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Abstract

We develop an estimator for models of competition among spatially differentiated
firms. In contrast to existing methods (e.g., Houde (2009)), the estimator has flexible
data requirements and is implementable with data that are observed at any level of
aggregation. Further, the estimator is the first to be applicable to models in which
firms price discriminate among consumers based on location. We apply the estimator
to the portland cement industry in the U.S. Southwest over 1983-2003. We estimate
transportation costs to be $0.30 per tonne-mile and show that, given the topology
of the U.S. Southwest, these transportation costs permit more geographically isolated
plants to discriminate among consumers. We conduct a counterfactual experiment and
determine that disallowing this spatial price discrimination would increase consumer
surplus by $12 million annually, relative to a volume of commerce of $1.3 billion.
Heretofore it has not been possible examine the surplus implications of spatial price
discrimination in specific, real-world settings; these implications have been known to
be ambiguous theoretically since at least Gronberg and Meyer (1982) and Katz (1984).
Additionally, our methodology can be used to construct transportation margins, which
are an important component of input-output tables.
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1 Introduction

In many industries, firms are differentiated in geographic space and transportation is costly.

Seminal theoretical contributions demonstrate that these conditions can soften the inten-

sity of competition, facilitate markups above marginal cost, and induce firms to discriminate

among consumers based on location (Hotelling (1929), Salop (1979), Anderson and de Palma

(1988), Vogel (2008)).1 The empirical literature of industrial organization, however, only re-

cently has grappled with the structural estimation of models of spatial differentiation; exist-

ing estimation strategies have strict data requirements and cannot incorporate spatial price

discrimination (e.g., Thomadsen (2005), Davis (2006), McManus (2007), Houde (2009)).

In this paper, we develop an estimator for models of spatial differentiation that is

implementable with data observed at any level of aggregation (e.g., firm prices or regional

production) and applicable to models that incorporate spatial price discrimination. Relative

to existing estimation strategies, the estimator we introduce more fully leverages the infor-

mation contained in the structure of the model. This leads to more flexible data requirements

and enables the estimation of models that previously would have been too complicated or

too demanding. Nonetheless, the estimator uses familiar minimum distance techniques and

we provide conditions under which estimates are consistent and asymptotically normal. We

also discuss how estimation can be conducted efficiently using recently developed numerical

techniques (e.g., La Cruz, Mart́ınez, and Raydan (2006)).

We apply the estimator to the portland cement industry in the U.S. Southwest over

the period 1983-2003. This is a good match for the estimator because the industry features

high transportation costs and a homogenous product (aside from geographic considerations).

Producers negotiate private contracts with their customers and can engage in spatial price

discrimination. We exploit variation in publicly available state-level data to identify the

structural supply and demand parameters. The estimation results indicate that consumers

pay $0.30 per tonne mile, given diesel prices at the 2000 level.2 We show that, given the

topology of the U.S. Southwest, these transportation costs permit the more geographically

isolated plants to discriminate substantially among consumers. By contrast, plants located

nearby many other plants have less localized market power and do not discriminate among

1There is limited evidence that such spatial price discrimination is common in business-to-business in-
dustries. Greenhut, Greenhut, and Li (1980) report that 32 percent of surveyed firms employ some form of
spatial price discrimination, though the sample is small and not clearly representative. To our knowledge,
more systematic efforts to identify the extent of employ spatial price discrimination have not been made.

2The 1974 edition of the Minerals Yearbook, an annual publication of the U.S. Geological Survey, indicates
transportation costs of $0.35 per tonne mile (when adjusted to real 2000 dollars), which partially corroborates
the estimation results. Subsequent editions do not provide the magnitude of transportation costs.
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consumers. We note that our approach could also be used to back out transportation margins

when observed prices include transport costs. Transportation margins are an important part

of input-output tables, which are used in national accounting. Input-output tables present a

matrix detailing how the production of goods and services is allocated between component

inputs, and how those goods and services flow to outputs.3 As outlined in the System of

National Accounts 2008 (SNA 2008), when a product’s measured price includes transport

costs, those transport costs need to be subtracted from the price to avoid double counting

(see SNA 2008, pg. 508). Our approach facilitates this exercise because the estimator

provides equilibrium prices net of transport costs. One would simply subtract equilibrium

prices from observed prices to arrive at the transport costs faced by consumers.

We conduct two counter-factual experiments to demonstrate the power of the estima-

tion results. First, we consider the consumer surplus implications of spatial price discrimi-

nation. The theoretical literature has long recognized that spatial price discrimination can

increase or decrease social welfare (e.g., Gronberg and Meyer (1982), Katz (1984), Hobbs

(1986), Anderson, de Palma, and Thisse (1989)).4 Although this suggests an important role

for empirical research, heretofore it has not been possible to examine spatial price discrimi-

nation in specific, real-world settings. The results of the counter-factual experiment indicate

that disallowing spatial price discrimination would increase consumer surplus by $12 million

annually, relative to a volume of commerce of $1.3 billion. We quantify and provide sup-

port for the standard intuition that discrimination harms consumers located nearby cement

plants (these consumers tend to be inframarginal) but benefits more distant consumers.

Second, we consider a hypothetical merger between the two largest portland cement

manufacturers in the U.S. Southwest in 1986, and find that the merger would have increased

prices in southern California and Arizona by three and five percent, respectively. By way

of contrast, one standard antitrust model that exploits state-level data yields price effects

of one percent in southern California and 25 percent in Arizona. This highlights the fact

that our approach allows one to estimate more realistic economics models with more limited

data – i.e., to do more with less. This may be particularly useful to antitrust authorities,

which often must conduct merger investigations under tight deadlines and without access to

comprehensive industry data.

We now detail more explicitly the methodological contribution. To frame the con-

tribution, we first discuss a data availability problem that hinders the estimation of spatial

3For more detailed definitions, the reader may refer to the System of National Accounts, 2008.
4When discrimination is legal, firms are incentivized to charge high prices to nearby consumers and low

prices to distant consumers; it follows that discrimination harms some consumers and benefits others.
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models. The easiest way to identify spatial differentiation (equivocally, transportation costs)

is to measure how firms’ market shares differ between nearby and distant consumers. For

instance, if one observes that each firm captures greater market shares among nearby con-

sumers then one can infer that transportation costs are large and that firms are spatially

differentiated. Implementation is difficult, however, because data on the geographic distri-

butions of market shares are seldom available. Indeed, the extant empirical literature has

yet to utilize such data.5 The problem is only exacerbated when firms employ spatial price

discrimination because one must account not only for the geographic distributions of market

shares but also for the geographic distributions of prices.

Our central insight is that one can solve the data availability problem by relying on

numerical approximations to equilibrium. That is, one can compute the geographic distribu-

tions of markets shares and prices that characterize the equilibrium of the economic model,

given a set of candidate parameters. If these parameters imply high transportation costs, for

example, then one would compute that firms capture greater market shares among nearby

consumers. These distributions can be used to construct aggregated equilibrium predictions

at the level of the available data. This process is repeatable for any set of parameters, so one

can search for parameters that minimize the “distance” between the aggregated equilibrium

predictions and the data. Further, since one can match data that are observed at any level

of aggregation (e.g., plant-level, firm-level, or region-level data), the data requirements of

the are completely flexible, provided there is sufficient variation to identify the parameters

of the model.6

We make the identifying assumption that discrepancies between data and the aggre-

gated equilibrium predictions, when evaluated at the population parameters, are orthogonal

to firm locations, cost shifters, and demand shifters. This yields a multiple-equation non-

linear least squares estimator (e.g., as analyzed in Greene (2003, p. 369)).7 Each equation

5Instead, much of the empirical literature uses market delineation to sidestep the data availability problem
(e.g., Pesendorfer (2003), Salvo (2008), Collard-Wexler (2009), Ryan (2010)). This facilitates estimation with
market-level data but sacrifices realism in the underlying economic model. In Section 6.4, we discuss market
delineation in greater detail and compare some of our results to those obtained in one recent study that
employs market delineation to estimate a model of the portland cement industry (Ryan (2010)).

6The key empirical patterns that drive parameter estimates can be transparent despite the complicated
nonlinear relationships involved. In our application, the transportation cost estimate is driven by differences
between consumption and production within specific geographic regions. Suppose, for instance, that one
observes that consumption is greater than production in one region but less than production in another.
This implies that inter-regional trade flows exist, and an estimate of transportation costs can be selected to
rationalize these trade flows within the structure of the model.

7Equivalently, the estimator can be interpreted as method-of-moments with optimal instruments based
on firm locations, cost shifters, and demand shifters.
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matches observations on a single time-series of data to the corresponding aggregated equi-

librium predictions. Thus, if the observed data are total industry output and the average

industry price, then the estimator would exploit time-series observations on two nonlinear

equations. The twist is that one must compute the model predictions (i.e., the “right-hand-

side”) using numerical techniques for every candidate parameter vector.

Although we focus on the estimation of models in which firms are differentiated in

geographic space, some broad parallels can be drawn between our estimator and existing es-

timators for models in which firms are differentiated in product space (e.g. Berry, Levinsohn,

and Pakes (1995), Nevo (2001)). When differentiation is in product space, the central chal-

lenge is to recover structural parameters when prices and quantities are fully observed but

non-price product characteristics are imperfectly observed. By contrast, when differentiation

is in geographic space, the challenge is that prices and quantities are imperfectly observed.

Yet, in both settings, one can use numerical techniques to recover the unobserved metrics:

the contraction mapping of Berry (1994) obtains the unobserved product characteristic when

differentiation is in product space, and equilibrium computations obtain the relevant prices

and quantities when differentiation is in geographic space.

Finally, we note that the estimator could be employed to define stage-game payoffs

inside dynamic estimation routines, such as that of Bajari, Benkard, and Levin (2007).8

This may extend the reach of researchers dramatically. For instance, the theoretical lit-

erature makes it clear that firms select locations to secure a base of profitable customers,

provide separation from efficient competitors, and deter nearby entry; our estimator may

make permit researchers to explore the practical effects of these incentives.

The paper proceeds as follows. We close the introduction below with an overview of

existing estimation strategies for models of spatial differentiation. In Section 2, we outline

the institutional details of the portland cement industry and describe the relevant data. We

then formalize a model of spatial price discrimination in Section 3. The model is general but

can be tailored to the salient features of the cement industry, including capacity constraints

and the constraining influence of foreign imports. In Section 4, we derive the estimator,

prove consistency and asymptotically normality under specified conditions, and discuss how

estimation can be conducted efficiently with recently developed numerical techniques. We

discuss identification and related topics in Section 5. We present the results of estimation

in Section 6 and the results of the two counterfactual experiments in Section 7. Section 8

concludes.

8Seim (2006) estimates a dynamic game of spatial competition but uses reduced-form payoffs that cir-
cumvent the data availability problem.
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1.1 Review of the empirical literature

We build upon the recent contributions of Thomadsen (2005), Davis (2006), McManus (2007)

and Houde (2009), each of which provides an estimator for models of spatial differentiation

that exploits variation in firm-level data on prices and quantities.9 The strategy we introduce

has two advantages relative to this literature: First, it incorporates spatial price discrimina-

tion for the first time. Second, it has more flexible data requirements and is implementable

with data that are observed at any level of aggregation.

To help build this intuition, we outline the estimation strategy of McManus (2007) in

some detail; the estimation strategies of Thomadsen (2005), Davis (2006) and Houde (2009)

are analogous. McManus estimates the structural demand parameters for coffee shops on the

grounds of the University of Virginia, exploiting data on prices and sales for each shop. These

data are assumed (reasonably) to be observed without error. McManus also observes the

distance between each coffee shop and number of “location points,” as well as a measure of

the student population at each location point. Estimation proceeds by calculating the sales

of each shop to consumers at each location point, given the observed prices, the structure

of the demand model, and a candidate parameter vector. These sales predictions are then

aggregated to the shop level and compared against the data. McManus estimates using

maximum likelihood; alternatively, the generalized method of moments technique of Berry,

Levinsohn, and Pakes (1995) could be employed.

This approach requires the econometrician to observe all the relevant prices. Demand

cannot be estimated separately from supply if some prices are unobserved because demand

is a function of prices. Our estimator overcomes this limitation by leveraging supply-side

information to compute prices numerically. These computed prices can then be used in the

place of data to construct demand. Unobserved prices can occur in many situations. A prime

example is when firms employ spatial price discrimination: this generates a distribution of

prices across geographic space that is difficult to capture with data. Measurement error can

create a similar problem – the use of imprecise prices in the demand equation should yield

inconsistent estimates. With our approach, one could compute the true prices numerically

and match moments on observed prices and quantities. Finally, firm-level data are sometimes

unavailable in policy situations. Antitrust regulators might have access to price data for the

merging parties but more aggregated data for non-merging parties. Our estimator could be

9An alternative approach for non-discriminatory spatial models is developed in Pinske, Slade, and Brett
(2002). The paper introduces a reduced-form estimator that can be applied usefully to evaluate the extent to
which competition is localized. However, the estimator does not recover the underlying structural parameters
of the model, including the transportation cost, and does not enable counter-factual policy experimentation.
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used to compute the unobserved prices, estimate the demand and supply parameters, and

conduct merger simulations.

2 Portland Cement

2.1 Industry details

Portland cement is a finely ground dust that forms concrete when mixed with water and

coarse aggregates such as sand and stone.10 Concrete, in turn, is an essential input to many

construction and transportation projects because its local availability and lower maintenance

costs make it more economical than substitutes such as steel, asphalt, and lumber (Van Oss

and Padovani (2002)). The producers of portland cement adhere to strict industry stan-

dards that govern the production process. Aside from geographic considerations, product

differentiation in the industry is minimal.11

Producers negotiate private contracts with their customers, predominately ready-mix

concrete firms and large construction firms. Most contracts specify a mill price (or a “free-

on-board” price) for portland cement at the location of production. Customers are respon-

sible for door-to-door transportation, which is an important consideration because portland

cement is inexpensive relative to its weight.12 This is well understood in the academic lit-

erature. For example, Scherer et al (1975) calculates that transportation would account for

roughly one-third of total customer expenditures on a hypothetical 350-mile route between

Chicago and Cleveland, and a Census Bureau study (1977) reports that more than 80 percent

is transported within 200 miles.13 More recently, Salvo (2010) presents evidence consistent

with the importance of transportation costs in the Brazilian portland cement industry.

The production process can be summarized as follows. Limestone, typically mined

from a quarry adjacent to the cement plant, is fed into coal-fired rotary kilns that reach

peak temperatures of 1400-1450◦ Celsius. The output of the kilns, known as “clinker,” is

10We draw heavily from the publicly available documents and publications of the United States Geological
Survey and the Portland Cement Association to support the analysis in this section. We defer detailed
discussion of these sources for expositional convenience.

11Standards are maintained by the the American Society for Testing and Materials Specification for Port-
land Cement, in order to protect the quality and reliability of construction materials.

12The bulk of portland cement is moved by truck, though some is sent by train or barge to distribution
terminals and only then trucked to customers. Barge transport is not feasible in the U.S. Southwest due to
the lack of navigable rivers.

13Scherer et al (1975) examined more than 100 commodities and determined that the transportation costs
of portland cement were second only to those of industrial gases. Other commodities identified as having
particularly high transportation costs include concrete, petroleum refining, alkalies/chlorine, and gypsum.
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cooled, mixed with a small amount of gypsum, and ground in electric mills to form portland

cement. Kilns operate at peak capacity with the exception of an annual maintenance pe-

riod. The duration of this maintenance period can be adjusted to meet demand conditions.

When demand is particularly strong, managers sometimes forego maintenance at the risk of

breakdowns and kiln damage.14

In our application, we focus on California, Arizona, and Nevada over the period 1983-

2003. We refer to these three states as the “U.S. Southwest” for expositional convenience.

Figure 1 maps the geographic configuration of the industry in the U.S. Southwest circa 2003.

Most plants are located along an interstate highway, nearby one or more population centers.

Some firms own multiple plants but ownership is not particularly concentrated – the capacity

Herfindahl-Hirschman index (HHI) of 1260 is well below the threshold that defines highly

concentrated markets in the 2010 Merger Guidelines. Foreign imports enter through four

customs offices, located in San Francisco, Los Angeles, San Diego, and Nogales. Foreign

imports are mostly produced by large, efficient plants located in Southeast Asia. Exports

are negligible because domestic plants are not competitive in the international market.

It is worth noting that trade flows between the U.S. Southwest and other domestic areas

are negligible. To demonstrate, in Figure 2 we plot foreign imports (“observed imports”) and

consumption less production in the U.S. Southwest (“apparent imports”).15 The nearly exact

correlation between these two measures reveals no net trade flows between the U.S. Southwest

and other domestic regions. Other statistics published by the USGS imply that gross trade

flows are also negligible, as well.16 The fact that cement can be shipped economically into

the U.S. Southwest from foreign countries (e.g., Thailand) but not from nearby domestic

areas is due to a number of factors, including the cost discrepancy between freighter and

truck transportation and the relative efficiency of the large foreign plants.

We observe only two plant closures, one plant entry, and three substantive kiln up-

grades over 1983-2003. This degree of capital persistence is consistent with the substantial

14A recent report prepared for the Environmental Protection Agency identifies five main variable input
costs of production: raw materials, coal, electricity, labor, and kiln maintenance (EPA (2009)).

15The figure also plots consumption and production. Both are highly cyclical, consistent with the role of
cement as an input to construction projects. However, consumption is more cyclical due to the costliness of
capacity adjustments (e.g., as documented in Ryan (2010)) and the gap between consumption and production
increases in overall activity. Thus, while imported cement generally represents a small fraction of total
consumption, it plays an important role when demand outstrips domestic capacity.

16More than 98 percent of cement produced in southern California was shipped within the U.S. Southwest
over 1990-1999, and more than 99 percent of cement produced in California was shipped within the region
over 2000-2003. Outflows from Arizona and Nevada are unlikely because consumption routinely exceeds
production in those states. And since net trade-flows between the U.S. Southwest and other domestic
regions are insubstantial, these data points imply that gross domestic inflows must also be insubstantial.
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Figure 1: Portland Cement Production Capacity in the U.S. Southwest circa 2003.

sunk costs of kiln construction (e.g., Ryan (2010)). Our treatment of plant locations as pre-

determined may be reasonable given the specific geographic area and time period examined.

2.2 The data

Our primary data source is the U.S. Geological Survey (USGS). The USGS conducts an

annual establishment-level census of portland cement producers, aggregates responses to

protect the confidential information, and publishes the results in its Minerals Yearbook.

Data are available over the full sample period, 1983-2003. Of particular interest are average

(production weighted) mill prices, regional production, and regional consumption. The con-

sumption data are available separately for northern California, southern California, Arizona,

and Nevada. The USGS aggregates the Arizona and Nevada data on prices and production

data for 1983-1991.17 We also make use of data on cross-region shipments that appear in the

California Letter, another annual publication of the USGS that is available for 1990-2003.

17In later years, the USGS instead aggregates Nevada with states outside the U.S. Southwest due to
confidentiality concerns – the USGS must adjust its aggregation scheme as the number and location of
plants in operation changes. We do not make use of USGS data for Nevada after 1991.
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Figure 2: Consumption, Production, and Imports of Portland Cement. Apparent imports are defined as
consumption minus production. Observed imports are total foreign imports shipped into San Francisco, Los
Angeles, San Diego, and Nogales.

Plant locations are available from the Plant Information Survey (PIS), an annual pub-

lication of the Portland Cement Association. The PIS also provides the annual capacity

of the kilns. To model input prices, we collect data on coal and electricity prices from the

Energy Information Agency (EIA), data on the average wages of durable good manufac-

turing employees from the BEA, and data on crushed stone prices from the USGS. These

data are observed at the year-state level. As we discuss below, we allow transportation costs

to fluctuate with diesel prices; we use the diesel price index published by the EIA. We use

import prices obtained from the USGS Minerals Yearbook to help model the role of import

competition. Finally, we use county-level data from the Census Bureau on construction

employment and residential construction permits to normalize the potential demand of each

county. We refer the reader to the appendix for summary statistics and details on the data

collection process.

3 The Model Of Spatial Price Discrimination

3.1 The geographic space

We define the relevant geographic space to be a compact, connected set C in the Euclidean

space R2. The geographic space is the U.S. Southwest in our application. We take as given
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that J plants compete in the space, and assume that each plant is endowed with a fixed

location defined by the geographic coordinates {z1, z2, . . . , zJ}, where zj ∈ C. We further

take as given that a continuum of consumers spans the space, and assume that each consumer

has unit demand and a fixed location w ∈ C. The absolute measure φ(w) characterizes the

geographic distribution of consumers and we define M =
∫

C
φ(w)dw to be the potential

demand of the space. We denote the distance between any two points in the geographic

space, say a and b, as the Euclidean distance ‖a − b‖.
We partition this geographic space into mutually exclusive consumer areas. As we

formalize below, we permit plants to set different mill prices in each consumer area. The

partition is best interpreted as determining the extent which firms engage in spatial price

discrimination. Finer partitions of the geographic space imply more sophisticated discrimi-

nation, and if only a single area exists then firms do not discriminate. In our application, we

use the 90 counties of the U.S. Southwest to define the consumer areas. Within the context

of the model, these areas have no economic significance aside from their implications for price

discrimination. Since every plant competes in every area, the partition of the geographic

space does not artificially limit competition and is not analogous to a “market delineation”

assumption under which plants compete only within prescribed geographic boundaries. Each

area Cn (for n = 1, . . . , N) has the potential demand Mn =
∫

Cn
φ(w)dw.

We sketch one possible geographic space in Figure 3. The dashed lines delineate three

consumer areas, C1, C2, and C3. Two plants operate in the space and are characterized

by the locations z1 and z2. A distribution of consumers span the space, and both plants

compete for every consumer. The plants imperfectly price discriminate by setting different

prices in each consumers area. Thus, there are six prices in the space, which we represent

with the arrows labeled {p11, p12, p13, p21, p22, p23}. Finally, we plot the location of a single

consumer characterized by location w. The dashed line labeled ‖w − z1‖ is the Euclidean

distance between the consumer and the first plant.

3.2 Supply

We take as given that F firms and J plants exist in the geographic space. Each firm operates

some subset Jf of the plants and can ship from any plant j ∈ Jf to any consumer. We assume

that firms employ imperfect spatial price discrimination by setting different mill prices to

different areas. This mill price does not include the transport cost: a consumer’s total

payment for the product include the mill price and the door-to-door transportation cost.

Equilibrium is the result of a Bertrand-Nash pricing game: each firm chooses a vector
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Figure 3: A Geographic Space.

of prices, pf = (pjn; j ∈ Jf , n = 1, · · · , N), to maximize its short run profits conditional on

the prices chosen by all other firms. Formally, the equilibrium prices p∗ solve the following

maximization problem:

p∗
f = arg max

pf

πf (pf ,p
∗
−f ; x,w,α,β) ∀f = 1, ..., F, (1)

where the firm profit function is

πf (pf ,p−f ; ·) =
∑

j∈Jf

∑

n

pjnqjn(pn; xn,β) −
∑

j∈Jf

∫ Qj(p; x,β))

0

c(Q; wj,α)dQ. (2)

Here, the quantity demanded from plant j by consumers in area n, denoted qjn(·), is a

function of all the prices in the area (denoted pn). Total production at plant j is Qj(·) =
∑

n qjn(·). The vectors x and w include demand shifters and cost shifters, respectively, and

β and α include the corresponding parameters. Finally, c(·) is a marginal cost function that

is convex in Qj and differentiable in all its arguments.18

18Spatial price discrimination is at the core of the firm’s pricing problem: in equilibrium, firms will charge
higher mill prices to nearby consumers and to consumers for whom the firm’s competitors are more distant.
However, aside from price discrimination, the firm’s pricing problem follows standard intuition. A firm that
contemplates a higher mill price from one of its plants to a given area must evaluate (1) the tradeoff between
lost sales to marginal consumers and greater revenue from inframarginal consumers; and (2) whether the
firm would recapture lost sales with its other plants. If marginal costs are not constant, then the firm must
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We assume that equilibrium exists and is unique, for reasons that we clarify below.

Recent theoretical contributions demonstrate that existence and uniqueness hold for two

special cases of our model: nested logit demand with single-plant firms (Mizuno 2003), and

logit demand with increasing marginal costs and multi-plant firms (Konovalov and Sándor

2010). Although the uniqueness property is not satisfied generally, numerical methods can

be used to evaluate the property over a large portion of the parameter space when uniqueness

is difficult or impossible to demonstrate on theoretical grounds. We provide guidance on how

to do this in Section 5.1.

The convexity of the marginal cost curve allows one to incorporate of nonlinear produc-

tion factors, such as capacity constraints, that are are common in many industrial settings.

In our application, we do so by specifying a marginal cost function that depends non-linearly

on the level of capacity utilization:

c(Qj(·); wj,α, γ, ν, µ) = w′
jα + γ 1

{
Qj(·)
CAPj

> ν

}(
Qj(·)
CAPj

− ν

)µ

, (3)

where CAPj is total plant capacity. This treatment of capacity constraints, an innovation of

Ryan (2010), imbeds the intuition that production near capacity creates shadow costs due

to foregone kiln maintenance. Thus, marginal costs increase in production once utilization

exceeds ν, and the combination γ(1− ν)µ represents the penalty associated with production

at capacity. The function is continuously differentiable for µ > 1. In practice, we find that

it is difficult to estimate both γ and µ and we normalize the latter to 1.5.19

In our application, we augment the formal structure above to account for foreign import

competition. Specifically, we assume that domestic plants compete against a competitive

fringe of foreign importers. We denote this fringe as “plant” J + 1, and assign the fringe to

four locations in the U.S. Southwest based on the customs offices through which cement can

enter (San Francisco, Los Angeles, San Diego, and Nogales). Consumers pay the door-to-door

cost of transportation from these customs offices. We rule out spatial price discrimination

on the part of the fringe, consistent with perfect competition among importers, and assume

that the import price is set exogenously based on the marginal costs of the importers or other

considerations. Thus, the supply specification is capable of generating the stylized fact that

foreign importers provide substantial quantities of portland cement to the U.S. Southwest

also evaluate how the lost sales would affect the plant’s competitiveness in other areas.
19The cost shifters we incorporate are input prices for coal, electricity, labor, and limestone. This constant

portion of marginal costs can be derived from a Leontief production function (i.e., the factors of production
are used in fixed proportions) and is consistent with the economics of portland cement production.
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when demand is strong (see Table 2).

3.3 Demand

We model consumer behavior using a conventional discrete-choice demand system. Each

consumer observes the plant locations and the available mill prices, and either purchases

from one of the J +1 plants or foregoes a purchase altogether (i.e., selects the outside good).

The indirect utility that consumer i receives from plant j is:

uij = βc + βppjn + βddjn + x′
jnβ

x + ǫij, (4)

where djn is the average distance between plant j and consumers in area n, the vector xjn

includes demand shifters (e.g., product characteristics), and ǫij is a preference shock that is

i.i.d. across consumers. Following standard practice, we normalize the mean utility of the

outside option to zero. Finally, β = (βc, βp, βd,βx) are the demand parameters and the ratio

βd/βp is the unit transportation cost incurred by consumers.

Example: We provide motivation for this indirect utility function based on our

application to the portland cement industry. The end-users of cement are con-

struction firms that use the cement as an input to various construction projects.

Suppose that project i requires a certain quantity of cement and that the unit

cost of purchasing this cement from plant j is given by

bij = F + pjn − βd‖wi − zj‖,

where F includes fixed costs, ‖wi − zj‖ measures the distance between customer

i and plant j, and βd < 0.20 We have normalized the price coefficient such

that βp = −1, for tractability. Further suppose that a substitute for cement,

such as lumber or steel, can be used in the project at the unit cost bi,0. Then

the construction firm’s cost minimization problem can be rewritten as a utility

maximization problem in which indirect utility is given by

uij =

{
βc − pjn + βddjn + ǫij for j = 1, . . . , J,

ǫij for j = 0,

20Portland cement is often purchased by firms that mix the cement with water and aggregates to form
ready-mix concrete, which subsequently is shipped to construction sites. The fixed costs F would include
any markups charged by these firms.
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where

ǫij =

{
βd(‖wi − zj‖ − djn) for j = 1, . . . , J,∫

bi,jfb(bi,j) − bi,j for j = 0,

the utility constant is defined such that βc =
∫

bi,0fb(bi,0) − F , and fb(·) is a

continuously distributed probability density function for the cost of the substitute

good over the population of projects.21

The preference shock in this example arises due to two sources of heterogeneity: con-

sumers have different valuations of the outside good and differ in their proximity to plants.

This second source of heterogeneity provides an errors-in-variables motivation for the pref-

erence shock, as the distance between counties and plants is an imperfect proxy for the

distance between consumers and plants. The dual sources of heterogeneity also provide a

theoretical basis for preferring distributional assumptions that divorce the aggregate elas-

ticity of demand from the plant-level elasticities (i.e., that accommodate inelastic aggregate

demand and elastic plant-level demand). The nested logit demand system is based on one

such distributional assumption.

In our application, we proxy distance using the miles between the plant and the cen-

troid of the consumer’s area, multiplied by a diesel price index. For the foreign import

option, distance is specified using the miles between the consumer’s area and the nearest

customs office, again adjusted for diesel prices. Thus, transportation costs increase linearly

in Euclidian distance and fuel costs. Since we measure miles in thousands and mill prices

are per metric tonne, the ratio βd/βp gives the transportation cost per thousand tonne-miles

when the diesel price index equals one. The domestic mill prices that appear in the indi-

rect utility function are not observed in the data and must be computed as the solution to

equation (1). This procedure takes as given import prices that are exogenously-determined,

non-discriminatory, and observed in the data.

Estimation requires that demand be twice continuously differentiable and downward

sloping in price. In our application, we assume a distribution of preference shocks that yields

the nested logit demand system. We place the inside options (i.e., the domestic plants and

foreign imports) in a different nest than the outside option. Following Cardell (1997), we

let the parameter λ characterize the degree to which valuations of the inside options are

21The fact that djn appears in the indirect utility function and in the error term is not problematic because
djn is orthogonal to the residual deviation ‖wi−zj‖−djn. We provide a proof in the appendix. The constant
term of utility, βc, can be interpreted as the average unit cost of cement relative to the average unit cost of
the alternative product. This constant could also account for the possibility that construction firms require
different amounts of cement versus the substitute good to complete the project.
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correlated across consumers. Valuations are perfectly correlated if λ = 0 and uncorrelated if

λ = 1; the model collapses to a standard logit in the latter case. The nested logit structure

makes available analytical expressions for the quantity of cement that each plant sells to

each area (i.e., qjn(pn; xn,β)) and makes estimation computationally feasible.22

To close the model, one must specify the potential demand in each consumer area.

This is typically done by normalizing potential demand based on some set of plausibly

exogenous demand factors (e.g., Berry, Levinsohn, and Pakes (1995), Nevo (2001)). In our

application, we define consumer areas as counties and normalize potential demand based on

the number of construction employees and the number of new residential building permits.

Thus, we implicitly assume that total construction spending is unaffected by cement prices.

This seems reasonable because cement accounts for a small fraction of total construction

expenditures (e.g., see Syverson (2004)). The procedure indicates that potential demand is

concentrated in a small number of counties. In 2003, the largest 20 counties account for

90 percent of potential demand, the largest ten counties account for 65 percent of potential

demand, and the largest two counties – Maricopa County and Los Angeles County – together

account for nearly 25 percent of potential demand.23

4 Estimation

4.1 Overview

In this section, we describe the estimator formally, provide assumptions under which the

estimator is consistent and asymptotically normal, and then discuss numerical techniques

for the computation of equilibrium. Some additional notation is useful. We denote the vector

22The substitution patterns between cement plants are characterized by the independence of irrelevant
alternatives (IIA) within the inside good nest. This is reasonable for our application. Portland cement is
purchased nearly exclusively by ready-mix concrete plants and other construction companies. These firms
employ similar production technologies and compete under comparable demand conditions. Thus, we are
skeptical that meaningful heterogeneity exists in consumer preferences for plant observables (e.g., price and
distance). Without such heterogeneity, the IIA property arises quite naturally – for example, the random
coefficient logit demand model collapses to standard logit when the distribution of consumer preferences is
degenerate.

23To perform the normalization, we regress regional portland cement consumption on the demand pre-
dictors (aggregated to the regional level), impute predicted consumption at the county level based on the
estimated relationships, and then scale predicted consumption by a constant of proportionality to obtain
potential demand. The regression of regional portland cement consumption on the demand predictors yields
an R2 of 0.9786. Additional predictors, such as land area, population, and percent change in gross domestic
product, contribute little additional explanatory power. We use a constant of proportionality of 1.4, which
is sufficient to ensure that potential demand exceeds observed consumption in each region-year observation.
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of endogenous data available to the econometrician for period t as yt. In our application,

this vector contains production, consumption, and average prices for various geographic

regions, as well as trade flows between some of those regions. For notational brevity, we

stack the distances, demand shifters, and cost shifters into a single matrix X t. We let the

K-dimensional vector θ0 contain the model parameters. Finally, the vector of aggregated

equilibrium predictions, denoted ỹt(θ; X t), is a function of the candidate parameter vector

and the exogenous data.

4.2 The estimator

The estimator minimizes the weighted sum of squared deviations between the endogenous

data and the aggregated equilibrium predictions. It takes the following form:

θ̂ = arg min
θ∈Θ

1

T

T∑

t=1

[yt − ỹt(θ; X t)]
′C−1

T [yt − ỹt(θ; X t)], (5)

where Θ is some compact parameter space. The estimation procedure is multiple-equation

nonlinear least squares. Each element of the vector [yt− ỹt(θ; X t)] defines a single nonlinear

equation and CT is a positive definite matrix that weights the equations.

In our application, we use eleven aggregated equilibrium predictions for which empirical

analogs are available: average mill prices (production weighted) charged by plants in northern

California, in southern California, and in Arizona and Nevada; total production by plants in

the same three geographic regions; total consumption by consumers in northern California,

in southern California, in Arizona, and in Nevada; and shipments from plants in California to

consumers in northern California.24 The empirical analogs are available annually over 1983-

2003 for the first ten predictions (prices, production and consumption) and over 1990-2003

for the eleventh prediction (cross-region shipments).25 Thus, estimation exploits variation

in 21 time-series observations on ten nonlinear equations and 14 time-series observations on

one nonlinear equation. We use methods developed in Srivastava and Zaatar (1973) and

24For reasons of data availability, we combine plants from Arizona and Nevada when constructing prices
and production but not when constructing consumption. The ability to handle such data mismatches is one
of the strengths of our estimation approach. Other data on cross-region shipments are available but there are
fewer data points – for instance, shipments from California to Nevada are available only over 2000-2003. We
find that, in practice, the inclusion of additional shipping data undermines the invertibility of the weighting
matrix. Still, the withheld data provide natural checks on the model predictions that we examine in detail
after estimation.

25The shipments data are necessary to pin down the coal price coefficient in the marginal cost specification.
This is unexpected but could be attributable to the high degree of correlation between coal prices and diesel
prices over the sample period.
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Hwang (1990) to account for the unequal numbers of observations across equations.

The estimator can be derived from the assumption that discrepancies between the

endogenous data and the equilibrium predictions, when evaluated at the population param-

eters, are independent of the distances, demand shifters, and cost shifters. The moment

conditions are

E[ωt|X t] = 0, (6)

where ωt = yt − ỹt(θ0; X t). This seems sensible for many applications. As an example, dis-

crepancies between the endogenous data and the equilibrium predictions could be attributed

in part to measurement error in the endogenous data. In our application, it is an open ques-

tion whether plants respond to the USGS census with complete accuracy, given the costs of

creating, modifying, and verifying internal company data. Further, the USGS imputes its

data when plants are non-responsive, which could introduce additional noise.26

If there is reason to suspect that discrepancies between the endogenous data and the

equilibrium predictions are correlated with the distances, demand shifters, or cost shifters,

then estimation remains feasible provided instruments are available. Suitable instruments

should be correlated with the equilibrium prediction but uncorrelated with the discrepancies,

when evaluated at the population parameters. Such instruments may be readily available.

For instance, if discrepancies are correlated with the cost shifters then the distances and

demand shifters would provide valid instruments. One could then construct the generalized

method of moments analog to equation 5 and proceed with estimation.

Finally, efficiency is improved when a consistent estimate of the cross-equation variance

matrix (i.e., E[ωt|X t]E[ωt|X t]
′) is used to weight the nonlinear equations. The two-step

procedure of Hansen (1982) is applicable. In the first stage, we find that using a diagonal

matrix in which each element is the sample variance of the relevant endogenous series (e.g.,
1
T

∑T

t=1(yt − y)2) improves performance relative to an identity matrix. We use the methods

of Hansen (1982) and Newey and McFadden (1994) to calculate standard errors that are

robust to heteroscedasticity and arbitrary correlations among the equations of each period.

26Under these moment conditions, the estimator can be interpreted as method of moments with optimal
instruments. Despite the multiple equations, the model is exactly identified because there are K parameters
and K moments. The optimal instruments and the corresponding sample moment conditions are

Z∗
t = −∂ỹ(θ0;Xt)

∂θ0

Λ0(θ0)
−1 and

1

T

T∑

t=1

−∂ỹ(θ;Xt)

∂θ
C−1

T (yt − ỹt(θ;Xt)),

respectively, where Λ0(θ0) ≡ E[ωt|Xt]E[ωt|Xt]
′). We refer the reader to Greene (2003) for details.
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4.3 Obtaining aggregate equilibrium predictions

To evaluate the objective function, one must obtain the aggregated equilibrium predictions of

the economic model (i.e., ỹt(θ; X t)) for each candidate parameter vector. The key ingredient

is the equilibrium price vector, which can be computed from the first order conditions of the

firms’ profit maximization problem.

There are J × N first-order conditions, reflecting the modeling assumption that each

plant can discriminate between the consumers of different areas. For notational convenience,

we define the block-diagonal matrix Ω(p; X t,θ) as the combination of n = 1, . . . , N sub-

matrices, each of dimension J × J . The elements of the sub-matrices are defined as follows:

Ωn
jk(pn; X t,θ) =

{
∂qjn(pn ;Xt,θ)

∂pkn
if j and k have the same owner

0 otherwise.
(7)

The elements of each sub-matrix characterize substitution patterns within area Cn, and Ω

has a block diagonal structure because qjn(pn; X t,θ) is free of p−n. Thus, the construction

of Ω builds on the premises that (1) consumers in each area Cn select among all J plants,

and (2) demand in area Cn is unaffected by mill prices in area Cm for n 6= m. With this

notation in hand, the first-order conditions take the form

f(p; X t,θ) ≡ p − c(Q(p; X t,θ); X t,θ) + Ω−1(p; X t,θ)q(p; X t,θ) = 0. (8)

A vector of prices that solves this system of equations is a Bertrand-Nash equilibrium.

In most applications, however, analytic solutions are unobtainable. Rather, one must solve

equation (8) numerically using a nonlinear equation solver to produce a vector of computed

equilibrium prices, which we denote p̃
∗(θ; X t). Specifically, the nonlinear equation solver

selects the vector p̃
∗ to satisfy

1

JN
‖ f(p̃ ∗ ; X t,θ) ‖< δ,

where δ is a user specified tolerance. A tolerance of 1e-13 performs well in numerical exper-

iments based on our application. Numerical error can propagate into the objective function

when the tolerance is substantially looser (e.g., 1e-7), which slows overall estimation time

and can produce poor estimates. (These thresholds are specific to our application because

tolerance is not unit free and must be evaluated relative to the price level.)

Once the equilibrium price vector is obtained, it can be manipulated into the aggre-
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gated equilibrium predictions. To formalize this process, we define a function S : RJN → RL

that maps from the equilibrium price vector to the aggregate equilibrium predictions; L is the

number of predictions that must be calculated (i.e., the length of yt). The aggregate equi-

librium predictions that enter the objective function are given by ỹt(θ; X t) = S(p̃ ∗(θ; X t)).

We assume that S(·) is continuously differentiable, which holds for applications based on

averaged or summed endogenous data.

Example: In our application, the estimator makes use of 11 nonlinear equations

in most time periods. Three of these relate to the average mill prices (production

weighted) charged by plants in specific geographic regions. Thus, denoting the

set of plants in region r as Ar, these aggregate equilibrium predictions can be

calculated as.

P̃rt(θ,X t) =
∑

j∈Ar

∑

n

qjn(p̃ ∗
n ; X t,θ)∑

j∈Ar

∑
n qjn(p̃ ∗

n ; X t,θ)
p̃ ∗

jn.

The aggregate equilibrium predictions for production, consumption, and cross-

region shipments can be written analogously. These predictions can be stacked

into the vector ỹt(θ; X t) and compared to the data.

The estimator has a nested structure in which a numerical optimizer finds the param-

eter vector that minimizes the objective function and a nonlinear equation solver computes

equilibrium prices conditional on the parameter vector. This structure complicates imple-

mentation because the dimensionality of the equilibrium price vector that must be computed

can be quite large. In our application, there are 90 consumer-areas and 14 plants (in a typical

year), resulting in a price vector with 1,260 elements. In many standard numerical packages,

solving for such a large price vector is computationally intensive. One way to reduce compu-

tational complexity is to assume that the firm’s marginal cost function is constant. Under

this assumption, one can solve for the equilibrium prices in each consumer-area individually,

substantially saving computational time.

In many applications, however, marginal costs are unlikely to be constant and the prices

that characterize equilibrium in different consumer areas are not independent. If marginal

costs increase with production (e.g., due to capacity constraints), then lowering price in one

consumer area will increase overall quantity sold by a plant, raising its cost, and hence its

equilibrium price, in other areas. In general, one may need to solve for the entire vector of

prices jointly. We use a large-scale nonlinear equation solver developed in La Cruz, Mart́ınez,

and Raydan (2006) to compute equilibrium in our application. The equation solver employs
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a quasi-Newton method and exploits simple derivative-free approximations to the Jacobian

matrix; it converges more quickly than other algorithms and does not sacrifice precision. This

algorithm is available as part of the BB package in the statistical programming language R.

Our application uses a Fortran version of the nonlinear equation solver, which significantly

increases computational speed.27

4.4 Consistency and Asymptotic Normality

The demonstration of consistency and asymptotic normality is complicated by the fact that

the objective function is constructed using equilibrium predictions. These predictions are

functions of the implicit solution to the firms’ first-order conditions. In addition to an

identification assumption and standard regularity conditions, consistency and asymptotic

normality require (1) the continuity of the implicit solution in its arguments; (2) the dif-

ferentiability of the implicit solution when evaluated at the population parameter vector,

for almost all realizations of the exogenous data; and (3) the objective function to satisfy

a Lipschitz condition. In this subsection, we specify properties of the first-order conditions

that guarantee that these properties hold. All proofs appear in Appendix A. Readers who

are only interested in the application of our method may skip this section.

It is useful to write the objective function as

1

T

T∑

t=1

m(θ,yt,X t) ≡

1

T

T∑

t=1

(yt − S(p∗(θ,X t),θ,X t))
′W t(yt − S(p∗(θ,X t),θ,X t)), (9)

where S(·) is the function maps from the equilibrium price vector to the aggregate equilibrium

predictions, as defined in Section 4.3, and W t ≡ C−1
t . We assume that W = limt→∞ W t

exists and is positive definite. Following the notation in Section 4.2, the data generating

process for the endogenous data is:

yt = S(p∗(θ,X t),θ,X t) + ωt. (10)

27The function that implements the solver is titled dfsane. Our experience is that Fortran reduces the
computational time of the inner loop by a factor of 30 or more, relative to the dfsane function in R. The
numerical computation of equilibrium takes between 2 and 12 seconds for most candidate parameter vectors
when run on a 2.40GHz dual core processor with 4.00GB of RAM.
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We denote the distribution and support of X as Fx and U , respectively. Since X includes

the distance between plants and counties, it is continuous in at least one of its elements. We

denote the distribution of ω as Fω.

Assumption A1 (Global Identification): The parameter vector θ0 is globally identified

in Θ. Formally, E[yt − S(p∗(θ,X),θ,X)|X] = 0 ↔ θ = θ0.

Identification assumptions such as A1 are standard in empirical industrial organization

because the basic conditions for identification in nonlinear models are difficult to formulate

and verify (e.g., Ruud (2000)). In our case, however, A1 could be violated even if the

parameters of the model are identifiable with disaggregate data (i.e., with individual prices

and quantities). This is more likely when aggregation is particularly coarse. Empirically,

one can evaluate the potential for aggregation problems using artificial data experiments,

and we develop one such evaluation in our application.

Assumption A2 (Existence and Uniqueness): A unique Bertrand-Nash equilibrium

exists, and the prices that support it are strictly positive. Formally, for any θ ∈ Θ there

exists a vector p1 ∈ RJN
+ such that f(p1; X,θ) = 0. Further, f(p1; X,θ) = f(p2; X t,θ) =

0 ↔ p1 = p2.

Recent theoretical contributions demonstrate that A2 holds for two special cases of our

model (see Section 3.2 for discussion). We recommend that researchers evaluate whether

uniqueness holds using numerical techniques when violations cannot be dismissed on the-

oretical grounds. It is worth noting that A2 may be overly strong – existence may suffice

if, for instance, the econometrician can compute the universe of equilibria and select the

equilibrium closest to the data (e.g., as in Bisin, Moro, and Topa (2010)). We defer the

evaluation of such possibilities to future research. One result of A2 is the following Lemma:

Lemma 1 (Continuity): Under A2, the mapping p∗(θ,X) is continuous in θ and X.

The corollary that S(p∗(θ,X),θ,X) is continuous in θ and X follows from the prop-

erties of the aggregating function S(·).
Next, since the Jacobian matrix of the first-order conditions need not be nonsingular

over all θ ∈ Θ, we cannot rely on the Implicit Function Theorem (IFT) to guarantee that

p∗(θ,X) is continuously differentiable in a neighborhood of (θ,X). We proceed with the

weaker requirement that the first order conditions are well-behaved, in the sense that if the

Jacobian is singular at (θ0,X0) then a perturbation to X0 + ǫ yields nonsingularity:
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Figure 4: The Implicit Function Theorem is inapplicable at (θ0,X0).

Assumption A3: Denote the Jacobian matrix of the first order condition f with respect to

p at some point (θ,X) as Jfp(p,θ,X). Consider the true parameter value θ0 and the set

of points

B(θ0) = {X : Jfp(p∗(θ0,X),θ0,X) is singular}.

For each point X0 in B(θ0), there exists a neighborhood N(X0,θ0) around X0 such that the

Jacobian matrix Jfp(p∗(θ0,X),θ0,X) is nonsingular for all X ∈ N(X0,θ0) and X 6= X0.

Under A3, if the differentiability of p∗(θ0,X0) in θ fails then the IFT guarantees

continuous differentiability at the new equilibrium price p∗(θ0,X0 + ǫ). Provided that one

can apply the IFT in an open ball around X0, and at least one element in X is continuously

distributed, the set of points at which the IFT fails occurs with zero probability. Figure 4

provides a graphical illustration for the case of a one-dimensional price vector. Equilibrium

is characterized by the intersection of f(p, θ0,X0) and the horizontal axis.28 The IFT cannot

be applied when the slope of the first-order condition is undefined (panel A) or zero (panel

B) at equilibrium. In these cases, A3 guarantees that a perturbation of the exogenous data

yields nonzero derivatives at equilibrium. Lemma 2 follows:

Lemma 2 (Differentiability): Under A2-A3, S(p∗(θ,X),θ,X) is differentiable in θ at

θ = θ0 for almost all X in U .

Finally, consistency and asymptotic normality require the objective function to satisfy

a Lipschitz condition. The condition holds provided that partial derivatives of p∗(θ0,X)

almost always exist and can be bounded (when they exist):

28Assumption A2 guarantees a single crossing.
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Figure 5: Points at which the partial derivatives of p∗ do not exist.

Assumption A4: The partial derivatives of p∗(θ0,X) are bounded by a measurable function

M(X) at all points X ∈ U for which Jfp(p∗(θ0,X),θ0,X) is nonsingular. Further, for

any point (θ0,X0) at which Jfp(p∗(θ0,X0),θ0,X0) is singular, there exists a neighborhood

B(θ0) in θ-space in which either:

(i) For all θ ∈ B(θ0),θ 6= θ0, the partial derivatives of p∗(θ,X0) with respect to the

elements of θ exist and are bounded by a measurable function M(X).

(ii) For all θ ∈ B(θ0), the partial derivatives of p∗(θ,X) with respect to the elements of

θ exist in a neighborhood of X around X0, with X 6= X0. These partial derivatives

are bounded by a measurable function M(X) ≤ M < ∞.

Figure 5 provides a graphical illustration of A4 for one-dimensional X and θ. The

line in each panel represents the combinations of x and θ for which the partial derivatives

of p∗(θ, x) do not exist. If the line passes through (θ0, x0), A4 guarantees that either (1) the

partial derivatives exist for θ ∈ B(θ0) and θ 6= θ0, as in panel A; or (2) the partial derivatives

exist for all θ ∈ B(θ0) in a neighborhood of x around x0 that excludes x0, as in panel B.

The assumption rules out problematic cases such as when the points of non-differentiability

are given by the function sin(1/x), as shown in panel C. In that case, for a small enough

neighborhood around x0, there are always points of non-differentiability for θ ∈ B(θ0). A4

yields the Lipschitz condition:
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Lemma 3 (Lipschitz Continuity of m in θ-space): Under A2-A4, there is a measurable

function ṁ(y,X) such that

|m(θ1,y,X) − m(θ2,y,X)| ≤ ṁ(y,X)‖θ1 − θ2‖

for every θ1 and θ2 in some open neighborhood of θ0

The asymptotic properties of the estimator are now obtainable:

Proposition 1 (Consistency and Asymptotic Normality): Under A1-A5 and certain

regularity conditions enumerated in the appendix,

(i) plim θ̂ = θ0

(ii)
√

T (θ̂ − θ0) →d N

(
0,V −1

θ0

[ ∫
U

∫
ω
∇m(θ,y,X)∇m(θ,y,X)′Fx(X)Fω(ω)

]
V −1

θ0

)

where V θ0
is a symmetric matrix that contains the second derivatives of m(θ,y,X) with

respect to θ, evaluated at θ0.

5 Identification and Related Topics

5.1 Aggregation problems and multiple equilibria

The asymptotic properties of the estimator rest on a number of assumptions, some of which

can be evaluated numerically. First, point identification can fail if multiple candidate param-

eters produce equilibrium predictions that are identical once aggregated to the level of the

available data. This is more likely when the data are relatively coarse so that aggregation

entails a substantial loss of information. We conduct an artificial data experiment to check

for this sort of aggregation problem in our empirical application. We pair a vector of “true”

parameters with 40 randomly-drawn sets of exogenous data. Both the parameters and the

data are chosen to mimic the application. For each of set of exogenous data, we compute

equilibrium, generate the relevant aggregated data, and estimate the model. We argue that

the parameters are reasonably identified if the estimates are close to the true parameters.29

29The exogenous data includes the plant capacities, the potential demand of counties, the diesel price, the
import price, and two cost shifters. We randomly draw capacity and potential demand from the data (with
replacement), and we draw the remaining data from normal distributions. Specifically, we use the following
distributions: diesel price ∼ N(1, 0.28), import price ∼ N(50, 9), cost shifter 1 ∼ N(60, 15), and cost shifter
2 ∼ N(9, 2). We redraw data that are below zero and data that lead the estimator to nonsensical areas of
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Table 1: Artificial Data Test for Identification

Variable Parameter Truth (θ) Transformed (θ̃) Mean Est RMSE

Demand
Cement Price βp -0.07 -2.66 -2.51 0.66
Miles×Diesel Price βd -25.00 3.22 2.86 0.59
Import Dummy βi -4.00 -4.00 -6.07 1.23
Intercept βc 2.00 2.00 1.11 0.51
Inclusive Value λ 0.09 -2.31 -1.73 0.54

Marginal Costs
Cost Shifter 1 α1 0.70 -0.36 -0.88 0.51
Cost Shifter 2 α2 3.00 1.10 0.54 0.45
Utilization Threshold ν 0.90 2.19 1.71 0.59
Over-Utilization Cost γ 300.00 5.70 6.14 1.05

Results of estimation on 40 data sets that are randomly drawn based on the “true” parameters listed. The
parameters are transformed prior to estimation to place constraints on the parameter signs/magnitudes
(see Appendix C). Mean Est and RMSE are the mean of the estimated (transformed) parameters and
the root mean-squared error, respectively.

Table 1 shows the results of the artificial data experiment. Interpretation is complicated

somewhat because we use non-linear transformations to constrain the some of coefficients

(e.g., βp < 0), and we defer details on these transformations to Appendix C. Nonetheless,

it is clear that the means of the estimated coefficients are close to transformed true param-

eters. The means of the price and distance coefficients are within 6 percent and 11 percent

of the truth, respectively. This precision is notable because the ration of price and distance

coefficients determines the unit transportation cost and thereby the degree of spatial dif-

ferentiation. The other means of the estimated demand coefficients are somewhat farther

from the truth. Among the marginal cost parameters, the mean estimated coefficients are

accurate for the utilization threshold and the over-utilization cost but less accurate for the

constant cost shifters. We conclude that the primary coefficients of interest (for spatial con-

siderations) are likely well-identified but that some skepticism of the other coefficients may

be appropriate, especially with regard to the constant marginal cost shifters.

Second, the continuity and differentiability of the implicit solution to the firms’ first

parameter space. Throughout, we hold plant and county locations fixed to maintain tractability, and rely
on the random draws of capacity, potential demand, and diesel prices to create variation in the distances
between production capacity and consumers. Each artificial data set includes 21 draws on the exogenous
data, with each draw representing a single time-series observation.
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order condition fails if multiple equilibria are present. We search for only a single equilibria

in the inner loop in our application. For robustness, we conduct a Monte Carlo experiment

and search for the existence of multiple equilibria. In particular, we compute equilibrium

at eleven different starting points for thousands of randomly-drawn candidate parameter

vectors. We then evaluate whether, for each given candidate parameter vector, the computed

equilibrium prices are sensitive to the starting points.30 More precisely, for each candidate

parameter vector, we calculate the standard deviation of each equilibrium price across the

eleven starting points. (So there are 1,260 standard deviations for a typical equilibrium

price vector of 1,260 plant-area elements.) The results indicate that the maximum standard

deviation, over all candidate parameter vectors and all plant-area prices, is zero to computer

precision. Thus, the Monte Carlo experiment finds no evidence of multiple equilibria. This

may be unsurprising because, theoretically, uniqueness is ensured for two close cousins of our

model: nested logit demand with single-plant firms (Mizuno 2003) and logit demand with

increasing marginal costs and multi-plant firms (Konovalov and Sándor 2010).

5.2 Key empirical relationships

The empirical relationships that drive parameter estimates can be transparent despite the

complicated nonlinear relationships involved. We plot some of these relationships in Figure 6.

On the demand side, the price coefficient is primarily determined by the relationship between

consumption and price. In panel A, we plot cement prices and the ratio of consumption to

potential demand (“market coverage”) over the sample period. There is weak negative

correlation, consistent with downward-sloping but inelastic aggregate demand. Next, the

distance coefficient is primarily determined by (1) the cross-region shipments, and (2) the

relationship between consumption and production in different regions. To illustrate this

second source of identification, we plot the gap between production and consumption (“excess

production”) for each region in panel B. In many years, excess production is positive in

Southern California and negative elsewhere, consistent with inter-regional trade flows. The

magnitude of these implied trade flows drives the distance coefficient. Interestingly, the

30We consider 300 parameter vectors for each of the 21 years in the sample, for a total of 6,300 candidate
parameter vectors. For each θi ∈ θ, we draw from the distribution N(µ̂i, σ̂

2

i ), where µ̂i and σ̂i are the
coefficient and standard error, respectively, reported in Table 2. We then compute the numerical equilibrium
for each parameter vector, using eleven different starting vectors. We define the elements of the starting
vectors to be pjnt = φpt, where pt is the average price of portland cement and φ = 0.5, 0.6, . . . , 1.4, 1.5.
Thus, we start the equation solver at initial prices that are sometimes larger and sometimes smaller than
the average prices observed in the data. The equal-solver computes numerical equilibria for 90 percent of
the candidate vectors. See appendix C for a discussion of non-convergence in the inner-loop.
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Figure 6: Empirical Relationships in the U.S. Southwest. Panel A plots average cement prices and market
coverage. Prices are in dollars per metric tonne and market coverage is defined as the ratio of consumption
to potential demand (times 100). Panel B plots excess production in each region, which we define as the gap
between between production and consumption. Excess production is in millions of metric tonnes. Panel C
plots average coal prices, electricity prices, durable-goods manufacturing wages, and crushed stone prices in
California. For comparability, each time-series is converted to an index that equals one in 2000. Panel D
plots the average cement price and industry-wide utilization (times 100).

implied trade flows are higher later in the sample, when the diesel fuel is less expensive.

On the supply side, the parameters are determined by the relationships between prices

and the marginal cost shifters. In panel C, we plot the coal price, the electricity price,

the durable-goods manufacturing wage, and the crushed stone price for California. Coal

and electricity prices are highly correlated with the cement price, consistent with a strong

influence on marginal costs; inter-regional variation in input prices helps disentangle the two

effects. It is less clear that wages and crushed stone prices are positively correlated with

cement prices. Finally, the utilization parameters are primarily determined by (1) the relative

pro-cyclicality of production and consumption, and (2) the relationship between utilization

and prices. We explore the second source of identification in panel D, which shows cement

prices and industry-wide utilization over the sample period. The two metrics are negatively

correlated over 1983-1987 and positively correlated over 1988-2003.
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6 Empirical Results

6.1 Transportation costs and price discrimination

Table 2 presents the parameter estimates. The price and distance coefficients are the two

primary objects of interest on the demand side; both are negative and precisely estimated.31

Together, the coefficients imply that consumers pay roughly $0.30 per tonne mile, given

diesel prices at the 2000 level.32 The mean shipping distance that arises in equilibrium is

92 miles, and only 10 percent of shipments are more than 175 miles. The other demand

parameters take reasonable values and are precisely identified. The coefficient on the import

dummy is negative because observed import prices do not reflect the full price of imported

cement. The inclusive value coefficient suggests that consumer tastes for the different cement

providers are highly correlated; the standard (non-nested) logit model is easily rejected.

We find that transportation costs facilitate the exercise of localized market power in

some counties but not others.33 Table 3 contrasts Maricopa County (i.e., Phoenix) and Los

Angeles County in 2003, based on the equilibrium computed with the parameter estimates

presented above. As shown, fully 89 percent of the cement consumed in Maricopa County

is supplied by two plants – operated by Phoenix Cement and California Cement – that are

approximately 100 miles north and south of the county, respectively. The mill prices of

these plants are around $80 per metric tonne and consumers must spend around $30 on

transportation. The mill prices of the southern California plants to Maricopa County are

lower but transportation costs are much higher (e.g., the mill price of the Cemex plant is $63

but transportation is $87). As a result, the two plants in Arizona can support mill prices

to Maricopa County that are well above the cost of production.34 By contrast, the leading

31The aggregate elasticity implied by the price coefficient is −0.16 in the median year, consistent with
the conventional wisdom that materials such as steel, asphalt, and lumber are poor substitutes for portland
cement in most construction projects. The median firm-level elasticity of −5.70 is indicative of substantial
price competition among the firms.

32The ratio of the distance and price coefficients is the willingness-to-pay for proximity, incorporating trans-
portation costs and any other distance-related costs (e.g., reduced reliability). We refer to the willingness-
to-pay as the transportation cost although the two concepts may not be strictly equivalent. The calculation
is 26.42

0.087
i

1000
= 0.3037, where i = 1 in 2000.

33An interesting implication of the specification – one that we have not fully explored – is that transporta-
tion costs and spatial differentiation fluctuate with diesel prices. The extent to which carbon or gasoline
taxes would have unintended consequences on the intensity of competition in industries such as portland
cement remains an open question.

34The margin shown is based on the mill price and the constant portion of marginal costs, and approximates
a variable cost margin. In the notation established, m = (pjn − w′

jα̂)/pjn. Incorporating utilization costs
would yield the Lerner index. We find that plants with localized market power typically operate at higher
utilization rates, presumably due to the economic profits available.
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Table 2: Estimation Results

Variable Parameter Estimate St. Error

Demand
Cement Price βp -0.087 0.002
Miles×Diesel Price βd -26.42 1.78
Import Dummy βi -3.80 0.06
Intercept βc 1.88 0.08
Inclusive Value λ 0.10 0.004

Marginal Costs
Coal Price α1 0.64 0.05
Electricity Price α2 2.28 0.47
Hourly Wages α3 0.01 0.04
Crushed Stone Price α4 0.29 0.31
Utilization Threshold ν 0.86 0.01
Over-Utilization Cost γ 233.91 38.16

Estimation exploits variation in regional consumption, production, and
average prices over the period 1983-2003, as well as variation in ship-
ments from California to Northern California over the period 1990-2003.
The prices of cement, coal, and crushed stone are in dollars per metric
tonne. Miles are in thousands. The diesel price is an index that equals
one in 2000. The price of electricity is in cents per kilowatt-hour, and
hourly wages are in dollars per hour. The marginal cost parameter φ is
normalized to 1.5, which ensures the theoretical existence of equilibrium.
Standard errors are robust to heteroscedasticity and contemporaneous
correlations between moments.
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Table 3: Leading Plants in Maricopa County and Los Angeles County in 2003

Plant Owner Plant Location Distance Mill Price Trans. Cost Margin Share

Maricopa County (Phoenix)
Phoenix Cement Clarkdale, AZ 101 $80 $31 0.49 47%
California Cement Rillito, AZ 104 $81 $31 0.50 42%
Cemex Victorville, CA 290 $63 $88 0.21 2%

Los Angeles County
Cemex Victorville, CA 55 $66 $17 0.25 22%
National Cement Encino, CA 19 $77 $6 0.36 21%
California Cement Mojave, CA 50 $71 $15 0.30 16%

Based on estimation results. Distance is the miles between the plant and the county centroid. Mill Price and
Transportation Cost are per metric tonne. Mill Price is computed based on the estimation results. Margin
is based on the mill price and the constant portion of marginal costs (it ignores utilization costs). Share is
the proportion of domestic cement consumed in the county that is produced by the plant.

suppliers of Los Angeles County are less differentiated spatially and thus have less localized

market power – the top three plants set mill prices closer to the cost of production yet supply

only 59% percent of consumption.

The geographic configuration of the U.S. Southwest permits some, but not all, plants

to discriminate among consumers. In Figure 7, we plot the “total cost of purchase” (i.e.,

the mill price plus the transportation cost) for counties within 400 miles of the Cemex plant

in southern California and the Phoenix Cement plant in Arizona. In the absence of price

discrimination, one would expect the total cost of purchase to increase linearly in distance.

This is precisely what one observes for the Cemex plant. The line of best fit is produced

from a regression of total purchase cost on distance, using only counties farther than 200

miles from the plant. Yet it predicts total purchase costs for closer plants equally well.

Further, since the slope of the line is 0.2953, total purchase costs increase at the same

rate as transportation costs (which we estimate at $0.30 per tonne-mile). By contrast, the

Phoenix Cement plant price discriminates among consumers. The total costs of purchase for

consumers in counties within 200 miles exceed the line of best fit based on counties farther

than 200 miles from the plant by $10.83 on average; this is due to higher mill prices for

consumers in nearby counties.35 That the slope of the best fit line is 0.3023 indicates that

35The gap between equilibrium prices and the line of best fit can be interpreted as a back-of-the-envelop
calculation of how much localized market power increases prices. This calculation excludes competitive
interactions, however. If Phoenix Cement were to change its price schedule then, presumably, so would its
competitors. We account for these competitive interactions in a counter-factual policy experiment presented
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Figure 7: Price Discrimination at Two Plants in 2003. The vertical axis is the total cost of purchase,
i.e. the mill price plus the transportation cost incurred by the consumer. The mill price is computed based
on the estimation results. The horizontal axis is the distance in miles between the plant and the county
centroid. Each dot represents the total cost of purchase for a plant-county pair. The line of best fit is from
a regression of total cost of purchase on distance, using pairs with distance greater than 200 miles.

spatial price discrimination is a local phenomenon – the plant does not discriminate between

“distant” and “very distant” consumers.

The critical difference between the Cemex plant in southern California and the Phoenix

Cement plant in Arizona is location. The presence of nearby competitors constrains price

discrimination on the part of Cemex plant, whereas the Phoenix Cement plant is more

differentiated spatially (e.g., see Figure 1 and Table 3). To generalize this somewhat, we

plot the plant-county specific margins in Figure 8.36 Plants should earn higher margins from

sales to nearby counties only to the extent they price discriminate. It is apparent that the

most pronounced discrimination occurs at plants that are differentiated from competitors –

the Phoenix Cement and California Cement plants in Arizona, the Centex plant in Nevada,

in Section 7.
36Again, the margin shown is based on the mill price and the constant portion of marginal costs, and

approximates a variable cost margin.
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county centroid. Each dot represents the margin for a plant-county pair.

and the Lehigh Cement plant in northern California.37 By contrast, price discrimination is

more subdued at the plants in southern California and near the San Francisco Bay Area.

6.2 Marginal costs

We estimate marginal costs to be $69.40 in the mean plant-year (weighted by production). Of

these marginal costs, $60.50 is attributable to costs related to coal, electricity, labor and raw

materials, and the remaining $8.90 is attributable to high utilization rates. Integrating the

marginal cost function over the levels of production that arise in numerical equilibrium yields

an average variable cost of $51 million. Virtually all of these variable costs – 98.5 percent – are

due to coal, electricity, labor and raw materials, rather than due to high utilization. Thus,

although capacity constraints may have substantial affects on marginal costs, the results

37The exception is the low-capacity Royal Cement plant in southern Nevada. The plant ships more than
90% of its output to consumers in Clark County (i.e., Las Vegas), and it incurs substantial utilization costs
that prevent the plant from profitably lowering its price to consumers in more distant counties.
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suggest that their cumulative contribution to variable costs can be minimal. Taking the

accounting statistics further, we calculate that the average plant-year has variable revenues

of $73 million and that the average gross margin (variable profits over variable revenues) is

0.32. As argued in Ryan (2010), margins of this magnitude may be needed to rationalize

entry given the sunk costs associated with plant construction.38,39

Finally, we discuss the individual parameter estimates shown in Table 2, each of which

deviates somewhat from production data available from the Minerals Yearbooks and EPA

(2009). To start, the coal parameter implies that plants burn 0.64 tonnes of coal to produce

one tonne of cement, whereas in fact plants burn roughly 0.09 tonnes of coal to produce

each tonne of cement. The electricity parameter implies that plants use 228 kilowatt-hours

per tonne of cement, whereas the true number is closer to 150. Each tonne of cement

requires approximately 0.34 employee-hours yet the parameter on wages is essentially zero.

Lastly, the crushed stone coefficient of 0.29 is too small, given that roughly 1.67 tonnes of

raw materials are used per tonne of cement. We suspect that these discrepancies are due to

measurement error in the data.40 Alternatively, they may be due to a failure of identification

(e.g., see Section 5.1) or due to the implicit assumption that plant productivity is fixed over

the sample period – it seems clear that the renegotiation of onerous labor contracts improved

productivity in the 1980s (e.g., Northrup (1989), Dunne, Klimek, and Schmitz (2009)).

6.3 Regression fits

One measure of an econometric model’s viability is its ability to fit the data. In Figure 9, we

plot observed consumption against predicted consumption (panel A), observed production

against predicted production (panel B), and observed prices against predicted prices (panel

C). Univariate regressions of the data on the predictions indicate that the model explains

38Lafarge North America, one of the largest domestic producers, reports an average gross margin of 0.33
over 2002-2004 in its public accounting records.

39Fixed costs are well understood to be important for production, as well. The trade journal Rock Prod-

ucts reports that high capacity portland cement plants incurred averaged $6.96 in maintenance costs per
production tonne in 1993 (Rock-Products (1994)). Evaluated at the production levels that correspond to
numerical equilibrium in 1993, this number implies that the average plant would have incurred $5.7 million
in maintenance costs relative to variable profits of $17.7 million. Our results suggest that the bulk of these
maintenance costs are best considered fixed rather than due to high utilization rates. Of course, the static
nature of the model precludes more direct inferences about fixed costs.

40In particular, the coal prices in the data are free-on-board and do not reflect any transportation costs
paid by cement plants; cement plants may negotiate individual contracts with electrical utilities that are
not reflected in the data; the wages of cement workers need not track the average wages of durable-goods
manufacturing employees; and cement plants typically use limestone from a quarry adjacent to the plant, so
the crushed stone price may not proxy the cost of limestone acquisition (i.e., the quarry production costs).

33



0

2

4

6

8

10

D
at

a

0 2 4 6 8 10
Model Prediction

R^2 = 0.9312

Panel A: Regional Consumption

0

2

4

6

8

10

D
at

a

0 2 4 6 8 10
Model Prediction

R^2 = 0.9411

Panel B: Regional Production

50

70

90

110

130

D
at

a

50 70 90 110 130
Model Prediction

R^2 = 0.8205

Panel C: Regional Prices

0

1

2

3

4

5

6

7

D
at

a

0 1 2 3 4 5 6 7
Model Prediction

R^2 = 0.9784

Panel D: Cross−Region Shipments

Figure 9: Estimation Fits for Regional Metrics. Consumption, production, and cross-region shipments are
in millions of metric tonnes. Prices are constructed as a weighted-average of plants in the region, and are
reported as dollars per metric tonne. The lines of best fit and the reported R2 values are based on univariate
OLS regressions.

93 percent of the variation in regional consumption, 94 percent of the variation in regional

production, and 82 percent of the variation in regional prices. Thus, the model performs

reasonably well in accounting for the variation in the endogenous data. It is also telling to

examine the model’s out-of-sample predictions. We also plot observations on cross-region

shipments against the corresponding model predictions (panel D). We use 14 of these obser-

vations in the estimation routine – the shipments from plants in California to consumers in

northern California over 1990-2003 – but the remaining 82 data points are withheld from the

estimation procedure and do not influence the estimated parameters. Even so, the model

explains 98 percent of the variation in these data.

6.4 Comparison to market delineation

A sizeable empirical literature uses market delineation to sidestep the complications of spatial

differentiation (e.g., Pesendorfer (2003), Salvo (2008), Collard-Wexler (2009), Ryan (2010)).

Such models assume the existence of precisely bounded markets; each market includes firms
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that compete (typically in quantities) to supply the consumers of the market. This enables

estimation with market-level data but sacrifices realism in the underlying economic model.

For instance, it is well understood that market delineation imposes the mutually incompatible

assumptions that (1) transportation costs are large enough to preclude competition across

market boundaries, and (2) transportation costs are small enough that spatial differentiation

is negligible within markets. Syverson (2004) and others discuss how this tension compels

researchers to seek compromise between markets that are too broad or too narrow. Further,

market delineation precludes inferences about spatial differentiation because the effects of

transportation costs are assumed rather than estimated.

Our approach facilitates the estimation of more realistic models without imposing

overly cumbersome data requirements. To illustrate, we compare our elasticities to those

estimated in Ryan (2010). Ryan conducts a careful empirical study of the portland cement

industry, based on the same data sources we employ, and delineates markets based on the

USGS reporting regions. Regressions of annual market-level production on annual market-

level average prices yield estimates of the aggregate demand elasticity. Ryan’s preferred

specification suggests an aggregate elasticity of −2.96. When controls for residential con-

struction permits are added, however, aggregate elasticity falls to −0.15.41 This is much

closer to our estimate of −0.16. Housing permits are an important predictor of cement

demand (see Section 3.3); we account for permits through the specification of county-level

potential demand. Yet Ryan discards the less elastic estimate because, given Cournot com-

petition, it implies firm elasticities that are below one in magnitude and inconsistent with

profit maximization.42 By contrast, our approach divorces firm elasticities from the aggre-

gate elasticity and is suitable for industries with elastic firm demand and inelastic overall

demand.43

41See Table 3 in Ryan (2010).
42Cournot competition links firm elasticities to the aggregate elasticity according to ej = e/sj , where ej ,

e, and sj denote firm elasticity, aggregate elasticity, and market share, respectively.
43We do not think this discrepancy diminishes the contribution of Ryan (2010), which estimates an inno-

vative dynamic discrete choice game and focuses primarily on the dynamic parameters; market delineation
is used simply to determine the payoffs at different realizations of the state space.
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7 Counter-factual experiments

7.1 Spatial discrimination and consumer surplus

The consumer surplus implications of spatial price discrimination have long been recognized

as ambiguous (e.g., Gronberg and Meyer (1982), Katz (1984), Hobbs (1986), Anderson,

de Palma, and Thisse (1989)). We conduct a counter-factual policy experiment to evaluate

the implications of spatial price discrimination in the portland cement industry. We solve

numerically for equilibrium, given the estimated parameters and the topology of the industry

in the year 2003, under the restriction that each plant must charge the same price (net of

transport costs) to all consumers.44

Figure 10 characterizes the consumer surplus implications of disallowing spatial price

discrimination, on a county-by-county basis. Counties that are shaded in dark gray or black

are harmed by the ban whereas counties shaded in light gray or white are benefited. The

net effect of the ban, aggregating across all counties, is a $12 million gain in consumer

surplus. This can be calibrated against a volume of commerce in the U.S. Southwest of $1.3

billion.45 However, the effects of disallowing discrimination vary widely across counties and

are consistent with the generalization that the ban benefits consumers located nearby cement

plants and harms more distant consumers. Since nearby consumers tend to be infra-marginal

whereas distant consumers tend to be marginal, this follows the economics of the model –

price discrimination enables plants to extract surplus accruing to inframarginal consumers

without sacrificing sales to marginal consumers.

The heterogeneous effects of spatial price discrimination are starkest in Maricopa

County and the two counties immediately to the north and south (Yavapai County and

Pima County, respectively). The predominate domestic suppliers of cement in these coun-

ties are the Phoenix Cement plant in Clarkdale, Arizona and the California Cement plant

in Rillito, CA. Table 4 shows the mill prices set by these plants in the discriminatory regime

(“Pre-Price”) and the non-discriminatory regime (“Post-Price”). The price discrimination

ban leads the closest supplier to reduce prices in Yavapai and Pima. Thus, the mill price

of the Phoenix Cement plant to consumers in Yavapai falls from $100 per metric tonne to

$83, and the mill price of the California Cement plant to consumers in Pima falls from $88

to $85. Due to these price effects, disallowing price discrimination creates $2.2 million and

$1.7 million in consumer surplus in these counties, respectively. By contrast, the prices that

44Although we focus on 2003, the results obtained from other years are similar.
45Volume of commerce is calculated as price times quantity for all sales by plants in the U.S. Southwest.
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Figure 10: Effects of Disallowing Price Discrimination on Consumer Surplus

these plants charge to the consumers in Maricopa (who tend to be more marginal) increase

due to the price discrimination ban, and these price increases leads to $2.3 million in lost

consumer surplus.

7.2 Merger simulation

Antitrust authorities routinely support merger investigations with coarse or incomplete data

due to tight statutory deadlines. For instance, the full complement of firm-level data needed

to estimate the models of Thomadsen (2005), Davis (2006), McManus (2007) and Houde

(2009) is rarely available. In these cases, the flexible data requirements of our estimator

are particularly valuable. To illustrate, we use counter-factual simulations to evaluate a

hypothetical merger between Calmat and Gifford-Hill in 1986.46 Together, these two firms

operated four of the eight plants in southern California and both of the plants in Arizona.

46We follow standard practice to perform the counterfactuals. We use the equations of McFadden (1981)
and Small and Rosen (1981) to calculate consumer surplus.
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Table 4: Effects of Disallowing Price Discrimination on Prices in Selected Counties

Plant Owner Plant Location Distance Trans. Cost Pre-Price Post-Price

Maricopa County (Phoenix)
Phoenix Cement Clarkdale, AZ 101 $31 $80 $83
California Cement Rillito, AZ 104 $31 $81 $85

Yavapai County (Clarkdale)
Phoenix Cement Clarkdale, AZ 29 $9 $100 $83
California Cement Rillito, AZ 174 $53 $74 $85

Pima County (Rillito)
Phoenix Cement Clarkdale, AZ 186 $56 $71 $83
California Cement Rillito, AZ 44 $13 $88 $85

Results of the counter-factual experiment. Distance is the miles between the plant and the county
centroid. Transportation Cost is per metric tonne. Pre-Price is the mill price in the discriminatory
regime and Post-Price is the mill price in the non-discriminatory regime; both are per metric tonne.

The simulation results suggest the merger leads to prices at the Calmat and Gifford-

Hill plants that are three percent higher in southern California and five percent higher in

Arizona, on average. This induces consumer switching; and consumers that do switch split

evenly between other domestic plants (48 percent) and foreign importers (52 percent). Prices

at other domestic plants increases by only 0.5 percent. Overall, consumer surplus falls by

more than $20 million, relative to a total volume of commerce in southern California and

Arizona of $801 million.47

Absent our estimation strategy, aggregate data could still support merger simulation

provided one imposes market delineation assumptions. This can yield quite different merger

predictions, however. We calculate the percentage price increases one would predict in south-

ern California and Arizona under the assumptions that these two regions are independent

markets, competition is Cournot, demand has constant elasticity, plants share a constant

marginal cost, and there are no foreign imports. Aside from the marginal cost assumption,

this mimics the modeling framework of Ryan (2010). Post-merger prices are

ppost =
N(N − 1)e − (N − 1)

N(N − 1)e − N
ppre, (11)

where N is the number of firms and e is the aggregate elasticity of demand.48 The merger

47Volume of commerce is calculated as price times quantity for all sales by plants in southern California
and Arizona.

48In obtaining this expression it is useful to keep in mind the relationship between firm elasticities and
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has the effect of reducing the number of firms from N to N − 1; six firms operate plants

in southern California during 1986, and two firms operated plants in Arizona. We calibrate

using the Ryan (2010) aggregate elasticity estimate of 2.96. This yields price increases of one

percent in southern California and 25 percent in Arizona. Thus, the application of market

delineation assumptions would appear to well understate harm in southern California and

well overstate harm in Arizona.

Another advantage of our estimation strategy is that it better informs divestiture ne-

gotiations.49 Since the challenge faced by antitrust authorities is to identify the plant best

located to provide competition post-merger, a serious treatment of spatial differentiation is

central. Figure 11 maps the distribution of consumer harm that arises from the hypothetical

merger of Calmat and Gifford Hill. Panel A focuses on effects of the merger absent any

divestitures. Harm is concentrated in the counties surrounding Los Angeles and Phoenix.

Panel B plots harm under the most powerful single-plant divestiture, that of Gifford Hill’s

Oro Grande plant (“Gifford-Hill 2” in the figure). This divestiture eliminates 55% of total

harm. Panel B shows this relief occurs mainly in southern California; the divestiture does

little to reduce harm in Arizona. Additional counterfactual exercises indicate that another

divestiture is needed to mitigate this harm as well.

8 Conclusion

The literature of the “new empirical industrial organization” focuses largely on the struc-

tural estimation of competition models and the recovery of the underlying parameters that

guide firm and consumer decisions. Econometric innovations and greater computer power

have improved our ability to link empirical correlations with sensible theoretical models of

behavior. One area of particular interest has been the estimation of product differentiation

models, as in Berry, Levinsohn, and Pakes (1995) and Nevo (2001). Yet geographic consid-

erations – often critical drivers of differentiation – have received relatively little attention.

In this paper, we have developed an estimator for models of competition among spatially

differentiated firms that has flexible data requirements and is implementable with data at

the aggregate elasticity, i.e., that ej = Ne where ej is the firm elasticity. Then manipulation of the Lerner
index yields a familiar expression for post-merger prices:

ppost =
(N − 1)e

(N − 1)e − 1
c where c =

Ne − 1

Ne
ppre.

49Models based on standard market delineation assumptions are less informative about divestures in this
context because spatial considerations are ignored – within a market, all plants are assumed to be equal.
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Figure 11: Loss of Consumer Surplus Due to a Hypothetical Merger

any level of aggregation. Further, the estimator is the first to be applicable to models in

which firms price discriminate among consumers based on location.

Our hope is that the estimator extends the reach of empirical researchers. Our applica-

tion to the portland cement industry provides an example. In a counter-factual policy exper-

iment, we determine that disallowing spatial price discrimination would increase consumer

surplus by a modest $12 million, relative to a volume of commerce of $1.3 billion. Heretofore,

it has not been possible examine the surplus implications of spatial price discrimination in

specific, real-world settings; these implications have been known to be ambiguous theoret-

ically since at least Gronberg and Meyer (1982) and Katz (1984). Other applications have

equal promise. Researchers could study the relationship between transportation costs and

the intensity of competition or the proper construction of antitrust markets. And, though

our application is static, the estimator could be used to define payoffs in strategic dynamic

games. Such extensions could examine an array of interesting topics including entry deter-

rence, optimal location choice, and the effects of various government policies (e.g., carbon
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taxes or import duties) on welfare and the long-run location of production.

Methodological extensions would have value, as well. The estimator as developed does

not accommodate unobserved plant-level heterogeneity. This limitation helped motivate our

selection of the portland cement industry: due to concerns regarding construction quality and

reliability, the production of cement is subject to strictly enforced standards that minimize

heterogeneity. However, we suspect that the estimator could be extended to accommodate

unobserved heterogeneity using the simulated method of moments of McFadden (1989). The

estimator could then be applied more broadly to industries in which spatial differentiation

is important. We speculate that such simulation methods would prove feasible because the

computation burden of estimation should increase only linearly in the number of simulation

draws used to model the unobserved heterogeneity.
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A Proofs

Proof of Lemma 1: We demonstrate that the implicit solution p∗(θ,X) is continuous in

θ for θ ∈ Θ, taking as given the existence and uniqueness of equilibrium. The proof is by

contradiction. We note that f is continuous for all θ ∈ Θ and all p in RJN . We suppress X

for notational simplicity and note that the arguments we apply to θ apply to X as well. To

start, suppose by way of contradiction that p∗(θ) is not continuous at some point θ1 ∈ Θ.

Then there exists an ǫ > 0 such that for all δ > 0 there exists a θ2 such that

0 < ‖θ2 − θ1‖ < δ

and

‖p∗(θ2) − p∗(θ1)‖ ≥ ǫ.

Uniqueness of the equilibrium price p∗ implies that if ‖p∗(θ2) − p∗(θ1)‖ ≥ ǫ > 0, then

‖f(p∗(θ2),θ1)‖ > b > 0.50

Continuity of f in θ implies that for all ǫ̃ there exists a δ̃ > 0 such that if

0 < ‖θ − θ1‖ < δ̃

then

‖f(p∗(θ),θ) − f(p∗(θ),θ1)‖ = ‖f(p∗(θ),θ1)‖ < ǫ̃.

A contradiction immediately follows from this if we choose ǫ̃ = b. Our initial assertion would

imply that for δ̃(b) we could find a θ2(δ̃(b)) where

0 < ‖θ2 − θ1‖ < δ̃

and

‖f(p∗(θ2),θ1)‖ ≥ b = ǫ̃.

�

Proof of Lemma 2: We prove that under Assumption A3, S(p∗(θ0,X),θ0,X) is

differentiable at θ0 for almost all X. The modifier “almost all” is understood to mean that

50This is because ‖p∗(θ) − p∗(θ1)‖ > ǫ implies that p∗(θ) 6= p∗(θ1). Our definition of p∗ and the
assumption of a unique equilibrium implies f(p,θ1) = 0 at p∗(θ1), and no other price.
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the set of X points for which differentiability fails occurs with measure zero, where the mea-

sure being used is the probability measure generated by the probability distribution of X.

First, the function S(p,θ,X) is continuously differentiable in its arguments by assumption.

Thus it remains to show that the equilibrium price function p∗(θ0,X) is almost everywhere

differentiable in θ0. Assumption A3 guarantees that for every X0 in B(θ0), there is an

X-neighborhood around X0 where the Jacobian of f with respect to p is nonsingular. The

Implicit Function Theorem guarantees that p∗(θ0,X) is continuously differentiable for the

X points in this neighborhood. Because each point of possible nondifferentiability X0 is sur-

rounded by an open neighborhood of differentiable points, and at least one element of X0 has

a continuous distribution, under the probability measure for X points of nondifferentiability

occur with measure zero.

�

Proof of Lemma 3: Here we prove the Lipschitz condition on the objective function

m(θ,y,X) under Assumptions A2-A4. Recall that we want to prove that there exists a

measurable function ṁ(y,X) such that

|m(θ1,y,X) − m(θ2,y,X)| ≤ ṁ(y,X)‖θ1 − θ2‖

for every θ1 and θ2 in some open neighborhood of θ0.

First, consider the points (θ0,X) at which the Jacobian of f with respect to p is

nonsingular. At these points, the Implicit Function Theorem guarantees that the implicit

solution p∗(θ0,X) is continuously differentiable in a θ-neighborhood around θ0 because f

is continuously differentiable in θ. It follows that the partial derivatives of p∗(θ0,X) with

respect to θ exist in this neighborhood, and Assumption A4 guarantees that the partial

derivatives are bounded by M(X). Now we turn to m(θ,yt,X t). Since the matrix W t has

a finite limit, each of its elements wij,t can be bounded by wij.
51 We can write

m(θ,yt,X t) =
∑

i,j

mij,t(θ,yt,X t)

=
∑

i,j

(yit − Si(p
∗(θ,X t),θ,X t))wij,t(yjt − Sj(p

∗(θ,X t),θ,X t)).

51By the definition of the limit, for all ǫ there is some T for which | limt→∞ wij,t − wij,t| < ǫ for t > T .
So for all t > T , wij,t can be bounded. maxt≤T {wij,t} must also exist and be finite, since there are finitely
many wij,t’s prior to T . We have implicitly assumed that all the elements of W t are finite; violations would
make numerical maximization of the objective function impossible for some values of t.
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Consider the partial derivative of mij,t(θ,yt,X t) with respect to some θk. We know that

∂mij,t(θ,yt,X t)

∂θk

= −wij,t(yjt − Sj(p
∗(θ,X t),θ,X t)) ·

[
∑

n,l

∂Si(p
∗(θ,X t),θ,X t)

∂pnl

∂p∗nl(θ,X t)

∂θk

+
∂Si(p

∗(θ,X t),θ,X t)

∂θk

]

−wij,t(yit − Si(p
∗(θ,X t),θ,X t)) ·[

∑

n,l

∂Sj(p
∗(θ,X t),θ,X t)

∂pnl

∂p∗nl(θ,X t)

∂θk

+
∂Sj(p

∗(θ,X t),θ,X t)

∂θk

]
.

Our assumption that S is continuously differentiable in its arguments means that there is

some θ neighborhood around θ0 where S(p,θ,X t) and the partial derivatives of S(p,θ,X t)

with respect to the elements of θ are bounded (this follows from the definition of continuity).

Moreover, because p∗ is continuous in its arguments, it is also bounded in some neighborhood

of θ0. This means that S(p∗(θ,X t),θ,X t) and its partial derivatives with respect to both

θ and p can be bounded in a neighborhood of θ0. We denote the lower bound on S as S and

the upper bound on the partial derivatives as S
′
. Recalling that Assumption A4 guarantees

that all the partial derivatives of p∗ with respect to θk are bounded by |M(X t)|, through

repeated applications of the triangle inequality we can put a bound on
∂mij,t(θ,yt,Xt)

∂θk
:

∣∣∣∣
∂mij,t(θ,yt,X t)

∂θk

∣∣∣∣ ≤
∣∣∣wijS

′
∣∣∣
(
∑

n,l

|M(X t)| + 1

)
(|yit − S| + |yjt − S|)

= ṁij(yt,X t).

Recalling that θ is L dimensional, we can write:

m(θ1,yt,X t) − m(θ2,yt,X t) =
L∑

k=1

m(θ11, ..., θ1k, θ2,k+1, ..., θ̃2L,yt,X t)

−m(θ11, ...θ1,k−1, θ2k, ..., θ2L,yt,X t)

=
L∑

k=1

∂m(θ̃k,yt,X t)

∂θk

(θ1k − θ2k).

48



The second step follows from the Mean Value Theorem for θ̃k = (θ11, ...θ1,k−1, γ, θ2,k+1, ..., θ2L),

where γ is between θ1k and θ2k. It follows that:

|m(θ1,yt,X t) − m(θ2,yt,X t)| ≤
L∑

k=1

∣∣∣∣∣
∂m(θ̃k,yt,X t)

∂θk

∣∣∣∣∣ |θ1k − θ2k|

≤
L∑

k=1

∣∣∣∣∣
∂m(θ̃k,yt,X t)

∂θk

∣∣∣∣∣ ‖θ1 − θ2‖

≤ L max
i,j

{ṁij(yt,X t)}‖θ1 − θ2‖.

Hence, ṁ(yt,X t) = L max{ṁij(yt,X t)} and Lemma 3 holds for the points (θ0,X) at which

the Jacobian of f with respect to p is nonsingular.

Second, we prove the lemma at points of nondifferentiability, i.e., points (θ0,X) at

which the Jacobian of f with respect to p is singular. We first consider Case (ii) of Assump-

tion A4 and then return to Case (i). For any X 6= X0, we can argue that

∣∣∣∣
∂m(θ,yt,X t)

∂θk

∣∣∣∣ ≤
∣∣∣wijS

′∣∣∣ (NJ |M | + 1)
(∣∣yit − S

∣∣+
∣∣yjt − S

∣∣) .

This follows from arguments similar to those presented above. Assumption A4 (Case (ii))

guarantees that the partial derivatives of p∗ are bounded by a constant M . Additionally,

since S(·) is continuously differentiable, and since p∗ is continuous in our X-neighborhood

of X0, S(·) and its derivative are bounded by S and S
′
, respectively.52 This implies that the

upper bound {ṁij(yt,X t)} is not a function of X. It follows that:

|m(θ1,yt,X t) − m(θ2,yt,X t)| ≤ L max
i,j

{ṁij(yt)}‖θ1 − θ2‖.

Taking limits of both sides of this inequality, we see that

lim
X→X0

|m(θ1,yt,X t) − m(θ2,yt,X t)| = |m(θ1,yt,X0) − m(θ2,yt,X0)|

≤ L max
i,j

{ṁij(yt)}‖θ1 − θ2‖.

The first line is due to continuity of p∗ and S(·). The last line is where the requirement that

M(X t) not be a function of X t binds. To build intuition, suppose that, at the points of

nondifferentiability graphed in Panel B of Figure 5, the partial derivative of p∗ with respect

52If the X neighborhood is large enough that they are not bounded, we can simply shrink the neighborhood
until they are.
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to θ approaches infinity as X approaches X0. It is still possible for the partial derivatives to

be bounded by a function of X which also approaches infinity as X approaches X0. Making

that function bounded solves this problem.

To finish, we turn to Case (i) of Assumption A4. We fix X at X0, and again consider

applying the mean value theorem to each component of

m(θ1,yt,X t) − m(θ2,yt,X t).

Consider some component

m(θ11, ..., θ1k, θ2,k+1, ..., θ̃2L,yt,X t) − m(θ11, ...θ1,k−1, θ2k, ..., θ2L,yt,X t).

There are two possibilities to consider. First, suppose that the vector (θ11, ...θ1,k−1) is

different from (θ01, ...θ0,k−1) in at least one element, or (θ2,k+1, ..., θ2L) is different from

(θ0,k+1, ..., θ0L) in at least one element. In this case, the vector θ̃k = (θ11, ...θ1,k−1, γ, θ2,k+1, ..., θ2L)

can never be equal to θ0. Assumption A4 guarantees that the partial derivatives of p∗, and

hence m, exist for all possible θ̃k so we can apply the single variable Mean Value Theorem as

above. The second possibility is that (θ11, ...θ1,k−1) equals (θ01, ...θ0,k−1) and (θ2,k+1, ..., θ2L)

equals (θ0,k+1, ..., θ0L). If θ1k = θ2k = θ0k then the difference above is simply zero. If not, we

can prove the following inequality:

|m(θ11,...,θ1k,θ2,k+1,...,θ̃2L,yt,Xt)−m(θ11,...θ1,k−1,θ2k,...,θ2L,yt,Xt)|

|θ1k−θ2k|
≤

max
{∣∣∣∂m(θ̃1k,yt,Xt)

∂θk

∣∣∣ ,
∣∣∣∂m(θ̃2k,yt,Xt)

∂θk

∣∣∣
}

.

To prove this, define g(γ) = m(θ11, ..., γ, θ2,k+1, ..., θ̃2L,yt,X t). Assuming without loss of

generality that θ1k < θ2k, from A4 we know that g(γ) is differentiable on the open intervals

(θ1k, θ0k) and (θ0k, θ2k) and it is continuous on the interval [θ1k, θ2k] due to continuity of S

and p∗. Hence we can apply the Mean Value Theorem on the interval (θ1k, θ0k) and (θ0k, θ2k)

to show that

|g(θ0k) − g(θ1k)|
|θ0k − θ1k|

≤
∣∣∣∣∣
∂m(θ̃1k,yt,X t)

∂θk

∣∣∣∣∣ , and
|g(θ2k) − g(θ0k)|

|θ2k − θ0k|
≤
∣∣∣∣∣
∂m(θ̃2k,yt,X t)

∂θk

∣∣∣∣∣ ,

for some θ̃1k ∈ (θ1k, θ0k) and θ̃2k ∈ (θ0k, θ2k). We next show that

|g(θ2k) − g(θ1k)|
|θ2k − θ1k|

≤ max

{ |g(θ0k) − g(θ1k)|
|θ0k − θ1k|

,
|g(θ2k) − g(θ0k)|

|θ2k − θ0k|

}
.
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To show this inequality, we first make the following definitions:

m1 =
g(θ2k) − g(θ1k)

θ2k − θ1k

m2 =
g(θ0k) − g(θ1k)

θ0k − θ1k

m3 =
g(θ2k) − g(θ0k)

θ2k − θ0k

.

Then define three lines on the interval [θ1k, θ2k]:

L1(θ) = m1θ + b1

L2(θ) = m2θ + b2

L3(θ) = m3θ + b3,

where we define

b1 = g(θ1) − m1θ1

b2 = g(θ1) − m2θ1

b3 = g(θ2) − m3θ2.

Because of the way we have defined these lines, and because of the continuity of g, it must

be the case that L2(θ0) = L3(θ0), L1(θ1) = L2(θ1), and L1(θ2) = L3(θ2). Let us suppose by

way of contradiction that

|m1| > max{|m2|, |m3|}.

There are a number of cases that we have to consider. First, suppose that m1, m2, and m3

are all positive. Then it must be the case that for θ > θ1, L1(θ) > L2(θ) since L1(θ1) = L2(θ1)

and L1 has a steeper slope than L2. It must also be the case that for θ < θ2, L1(θ) < L3(θ)

since L1 is more steep than L3 and L1(θ2) = L3(θ2). Since θ1 < θ0 < θ2, this implies that

L3(θ0) > L1(θ0) > L2(θ0). This contradicts L2(θ0) = L3(θ0). Next suppose that m1 > 0,

m2 < 0, and m3 > 0. It is easy to show that it must be the case that L2(θ0) < L1(θ0)

(because L2 slopes down from θ1, while L1 slopes upward), and L3(θ0) > L1(θ0) (by the

assumption that m1 > m3), again leading to a contradiction. Then suppose that m1 > 0,

m2 > 0 and m3 < 0. The assumption that m1 > m2 implies that L2(θ0) < L1(θ0). Since we

assumed that m3 is negative, L3 slopes up from θ < θ2 and L1 slopes down, implying that

L3(θ0) > L1(θ0). This again is a contradiction of L2(θ0) = L3(θ0). The cases where m1 < 0
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can be shown with similar logic. The fact that |m1| ≤ max{|m2|, |m3|} implies that

|g(θ1k) − g(θ2k)|
|θ1k − θ2k|

≤ max

{∣∣∣∣∣
∂m(θ̃1k,yt,X t)

∂θk

∣∣∣∣∣ ,
∣∣∣∣∣
∂m(θ̃2k,yt,X t)

∂θk

∣∣∣∣∣

}
.

From this point on, similar logic to what was used to prove the last two cases can be used

to show

|m(θ1,yt,X t) − m(θ2,yt,X t)| ≤ L max
i,j

{ṁij(yt,X t)}‖θ1 − θ2‖.

�

Proof of Proposition 1: With Lemmas 1-3 in hand, the proof of Proposition 1 follows

directly from Theorem 5.23 in van der Vaart (1998), pages. 53-54. Two additional normalcy

conditions are required:

(i) EωEXṁ(y,X)2 < ∞.

(ii) The mapping

θ → Pm(θ) =

∫

U

[
(S(p∗(θ0,X),θ0,X) − S(p∗(θ,X),θ,X))′ ·

W (S(p∗(θ0,X t),θ0,X) − S(p∗(θ,X),θ,X)))] Fx(X) + Eω′Wω

admits a second-order Taylor expansion at θ0.

�

Additional proof: In footnote 20 of Section 3.3, we make the claim that the mean distance

between plant j and consumers in area n (denoted djn) is orthogonal to the consumer-specific

deviation (‖wi − zj‖d −djn). We prove that claim here, using a continuous version of Ruud’s

(2000, p.31) proof that the predicted vector of a regression is orthogonal to the residual

vector. For simplicity, we define di = ‖wi − zj‖d, where ‖‖d denotes Euclidean distance and

where we have dropped the j subscript. Let di have a continuous density function fd(di).

Note that the space of univariate functions of di under the norm

∫
g(x)2fd(x)

with the usual vector addition and subtraction form a Hilbert space, which we denote as F.

Therefore, by the Hilbert projection theorem, if S is a closed subspace of F, then a necessary
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and sufficient condition for minimizing the distance ‖y − x‖ where y ∈ F and x ∈ S is that

y − x is orthogonal to x. So let’s consider the identity function for y, and the subspace

S = {g : g(d) = κn if d ∈ Cn},

where κn is some constant. We simply need to show that the solution to the minimization

problem

min
g∈S

E(di − g(di))
2

is

g∗(di) =





R

Cn
dfd(d)

R

Cn
fd(d)

= E(di|di ∈ Cn) if di ∈ Cn

0 otherwise.

Note that we can write:

E(di − g(di))
2 = E ([di − g∗(di)] + [g∗(di) − g(di)])

2 (12)

= E ([di − g∗(di)])
2 + E ([g∗(di) − g(di)])

2 ,

where the second equality follows from the fact that

E ([di − g∗(di)] [g
∗(di) − g(di)]) = 0.

The proof of this line is

N∑

n=1

∫

Cn

([di − g∗(di)] [g
∗(di) − g(di)]) fd(di)

=
N∑

n=1

∫

Cn

([
di −

∫
Cn

dfd(d)∫
Cn

fd(d)

][∫
Cn

dfd(d)∫
Cn

fd(d)
− κn

])
fd(di)

=
N∑

n=1

[∫
Cn

dfd(d)∫
Cn

fd(d)
− κn

](∫

Cn

[
di −

∫
Cn

dfd(d)∫
Cn

fd(d)

])
fd(di)

=
N∑

n=1

[∫
Cn

dfd(d)∫
Cn

fd(d)
− κn

](∫

Cn

difd(di) −
∫

Cn

dfd(d)

)

= 0

where the second equality follows from the fact that g is in the subspace S, and the third

from the fact that the expectations and the κn’s don’t depend on di, so they can be factored
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out of the integral. It is then obvious from inspection of equation (12) that E(di − g(di))
2

is minimized if and only if g(di) = g∗(di), and by the Hilbert projection theorem it must be

the case that di − g∗(di) is orthogonal to g∗(di).

�

B Summary Statistics

We provide selected summary statistics in Table 5. Some patterns stand out: First, substan-

tial variation in each metric is available, both inter-temporally and across regions, to support

estimation. Second, Southern California is larger than the other regions, whether measured

by consumption or production. Third, consumption exceeds production in Northern Cali-

fornia, Arizona, and Nevada; these shortfalls must be countered by cross-region shipments

and/or imports. The observation that plants in these regions charge higher prices is consis-

tent with transportation costs providing some degree of local market power. Finally, imports

are less expensive than domestically produced portland cement. This discrepancy exists for

two reasons: First, imports typically come in the form of clinker, which observes water from

the air more slowly than cement. The clinker is ground into cement only after it clears

customs. The import price does not include the grinding cost. Second, the import price

does not include tariffs and duties, which are substantial. We include the import dummy in

the demand specification to adjust for these factors.

C Estimation details

We minimize the objective function using the Levenberg-Marquardt algorithm (Levenberg

(1944), Marquardt (1963)), which interpolates between the Gauss-Newton algorithm and the

method of gradient descent. We find that the Levenberg-Marquardt algorithm outperforms

simplex methods such as simulated annealing and the Nelder-Mead algorithm, as well as

quasi-Newton methods such as BFGS. We implement the minimization procedure using the

nls.lm function in R, which is downloadable as part of the minpack.lm package.

We use observed prices to form the basis of the initial vector in the inner loop compu-

tations, which limits the distance that the nonlinear equation solver must walk to compute

numerical equilibrium. In practice, the equation solver occasionally fails to compute a nu-

merical equilibrium at the specified tolerance level (1e-13) within the specified maximum

number of iterations (600). The candidate parameter vectors that generate non-convergence

54



Table 5: Consumption, Production, and Prices

Description Mean Std Min Max

Consumption
Northern California 3,513 718 2,366 4,706
Southern California 6,464 1,324 4,016 8,574
Arizona 2,353 650 1,492 3,608
Nevada 1,289 563 416 2,206

Production
Northern California 2,548 230 1,927 2,894
Southern California 6,316 860 4,886 8,437
Arizona-Nevada 1,669 287 1050 2,337

Domestic Prices
Northern California 85.81 11.71 67.43 108.68
Southern California 82.81 16.39 62.21 114.64
Arizona-Nevada 92.92 14.24 75.06 124.60

Import Prices [excludes duties and grinding costs]
U.S. Southwest 50.78 9.30 39.39 79.32

Statistics are based on observations at the region-year level over
the period 1983-2003. Production and consumption are in thou-
sands of metric tonnes. Prices are per metric tonne, in real
2000 dollars. Import prices exclude duties. The region labeled
“Arizona-Nevada” incorporates information from Nevada plants
only over 1983-1991.
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in the inner loop tend to be less economically reasonable, and may be consistent with equi-

libria that are simply too distant from observed prices. When this occurs, we construct

regional-level metrics based on the price vector that comes closest to satisfying our defini-

tion of numerical equilibrium.

To further speed the inner loop computations, we re-express the first-order condition

of 8 such that inversion of Ω(p; X,θ) is avoided. The computation of equilibrium for each

time period can be parallelized, which further speeds the inner loop calculations. We also

note that were production characterized by constant marginal costs, then one could further

ease the computational burden of the inner loop by solving for equilibrium prices in each

consumer area separately.

We constrain the signs and/or magnitudes of some parameters based on our under-

standing of economic theory and the economics of the portland cement industry, because

some parameter vectors hinder the computation of numerical equilibrium in the inner loop.

For instance, a positive price coefficient would preclude the existence of Bertrand-Nash equi-

librium. We use the following constraints: the price and distance coefficients (β1 and β2)

must be negative; the coefficients on the marginal cost shifters (α) and the over-utilization

cost (γ) must be positive; and the coefficients on the inclusive value (λ) and the utilization

threshold (ν) must be between zero and one. We use nonlinear transformations to implement

the constraints. As examples, we estimate the price coefficient using β̃1 = log(−β1) in the

GMM procedure, and we estimate the inclusive value coefficient using λ̃ = log
(

λ
1−λ

)
. We

calculate standard errors with the delta method.

D Data Details

We make various adjustments to the data in order to improve consistency over time and

across different sources. We discuss some of these adjustments here, in an attempt to build

transparency and aid replication. To start, we note that the California Letter is based on a

monthly survey rather than on the annual USGS census, which creates minor discrepancies.

We normalize the California Letter data prior to estimation so that total shipments equal

total production in each year. The 96 cross-region data points include:
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• CA to N. CA over 1990-2003

• CA to S. CA over 2000-2003

• CA to AZ over 1990-2003

• CA to NV over 2000-2003

• N. CA to N. CA over 1990-1999

• S. CA to N. CA over 1990-1999

• S. CA to S. CA over 1990-1999

• S. CA to AZ over 1990-1999

• S. CA to NV over 1990-1999

• N. CA to AZ over 1990-1999.

The (single) Arizona-Nevada region includes Nevada data only over 1983-1991. Start-

ing in 1992, the USGS combined Nevada with Idaho, Montana and Utah to form a new

reporting region. We tailor the estimator accordingly. Additionally, this region also includes

information from a small plant located in New Mexico. We scale the USGS production data

downward, proportional to plant capacity, to remove for the influence of this plant. Since

the two plants in Arizona account for 89 percent of kiln capacity in Arizona and New Mexico

in 2003, we scale production by 0.89. We do not adjust prices.

The portland cement plant in Riverside closed its kiln permanently in 1988 but contin-

ued operating its grinding mill with purchased clinker. We include the plant in the analysis

over 1983-1987, and we adjust the USGS production data to remove the influence of the

plant over 1988-2003 by scaling the data downward, proportional to plant grinding capac-

ities. Since the Riverside plant accounts for 7 percent of grinding capacity in Southern

California in 1988, so we scale the production data for that region by 0.93.

We exclude one plant in Riverside that produces white portland cement. White cement

takes the color of dyes and is used for decorative structures. Production requires kiln temper-

atures that are roughly 50◦C hotter than would be needed for the production of grey cement.

The resulting cost differential makes white cement a poor substitute for grey cement.

The PCA reports that the California Cement Company idled one of two kilns at its

Colton plant over 1992-1993 and three of four kilns at its Rillito plant over 1992-1995, and

that the Calaveras Cement Company idled all kilns at the San Andreas plant following the

plant’s acquisition from Genstar Cement in 1986. We adjust plant capacity accordingly.

We multiply kiln capacity by 1.05 to approximate cement capacity, consistent with the

industry practice of mixing clinker with a small amount of gypsum (typically 3 to 7 percent)

in the grinding mills.

The data on coal and electricity prices from the Energy Information Agency are avail-
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able at the state level starting in 1990. Only national-level data are available in earlier

years. We impute state-level data over 1983-1989 by (1) calculating the average discrep-

ancy between each state’s price and the national price over 1990-2000, and (2) adjusting the

national-level data upward or downward, in line with the relevant average discrepancy.
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