Factors Controlling In Situ Uranium and Technetium Bioreduction at the NABIR Field Research Center

> **Oregon State University** J. Istok, J. Jones, M. Park, M. Sapp, **University of Oklahoma** L. Krumholz, A. Spain **Pacific Northwest National Laboratory** J. McKinley, T. Resch **Oak Ridge National Laboratory** B. Gu, P. Zhou and S. Yan.

Overview

- Summary of In Situ Testing
- Preliminary results from coupled microbiological
 geochemical modeling
- Recent experiments on fate of N₂ gas and precipitates
- Status of intermediate-scale physical models

Geochemical conditions at the site are highly spatially variable

۰ ا

25

20

15 10

<u>ہ</u>

2.0

1.5

1.0

0.5

0.0

Easting (ft)

Area 2

۱n

Easting (ft)

Area 1

Area 1 Groundwater

Well-ID	pН	Nitrate (mM)	Sulfate (mM)	Uranium (\M)	Technetium (pM)
FW015	3.4	149	2.2	10.3	10860
FW016	4.5	11	0.2	0.9	710
FW017	4.4		0.1	0.2	191
FW019	6.6	8	0.6	0.7	2288
FW020	4.6	75	1.1	1.4	165
FW021	3.3	142	0.4	5.8	18182
FW027	5.4	168	0.0	0.1	15466
FW028	4.4	167	0.1	9.6	7117
FW029	4.0	62	2.3	9.2	7390
FW030	3.5	145	0.0	4.2	12603
FW031	5.7	63	0.1	0.0	1205
FW032	5.2	23	0.0	0.0	942
FW033	5.9	14	0.7	0.3	1313
FW034	6.8	1	0.8	0.5	39

Field tests were conducted under a wide range of initial conditions in the shallow (< 8 m) subsurface

Initial Conditions				
	NO ₃ ⁻	SO ₄ ²⁻	U(VI)	Tc(VII)
pH	(mM)	(mM)	(µM)	(pM)
3.3-3.9	100-140	0-1	5-12	10000-15000
5.2-5.6	90-100	0-1	5-12	10000-15000
5.6-7.2	0-6	1-2	1-7	200-1000

Microbial activity was detected and quantified using single-well, push-pull tests

Typical test design

- Collect 50-200 L site groundwater
- Amend with bromide tracer, +/electron donor, +/-other amendments
- Mix with 80:%:20% N2:CO2
- Inject by siphon
- Sample for 400-1200 hours after injection
- Plot concentration profiles
- Adjust for dilution
- Compute reaction rates
- 104 Area 1 tests 105 Area 2 tests
- Total = 209

Tracer test showing shape of interrogated volume

Microbial activity is electron donor limited; control tests with no added donor exhibit only dilution losses

Microbial activity rapidly (~ weeks) stimulated in all environments tested with the addition of exogenous electron donor

Ethanol, glucose, acetate, SRS (emulsified vegetable oil) investigated; best results obtained with ethanol

- Ethanol advantages...
- Inexpensive
- Stable
- Easy to deliver

Denitrification is main process responsible for observed nitrate loss

After biostimulation, microbial activity was similar in all environments tested including low initial pH

In situ rates of microbial activity were determined for wide range of initial geochemical conditions

After biostimulation, rates of microbial activity were similar in all environments tested

In Situ Activity Measurements

Initial	EtOH	NO ₃ ⁻	SO ₄ ²⁻	U(VI)	U(IV)	Tc(VII)
pН	(mM/hr)	(mM/hr)	(mM/hr)	(µM/hr)	(µM/hr)	(pM/hr)
3.3 – 3.9	0.3 – 1.0	0.1 - 0.4	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4-30
5.2 - 5.6	0.3 - 4.0	0.3 - 4.0	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	10 – 150
5.6 - 7.2	0.1 - 2.0	0.1 - 2.0	0-0.03	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4 - 10

But *in situ* rates are very different from laboratory rates

U(VI) bioreduction

Tc(VII) bioreduction

Microcosm	<i>In situ</i>	Microcosm	<i>In situ</i>
(uM/hr)	(uM/hr)	(pM/hr)	(pM/hr)
135-690	0.001 - 0.04 (FRC) 0.001 - 0.002 (Rifle) 0.01 - 0.07 (Landfill) 10 ⁵ – 10 ⁶ Smaller	10,000 – 110,000	1 – 460 (FRC) 10 ⁴ – 10 ⁵ Smaller

For more information see FRC Working Group Report "Rates and mechanisms of microbially mediated metal reduction"

Addition of nitrate to previously reduced sediments reoxidizes and remobilizes U but not Tc

Addition of 100 $mM NO_3^-$ to biostimulated sediments

Mechanisms of nitrate dependent microbial U(IV) oxidation investigated using microbial isolates and range of mineral systems

Ethanol additions stimulated the growth and activity of metal-reducing organisms

• PLFA, DMA, DGGE, 16s rRNA; Q-PCR (groundwater, microbial samplers, sediments)

Metal and radionuclide reduction supported by multiple lines of evidence

- Fe(II) and Mn(II) accumulation in groundwater
- Fe(II) and U(IV) accumulation in sediments

Enhanced microbial activity results in production of precipitates, biomass, and gas production

Coupled microbiological and geochemical models describe many features of field experiments

- Results from NABIR project "Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model"
- Growth equations and free energy values for defined microbial groups are computed and combined with existing chemical thermodynamic data bases
- Response of system to donor additions modeled with equilibrium reaction paths computed by minimizing overall system (microbiology and geochemistry) free energy (see poster for details)

Area 2 Example - Bioreduction

0	Geoche	mistry	Microbiology
рН _	6.4		 NH₄⁺ as nitrogen source
02	68	mМ	Ethanol as electron donor
NO ₃ -	1.2	mМ	 Defined functional groups
SO ₄ ²⁻	0.83	mМ	– "Aerobes"
Fe(III)	17	mМ	– "Denitrifers"
HCO ₃ -	90	μM	– "Iron reducers"
Ca ²⁺	3.5	mM	– "Sulfate reducers"
Mg ²⁺	1.1	mМ	– "Fermenters" (oxidize
K ⁺	0.12	mМ	ethanol to acetate)
Al ³⁺	0.06	mМ	 Compute equilibrium reaction
Na⁺	1.1	mМ	path with 60 mM ethanol
CI	0.65	mМ	
U	4.9	μM	
Тс	411	Mq	

Predicted cell growth and minerals formed

	(moles)	
Iron Reducers	4.5 x10 ⁻⁴ (46%)	
Denitrifiers	4.1 x10 ⁻⁴ (42%)	
Fermenters	7.4 x 10 ⁻⁵ (7%)	
Sulfate Reducers	2.7 x10 ⁻⁵ <i>(3%)</i>	
Aerobes	2.0 x10 ⁻⁵ (2%)	
Magnetite	5.9 x 10⁻³	
Calcite	5.2 x 10 ⁻⁴	
Pyrite	4.1 x 10 ⁻⁴	
Uraninite	4.9 x 10 ⁻⁶	
Tc ₂ S ₇	9.7 x 10 ⁻⁸	

Area 2 Example - Reoxidation

Reoxidation of previously reduced system by 50 volumes of original groundwater

Reacting masses				
O ₂	3.3	mg		
NO_3^{-}	61	mМ		
SO ₄ ²⁻	42	mМ		
Ca ²⁺	176	mМ		
HCO ₃ -	4.5	mМ		
Na ⁺	54	mМ		
Mg ²⁺	55	mМ		
K +	6.2	mМ		
U	0.25	mМ		
Tc	21	nM		

Predicted changes in microbial community composition after reoxidation (Area 2)

	Bioreduction (moles)	Reoxidation (moles)
Iron Reducers	4.5 x10 ⁻⁴ (45%)	~ 0
Denitrifiers	4.1 x10 ⁻⁴ (42%)	0.019 (91%)
Fermenters	7.4 x10 ⁻⁵ (7%)	9.0 x10 ⁻⁴ (4%)
Sulfate Reducers	2.7 x10 ⁻⁵ (3%)	~ 0
Aerobes	2.0 x10 ⁻⁵ (2%)	9.7 x10 ⁻⁴ (5%) ₂₆

Area 1 Example - Bioreduction

	Geoche	mistry	Microbiology
рΗ	3.3		 NH₄⁺ as nitrogen source
0,	112	μM	 Ethanol as electron donor
NO ₃ -	100	mM	 Microbial groups
SO ₄ ²	0.43	mМ	– "Aerobes"
Fe(III) 18	mМ	– "Denitrifers"
HCO	³⁻ 100	μ M	– "Iron reducers"
Ca ²⁺	19	mМ	– "Sulfate reducers"
Mg ²⁺	8.4	mМ	 "Fermenters" (oxidize
K ⁺	1.0	mМ	ethanol to acetate)
Al ³⁺	12	mМ	 Compute equilibrium reaction
Na⁺	23	mМ	path with 60 mM ethanol
CI-	7.9	mМ	
U	1.4	μM	
Тс	22	nM	

Predicted cell growth and minerals formed

	(moles)
Iron Reducers	7.1 x10 ⁻⁴ (2%)
Denitrifiers	3.4 x10 ⁻² (93%)
Fermenters	1.9 x 10 ⁻³ (5%)
Aerobes	3.4 x10 ⁻⁵ (.1%)
Sulfate Reducers	1.4 x10 ⁻⁵ (.04%)
Gibbsite	1.2 x 10 ⁻²
Magnetite	4.3 x 10 ⁻³
Pyrite	6.6 x 10⁻⁵
Ni ₃ S ₄	7.3 x 10⁻⁵
Uraninite	1.4 x 10 ⁻⁶
Tc ₂ S ₇	9.1 x 10 ⁻⁸

Area 1 Example - Reoxidation

Reoxidation of previously reduced system by 50 volumes of original groundwater

Reacting masses				
NO ₃ -	5000	mМ		
SO ₄ ²⁻	21	mМ		
O ₂	5.6	mМ		
Na ⁺	1136	mМ		
Ca ²⁺	926	mМ		
Al ³⁺	1107	mМ		
Mg ⁺⁺	416	mМ		
K +	49	mМ		
HCO ₃ -	0.1	mМ		
U	0.07	тM		
Тс	1.1	μ M		

Predicted changes in microbial community composition after reoxidation (Area 1)

Bioreduction (moles)

Reoxidation (moles)

Iron Reducers	7.1 x10 ⁻⁴ (2%)	5.7 x10 ⁻¹⁰ (0%)
Denitrifiers	3.4 x10 ⁻² (93%)	6.8 x10 ⁻² (96%)
Sulfate Reducers	1.4 x10 ⁻⁵ <i>(.04%)</i>	-
Aerobes	3.4 x10 ⁻⁵ (.1%)	-
Fermenters	1.9 x 10⁻³ <i>(5%)</i>	3.1 x 10 ⁻³ (4%)

Fate of N₂ gas produced by denitrification

- FRC Background Sediment and Maynardsville Limestone
- Denitrifying activity stimulated with ethanol
- Gas and liquid saturations monitored to track fate of N₂ gas

Nitrate (mM)

Measured Gas Saturations

- 25 - 20

- 15 - 10 - 5 0

Biomass Estimate PLFA

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8

35

Range of methods being used in attempt to detect precipitate and gas formation during biostimulation

See poster by Ken Williams and Susan

Status of intermediate-scale physical models: bioreduction in Area 1 (Mandy Michalsen)

37

Status of intermediate-scale physical models: bioreduction in Area 2

Status of intermediate-scale physical models: reoxidation in Area 2

