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- Depleted uranium
- Strong acids (HNO3 and 
H2SO4) 
- Halogenated solvents
- Heavy metals

1951-1984 : wastes stored in unlined ponds

The Oak Ridge S3 pon

Field research station
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Watershed and regional scale

Convergent flow and formation of 
empherial and perennial streams

Pore scale Field meso-scale

Close-up of structured 
saprolite. cm scale 
matrix blocks 
surrounded by fractures

SCALE OF INTEREST FOR THIS WORK



Geology
• Saprolite contains a highly interconnected fracture network 
with densities of 100-200 fractures/m.  Fractures are < 5-10% 
of the total porosity, but carry >95% of the groundwater flow.

• The fractures surround a high porosity, low permeability 
matrix that is a source and sink for contaminants.

Overlying Saprolites Underlying Bedrock



Core Mineralogical Evaluations
Overlying Gleyed leached flow zone 
with high U, low pH groundwater

A high U zone was detected in the 
center of the test cell at a depth of 46’. 

XRD results:
Gleyed Zone - Quartz, Vermiculite, Mica, HIV, Ca-
feldspar
Black Zone - Quartz, Ca-feldspar, Vermiculite, Mica, 
Goethite

0.25 mm

0.5 mm

0.25 cm

0.25 cm

Fe oxide 
accumulation 
zone

Black precipitate Zone with higher 
pH and lower U in groundwater

U=155 mg/kg

U=730 mg/kg

Phillips/Watson, 2003

Very fine 
sands with Fe 
oxide 
precipitates



QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Study area

Where the water goes



Contaminants in groundwater near the S3 p
Inorganic
Constituents Concentrations

Organic
Constituents Concentrations

pH  3.4-3.6
202-401 mg/L
249-298 mg/L
843-1116 mg/L
7500-8963 mg/L
 Low
42-51 mg/L
35-40 nCi/L
(80-89 dpm/ml)

 2100-3300 µg/L

 94-130 µg/L
 0.45 mg/L

541±47 mg/L

931±74 mg/L

174±11 mg/L
 130±9 mg/L
 <0.003 mg/L
 0.17 mg/L
 0.03 mg/L
 0.02 mg/L

• estimated value
• values for MLS FW 100, 40’ depth.



Rationale for work near the source zo
The source zone is a reservoir of U(VI) for 
long-term groundwater and surface water 
contamination.

About 98% of the U(VI) in the near source 
zone is sorbed to solids or part of a solid 
phase.  

The remaining 2% of U(VI) is dissolved in 
the groundwater at highly toxic levels (20-
50 mg/L). 

Conversion of solid-associated U(VI) into 
highly insoluble U(IV) will prevent



PRIMARY 
OBJECTIVE

Evaluate the rates and mechanisms 
of U(VI) reduction by microbial 
populations

UO2(CO3) + H+ + 2e- = UO2 + HCO3 
-

• 119 mg U are reduced for every mmol of electrons 
transferred
• This is equivalent to 119 mg U reduced/mg H2

• It is also equivalent to 15 mg U reduced/ mg COD



Hypotheses

• Biological reduction of U(VI) in the S-3 soils 
is a multistep process: desorption/dissolution 
of U(VI), followed by uptake/reductive 
mineralization. 

• Desorption/dissolution will typically limit the 
reduction rate.

• Both metal- and sulfate-reducing bacteria will 
play a role.  



Chemistry 
considerations

Low pH (~3.5):
- buffered by Al3+ (~20 mM)

High U(VI):
~98% on the soil (~400 mg/kg)
~2% in groundwater(~ 40 mg/L)

High NO3
-:

130-480 mM in groundwater - NO3
- and denitrification 

intermediates inhibit U(VI) reduction (Senko et al., 2001)

High Ca2+:
~20 mM in groundwater - Ca2+ inhibits U(VI) reduction at 5 
mM (Brooks et al., 2003)
UO2(CO3) + H+ + 2e- = UO2 + HCO3 

- E°’ = +0.105 V
Ca2UO2(CO3)3 + 2e- = 2Ca2+ + UO2 + 3CO3 

2- E°’ = -0.046 V



Uranium adsorption

U sorption is concentration dependent.
It is also strongly pH dependent.

Mineral precipitation zone

Uranium Adsorption
pH~4
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Eh/pH Plot of Uranium Speciation
(300 mg/L TIC, 40 mg/L U)

No Ca + 20 mM Ca
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Variation in pattern of soluble uranium 
concentration over time:

Energy (keV)

U(VI)

Decreasing

Rebound 
(late)
Flattening

Control

U(IV) Standard

Rebound (early)

X-ray absorption spectroscopy shows 
the reduction of solids-associated
uranium in viable, but not control, 
microcosms.
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Column microcosm

AfterBefore



Clogging agents

• Aluminum hydroxide form at pH 5.
• Calcium and magnesium carbonates form at pH 7-9.
• N2 gas forms during denitrification.  
• High levels of biomass are produced during 
denitrification.

Solid production from synthetic groundwater
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Geophysics was used to identify areas of contaminant tran

wells A-D
A’

A
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Qr
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Qo+Qr

FBR

Strip volatiles, 
neutralize acid, 
precipitate metals

Electron donor

U(VI) U(IV)

N2

NO3
-
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U(VI) Ex-situ conditioning of water in treatment zone
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Remove N2
Control pH & TIC

In-situ reduction of uranium

Overall concept



Tanker for chemical 
sludge disposal

Bag filters for disposal 
of biomass

The “Big Top” where 
extracted 
groundwater is 
treated to enable 
metal reduction in-
situ



Inside the Big Top



Ex-situ conditioning of water in treatment 
1. Precipitate Al and Ca

2. Remove NO3
- by denitrification in FBR

3. Vacuum strip to remove VOCs and N2 



ABOVEGROUND PROCRESS TRAIN

Source 
well

Outer 
loop 
injection 
well

Influent 
tank

Effluent 
tank

Vacuum 
stripper

Vacuum 
stripper 
tank

Filters Bag 
filter

Injection 
water tank

Mixing 
tank

Settling 
tank

Mixing 
tank

Settling 
tank

CO2

FBR

GAC 
separator

Filtration 
tank

Settling 
tank

Solids 
holding 
tanks

N2

pH pH

tap 
water



The aboveground treatment train

Fluidized bed reactor
(FBR)

Two-step 
chemical precipitation

Vacuum stripper

FBR sampling and characterizat
Phylogenetic analyses
Functional gene microarrays
Functional monitoring



Two piilot scale 
FBRs

Fluidized 
Bed 
Reactor

Removes NO3
- as N2

Efficient
Cheap
Raises pH
Demonstrated in two continuous pilot-scale 
systems (pH 7.4 and 9.2)

Full scale 
FBR

innoculumWell TPB16
enrichment

innoculum



Denitrifying biofilms growing on granular activated carbon 
in pilot scale FBR at Stanford. Some of the bacterial 
general found in this community include Zoogloea, 
Xanthomonas, Dechloromonas, Dechlorosoma, and 
Sporumosa.



FBR: nitrate removal
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118 d

Community Analysis Based Upon SSU rRNA Gene 
Libraries

34 
d

Uncultured Azoarcus sp.
Rhodobacter sp.
Other
Uncultured bacterium clone I12
Hydrogenophaga palleronii
Hydrogenophaga pseudoflava

12 d

69 d
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Well layout

A
B

D

C
C

D

AB
MLS well

locations
after plumbingbefore plumbing

Skid with pumps and meters for 
wells
inside Big Top



Multilevel sampling wells





Screened
Interval = 
38-45’

Cross-sectional view of the injection/extraction wells and the MLS wells.
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Chemical profiles with depth at the MLS wells - before biosti
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Seismic and Radar Tomography

Hubbard et al., 2003

Mapping subsurface 
material heterogeneities 
using cross-borehole 
techniques.





Regions of the subsurface

Protective outer 
loop Inner loop

U reduction zone

InjectionExtraction



1. Perform a tracer study to determine 
connectivity of wells and residence time 
distribution. Obtain desorption rates from 
the rebound.

2. Flush outer and inner cell with clean water 
at pH 4 to remove Al, Ca, and most of the 
nitrate. Follow with flush at pH 5-6 to 
prepare for denitrification.

3. Stimulate denitrification in-situ and vacuum 
strip N2 to remove residual nitrate.

4. Increase pH of inner cell to mobilize U(VI)

Overall Strategy



A B C DMLS wells

Tap 
water + 
Br-

3.00 lpm 4.00 lpm 2.36 lpm1.5 lpm

�Tracer Configuration

Tanker for disposal
Acidified 
tap water

Tanker for disposal



Tracer study of the Inner loop

FW101
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A dual dipole tracer injection-
withdraw test was conducted using 
CaBr2 and CaCl2 in an effort to 
create an inner and outer hydraulic 
cell.

Results confirmed location and 
transport features of preferential 
flow regimes and slow flowing 
matrix regimes.

Experimental data was numerically 
simulated and the model used to 
design the in situ U bioreduction 
system.

45’ data at different MLS wells

Mid-depths show good flow

MLS well 101 at 4 different depth

Updip well receives less flow

Top and bottom depths show little fl



Tracer study simulations



Seismic tomography data 
complements tracer 
measurements.

Hubbard et al., 
2003Mehlhorn et al., 2003



Effect of tracer 
clean water flush 
on nitrate in MLS 
wells

Mid-depths were flushed well
Bottom depth was poorly flushe

All depths were flushed

Updip

Downdip



Natural gradient site recovery solute breakthrough
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1. Perform a tracer study to determine 
connectivity of wells and residence time 
distribution. Obtain desorption rates from 
the rebound.

2. Flush outer and inner cell with clean water 
at pH 4 to remove Al, Ca, and most of the 
nitrate. Follow with flush at pH 5-6 to 
prepare for denitrification.

3. Stimulate denitrification in-situ and vacuum 
strip N2 to remove residual nitrate.

4. Increase pH of inner cell to mobilize U(VI)

Overall Strategy



FBR

Strip volatiles, 
neutralize acid, 
precipitate metals

N2

NO3
-

Electron 
donor

Source well 
(highly 
contaminate
d)

A B C DMLS wells

Tap water

0.45 lpm 0.45 lpm 1.35 lpm0.45 lpm

0.9 lpm

1.8 lpm

Flushing Configuration 
(Days 9-124)

Adjust pH



0

2

4

6

8

10

12

60 80 100 120 140 160 180 200
Date

FW024
FW104
FW026
FW103

0

20

40

60

80

100

120

60 80 100 120 140 160 180 200
Date

FW024
FW104
FW026
FW103

Al Flush Ca Flush

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175

Time, days

FW024 FW104 FW026 FW103

1st Run 
Biostimulation 
Day 137-142

2nd Run 
Biostimulation
Day 163-167

Flush with pH 4.0 water
Day 9-68

Flush with pH 6.0 water
Day 69-136

NO3
- Flush

0

5

10

15

20

25

30

35

60 80 100 120 140 160 180 200
Date

FW024
FW104
FW026
FW103Mg Flush



pH increase in inner and outer loop extraction well

Inner 

outer
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Day 69-136



Mass transfer during the flush

Model assumptions:
• Kinetically controlled sorption/desorption
• Kinetic mass transfer between two regions

Mobile zone

Immobile zone 1 Immobile zone 2



Modeling of 
flushing

•The half-life of nitrate in the second immobile region is about 
3 months. To deplete the second immobile zone would take 
about one year. 

•The mobile region definitely responds to flushing and a low 
average Nitrate concentration can be maintained while 
removing the Nitrate as it enters the mobile zone.



FBR

Strip volatiles, 
neutralize acid, 
precipitate metals

Electron donor

U(VI) U(IV)

N2

NO3
-

A B C DMLS wells

Adjust pH
Strip volatiles

Tap water

Current 
Configuration 
(Days 125-421)

0.4 lpm
0.9 lpm

0.4 lpm

~0.5 lpm

0.4 lpm
1.3 lpm



1. Perform a tracer study to determine 
connectivity of wells and residence time 
distribution. Obtain desorption rates from 
the rebound.

2. Flush outer and inner cell with clean water 
at pH 4 to remove Al, Ca, and most of the 
nitrate. Follow with flush at pH 5-6 to 
prepare for denitrification.

3. Stimulate denitrification in-situ and vacuum 
strip N2 to remove residual nitrate.

4. Increase pH of inner cell to mobilize U(VI)

Overall Strategy
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COD in inner loop Injection 
and extraction wells
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Nitrate in inner loop injection and 
extraction wells

Nitrate Concentration during Biostimulation Period (Jan. 7 to 
Oct.5, 2004
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pH in inner loop injection and extraction 
wells
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Sulfate in inner loop injection and 
extraction wells
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U(VI) in inner loop injection and 
extraction wells
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Aluminum in inner loop 
injection and extraction wells

Started 
biostimulation
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Clogged pump head screen.
The white precipitate dissolved in 
a 2% HCl solution after 1.5 hour.
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Biofouling of pump intake on inner loop 
extraction well - Day 245



Water level in inner loop injection and 
extraction wells during biostimulation
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
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• Model - coupled mass transfer and 
reaction 
Assumptions

• Kinetically controlled sorption/desorption
• Kinetic mass transfer between two regions
• Microbial reduction of U(VI) in the mobile zone

Rate of mass transfer = kw(Uaq, eq -
Uaq)  
Rate of reduction = k’X Uaq

kw is a lumped parameter 
accounting for mass 
transfer.  It has units of 
time-1. Ueq,aq is the 
concentration of U in 
equilibrium with the solid 
phase concentration. It is 
a function of pH and TIC.
X is biomass 
concentration, and k’ is a 
pseudo second order 
rate coefficient .

Uaq

U
s

Uaq,eq



At steady state:  
Rate of mass transfer = kw(Uaq,eq-Uaq)=  Rate of reduction = k’X
Uaq

Desorption and reduction of U(VI)
kw = 0.233/d

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Aqueous U Conc (mg/L)

k’X=0.1 d-1

k’X
=0

.2 
d-

1

k’
X=

0.
4 

d-
1

k’
X=

0.
8 

d-
1

U aq,eq =10 m
g/L

U aq,eq =7.5 m
g/L

U aq,eq = 5 m
g/L

U aq,eq = 2.5 m
g/L

U aq,eq = 1 mg/L

k’X=0.02 d-1

Reaction limited region

Mass 
transfer 
limited 
region

Preliminary calculations indicate that MT limitation is likely



InitIal biostimulation period (Days 165-195)

FW102-3 (Nitrate)
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pHMLS 102-3 (Days 165-195)
FW102-3 (pH
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Mid-stage biostimulation (Days 277 -284)
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1. Nitrate decline occurs 
immediately after ethanol 
injection.
2. Sulfate decline occurs after 3 
hours of of ethanol injection.
3. U(VI) decline occurs after 5 
hours of ethanol injection.

MLS 101-2 Ethan
ol on off

on off



Recent biostimulation (Days 345-349)
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Recent biostimulation (Days 345-349)
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



MPN values for different trophic groups
(number/mL)

Well Denitrifiers
Sulfate

Reduce rs
Iron

Reduce rs
Inner  loop
extraction 3.5 x 105 1.6 x 105 2.0 x 103

MLS 101-2 5.6 x 102 1.4 x 105 2.4 x 103

MLS102-2 5.4 x 105 0.92 x 104 2.8 x 102

MLS102-3 2.1 x 106 2.4 x 105 3.2 x 103

106
Control well 5.4 x 10 0 0

Note: MPN values for five replicates.  Test wells sampled
8/20/04.  Control well sampled 5/28/04.



Key points

• Aluminum buffers the system at low pH and 
precipitates when the pH is increased.  It can 
be removed ex-situ. 

• Nitrate inhibits U(VI) reduction.  Bulk nitrate 
can be removed ex-situ, and residual nitrate can 
be removed in-situ.

• A nested recirculation scheme appears to 
protect the treatment zone from aluminum, 
nitrate, and acidity. 

• We have evidence of in-situ microbial U 
reduction.



Former

Former S-3 Ponds (now covered with 
parking lot) 
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U(VI)->U(IV)
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Stage 2  - conversion of U(VI) to U(IV)
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Next up
Single pass experiments:

•Br-/He + ethanol

•Tracer + ethanol + U

•Tracer + ethanol + oxidants
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