
Additional Results: Adding Dynamics to the Model

In the model presented in the main paper, we assumed that the common and idio-

syncratic components of measured GDP and GDI were serially uncorrelated. These

simplifying assumptions allowed us to make the main points of the paper in as clear

and uncluttered a framework as possible, but as table 6 shows, some autocorrelation is

present in the data.1 In this additional appendix we relax the simplifying assumptions.

We consider first the pure noise model, then the pure news model, and finally the general

mixed news and noise model. We derive intuitive generalizations to equations (4), (5)

and (3) in the main paper when dynamics are confined to the common component of the

estimates. We have been unable to derive similarly intuitive expressions when dynamics

govern the idiosyncratic components of the estimates as well as the common component,

but the appendices show how to employ the Kalman filter to produce estimates of “true”

unobserved GDP growth under these circumstances.

We first express the static version of the pure noise model in a state space framework,

which is popular for modelling unobserved variables, and provides a convenient point of

departure for including dynamics, as in Howrey (2003). The static version of the pure

noise model, with the assumption that E
(
∆y⋆

t |F
k
t

)
= ∆y⋆

t , posits that:

∆y1
t = ∆y⋆

t + ε1
t , and:

∆y2
t = ∆y⋆

t + ε2
t .
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Our other distributional assumptions can be summarized as:




∆y⋆
t − µ

ε1
t

ε2
t



∼ N







0

0

0




,




σ2 0 0

0 τ 2
1 0

0 0 τ 2
2







.

Then one state space representation of this model is as follows:

ξt = (∆y⋆
t − µ) (state equation)




∆y1
t

∆y2
t


 =




µ

µ


 +




1

1


 ξt +




ε1
t

ε2
t


 (observation equations).

The estimate of the state variable at time t conditional on the observed time t estimates,

ξ̂t|t, can be computed from standard Kalman filter formulas - see, for example, Hamilton

(1994), and ξ̂t|t = E (∆y⋆
t − µ|Ht) = ∆̂y⋆

t − µ yields the same result as equation (4) in

the main paper. Here we define Ht = {1, ∆y1
t , ∆y1

t−1, . . . , ∆y2
t , ∆y2

t−1, . . .}, simply the

history of the two observed estimates plus a constant. The next proposition shows how

equation (4) changes when ∆y⋆
t − µ follows any covariance-stationary process:

Proposition 1 Let (∆y⋆
t − µ) follow any ARMA(p,q) process, so:

∆y⋆
t − µ = φ1

(
∆y⋆

t−1 − µ
)

+ φ2

(
∆y⋆

t−2 − µ
)

+ . . . + φp

(
∆y⋆

t−p − µ
)

+νt + θ1νt−1 + . . . + θqνt−q,

with the νt−q white noise innovations, and let the noise model assumptions govern

2



[∆y1
t ∆y2

t ], with ε1
t and ε2

t uncorrelated with νt at all leads and lags. Then:

E (∆y⋆
t |Ht) =

τ 2
2 ∆y1

t + τ 2
1 ∆y2

t +
τ2

1
τ2

2

var(∆y⋆
t |Ht−1)

E (∆y⋆
t |Ht−1)

τ 2
1 + τ 2

2 +
τ2

1
τ2

2

var(∆y⋆
t |Ht−1)

.

Proof: See Appendix A1.

This equation is identical to the static formula for ∆̂y⋆
t in the main paper (inclusive

of the mean µ), the only differences being the time-varying mean E (∆y⋆
t |Ht−1) replaces

µ and var (∆y⋆
t |Ht−1) replaces σ2. This new variance will converge to a steady state

value,2 so the weights in this formula are time invariant in the steady state.

Appendix A1 gives the state-space representation of models where dynamics gov-

ern ε1
t and ε2

t as well as ∆y⋆
t , and the Kalman filter algorithms for computing ξ̂t|t and

E (∆y⋆
t |Ht). In our data we find it necessary to fit dynamics to the idiosyncratic com-

ponents, and we employ such a model.

We next consider the pure news model. One way to motivate the static model

in the paper is to assume that only contemporaneous, time t information is useful in

estimating ∆y⋆
t . However even in this case where lagged variables are useful for esti-

mating ∆y⋆
t , adding dynamics to the news model will be appropriate only if the condi-

tional expectations ignore the information content in the lagged variables. To solidify

concepts, assume that ∆y⋆
t is correlated with variables in the lagged information sets

F1
t−1,F

2
t−1,F

1
t−2,F

2
t−2, . . . , as well as variables in the contemporaneous F1

t and F2
t . Now,

if:

∆y1
t = E

(
∆y⋆

t |F
1
t ,F1

t−1,F
2
t−1,F

1
t−2,F

2
t−2, . . .

)
, and:

∆y2
t = E

(
∆y⋆

t |F
2
t ,F1

t−1,F
2
t−1,F

1
t−2,F

2
t−2, . . .

)
,
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the lagged information is already in the estimates, appearing as part the information

common to the two estimates.3 Adding dynamics to the news model would be redundant

and inappropriate if the conditional expectations have been formed in this way. On the

other hand, if no lagged information is employed in the construction of the conditional

expectations, even though it is useful in predicting ∆y⋆
t , so:

∆y1
t = E

(
∆y⋆

t |F
1
t

)
, and:

∆y2
t = E

(
∆y⋆

t |F
2
t

)
,

then adding a dynamic component to the estimates may improve the accuracy of ∆̂y⋆
t .

It is not clear which set of assumptions is closer to the truth, but for hueristic purposes,

we study this second case, where no lagged information is employed in the construction

of the conditional expectations even through it is relevant for predicting ∆y⋆
t .

Before adding dynamic components to the pure news model, we first rewrite its static

version, decomposing the two efficient estimates in the following way:

∆y1
t = ηt + η1

t , and:

∆y2
t = ηt + η2

t , with:




ηt − µ

η1
t

η2
t




∼ N







0

0

0




,




σ2 0 0

0 τ 2
1 0

0 0 τ 2
2







.

Each estimate is the sum of a common component (the overlap in the information sets,
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essentially), and an idiosyncratic component orthogonal to the common component ηt

and the other idiosyncratic component. As noted in the text of the main paper, we

assume the variance of each individual estimate is larger than the covariance between

the two, but if this condition holds, this decomposition is not restrictive: the model

estimates three variance parameters (σ2, τ 2
1 , and τ 2

2 ) from a variance-covariance matrix

consisting of three moments.

Using this decomposition, appendix A2 shows how to write the static pure news

model in state space form and compute ∆̂y⋆
t from the estimated state variables; this

∆̂y⋆
t coincides with equation (5) in the main paper. Using these results as a jumping

off point, the appendix then derives dynamic analogs to this static estimator. If the

common component ηt follows an arbitrary ARMA process, with the idiosyncratic η1
t

and η2
t remaining white noise, this analogous dynamic estimate is:

E (∆y⋆
t |Ht) =

„

τ2

1
+

τ
2
1

τ
2
2

var(ηt|Ht−1)

«

∆y1

t +

„

τ2

2
+

τ
2
1

τ
2
2

var(ηt|Ht−1)

«

∆y2

t −

„

τ
2
1

τ
2
2

var(ηt|Ht−1)

«

E(ηt|Ht−1)

τ2

1
+τ2

2
+

τ2
1

τ2
2

var(ηt|Ht−1)

.

With E (ηt|Ht−1) replacing µ and the var (ηt|Ht−1) replacing σ2, this formula is identical

to the ∆̂y⋆
t estimate in the main text given by (5). Appendix A2 also shows how to

estimate ∆y⋆
t when dynamics govern η1

t and η2
t as well as ηt; the state space representation

of this model is identical to the representation of the pure noise model with dynamics

in the idiosyncratic and common components.

Finally consider the mixed news and noise model. Decomposing the efficient esti-
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mates as before, we have:

∆y1
t = ηt + η1

t + ε1
t , and

∆y2
t = ηt + η2

t + ε2
t .

For the distributions of the relevant variables, we have:




ηt − µ

η1
t

η2
t

ε1
t

ε2
t




∼ N







0

0

0

0

0




,




σ2 0 0 0 0

0 χ1τ
2
1 0 0 0

0 0 χ2τ
2
2 0 0

0 0 0 (1 − χ1) τ2
1 0

0 0 0 0 (1 − χ2) τ2
2







.

Modelling dynamics as in the news model (reiterating caveats about whether it is

appropriate to do so), we again find an intuitive generalization of the appropriate static

formula, equation (3) from the main paper in the case, when we take ηt to be an arbitrary

ARMA process with the idiosyncratic components remaining white noise. Appendix A3

derives this formula:

E (∆y⋆
t |Ht) =

(
χ1τ

2
1 + (1 − χ2) τ 2

2 + χ1
τ2

1
τ2

2

var(ηt|Ht−1)

)
∆y1

t

τ 2
1 + τ 2

2 +
τ2

1
τ2

2

var(ηt|Ht−1)

+

(
χ2τ

2
2 + (1 − χ1) τ 2

1 + χ2
τ2

1
τ2

2

var(ηt|Ht−1)

)
∆y2

t

τ 2
1 + τ 2

2 +
τ2

1
τ2

2

var(ηt|Ht−1)

+
(1 − χ1 − χ2)

(
τ2

1
τ2

2

var(ηt|Ht−1)

)
E (ηt|Ht−1)

τ 2
1 + τ 2

2 +
τ2

1
τ2

2

var(ηt|Ht−1)

.
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Further dynamics could be added to the idiosyncratic components in the mixture model,

as before in the pure news and pure noise models.

Dynamic Estimation Results

Table 7 reports estimates of dynamic versions of the pure news and pure noise models

estimated using latest available data. To fit the first few autocorrelations of GDP growth

and GDI growth, we found it necessary to allow dynamics in both the component comm-

mon to the two series and their idiosyncratic components; specifically, the idiosyncratic

component of GDP exhibited some negative serial correlation. Fitting AR1 processes

to these three components, a particular case of (A9) in Appendix A, produced a good

fit; in addition we allowed for the 1984Q3 break in µ and σ2. The botton panel of table

7 reports autocorrelations and partial autocorrelations to innovations to the common

component (labelled ∆yc
t ) and the two idiosyncratic components (∆yi1

t and ∆yi2
t ), com-

puted as the appropriate elements of ξ̂t|t − ξ̂t|t−1. We see little residual autocorrelation.

The top panel reports estimated parameters, where we see the estimated positive auto-

correlation of the common component and negative autocorrelation of the idiosyncratic

component for GDP, and the middle panel reports the variance of the predicted values

for “true” GDP growth and weights on current and lagged GDP and GDI for each model

and sub-period.4 The weights on current GDP and GDI are not so dissimilar to those

reported in table 5 of the main paper. The weights on the lags for the news model are

evidently equal to minus the weights on the lags for the noise model, a property that

carries over from more restrictive models where dynamics are confined to the common

component; in these more restrictive models this property can be seen quite clearly in
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the formulas.

Appendix A1: Proof of the Proposition, and Further Results on

the Dynamic Pure Noise Model

Hamilton (1994) shows how to write an ARMA(p,q) process in a state-space repre-

sentation. Defining r = max(p, q+1) and using those results in Hamilton, the state-space

representation of the noise model described in the Proposition is:

ξt =




φ1 φ2 . . . φr−1 φr

1 0 . . . 0 0

...
...

...
...

...

0 . . . 1 0 0

0 . . . 0 1 0




ξt−1 +




νt

0

...

0




(A1)


 ∆y1

t

∆y2
t


 =


 µ

µ


 +


 1 θ1 θ2 . . . θr−1

1 θ1 θ2 . . . θr−1


 ξt +


 ε1

t

ε2
t


 .

Following the notation in Hamilton (1994), define:

R =


 τ2

1 0

0 τ2
2


 and: H ′ =


 1 θ1 θ2 . . . θr−1

1 θ1 θ2 . . . θr−1




=


 1

1




[
1 θ1 θ2 . . . θr−1

]
.(A2)

We have:

E (∆y⋆
t |Ht−1) =

[
1 θ1 θ2 . . . θr−1

]
̂ξt|t−1,(A3)
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and with:

(A4) Pt|t−1 = E

[(
ξt − ̂ξt|t−1

)(
ξt − ̂ξt|t−1

)′
]

,

we have:

var (∆y⋆
t |Ht−1) =

[
1 θ1 θ2 . . . θr−1

]
Pt|t−1




1

θ1

θ2

. . .

θr−1




.(A5)

The formula for updating E (∆y⋆
t |Ht−1) with respect to time t information is (again

see, for example, Hamilton (1994)):

E (∆y⋆
t |Ht) = E (∆y⋆

t |Ht−1)

+
[

1 θ1 θ2 . . . θr−1

]
Pt|t−1H

(
H ′Pt|t−1H + R

)−1


 ∆y1

t − E (∆y⋆
t |Ht−1)

∆y2
t − E (∆y⋆

t |Ht−1)


 .(A6)

Now, given (A2) and (A5), we have:

H ′Pt|t−1H =


 1

1


 var (∆y⋆

t |Ht−1)
[

1 1

]

=


 var (∆y⋆

t |Ht−1) var (∆y⋆
t |Ht−1)

var (∆y⋆
t |Ht−1) var (∆y⋆

t |Ht−1)


 ,

so:

(
H ′Pt|t−1H + R

)−1
=

1

var (∆y⋆
t |Ht−1) (τ2

1 + τ2
2 ) + τ2

1 τ2
2


 var (∆y⋆

t |Ht−1) + τ2
2 − var (∆y⋆

t |Ht−1)

− var (∆y⋆
t |Ht−1) var (∆y⋆

t |Ht−1) + τ2
1


 .
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Similarly, we have:

[
1 θ1 θ2 . . . θr−1

]
Pt|t−1H = var (∆y⋆

t |Ht−1)
[

1 1

]

=
[

var (∆y⋆
t |Ht−1) var (∆y⋆

t |Ht−1)

]
.

Substituting these expressions into (A6), we have:

E (∆y⋆
t |Ht) = E (∆y⋆

t |Ht−1) +
var (∆y⋆

t |Ht−1)

var (∆y⋆
t |Ht−1) (τ2

1 + τ2
2 ) + τ2

1 τ2
2

[
τ2
2 τ2

1

]

 ∆y1

t − E (∆y⋆
t |Ht−1)

∆y2
t − E (∆y⋆

t |Ht−1)




Rearranging produces the result reported.

When adding dynamics to [ε1
t ε2

t ], we continue to assume that the innovations to

these variables are mutually orthogonal at all leads and lags, and also orthogonal to the

innovations to ∆y⋆
t − µ at all leads and lags. With ∆y⋆

t − µ as before, let:

ε1
t = φ1

1ε
1
t−1 + φ1

2ε
1
t−1 + . . . + φ1

p1ε
1
t−p1(A7)

+ν1
t + θ1

1ν
1
t−1 + . . . + θ1

q1ν
1
t−q1 ,

and:

ε2
t = φ2

1ε
2
t−1 + φ2

2ε
2
t−1 + . . . + φ2

p2ε
2
t−p2(A8)

+ν2
t + θ2

1ν
2
t−1 + . . . + θ2

q2ν
2
t−q2 .

Define r1 = max(p1, q1 + 1) and r2 = max(p2, q2 + 1). The state space representation of
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this model is:

ξt =




φ1 . . . φr 0 . . . 0 0 . . . 0

1 . . . 0 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...

. . . 1 0 0 . . . 0 0 . . . 0

0 . . . 0 φ1
1 . . . φ1

r1 0 . . . 0

0 . . . 0 1 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...

0 . . . 0 . . . 1 0 0 . . . 0

0 . . . 0 0 . . . 0 φ2
1 . . . φ2

r2

0 . . . 0 0 . . . 0 1 . . . 0

...
...

...
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 0




ξt−1 +




νt

0

...

0

ν1
t

0

...

0

ν2
t

0

...

0




(A9)


 ∆y1

t

∆y2
t


 =


 µ

µ


 +


 1 θ1 . . . θr−1 1 θ1

1 . . . θ1
r1−1 0 0 . . . 0

1 θ1 . . . θr−1 0 0 . . . 0 1 θ2
1 . . . θ2

r2−1


 ξt.

The expected value of ∆y⋆
t is computed in the same way as before, however, setting the

additional elements of ξt to zero:

E (∆y⋆
t |Ht) =

[
1 θ1 . . . θr−1 0 0 . . . 0 0 0 . . . 0

]
ξ̂t|t.(A10)

Appendix A2: Results on the Dynamic Pure News Model

To get an idea of how to proceed with the dynamics, we start by considering again

the static model. With estimates decomposed as described, the static news model can

be written in the same state-space form as the static noise model, with a different
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interpretation for ξt and the errors in the observation equations:

ξt = ηt − µ (state equation)


 ∆y1

t

∆y2
t


 =


 µ

µ


 +


 1

1


 ξt +


 η1

t

η2
t


 (observation equations).

But how do we compute ∆̂y⋆
t in this model? To justify the decompositon, we think

of decomposing F1
t into a set of variables representing its intersection with F2

t , FC
t =

F1
t ∩F2

t where C stands for common, and a set of variables representing the remainder

of the information, F1−C
t , where these variables are orthogonal to FC

t . Then we can

write:

∆y1
t = E

(
∆y⋆

t |F
1
t

)

= E
(
∆y⋆

t |F
C
t ,F1−C

t

)

= E
(
∆y⋆

t |F
C
t

)
+ E

(
∆y⋆

t |F
1−C
t

)

= ηt + η1
t ,

using the orthogonality of the variables in each part of the information set and properties

of linear conditional expectations, and defining ηt and η1
t as the conditional expectations

in the second to last line. If we similarly decompose F2
t into FC

t and F2−C
t , we have:

∆y2
t = E

(
∆y⋆

t |F
C
t

)
+ E

(
∆y⋆

t |F
2−C
t

)

= ηt + η2
t .

The variables in F2−C
t will be orthogonal to the variables in F1−C

t , since all the common

information resides in FC
t . Then:

E
(
∆y⋆

t |F
C
t ,F1−C

t ,F2−C
t

)
= ηt + η1

t + η2
t .
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Hence we conjecture that the best estimate of ∆y⋆
t is E (ηt + η1

t + η2
t |Ht) = η̂t|t+η̂1

t|t+η̂2
t|t,

and this conjecture turns out to be correct. With the estimated ξ̂t|t = η̂t|t − µ given by

the right hand side of equation (4) in the main paper, and the estimated idiosyncratic

errors given by the difference between each estimate and the state variable (so η̂k
t|t =

∆yk
t − µ − η̂t|t), we have:

η̂t|t + η̂1
t|t + η̂2

t|t =
(
∆y1

t − µ
)

+
(
∆y2

t − µ
)
−

(
η̂t|t − µ

)

=

(
τ2
1 +

τ2

1
τ2

2

σ2

) (
∆y1

t − µ
)

+
(
τ2
2 +

τ2

1
τ2

2

σ2

) (
∆y2

t − µ
)

τ2
1 + τ2

2 +
τ2

1
τ2

2

σ2

= ∆̂y⋆
t − µ from equation (5) in the main paper.(A11)

With this result in mind, we proceed with the dynamics, first considering the case

where the common factor ηt − µ follows an arbitrary ARMA process:

ηt − µ = φ1 (ηt−1 − µ) + φ2 (ηt−2 − µ) + . . . + φp (ηt−p − µ)

+νt + θ1νt−1 + . . . + θqνt−q,

If η1
t and η2

t remain white noise uncorrelated with each other and with νt at all leads

and lags, it is clear from the Proposition that:

E (ηt|Ht) =
τ2
2 ∆y1

t + τ2
1 ∆y2

t +
τ2

1
τ2

2

var(ηt|Ht−1)
E (ηt|Ht−1)

τ2
1 + τ2

2 +
τ2

1
τ2

2

var(ηt|Ht−1)

.

Given this formula, we perform the same manipulations as in (A11), computing η̂t|t +

η̂1
t|t + η̂2

t|t to arrive at the reported result.

In the case where ηt, η1
t , and η2

t each follow arbitrary ARMA processes, the state

space form of the model is the same as in (A9). However E (∆y⋆
t |Ht) = η̂t|t + η̂1

t|t + η̂2
t|t,

13



so:

E (∆y⋆
t |Ht) =

[
1 θ1 . . . θr−1 1 θ1

1 . . . θ1
r1−1 1 θ2

1 . . . θ2
r2−1

]
ξ̂t|t.(A12)

Appendix A3: Results on the Mixed News and Noise Model with Dynamics

The static version of this model can be written in state space form as:

ξt =




ηt − µ

η1
t

η2
t




(state equations)


 ∆y1

t

∆y2
t


 =


 µ

µ


 +


 1 1 0

1 0 1


 ξt +


 ε1

t

ε2
t


 (observation equations).

As before in the pure news model (see Appendix A2), the estimate of the true unobserved

state of the economy is η̂t|t + η̂1
t|t + η̂2

t|t =

(
1 1 1

)
ξ̂t|t, which produces the same ∆̂y⋆

t

as equation (3) in the main paper. Taking ηt to be an arbitrary ARMA process with the

idiosyncratic components remaining white noise, the mixed news and noise model with

14



dynamics in ηt can be written in state space form as:

ξt =




φ1 φ2 . . . φr−1 φr 0 0

1 0 . . . 0 0 0 0

...
...

...
...

...
...

...

0 . . . 1 0 0 0 0

0 . . . 0 1 0 0 0

0 . . . 0 0 0 0 0

0 . . . 0 0 0 0 0




ξt−1 +




νt

0

...

0

η1
t

η2
t




(A13)


 ∆y1

t

∆y2
t


 =


 µ

µ


 +


 1 θ1 θ2 . . . θr−1 1 0

1 θ1 θ2 . . . θr−1 0 1


 ξt +


 ε1

t

ε2
t


 .

The variance-covariance matrix of [η1
t η2

t ε1
t ε2

t ] is given by our distributional as-

sumptions. As before in the pure noise model, define:

R =


 (1 − χ1) τ2

1 0

0 (1 − χ2) τ2
2


 and: H ′ =


 1 θ1 θ2 . . . θr−1 1 0

1 θ1 θ2 . . . θr−1 0 1


 .

The dynamic analog to the static estimator in the mixed model is:

E (∆y⋆
t |Ht−1) =

[
1 θ1 θ2 . . . θr−1 1 1

]
̂ξt|t−1,(A14)

and we have:

var (ηt|Ht−1) =
[

1 θ1 θ2 . . . θr−1

]
Pt|t−1




1

θ1

θ2

. . .

θr−1




.(A15)
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We again employ the standard Kalman filter formula for updating E (∆y⋆
t |Ht−1) with

respect to time t information:

E (∆y⋆
t |Ht) = E (∆y⋆

t |Ht−1)

+
[

1 θ1 θ2 . . . θr−1 1 1

]
Pt|t−1H

(
H ′Pt|t−1H + R

)−1


 ∆y1

t − E (ηt|Ht−1)

∆y2
t − E (ηt|Ht−1)


 .(A16)

Using the same type of manipulations as in the dynamic noise model, we have:

(
H ′Pt|t−1H + R

)−1
=

1

var (ηt|Ht−1) (τ2
1 + τ2

2 ) + τ2
1 τ2

2


 var (ηt|Ht−1) + τ2

2 − var (ηt|Ht−1)

− var (ηt|Ht−1) var (ηt|Ht−1) + τ2
1


 ,

and:

[
1 θ1 θ2 . . . θr−1 1 1

]
Pt|t−1H =

[
var (ηt|Ht−1) + χ1τ

2
1 var (ηt|Ht−1) + χ2τ

2
2

]
.

Substituting these expressions into (A16) gives the reported result, after some manip-

ulations. To allow dynamics in [η1
t η2

t ε1
t ε2

t ], (A13) could be suitably generalized

along the lines of (A9).
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Table 6: Autocorrelations and Partial Autocorrelations, GDP and GDI
Latest Available Vintage

Panel A: 1978-2002

1 2 3 4 5 6 7 8 9 10 11 12

GDP Autocorrelations 0.42 0.31 0.12 0.03 -0.07 0.06 0.05 -0.04 0.21 0.18 0.31 0.04
Partial Autocorrelations 0.42 0.16 -0.03 -0.05 -0.12 0.13 0.01 -0.11 0.24 0.01 0.18 -0.25

GDI Autocorrelations 0.48 0.33 0.22 0.09 -0.10 0.02 -0.02 -0.06 0.03 0.17 0.20 0.16
Partial Autocorrelations 0.48 0.09 0.12 -0.12 -0.21 0.16 -0.08 0.01 0.04 0.12 0.05 -0.00

Panel B: 1984Q3-2002

1 2 3 4 5 6 7 8 9 10 11 12

GDP Autocorrelations 0.30 0.34 0.07 0.19 0.13 -0.06 -0.03 -0.17 0.15 -0.01 0.04 -0.21
Partial Autocorrelations 0.30 0.28 -0.09 0.12 0.09 -0.20 -0.01 -0.10 0.21 0.03 -0.09 -0.19

GDI Autocorrelations 0.44 0.31 0.20 0.25 0.12 0.02 -0.04 0.02 -0.03 -0.16 -0.22 -0.10
Partial Autocorrelations 0.44 0.14 0.04 0.15 -0.04 -0.06 -0.03 0.06 -0.01 -0.18 -0.09 0.04
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Table 7: Dynamic Estimates of True Unobserved GDP Growth, AR1 for All Components
1984Q3 Break in µ and σ2, Latest Available Data

µ(pre84Q3) µ(post84Q3) φ φ1 φ2 σ2(pre84Q3) σ2(post84Q3) τ2
1 τ2

2

9.25 5.51 0.55 -0.59 0.06 29.77 1.96 0.91 2.39

(1.90) (0.37) (0.10) (0.16) (0.13) (8.39) (0.49) (0.42) (0.49)

Variances of Estimated ∆y⋆ and Weights on Contemporaneous and Lagged GDP and GDI

1978Q1-1984Q2

Weights

var ∆̂y⋆ GDPt GDIt GDPt−1 GDIt−1 GDPt−2 GDIt−2 GDPt−3 GDIt−3 GDPt−4 GDIt−4

Noise Model 30.18 0.65 0.32 0.16 -0.13 -0.05 0.05 0.02 -0.02 -0.01 0.01
News Model 34.36 0.35 0.68 -0.16 0.13 0.05 -0.05 -0.02 0.02 0.01 -0.01

1984Q3-2002Q4

Weights

var ∆̂y⋆ GDPt GDIt GDPt−1 GDIt−1 GDPt−2 GDIt−2 GDPt−3 GDIt−3 GDPt−4 GDIt−4

Noise Model 2.57 0.51 0.21 0.23 -0.04 -0.03 0.01 0.00 -0.00 -0.00 0.00
News Model 6.46 0.49 0.79 -0.23 0.04 0.03 -0.01 -0.00 0.00 0.00 -0.00

Autocorrelations of Innovations to Components of GDP and GDI

1 2 3 4 5 6 7 8 9 10 11 12
∆yi1

t Autocorrelations -0.03 -0.00 -0.02 -0.09 -0.09 -0.00 -0.09 -0.19 0.26 0.10 0.13 -0.13
Partial Autocorrelations -0.03 -0.00 -0.02 -0.09 -0.10 -0.01 -0.10 -0.21 0.24 0.09 0.11 -0.18

∆yi2
t Autocorrelations -0.04 0.03 0.07 0.02 -0.18 0.03 -0.13 -0.13 0.09 0.01 -0.03 0.06

Partial Autocorrelations -0.04 0.03 0.07 0.02 -0.18 0.01 -0.13 -0.11 0.08 -0.01 -0.00 -0.00
∆yc

t Autocorrelations -0.01 -0.06 0.10 -0.03 -0.28 0.11 -0.02 -0.18 0.05 0.06 0.11 -0.21
Partial Autocorrelations -0.01 -0.06 0.11 -0.05 -0.26 0.11 -0.10 -0.14 0.00 -0.03 0.15 -0.25
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Notes

1We have 100 observations in Panel A of table 6, and 74 observations in Panel B, so

approximate two standard error bands for the sample partial autocorrelations are ±0.20

and ±0.23, respectively.

2This value is given by an algebraic Riccati equation (see Harvey, 1989)

3Here we assume that current estimates of GDP employ the information in both

lagged GDP and lagged GDI, as do the estimates of current GDI; a more realistic model

may be one where current estimates of GDP employ the information in lagged GDP

only, and current estimates of GDI employ the information in lagged GDI only, so:

∆y1
t = E

(
∆y⋆

t |F
1
t ,F1

t−1,F
1
t−2, . . .

)
, and:

∆y2
t = E

(
∆y⋆

t |F
2
t ,F2

t−1,F
2
t−2, . . .

)
,

We leave study of this more complicated model for future research.

4These weights were estimated by ordinary least squares regression. Since we know

the predicted values for “true” GDP growth are linear combinations of current and lagged

GDP and GDI, the only choice here is where to cut off the number of lags included in the

regression; for this particular choice of cutoff, standard errors were all less than 0.001.
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