE , respectively, and we associated the values of AMa and AOI  at 

each interval’s midpoint, denoted by *AMa  and *AOI , respectively, to the entire interval, with 
modification for intervals containing sunrise or sunset.  We then calculated effective irradiance 
using Eq. (10) and obtained a single value ( )* *ˆ , , ,e e b diffE E E E AMa AOI=  for each interval. 

 
The value of ˆ

eE  which results from time-averaged data is not equal to the average eE  of 

( )eE t∆  over an interval because eE  is not linear with respect to the independent variables (Eq. 
(10)).  We found that the error in energy for hours with clear sky conditions (e.g., between 6 am 
and 6 pm in Figure 8, top row) results almost entirely from the inexact approximation of eE  by 
ˆ

eE .  We confirmed this finding by recalculating power, using eE  over 60-minute intervals in 

place of ˆ
eE  estimated from time-averaged weather data, and found that, when using the exact 

value of eE  in place of ˆ
eE , the energy errors in each hour of a clear day were less than 0.001W.  

Consequently, we conclude that for clear days, the error in calculated energy is almost entirely 
attributable to the first source of error, the approximation of effective irradiance. 
 
To illustrate the error in energy from the approximation of effective irradiance, we calculated the 
error in energy for each day of one year, using a clear-sky model for Albuquerque, NM, to 
estimate irradiance at one minute intervals, a constant ambient temperature of 25 °C, a constant 
wind speed of 1 m/s, and a single Y230 module fixed at latitude tilt.  We calculated the error in 
energy for each hour of the year and normalized the error to each day’s total energy.  Figure 9 
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illustrates the reduction in error as the averaging interval is reduced.  Depending on the time of 
year, the normalized absolute error using 5-minute intervals is generally (i.e., the 95th percentile 
of hourly errors for hours with energy) less than 0.034%, and is always less than 0.075%.  For 
15-minute intervals, the normalized absolute error is generally less than 0.031% and always less 
than 0.24%.  For 60-minute intervals, however, the normalized absolute error is generally less 
than 0.3% but can be as great as 1.9%.  Reducing the averaging interval from 60 minutes to 15 
minutes reduces the normalized error by roughly a factor of 10. 

 
 
Figure 9.  Error in Hourly Energy for One Year of Clear-Sky Days and Different Averaging 

Intervals: Albuquerque, NM. 
 
We investigated the dependence of the error profile illustrated in Figure 9 on both location and 
technology.  We anticipated that the error would vary significantly by location, due to changes in 
solar ephemeris, but not significantly for different technologies, because the response of any 
modules is nearly linear at low irradiance.  We confirmed that the profile of this component of 
error varies significantly with longitude and latitude (Figure 10 shows the error profile for Lanai 
HI for the same Y230 module), and found some degree of variation, primarily in magnitude, by 
technology (Figure 11 illustrates the error profile for Lanai HI for a Cd-Te module at latitude 
tilt.) 
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Figure 10.  Error in Hourly Energy for One Year of Clear-Sky Days and Different 
Averaging Intervals: Y230 module at latitude tilt, Lanai, HI. 

 

 
Figure 11.  Error in Hourly Energy for One Year of Clear-Sky Days and Different 

Averaging Intervals: CdTe module at latitude tilt, Lanai, HI. 
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We explored methods to correct the error illustrated in Figure 9.  The envelope of the error 
shown in Figure 9 is defined by the greatest positive and negative errors for successive days.  To 
illustrate when these errors occur during each day, Figure 12 shows errors by hour for one day in 
the annual sequence depicted in Figure 9.  The profile illustrated in Figure 12 is typical for many 
clear days: large errors in early and late hours, with a shallow ‘U’ shape in between.  We note 
that the sign of the error changes in the two earliest hours.  The sign and magnitude of the errors 
in early and late hours depends substantially on the interaction between the approximate values 
for averaged beam and diffuse irradiance (calculated here using the clear-sky model) and the 
selection of point values for AMa and AOI for these hours.  The shape displayed in Figure 12 
changes over different days throughout the year, as the sunrise and sunset times move through 
clock hours as indicated by the complex shape of the upper and lower edges of the error 
envelope displayed in Figure 9.  Accordingly, although a correction factor could be developed 
for the day illustrated in Figure 12, different values would be required for different days.  We 
conclude that it is unlikely that a simple correction factor could be developed and applied to 
counter the error in energy that results from approximating effective irradiance.   
 

 
 

Figure 12.  Error in Energy by Hour for One Clear Sky Day. 
 
Because AMa  and AOI  are calculated deterministically without measurement, we explored 
combining exact values for AMa  and AOI  at one-minute resolution with the available values 
for bE  and diffE , i.e., by applying bE  and diffE  to each minute in the hour.  We found little 
reduction in the energy error indicating that increasing precision in the values for AMa  and 
AOI  alone would not correct the error in calculated energy.  More precise value for bE  and 
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diffE  can only be obtained by more frequent irradiance measurements.  We conclude, therefore, 
that error in energy calculations resulting from approximation of effective irradiance by time-
averaged quantities best reduced by increasing the frequency of irradiance measurements.  
 
Approximation of Time-Averaged Power 
 
Power calculated from time-averaged weather data (i.e., ( ),eP E  ) is an approximation to the 

time-average of power (i.e., ( ),eP E  ) that is calculated from weather data at each time step.  
Figure 5 illustrates how this approximation can be in error due to the curvature in the module’s 
response to effective irradiance.  Because of the downward curvature in the module’s response, 

( ),eP E   tends to be an overestimate of ( ),eP E  . 

 
During midday hours with clear sky conditions (e.g., between 11 am and 2 pm on Figure 8, top 
row), the error in energy arising from the approximation of time-averaged power is relatively 
small because there is little variability in irradiance.  Each irradiance measurement in a time 
interval is similar to the average irradiance over the interval; thus power computed from the 
time-average of irradiance is similar to the time-average of power.  However, when irradiance is 
variable within the time interval (e.g., between 11 am and 2 pm on Figure 8, bottom row), time-
averaged power (and hence energy) are overestimated from time-averaged weather.  Error 
magnitude decreases with decreasing averaging interval.   
 
For clear-sky periods, the error in energy resulting from the approximation of time-averaged 
power is small relative to the error in energy from the approximation of effective irradiance (e.g., 
Figure 12).  For periods with variable irradiance, the error in energy from the approximation of 
time-averaged power can be greater than the error from the approximation of effective 
irradiance.  To illustrate, we calculated power at one-minute intervals (for a latitude tilt Y230 
module) using weather recorded during 20 days of April, 2010 at Lanai, HI (Figure 13).  
Irradiance exhibited large and rapid variations during many hours of the recorded weather data.  
These variations, which translate directly to variations in power at three-second intervals, are 
smoothed somewhat in the power calculated using weather averaged over five-minute intervals, 
and are largely obscured in the power calculated from hourly average weather.   
 
Figure 14 illustrates the relative error in hourly energy (i.e., energy for each hour normalized by 
the total daily energy) for the twenty days of weather from Lanai, HI.  We note that during the 
period of time selected, the approximation of effective irradiance introduces relatively large 
negative errors in energy at late hours; this component of error is most visible during clear 
afternoons (e.g., Day 11) or afternoons during which irradiance variability was small in 
magnitude (e.g., Day 14, 15 or 16).  During the middle periods of many days, averaging tends to 
overestimate energy, as predicted from consideration of Figure 5, with the relative error 
increasing as the averaging interval lengthens.  However, the magnitude of the relative error 
varies in a complex manner between days, and it appears unlikely that a correction factor could 
be estimated from considering the variability in irradiance and the average hourly irradiance.  
For example, during the middle of both Day 4 and Day 9, irradiance is highly variable around  
moderate values for the hourly average irradiance.  However, the relative errors on these two 
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days are quite different, and shown in Figure 14.  Moreover, similar errors are observed for a day 
with highly variable irradiance (Day 7) as for a day with somewhat variable irradiance (Day 2).  
Consequently, we conclude that error in energy calculations resulting from approximating time-
averaged power by power calculated from time-averaged weather quantities is unlikely to be 
reduced without reducing the time-averaging interval. 
 

 
Figure 13.  Estimated Power for Lanai, HI: One Minute Weather Intervals (blue), Five 

Minute Average (green) and Hourly Average Weather (red). 
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Figure 14.  Relative Error in Hourly Energy for Lanai, HI: Power Calculated From Five 
Minute Average (blue), Fifteen Minute Average (green)  and Hourly Average Weather 

(red). 
 
 
2.4.3. Effect of Averaging on Aggregate Annual Energy 
 
The discussion in the preceding section shows that the error in daily energy can be either positive 
or negative at different times during the year.  To determine whether positive and negative errors 
during the year offset sufficiently to yield an accurate estimate of annual energy, we calculated 
the error in aggregate annual energy, for various locations, using both actual and modeled 
weather.  Results are summarized in Table 3. 
 
For the representative location with consistently variable irradiance (Lanai, HI), we calculated 
energy for a single latitude tilt Y230 cSi module using measured DNI, diffuse irradiance, 
ambient temperature and wind speed from the NREL MIDC station for 2010 [13].  We observe 
that the error in annual energy is positive (i.e., energy is overestimated) for all averaging 
intervals, consistent with the preceding analysis indicating that aggregate energy is anticipated to 
be overestimated during variable irradiance conditions.  For the representative location with 
frequent clear sky irradiance conditions (Las Vegas, NV), we calculated annual energy for the 
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same PV module using measured DNI, diffuse irradiance, ambient temperature and wind speed 
from the NREL MIDC station at the University of Nevada, Las Vegas for 2010.  We found that 
the error in annual energy is positive but remains relatively small for all averaging intervals.  The 
decrease in relative error from 0.09% to 0.04% when the averaging interval increases from 
fifteen minutes to one hour results because the effects of the two approximations are not 
commensurate as the averaging interval increases.  As the interval lengthens, the component of 
error due to the approximation of effective irradiance decreases rapidly (i.e., favors 
underestimating energy), whereas the component of error due to the approximation of time-
averaged power increases (i.e., favors overestimating energy) but more slowly.  The net error in 
energy when both components are combined remains positive for the Las Vegas data. 
 

Table 3.  Error in Annual Energy for Various Locations and Averaging Intervals. 

Location Irradiance conditions 

Error (%) in annual energy for 
each averaging interval 

5 min. 15 min. 1 hr 

Lanai, HI (2010) Consistently variable throughout 
the year 0.3 0.6 0.8 

Las Vegas, NV (2010) Many clear days with infrequent 
cloudy periods 0.03 0.09 0.04 

Lanai, HI (clear sky 
model) Completely clear (modeled) –0.003 –0.01 –0.3 

Albuquerque, NM 
(clear sky model) Completely clear (modeled) –0.002 –0.007 –0.3 

 
 
To obtain a lower bound on error in annual energy due to time averaging, we also calculated 
annual energy for one year using a clear sky model, for both Lanai, HI and Albuquerque, NM.  
We observe that errors are similar for both locations. 
 
We conclude that error in annual energy for a single latitude tilt Y230 cSi module estimated 
using hourly averaged weather ranges from an upper bound of roughly 1% (i.e., energy is 
overestimated) for locations with consistent, highly variable irradiance conditions, down to -
0.3% (i.e., energy is underestimated) for locations with persistent clear sky irradiance conditions.  
Error annual energy for a range of module technologies is addressed in Section 2.4.5. 
 
 
2.4.4. Potential Correction of Errors in Energy 
 
Error in calculated energy results from the combined effects of the two approximations discussed 
in Section 2.4.2.  In combination over a period of time, errors from the approximations may be 
offsetting: for example, the underestimate of energy for some time intervals due to the 
approximation of effective irradiance may be offset by the overestimate of energy for other time 
intervals with variable effective irradiance.  We explored the extent to which the aggregate error 
in energy might be predicted from module characteristics, and possibly corrected absent 
additional weather measurements.  For a selected sample of PV modules for which the Sandia 
Array Performance Model has been calibrated, we computed power and energy and examined 
the dependence of the error in energy on module technology, the curvature in the module’s 
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response to effective irradiance in the outdoor environment, and the averaging interval applied to 
the weather data.  We performed our analysis using weather data for three locations with 
different climates:  

• Albuquerque, NM, 16 days in late August and early September 2008 (mix of clear and 
cloudy days), using data obtained by Sandia National Laboratories;  

• Las Vegas, NV, 30 days in August 2008 (many clear days), using data obtained from the 
Las Vegas Valley Water District at the Las Vegas Springs Preserve; 

• Lanai, HI, 20 days in April 2010 (most days are cloudy), using data obtained by Sandia 
National Laboratories. 

We also calculated power and energy for each module for one year of clear-sky irradiance 
estimated by a clear-sky model for Albuquerque, NM. 
 
We quantified the curvature in a module’s response to effective irradiance by calculating the 
vertical distance from the average of power at 21000 W/meE =  (average calculated for effective 
irradiance between 997 W/m2 and 1002 W/m2) and a line fit to power for 20 400 W/meE≤ ≤  
(Figure 15).  For this calculation, we used irradiance, temperature and wind speed for 
Albuquerque, NM; similar values would be obtained at other locations.  We chose to measure 
curvature in this manner because, for many technologies, module response to effective irradiance 
is essentially linear at low irradiance, and the error in energy that depends on the curvature in a 
module’s response is larger at higher irradiance.  Table 4 lists the technologies represented in our 
selected sample of PV modules and the measure of curvature in each module’s response.  The 
lower values of curvature for the Cd-Te modules may be due to the lower temperature 
coefficients associated with this cell material.  The higher curvature for 3-a-Si modules is likely 
due to the combined effects of higher power performance at low irradiance (compared to single  
 

Table 4.  Module Technologies Selected for Analysis of Energy Error 

Index 
Technology 

Type1 
Curvature (fraction 

of max. power)  Index 
Technology 

Type1 
Curvature (fraction 

of max. power) 
1 3-a-Si 0.197  14 c-Si 0.071 
2 3-a-Si 0.201  15 EFG mc-Si 0.069 
3 CdTe 0.069  16 EFG mc-Si 0.045 
4 CdTe 0.017  17 HIT-Si 0.043 
5 CIS 0.004  18 HIT-Si 0.057 
6 c-Si 0.152  19 HIT-Si 0.094 
7 c-Si 0.080  20 mc-Si 0.099 
8 c-Si 0.100  21 mc-Si 0.124 
9 c-Si 0.092  22 mc-Si 0.082 

10 c-Si 0.154  23 mc-Si 0.105 
11 c-Si 0.103  24 mc-Si 0.121 
12 c-Si 0.067  25 mc-Si 0.127 
13 c-Si 0.075     

1 3-a-Si: triple junction amorphous silicon; CdTe: cadmium-telluride; CIS: Cu-In-Se; c-Si: crystalline silicon; 
EFG mc-Si: Edge-defined Film-fed Growth monocrystalline silicon; HIT-Si: Heterojunction with Intrinsic 
Thin-layer silicon; mc-Si: monocrystalline silicon. 
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junction technology) and the potential for additional electrical losses within the cell at high 
irradiance (again compared to single junction cells).  We note that higher (or lower) values of 
this curvature metric do not imply better (or worse performance) than modules with different 
values; the metric only serves to quantify the degree of nonlinearity in the module’s power vs. 
irradiance curve. 
 

 
 

Figure 15.  Illustration of Curvature Measurement for a Notional Module 
 
 
For the weather in Albuquerque, we found that the average daily error in total energy (total error 
in energy over all days divided by number of days) for the time period considered (16 days in 
August/September, 2010) could be reasonably approximated as a linear function of the measure 
of module curvature (Figure 16).  Moreover, for averaging intervals up to 15 minutes, the slopes 
and intercepts of the line increased regularly.  However, for a 60-minute averaging interval, the 
data exhibit curvature and the intercept of the fitted line does not follow the trend shown for 
shorter averaging intervals.   
 
For weather from other locations (i.e., Lanai, HI and Las Vegas, NV), we also found that average 
error in energy was generally linear with the module curvature measure, and that the slopes and 
intercepts of the fitted lines increased as the averaging interval increased (Figure 17).  However, 
we observed that the parameters for the fitted lines depended strongly on location.  In particular, 
in Las Vegas, NV, where the selected period included mostly clear days, both slopes and 
intercepts were less than observed for Albuquerque.  In contrast, the selected period for Lanai, 
HI involved mostly days with variable irradiance, and the fitted lines showed greater slopes and 
intercepts.   
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To elucidate the reasons why error in energy varies between locations, we examined in detail the 
dependence of the error on clear sky or variable irradiance conditions.  For Albuquerque, NM, 
Figure 18 shows the average daily error in energy as a function of the measure of module 
curvature; it is clear that the error for each day depends strongly on the variability of irradiance 
during the day (compare Figure 18 with Figure 2).  In particular, on a clear day (e.g., Day 6) the 
error is relatively insensitive to module curvature.  Given the dependence of error on irradiance 
conditions, and the dependence of error for clear-sky conditions on the time of year (Figure 9), it 
is not reasonable to expect to obtain a simple model for aggregate energy error as a function of 
module curvature.  However, we speculate that, if the approximation of effective irradiance was 
improved such that its contribution to energy error is greatly reduced, then it may be possible to 
obtain an effective correction for aggregate energy error as a function of module curvature and a 
measure of the fraction of hours with clear-sky conditions. 
 
 

 
 

Figure 16.  Average Error in Daily Energy as a Function of Module Curvature: Fall 
Weather in Albuquerque, NM 
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Figure 17.  Average Error in Daily Energy as a Function of Module Curvature: (a) Spring 

Weather in Las Vegas, NV, and (b) Spring Weather in Lanai, HI. 
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Figure 18.  Error in Energy for Each Day as a Function of Module Curvature in 
Albuquerque, NM: 1 Minute (black), 5 Minute (blue), 15 Minute (green) and 60 Minute 

Averaging Intervals (red). 
 
 
2.4.5. Dependence of Annual Energy Error on Module Technology 
 
Because one component of error in energy arises from the curvature in a module’s response to 
increasing irradiance (illustrated in Figure 15), the error in annual energy is dependent the 
combination of module technology, irradiance variability and time scale for averaging.  We 
calculated the error in annual energy, for various locations, using both actual and modeled 
weather, for three modules representing the range of observed curvature values: the least (1.7%, 
index 4 in Table 4); 9.6% for the representative Yingli Y230 cSi module; and the greatest 
(20.1%, index 2 in Table 4).  Results are summarized in Table 5. 
 
Error in annual energy generally increases as module curvature, variability in irradiance and 
averaging interval increase.  Error may be either positive when variable irradiance conditions 
dominate, or negative when clear sky conditions dominate.  Increasing module power curvature 
amplifies the error during variable irradiance periods, whereas increasing the averaging interval 
amplifies the error during any irradiance conditions.  The values given in Table 5 permit us to 
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offer a range of error in energy calculations resulting from time-averaged weather, from -0.3% 
for modules with little power curvature in persistently clear conditions, to 2% for modules with 
significant power curvature in consistently variable irradiance conditions. 
 
 

Table 5.  Error (%) in Annual Energy for Various Module Technologies, Locations and 
Averaging Intervals. 

Location: 
Irradiance condition 

Averaging 
Interval (minutes) 

Curvature (fraction of power 
at 1000 W/m2) 

1.7% 9.6% 20.1% 
Lanai, HI (2010): 
Consistently variable throughout the 
year 

5 0.17 0.3 0.36 
15 0.28 0.6 0.61 
60 0.37 0.8 1.8 

Las Vegas, NV (2010): 
Many clear days with infrequent 
cloudy periods 

5 0.02 0.03 0.06 
15 0.04 0.09 0.17 
60 –0.04 0.04 0.34 

Lanai, HI (clear sky model): 
Completely clear 

5 –0.002 –0.003 –0.003 
15 –0.012 –0.01 –0.014 
60 –0.23 –0.3 –0.19 

Albuquerque, NM (clear sky model): 
Completely clear 

5 –0.003 –0.002 –0.002 
15 –0.011 –0.007 –0.022 
60 –0.25 –0.3 –0.18 

 
 
2.6. Implications for PV System Design 
 
Design of a PV system includes selection of components, including the modules and inverters, 
and is typically supported by modeling of the proposed system to estimate the power and energy 
output.  Often, only hourly weather data is available for use in the performance models, and 
system design decisions do not currently take into account the error in estimated power and 
energy resulting from the use of hourly-averaged weather data. 
 
For example, it is common practice to estimate the DC power output of the modules using a 
performance model, and to use the range of the DC power output and the total projected energy 
to guide selection of an appropriate inverter.  Other authors have commented on the potential 
loss of energy from the system when the inverter is sized to saturate at less than the maximum 
DC power, and have observed that the loss of energy is compounded when maximum DC power 
is estimated from time-averaged weather data.  Ransome and Funtan [14] compared the total AC 
yield (kW/kWp) for several module technologies calculated using irradiance and module 
temperature measured at 15-second intervals.  They include a day with variable irradiance in 
their analysis; during variable conditions irradiance may briefly exceed clear sky values due to 
cloud enhancement [15].  Their results illustrate the potential for AC power to be curtailed by the 
inverter if the inverter is sized to saturate at 90% of the DC power rating of the PV module.  
They do not calculate a probability of curtailment, nor estimate the reduction in total energy over 
a period of time resulting from curtailment.  In addition, their analysis did not account for the 
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numerical error in the estimated maximum DC power which results from the use of time-
averaged weather data. 
 
Use of time-averaged weather data underestimates maximum power due to the reduction in 
irradiance variability (Section 2.3.2) and thus may lead to selection of a smaller inverter than 
would be selected if higher resolution weather data were used.  In addition, unless weather is 
persistently clear, the energy projected by models using time-averaged weather data is likely to 
be overstated to some degree (Section 2.4.2).  These two effects on inverter size selection are 
compounding, and both must be considered when determining the marginal value of increasing 
the inverter size. 
 
Figure 19 illustrates these combined effects.  A performance model can be used to calculate 
energy as a function of inverter size using hourly-averaged weather to obtain the notional blue 
curve in Figure 19.  In Figure 9Figure 19, the “notional inverter size” is the ratio of the AC rating 
of the inverter and the DC (STC) rating of the PV array.  Energy increases with inverter size 
until the inverter becomes large enough to capture all the modeled power.  Assume that an 
inverter size is selected on the basis of this calculation, perhaps by considering the marginal cost 
of increasing the inverter size as compared to the marginal gain in estimated energy. 
 
Using the same inverter, system performance can also be calculated by supplying weather at high 
time resolution.  Because the inverter size was selected from analysis using hourly average 
weather that is less variable than high resolution weather, we expect that the inverter will limit 
AC power during short intervals where module DC power is greater than in the hourly average 
analysis.  Thus simulation of the system with the high resolution weather data will project less 
energy than when hourly-averaged weather is used.  The reduction results because the inverter 
prevents the model from accumulating energy (i.e., the inverter clips power) during the short 
periods of time when module DC power exceeds the inverter saturation limit.  Consequently, the 
high-time resolution results, illustrated in Figure 19 by the green curve, are drawn below the blue 
curve. 
 
Because the green curve is a more accurate representation of projected energy, the value of 
increasing the inverter size should be quantified by this curve, rather than by the blue curve.  It 
seems difficult (if not impossible) to find a method to correct the blue curve so as to obtain an 
accurate estimate of the value of a larger inverter using hourly average weather.  The blue curve 
is subject to error due to the use of time-averaged data, as discussed in Section 2.4, and likely 
represents an overestimate of energy from the system.  Correcting the overestimate would shift 
the blue curve downward to one of the two displayed red curves.  If the error in energy due to 
time averaging exceeds the energy foregone due to inverter clipping, the shift downward may be 
greater than the difference between the blue curve and the green curve.  However, accurate 
calculation of the red curve would require a method of correcting the error in energy from using 
hourly-averaged weather, which we concluded is difficult to accomplish (Section 2.4.2).  The 
most effective method to preclude error from affecting choice of the inverter size is to use 
weather data at shorter time intervals. 
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Figure 19.  Illustration of Effects on Inverter Size. 

 
 
The same conclusion was reached in [16], where the authors examined the effect of inverter 
saturation on annual energy.  Using one-second irradiance measurements and an inverter sized as 
a fraction of the PV system DC rating, Luoma et al [16] quantify the loss in annual energy for a 
PV system located near San Diego, CA.  They also estimate annual energy using time-averaged 
weather; comparison of annual energy among the various time-scales revealed that accurate 
estimate of the energy loss due to inverter saturation is only possible for calculations performed 
at short time scales. 
 
2.6. Power Quality on a Grid with Connected PV 
 
Time series of power from PV systems are used with grid simulation tools to calculated 
anticipated voltage levels on feeder circuits with connected PV.  Voltage levels, and changes in 
voltage levels, form the basis for studies of the effects of grid-connected PV on the quality and 
stability of power.  These studies examine effects that span a wide range of time scales: 
 

• Net demand and production on circuits with connected PV systems.  These studies 
essentially determine the energy balance at each point in time as the difference between 
load and PV power.  Time scales used can range from hours to seconds, depending on the 
objectives of the particular study. 

• Effects on automatic voltage control equipment (e.g., regulators and capacitors).  These 
studies typically estimate the ability of the equipment to maintain steady-state voltage 
within tolerances, and the increased use of switches and taps, in response to variations in 
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grid-connected PV output and in load.  For these studies, PV output data are at 
approximately one-minute or shorter time scales. 

• Effects of rapid changes in PV power on voltage (i.e., flicker).  Rapid and repeated 
deviations from steady-state voltage may cause unacceptable “flicker” in the power 
delivered to loads (e.g., lights).  Simulations to assess the potential for flicker typically 
use a time interval of one second or less. 

 
Estimating net demand and production conceptually amounts to comparing load and generation 
(including PV system power) at each point in time.  The effects of time scale on estimated PV 
system power are discussed in Section 2.3.  Widén et al. [17] examined the results of comparing 
time-averaged loads with time-averaged PV system power for ten-minute and hourly averages, 
and showed that the differences between the two averages narrow as the time-averaging window 
increases.  They caution that imports and exports of power from the distribution system may be 
underestimated at longer averaging times, but do not conclude that any particular averaging time 
is sufficiently short to ameliorate the concern. 
 
Because the time scales for power quality studies are similar to the finest time scales for 
measuring irradiance (and hence for estimating power from PV systems), little has been 
published regarding the effects of time scales for PV power data on power quality studies.  
Widén et al. [17] compared measured voltage levels at a residence with a PV system that is 
allowed to deliver excess power to the grid.  They examined the distributions of steady-state 
voltage levels for ten-minute and hourly averaged voltage measurements, and concluded that the 
fraction of time spent at each voltage is similar for these two time averaging intervals.  For 
studies of voltage stability where ten-minute time scales are informative, they conclude that 
hourly average measurements are sufficient.  They do not explore the distribution of voltage 
levels at finer time scales. 
 
Studies of power balance on a grid with connected PV systems will be subject to the errors 
described for power (Section 2.3) if the PV system power is estimated from weather averaged 
over long time scales.  However, it seems reasonable to view these errors (which are on the order 
of 1%) as small in comparison to likely errors or variability in other quantities necessary for such 
analyses, such as load on the grid. 
 
If irradiance (and other weather variables) are measured at times scales comparable to those 
relevant for power quality studies, i.e., at one second or less, then it seems unlikely that weather 
variables would be averaged over time intervals long enough to present a concern about 
introducing error.  The important question, however, is whether the models that translate weather 
to PV power are appropriate.  Most power models represent the system in its steady-state 
condition, and do not represent transients in power from, for example, thermal gradients across 
PV modules and arrays or capacitive charging or discharging. 
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3.  CONCLUSIONS 
 
We used common modeling practices to calculate PV module performance with the Sandia 
Array Performance Model for various locations and for weather data averaged over time 
intervals ranging from three seconds to one hour.  We compared results calculated at different 
averaging intervals to examine the effect of time-averaging on the distribution of power, 
variability in power, and energy from the PV system. 
 
We found that, in general, average power is overestimated, the distribution of power is narrowed, 
and variability in power is understated when power is calculated from time-averaged weather 
(Section 2.3).  The overestimate of average power results from the nonlinear response of PV 
modules to changes in irradiance.  For a typical cSi module, the overestimate of average power is 
on the order of 1% at hourly-averaged weather (see Table 1); the overestimate would be greater 
for multi-junction amorphous silicon modules, and less for CdTe modules (Table 5).  The 
distribution of power is narrowed because averaging weather removes extreme values of 
irradiance and temperature.  For weather recorded in Albuquerque, NM, the standard deviation 
of power is reduced by 10% and the 99th percentile by 7% when power is calculated from hourly 
averaged weather.  If accurate calculation of statistics for power is desired, we recommend that 
weather measurements have a time interval of 5 min or less, to reduce error in the estimated 
percentiles of the distribution of power. 
 
We observed that the rates of changes in power (i.e., ramp rates) are reduced in results calculated 
from time-averaged weather.  The reduction in largest ramp rates can be substantial (Figure 6).  
Consequently care should be taken to select a time scale for weather data that is consistent with 
and appropriate for a study’s objectives. 
 
We also found that energy calculated from time-averaged weather is subject to error that 
increases as the averaging interval lengthens (Section 2.4).  At hourly intervals, error in energy 
ranges from -0.3% to 2% (Table 5).  The approximation of effective irradiance which results 
from using time-averaged weather measurements tends to underestimate energy, whereas the 
nonlinearities in the PV module’s response to irradiance and associated environmental conditions 
contributes to overestimation of energy.  The analysis showed that annual energy may be 
underestimated for locations with predominately clear sky irradiance conditions, by as much as 
0.3% for hourly averaged weather, for most module technologies.  In contrast, when hourly-
averaged weather is used for locations with consistently variable irradiance conditions, annual 
energy from modules that are significantly nonlinear may be overestimated by as much as 2%.  
The aggregate error in annual energy resulting from the use of hourly averaged weather for any 
location is expected to fall within this range, i.e., between -0.3% and 2%, with values increasing 
as the frequency of variable (i.e., partly cloudy) irradiance conditions increases and with greater 
overestimates possible for modules with stronger nonlinear response. 
 
We explored the feasibility of developing corrections for this error.  Because the error in energy 
depends in a complex manner on the PV system’s location and the module’s characteristics, we 
concluded that development of an error correction method would be quite challenging and would 
depend on time, geographic location, PV technology, and seasonality.  Therefore, such a 
correction was not attempted.   
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However, we observed that the errors in energy are significantly reduced when the time interval 
between weather measurements is shortened.  For example, reducing the weather interval from 
one hour to 15 minutes generally reduces the error in energy by a factor of 10.  Moreover, error 
is reduced as the module’s response to changes in irradiance becomes more linear (i.e., the 
curvature illustrated in Figure 15 decreases).  For a PV system and location, analysts may 
estimate the potential error in energy calculations arising for various time-averaging intervals by 
using a performance model and representative weather (i.e., concurrent irradiance and 
temperature) to estimate the curvature in the module’s response to irradiance; then using Table 5 
as a guide to possible errors.  For modules with linear response to irradiance, longer time-
averages of weather may be acceptable, whereas for modules with significantly non-linearly 
behavior, shorter averaging intervals may be necessary. 
 
We considered the effects of error in energy on the selection of an inverter size for a PV system.  
Intuition suggests that that selecting inverter size based on analysis with hourly-averaged 
weather would lead to smaller inverters, because hourly averaging removes extreme values of 
irradiance and hence of power.  A smaller inverter would limit power during these periods of 
peak irradiance and hence forego energy.  This study originally intended to quantify the lost 
energy and its dependence on the averaging interval for weather used in system analyses.  
However, our analysis showed that it is difficult to untangle and separately correct for the 
comingled effects of using time-averaged weather: the overstatement of mean power; the 
narrowing of the distribution of power; and the errors which affect estimated energy.  
Consequently, if it is desired to eliminate the effect of these errors on the design of a PV system, 
the most effective method appears to be to use shorter time intervals for weather data, on the 
order of 15 minutes or less. 
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