Factors Controlling In Situ Uranium and Technetium Bioreduction at the NABIR Field Research Center

> **Oregon State University** J. Istok, J. Jones, M. Park, M. Sapp, E. Selko and R. Laughman **University of Oklahoma** J. Senko, L. Krumholz, A. Spain **Pacific Northwest National Laboratory** J. McKinley **Oak Ridge National Laboratory B.** Gu **FRC/ORNL** D. Watson, M. A. Bogle, B. Kinsall, K. Lowe, T. Mehlhorn, and N. Farrow

Contact Information

Dr. Jonathan ("Jack") D. Istok, PE **Department of Civil Engineering Oregon State University** Corvallis, OR 97331 541-737-8547 (voice) 541-737-9090 (fax) Jack.Istok@oregonstate.edu **Push-pull test publications available at:** web.engr.oregonstate.edu/~istokj/grl-main.htm

Bioreduction/Bioimmobilization

Research Hypotheses

- Indigenous microorganisms at the FRC have the ability to reduce U and Tc but rates are electron-donor limited
- Electron donor additions will result in conditions favorable for U and Tc reduction
- Microbially-reduced U will be rapidly reoxidized in the presence of high NO₃⁻ concentrations
- A donor addition strategy can be devised to maintain low U and Tc concentrations in groundwater

Project Organization

S-3 Ponds

Study Areas

Area 1

Area 2

Processes Studied In Situ Using Push-Pull Tests

Site groundwater amended with tracers, +/-bicarbonate, +/- electron donor(s), +/- humics, +/- electron acceptors, +/- inhibitors and injected into existing monitoring wells

Source Groundwater Used in Field Manipulation Experiments

	$GW835 \ (\mu M)$	FW021 (µM)	_	$GW835\;(\mu M)$	FW021 (µM
pН	6.4	3.3	Cs	0	0
Tc (pM)	410	18000	Cu	1	9
U	5	6	Fe	4	4
Ag	1	0	Ga	1	0
Al	0	12000	Κ	120	980
As	1	0	Mg	1100	8300
Ba	0	10	Mn	50	2500
Be	20	0	Na	1100	23000
Bi	0	0	Ni	1	220
Br	150	0	NO ₃ ⁻	1200	140000
Ca	3500	19000	Pb	0	0
Cd	0	4	Se	1	1
Cl	650	7900	Sr	4	22
Со	1	46	SO ₄ ²⁻	830	430
Cr	1	0	Zn	1	48

Push-Pull Test Overview

- Phase I (42 tests)
 - Moderate pH (5.2 6.6) Area 1
 - Low vs high nitrate; + tracer; + HCO₃⁻; +/- acetylene; +/- humics
- Phase II (16 tests)
 - Low pH (3.5 4.5) Area 1
 - Low vs high nitrate; + tracer; + HCO₃-; +/- acetylene; +/- humics
- Phase III (25 tests)
 - moderate pH (5.5 6.8) Area 2
 - Low vs high nitrate; + tracer; + HCO₃-; +/- sulfate; +/- humics

Field Manipulation Experiments: Phase I – Moderate pH (Area 1)

Control Wells (no added donor)

FW034 - 3 mM Nitrate

FW034 - 3 mM Nitrate

Effect of Successive Donor Additions on Microbial Activity – FW034

FW034 - 3 mM Nitrate No Added Donor (After Biostimulation)

FW034 - 3 mM Nitrate No Added Donor (After Biostimulation)

FW034 – 120 mM Nitrate

FW034 – 120 mM Nitrate

Effect of Nitrite on Survival in Laboratory Incubations

FW034 – 120 mM Nitrate Acetylene Block Experiment

Field Manipulation Experiments: Phase II – Low pH (Area 1)

Effect of Biostimulation on pH FW028

Optimum pH for Growth of Nitrate Reducers – FRC Isolates

Isolate	pH range	Optimum pH
FW033#1	6.5 - 8.0	8.0
FW033#3	5.5 - 7.5	7.0
FW032#1	5.5 - 7.5	6.5
FW032#2	4.5 - 8.0	6.5
FW032#3	6.0 - 8.0	7.0

FW028 – 3 mM Nitrate After Biostimulation

FW028 – 120 mM Nitrate After Biostimulation

Effect of Low pH on Microbial Activity

- Microbial activity was stimulated in low pH (<
 4) sediments with *neutralized* groundwater (no added bicarbonate)
- Little microbial activity observed in laboratory microcosm studies or field push-pull tests conducted with FW021 (pH ~ 3.4) groundwater without added bicarbonate
- One explanation may be Al and/or Ni toxicity

Field Manipulation Experiments: Phase III – Moderate pH (Area 2)

DP06 – 3 mM Nitrate

Results: DP06 – 3 mM Nitrate

Summary of Push-Pull Tests (95 tests)

- Indigenous microorganisms in the shallow aquifer in Areas 1 and 2 have the capability:
 - -To utilize ethanol, glucose, and acetate
 - **—To reduce nitrate to nitrite via denitrification**
 - -To reduce sulfate and Fe(III)
 - **—To immobilize Tc and U**
- Biostimulation by successive donor additions increases pH and microbial activity
- Biostimulation initiated ethanol utilization and nitrate and Tc reduction in low pH (< 4) environments

Summary (Continued)

• Push-pull tests are able to quantify in situ microbial activity:

Initial Conditions

	NO ₃	SO ₄ ²⁻	U(VI)	Tc(VII)
pН	(mM)	(mM)	(µM)	(pM)
3.3-3.9	100-140	0-1	5-12	10000-15000
5.2-5.6	90-100	0-1	5-12	10000-15000
5.6-7.2	0-6	1-2	1-7	200-1000

Activity (after biostimulation)

Initial	EtOH	NO ₃	SO ₄ ²⁻	U(VI)	U(IV)	Tc(VII)
pН	(mM/hr)	(mM/hr)	(mM/hr)	(µM/hr)	(µM/hr)	(pM/hr)
3.3 – 3.9	0.3 – 1.0	0.1 – 0.4	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4 – 30
5.2 – 5.6	0.3 – 4.0	0.3 – 4.0	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	10 – 150
5.6 – 7.2	0.1 - 2.0	0.1 – 2.0	0-0.03	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4 - 10

Some Additional Comments

- Desired metabolic capability is widespread and it may be relatively easy to create subsurface conditions that favor U and Tc reduction
- However, in high nitrate environments, nitrate and denitrification intermediates will rapidly oxidize U(IV)
- pH increases resulting from biostimulation will result in formation of U(VI)-containing solids
- Clogging of aquifer by precipitates, biomass, and (perhaps) N_2 gas is possible in the long-term

Nitrate and Denitrification Intermediates Can Rapidly Oxidize U(IV)

 Laboratory incubations

In Situ Reoxidation of U(IV) FW034 - 120 mM Nitrate

In Situ Reoxidation of U(IV) DP-15D – 20 mM Nitrate

Precipitate Formation with Increasing pH

Current Research Strategy

- Continued laboratory and in situ testing to obtain rates of U(VI) reduction and U(IV) oxidation under defined conditions
 - Stimulating microbial activity with low pH water
 - Strategies for reducing rates of U(IV) oxidation (amendments with sulfate, acetylene, humics, etc.)
- Intermediate-scale laboratory experiments to investigate coupled biogeochemical reactions and transport
 - Model groundwater flow path
 - Platform for testing numerical models
 - Source of biostimulated groundwater and sediment

Current Research Strategy (cont.)

- Push-pull tests with chemical monitoring for reaction-path calculations
 - Charge-balanced anion/cation/pH, U and Tc
 - First set of experiments completed, laboratory analyses in process
- Near-well estimation of aquifer heterogeneity
 - Multilevel samplers installed in three closelyspaced wells
 - Small-scale vertical heterogeneity in water composition will be monitored during series of push-pull tests

Can Acetylene Inhibit Microbial Oxidation of U(IV) ?

Can Sulfide Mitigate U(IV) Oxidation by Denitrification Intermediates ?

+ 20 mM nitrate- added sulfate

□ FRC fulvic acid depleted with aromatics, but enriched with carboxyl and hydroxyl moieties.

Coupling Transport with Bioimmobilization

Distance Along Flowpath

Small-Scale Laboratory Models

FW021 pH = 6.1**Crushed limestone** pH = 3.3 $NO_{3} = 120 \text{ mM}$ column $NO_{3}^{-} = 120 \text{ mM}$ $U(VI) = 5 \mu M$ $U(VI) = 6 \mu M$ Tc = 18000 pMTc = 18000 pM- Al, Ni, etc. + Al, Ni, etc. System operated for **100 pore volumes** Limestone/sediment chamber + EtOH pH = 6.4Limestone/sediment **pH = 6.6** $NO_{3} = 2 mM$ **Column + EtOH** $NO_{3}^{-} = 0$ $U(VI) = 5 \mu M$ $U(VI) \sim 0$ Tc = 18000 pM $Tc \sim 0$ (~ GW835)

Intermediate-Scale Physical Model – Area 1

Intermediate-Scale Physical Model – Area 1

Constant inflow, increasing in steps

Daily injections of neat ethanol in six locations

Monitoring wells located along model centerline provide access to saturated zone

Example Data: Day 26 ~ 1 pore volume

Intermediate-Scale Physical Model – Area 2

Intermediate-Scale Physical Model – Area 2

Collaboration Opportunities

- Field push-pull tests in Area 1 and Area 2
 - General purpose, field-testing platform
 - Numerical modeling
 - Microbial community dynamics
 - Sediment biogeochemistry (post-test sampling)
- Intermediate-scale physical models
 - Numerical modeling
 - Microbial community dynamics
 - Sediment biogeochemistry (destructive sampling will produce ~ kg size samples)

Groundwater Remediation Michael (age 6)

