DRILLED SHAFT FOUNDATION DEFECTS Identification, Imaging, and Characterization

Publication No. FHWA-CFL/TD-05-007

October 2005

U.S. Department of Transportation

Federal Highway Administration

Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228

FOREWORD

The Federal Lands Highway (FLH) of the Federal Highway Administration (FHWA) promotes development and deployment of applied research and technology applicable to solving transportation related issues on Federal Lands. The FLH provides technology delivery, innovative solutions, recommended best practices, and related information and knowledge sharing to Federal agencies, Tribal governments, and other offices within the FHWA.

Specifically, this report addresses what constitutes a defect in a newly constructed drilled shaft foundation and how to relate observed defects in a geophysical velocity tomogram to engineering strength information for integrity assessment. This study, therefore, closes the present decision making gap by the foundation engineer in deciding to accept, correct (remediate), or reject a given drilled shaft or a wall structure.

F. David Zanetell, P.E., Director of Project Delivery Federal Highway Administration Central Federal Lands Highway Division

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

4. Tate and Subside Defects in Drilled Shaft Foundations: 5. Report Date March 2005 Identification, Imaging, and Characterization 6. Performing Organization Code 7. Authors 6. Performing Organization Expert No. 3755FHA 8. Performing Organization Same and Address 10. Work Unit No. Blackhawk, a division of ZAPATA ENNINEERING 301 Commercial Road, Suite B 11. Contract or Grant No. DTFH68:03-P-00116 12. Sponsoring Agency Name and Address Federal Lings Highway Division 12300 West Dakota Avenue Lakewood, Colorado 80401 13. Type of Report and Period Covered Final Report, May 2003-March 2005 13. Supplementary Nets COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract 16. Abstract 17. bit uotive subset, specifically: (u) What constitutes a defect in a drilled shaft?; and, (b) How to relate Observed defect in a volcivity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: (1) Anomaly Identification and Independent Verification - This step allows the engineer to identify and independently verify usupected "anomalies" in this conclude that both crosobols onic logging (CSL) and gamma-gamma density logging (GDL) must be used. For velocity timogram to engineering strength information? This study was conducted based on the development of a three-step approach: (1) Anomaly Identification and Independent Verifi	1. Report No. FHWA-CFL/TD-05-003	2. Governme	ent Accession No 3	B. Recipient's Catalog N	0
10 Control Character Code 7. Authors Frank Jalinoos, MS Geophysics – Principal Investigator (PI); 8. Natasa Mekic, MS Geophysics, Robert E. Grimm, Ph.D., Geophysics; 3755FHA 9. Performing Organization Remot No. 301 Commercial Road, Suite B 10. Golden, Colorado 80401 11. 12.300 Work Data Mekics, MS Geophysics (Strice B) 11. Cortral Federal Lands Highway Division 13. 12.300 Work Data Avenue 13. Lakewood, Colorado 80228 14. 15. Septementry Nets COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. CUTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. CUTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. CUTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. CUTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. 15. Septementry Notes COTR: Khamis Haramy, FHWA-CFLHD. 16. Asarat This report addresses two key issues needed by the found	4. Title and Subtitle Defects in Drilled Shaft Foundations:		5	. Report Date March 2005	
7. Authors 8. Performing Organization Report No. 9. Performing Organization Neuronal Address 3755FHA 9. Performing Organization Neuronal Address 10. 9. Performing Organization Neuronal Address 11. 12.00 Work Unit No. DIFFIG8-03-P-00116 11. 12.30 Work Dakota Avenue 13. Type of Repart In Wand Participant Performing Organization Report No. 12.30 Work Dakota Avenue 14. Sponsoring Agency Notes 11. COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panci: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstrat This report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes: specifically: 11. Abstrat This study was conducted based on the development of a three-step approach: 11. Abstrat This study was conducted based on the development of a three-step	Identification, Imaging, and Characterization		6	. Performing Organizati	on Code
9. Performing Organization Name and Address 10. Work Unit No. Blackhawk, a division of ZAPATA ENGINEERING 11. Contract or Grant No. 0.01 Commercial Road, Suite B 11. Contract or Grant No. 0.01 Commercial Road, Suite B 11. Contract or Grant No. 0.02 Contral Federal Highway Administration 13. Type of Report and Period Covered Final Report, May 2003-March 2005 1.2300 West Dakota Avenue 14. Sponsoring Agency Name and Address 1.2300 West Dakota Avenue 14. Sponsoring Agency Code 1.2400 West Dakota Avenue 14. Sponsoring Agency State 1.5. Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract 13. Strapenentary Notes 17. Situdy was conducted based on the development of a three-step approach: 1) Anomaly Identification and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomalies" in driled shafts. It is concluded that both crosshole sonic logging (CSL) and gamma-gamma density logging (GDL) must be used. For yelocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSL) is required. 2) Defect Onertet rizet and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomalies" in driled	 Authors Frank Jalinoos, MS Geophysics – Principal Investigator (PI); Natasa Mekic, MS Geophysics; Robert E. Grimm, Ph.D., Geophysics; Kanaan Hanna, MS, Mining Engineering 		(PI); 0., Geophysics;	 Performing Organizati 3755FHA 	on Report No.
Golden, Colorado 80401 III: Concrete Golden, Colorado 80401 12: Sponsoring Agency Name and Address Federal Highway Administration (2300 West Dakota Avenue Lakewood, Colorado 8028 13: Type Report, May 2003-March 2005 15: Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract This report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a diled shaft?; and, b) How to relate observed defect in a velocity tomogram to engineering strength information? This supper deference of a drilled shaft?; and, b) How to relate observed defect in a velocity tomogram to engineering strength information? This sudy was conducted based on the development of a three-step approach: 1) Anonady identification on Almsteriation - This step allows the engineer to identify and independently verify suspected *monalies* in drilled shafts. It is concluded that both crosshole sonic logging (CSL) and gamma-gamma density logging (GDL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. 2) Defect Definition – A statistical approach is presented to define a cut-off velocity to separate CSLT velocity distribution of sound concrete from the velocity distribution of anomalous concrete. The cut-off velocity is then used to volumetrically image a "defect" volume. 3) Defect Definition – A statistical approach is presen	9. Performing Organization Name and Address Blackhawk, a division of ZAPATA ENGINEERING		1	0. Work Unit No.	No
12. Sponsoring Agency Name and Address Federal Highway Administration Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, Colorado 80228 13. Type of Report and Period Covered Final Report, May 2003-March 2005 15. Supplementary Notes 14. Sponsoring Agency Code HFTS-16.4 15. Supplementary Notes 15. Stapplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract 13. Stapplementary Notes 17. Inis report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a velocity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: 1) <i>Anomaly Identification and Independent Verification</i> - This step allows the engineer to identify and independently verify suspected *anomalies" in drilled shaft. It is concluded that bot crosshole sonic logging (CSL) and gamma-gamma density logging (GDL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. <i>2) Defect Definition</i> – A statistical approach is presented to define a cut-off velocity is then used to volumetrically image a "defect" volume. <i>3) Defect Characterization</i> – Finally, changes in velocity values in the defect volume is correlated to changes in concr	Golden, Colorado 80401			DTFH68-03-P-00	116
12300 West Dakota Avenue Lakewood, Colorado 80228 14. Sponsoring Agency Code HFTS-16.4 15. Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA- CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstrat This report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a velocity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: 1) Anomaly Identification and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomales" in drilled shafts. It is concluded that both crosshole sonic logging (CSL) and gamma-gamma density logging (DDL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. 2) Defect Definition - A statistical approach is presented to define a cut-off velocity to separate CSLT velocity distribution of sound concrete from the velocity distribution of anomalous concrete. The cut-off velocity is the used to volumetrically image a "defect" volume. 3) Defect Characterization - Finally, changes in velocity values in the defect volume is correlated to changes in concrete strength and a 3-D strength image is developed for integrity assessment by the engineer. The velocity-strength correlation is developed in the laboratory using cylinders with the same design mix as the shaft and allowing for maturity. 17. Key Words Concrete Strength, Crosshole Soni	12. Sponsoring Agency Name and Address Federal Highway Administration		1	3. Type of Report and Pe Final Report, May	riod Covered v 2003-March 2005
15. Supplementary Notes COTR: Khamis Haramy, FHWA-CFLHD. Advisory Panel: Scott Anderson, FHWA-FLH and Roger Surdahl FHWA-CFLHD. This project was funded under the Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract 17. Sey Woods 18. Supplementary Notes 19. Program (TDIPP.) 10. Abstract 11. Strept addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a drilled shaft?; and, b) How to relate observed defect in a velocity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: 1) Anomaly Identification and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomalies" in drilled shafts. It is concluded that both crosshole sonic logging (CSL) and gamma-gamma density logging (GBL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. 2) Defect Definition - A statistical approach is presented to define a cut-off velocity to separate CSLT velocity distribution of sound concrete from the velocity distribution of anomalous concrete. The cut-off velocity is then used to volumetrically image a "defect" volume. 3) Defect Characterization - Finally, changes in velocity values in the defect volume is correlated to changes in concrete strength and a 3-D strength image is developed for integrity a	Lakewood, Colorado 80228	n	1	4. Sponsoring Agency Co HFTS-16.4	ode
16. Abstract This report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a drilled shaft?; and, b) How to relate observed defect in a velocity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: 1) Anomally identification and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomalies" in drilled shaft. It is concluded that both crosshole sonic logging (CSL) and gamma-gamma density logging (GDL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. 2) Defect Definition – A statistical approach is presented to define a cut-off velocity to separate CSLT velocity distribution of sound concrete from the velocity distribution of anomalous concrete. The cut-off velocity is then used to volumetrically image a "defect" volume. 3) Defect Characterization – Finally, changes in velocity values in the defect volume is correlated to changes in concrete strength and a 3-D strength image is developed for integrity assessment by the engineer. The velocity-strength correlation is developed in the laboratory using cylinders with the same design mix as the shaft and allowing for maturity. Therefore, this study proposes a complete analysis and technical information to assist the foundation engineer and owner agencies in deciding to accept, remediate, or reject a given shaft or a wall structure. 17. Key Words 18. Distribution St	15. Supplementary Notes COTR: Khamis Haramy, FHWA-CFL CFLHD. This project was funded und Partnership Program (TDIPP.)	HD. Advisory P er the Federal La	anel: Scott Anderson, FI nds Highway Technolog	HWA-FLH and Roger gy Deployment Initiat	· Surdahl FHWA- ives and
19. Security Classification (of this report) Unclassified 19. Security Classification (of this page) Unclassified 20. No. of Pages 138 21. Price	Partnership Program (TDIPP.) 16. Abstract This report addresses two key issues needed by the foundation engineer to assess the structural integrity of drilled shaft, or other concrete structures that contain access tubes; specifically: a) What constitutes a defect in a drilled shaft?; and, b) How to relate observed defect in a velocity tomogram to engineering strength information? This study was conducted based on the development of a three-step approach: 1) Anomaly Identification and Independent Verification - This step allows the engineer to identify and independently verify suspected "anomalies" in drilled shafts. It is concluded that bubs the cosshole sonic logging (CSL) and gamma-gamma density logging (GDL) must be used. For velocity imaging of the shaft's interior, three-dimensional crosshole sonic logging tomography (CSLT) is required. 2) Defect Definition - A statistical approach is presented to define a cut-off velocity to separate CSLT velocity distribution of sound concrete from the velocity distribution of anomalous concrete. The cut-off velocity is then used to volumetrically image a "defect" volume. 3) Defect Characterization - Finally, changes in velocity values in the defect volume is correlated to changes in concrete strength and a 3-D strength image is developed for integrity assessment by the engineer. The velocity-strength correlation is developed in the laboratory using cylinders with the same design mix as the shaft and allowing for maturity. Therefore, this study proposes a complete analysis and technical information to assist the foundation engineer and owner agencies in deciding to accept, remediate, or reject a given shaft or a wall structure.				
Unclassified Unclassified 138	Tomography 19. Security Classification (of this report)	19. Security Class	ification (of this page)	20. No. of Pages	21. Price
Form DOT K 1700 7 (8-72) Depreduction of completed near outhoused	Unclassified Unclassified 138 Form DOT E 1700 7 (8,72) Demodration for all to be stated and the state of the state o				

	SI* (MODERN	METRIC) CON	VERSION FACTOR	S
	APPROXI	MATE CONVERSIO	ONS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
-		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
m	miles		kilometers	Km
in ²	square inches	AREA	squara millimatora	mm ²
ft ²	square feet	0.093	square meters	m ²
vd ²	square vard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd³	cubic yards	0.765	cubic meters	m³
	NOTE: vo	lumes greater than 1000 L	shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
	pounds	0.454	Kilograms	Kg Ma (or "t")
1			t de grace)	ivig (or t)
° -	E		t degrees)	*0
-F	Fanrenneit	5(F-32)/9	Ceisius	۰ ن
			N	
fa	fact condice			ly.
fl	foot-Lamberts	3 426	candela/m ²	cd/m ²
	FOR	DCE and DDESSUDE	or STRESS	CO/III
lbf	noundforce		newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIM	ATE CONVERSION	IS FROM SI UNITS	
Symbol	When You Know	Multiply Dy	To Find	Symbol
- ,			To Tind	Gymbol
mm	millimeters	LENGTH	inches	in
mm m	millimeters meters	LENGTH 0.039 3.28	inches feet	in ft
mm m m	millimeters meters meters	LENGTH 0.039 3.28 1.09	inches feet yards	in ft yd
mm m m km	millimeters meters meters kilometers	LENGTH 0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi
mm m m km	millimeters meters meters kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA	inches feet yards miles	in ft yd mi
mm m km mm ²	millimeters meters kilometers square millimeters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	inches feet yards miles square inches	in ft yd mi in ²
mm m km mm ² m ²	millimeters meters kilometers square millimeters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	inches feet yards miles square inches square feet	in ft yd mi in ² ft ²
mm m km mm ² m ² m ²	millimeters meters meters kilometers square millimeters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches square feet square yards	in ft yd mi in ² ft ² yd ²
mm m km mm ² m ² m ² ha	millimeters meters meters kilometers square millimeters square meters hectares	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.005	inches feet yards miles square inches square feet square yards acres	in ft yd mi in ² ft ² yd ² ac c
mm m km mm ² m ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters hectares square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters hectares square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.024	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²
mm m km mm ² m ² ha km ² ha	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles fluid ounces galloos	in ft yd mi in ² ft ² yd ² ac mi ² fl oz
mm m km m ² m ² ha km ² mL L m ³	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
mm m km mm ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exac	inches feet yards miles square inches square feet square gards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees)	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exac 1.8C+32	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIO	inches feet yards miles square inches square feet square gards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIO 0.0929	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T v F fc
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exac 1.8C+32 ILLUMINATIO 0.0929 0.2919	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit N foot-candles foot-Lamberts	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T v F fc fl
mm m m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exac 1.8C+32 ILLUMINATIO 0.0929 0.2919 RCE and PRESSURE	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit N foot-candles foot-Lamberts or STRESS	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") TE Celsius lux candela/m ² FOF	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exac 1.8C+32 ILLUMINATIO 0.0929 0.2919 RCE and PRESSURE 0.225	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) t degrees) Fahrenheit N foot-candles foot-Lamberts or STRESS poundforce	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

ACKNOWLEDGEMENTS

The authors would like to express their sincere appreciation to Mr. Khamis Y. Haramy, COTR of the Federal Highway Administration (FHWA), Central Federal Lands Highway Division (CFLHD) for his guidance, valuable technical assistance, and review during the course of this investigation. The authors would also like to thank Dr. Scott Anderson and Mr. Roger Surdahl of the FHWA-CFLHD for their technical support and review of this report.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
CHAPTER 1 – INTRODUCTION	5
1.1 PURPOSE AND OBJECTIVES	5
1.2 DRILLED SHAFT FOUNDATION - BACKGROUND	6
1.3 CURRENT NDT METHODS USED FOR DETERMINING THE INTEGRITY OF	
DRILLED SHAFT FOUNDATIONS	8
1.3.1 Crosshole Sonic Logging (CSL) Method	9
1.3.1.1 Standard CSL Data Presentation Format	9
1.3.1.2 Defect Definition	10
1.3.1.3 Advantages of CSL	11
1.3.1.4 Limitations of CSL	11
1.3.2 Crosshole Sonic Logging Tomography (CSLT) Method - Offset Tomography	12
1.3.2.1 CSLT Data Presentation Format.	13
1.3.2.2 Advantages of CSLT	13
1.3.2.3 Limitations of CSLT	14
1.3.3 Gamma-Gamma Density Logging (GDL)	14
1.3.3.1 Typical Data Presentation Format	15
1.3.3.2 Defect Definition	16
1.3.3.3 Advantages of GDL	16
1.3.3.4 Limitations of GDL	16
1.3.4 Other Specialized Logging Applications	
1.3.4.1 Neutron Moisture Logging (NML).	
1 3 4 2. Temperature Logging	18
CHAPTER 2 – ANOMALY IDENTIFICATION AND INDEPENDENT VERIFICATION	19
2.1 DUAL CSL/GDL TESTING	19
2.2 VOLUMETRIC IMAGING OF ANOMALIES – CSLT	19
2.2 Construction of the co	19
2.2.1 Travel Time Tomography	20
2.2.7 Tomography Pre-Processing – Velocity Equalization	21
2.2.2 Tomography Modeling	24
2.2.5 Tomography Wodening	2 1
2.2.3.1 COLT Onset Tomography as an Integring Tool	24
CHAPTER 3 – DEFECT DEFINITION	20
3.1 STATISTICAL MODELING - GAUSSIAN PROBABILITY DISTRIBUTION CURV	2) /FS
5.1 STATISTICAL WODELING - GAOSSIAN TRODADIENT DISTRIBUTION CORV	20
3.2 STATISTICAL MODELING RESULTS	30
CHAPTER $4 - DEFECT$ CHARACTERIZATION AND IMAGING	30
A 1 ESTABLISHMENT OF EMPERICAL RELATIONSHIP BETWEEN CSL VELOCIT	<i>57</i> V
AND STRENGTH	37
A 1.1 Example Calculation	
7.1.1 Example Calculation	
4.1.3 Empirical Relationship Retween Core Strength and CSI Valacity	Jo 20
4.1.2 1 Ultrasonio Pulso Volosity (UDV) Mathed	20
4.1.3.1 Ultrasoffic Fulse velocity (UF v) Method	37
4.1.3.2 IVIaturity Ivietnou	39

4.2 DIFFERENCES BETWEEN LABORATORY AND FIELD MEASUREMENTS	. 41
4.3 TEMPERATURE MODELING	. 42
4.3.1 Method Used to Determine The Effect of Temperature on Velocity/Strength	. 43
4.3.2 Temperature Modeling Results	. 44
4.4 CONTINUOUS FIELD MONITORING OF DRILLED SHAFT FOUNDATIONS FO	OR
CHANGES IN TEMPERATURE, VELOCITY, DENSITY, AND MOISTURE	. 49
CHAPTER 5 – EXAMINATION OF FIELD DATA	. 71
5.1 STANDARDIZED PRESENTATION OF THE DEFECT CHARACTERIZATION	
AND IMAGING RESULTS	. 71
5.1.1 Standardized Template Format for the Display of Imaging Results	. 71
5.1.2 Different Tomographic Inversion Methods	. 72
5.1.3 Tomographic Processing Parameters	. 72
5.1.4 Anomaly Versus Defect	. 73
5.1.5 Artifacts and the Roughness Model	. 73
5.1.6 Narrative Description of Each Figure	. 74
5.2 AMHERST NGES RESULTS	. 74
5.2.1 Amherst NGES, Shaft 1 (Figure 46)	. 75
5.2.2 Amherst NGES, Shaft 4 (Figure 47)	. 75
5.3 JIM CAMP BRIDGE RESULTS	. 78
5.3.1 Description of UPV Testing Results Overview	. 78
5.3.2 Jim Camp Bridge, Shaft A1A (Figure 50)	. 80
5.3.3 Jim Camp Bridge, Shaft A1B (Figure 51)	. 80
5.3.4 Jim Camp Bridge, Shaft A2A (Figure 52)	. 83
5.3.5 Jim Camp Bridge, Shaft A2B (Figure 53)	. 83
5.3.6 Jim Camp Bridge, Shaft P1A (Figure 54)	. 83
5.3.7 Jim Camp Bridge, Shaft P1B (Figure 55)	. 87
5.3.8 Jim Camp Bridge, Shaft P2A (Figure 56)	. 87
5.3.9 Jim Camp Bridge, Shaft P2B (Figure 57)	. 87
5.3.10 Jim Camp Bridge, Shaft P3A (Figure 58)	. 87
5.3.11 Jim Camp Bridge, Shaft P3B (Figure 59)	. 92
5.3.12 Jim Camp Bridge, Shaft P4A (Figure 60)	. 92
5.3.13 Jim Camp Bridge, Shaft P4B (Figure 61)	. 92
5.4 SEVENMILE-GOOSBERRY ROAD BRIDGE RESULTS	. 96
5.4.1 Sevenmile-Gooseberry, Shaft 7 (Figure 62)	. 96
5.4.2 Sevenmile-Gooseberry, Shaft 8 (Figure 63)	. 96
5.4.3 Sevenmile-Gooseberry, Shaft 9 (Figure 64)	. 99
5.4.4 Sevenmile-Gooseberry, Shaft 10 (Figure 65)	. 99
5.4.5 Sevenmile-Gooseberry, Shaft 11 (Figure 66)	. 99
5.4.6 Sevenmile-Gooseberry, Shaft 12 (Figure 67)	103
CHAPTER 6 – SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	105
6.1 SUMMARY	105
6.2 CONCLUSIONS	105
6.2.1 Benefits of Tomographic Imaging	106
6.3 RECOMMENDATION FOR FUTURE STUDY	107
6.4 PROPOSED NEW GUIDELINES FOR NDE TESTING PROGRAM OF DRILLED	
SHAFT FOUNDATIONS	108

REFERENCES	
GLOSSARY	
APPENDIX A - DUAL CROSSHOLE SONIC LOGGING (CSL) AND GAMMA	-GAMMA
DENSITY LOGGING (GDL) - CASE HISTORIES	

LIST OF FIGURES

Figure 1. Schematic. Diagram of a Typical Drilled Shaft Foundation
Figure 2. Photo. Drilled Shaft Construction
Figure 3. Photo. Rebar Cage and CSL Tubes of Completed Drilled Shaft
Figure 4. Schematic. Crosshole Sonic Logging (CSL) Field Setup
Figure 5. Graph. Zero-Offset CSL Dataset from a Test Wall with Engineered Defects. Data from All
CSL Test Paths are Indicated
Figure 6. Graph. Single Plot Display Format for the CSL Data from a Drilled Shaft Foundation. Green
Vertical Guideline Indicate Average Velocity and Blue and Red Vertical Guidelines Denote 10%
Drop and 20% Drop in Velocity, Respectively
Figure 7. Schematic. Zero-Offset Vs Multi-Offset Tomographic Data Collection
Figure 9. Schematic. Crosshole Sonic Logging Tomography (CSLT) Data Display Format
Figure 10. Schematic. Gamma-Gamma Density Logging (GDL) Field Setup15
Figure 11. Graph. Gamma-Gamma Density Logging (GDL) Data Display Format
Figure 12. Schmeatic. Comparison of 2-D and 3-D Tomographic Imaging With and Without Velocity
Equalization- Shaft 1, NGES, Amherst, MA22
Figure 13. Schematic. Comparison of 2-D and 3-D Tomographic Imaging With and Without Velocity
Equalization- Shaft 4, NGES, Amherst, MA23
Figure 14. Schematic. Computer Based Synthetic Modeling of a Shaft with a Small Defect.
Tomographic Imaging Results Comparing Standard Zero-Offset CSL Image (Top Left Hand Side)
With Different Combination of Multi-Offsets CSLT Images
Figure 15. Schematic. Computer Based Synthetic Modeling of a Shaft with a Large Defect. Imaging
Results Comparing Standard Zero-Offset CSL Image (Top Left Hand Side) With Different
Combination of Multi-Offsets CSLT Images
Figure 16. Schematic. Synthetic Modeling of a Shaft with Multiple Levels of Defects. Tomographic
Imaging Results Comparing Standard Zero-Offset CSL Image With Multi-Offset CSLT Image27
Figure 17. Schematic. Correlation between Percentages Drops in Velocity of Standard CSL Versus
Number of Combination of CSLT Tomography
Figure 18. Schematic. Top. Histogram of Velocities from 3-D Tomography (CSLT) (Shown in Gray) of
Amherst Shaft 1 under Low Smoothing, with Multi-Gaussian Fits Superimposed. Bottom.
Visualization of Inferred Flawed Portions of the Shaft
Figure 19. Schematic. As Figure 18 for Amherst Shaft 1, but for High Smoothing. Note Development of
Anomalous Zone at Intermediate Velocities
Figure 20. Schematic. Velocity Histogram and Flaw Interpretation for Amherst Shaft 4, Low Smoothing.
Note Very Pronounced Intermediate-Velocity Artifact
Figure 21. Chart. Velocity Versus. Strength Curve for Batch 1
Figure 22. Chart. Velocity versus Strength Curve for Batch 240
Figure 23. Plot. Adiabatic Temperature Increase vs. Time for Representative Concrete, with
Approximate Linear Fits. Note Primary Curing Occurs In 2 Days
Figure 24. Chart. Thermal Evolution of 15 x 30 cm (6 x 12 in) Concrete Sample under Nominal
Convective Cooling to Surrounding Air. Left: Radial Slices at Vertical Midpoint (i.e., at 15 cm (6
in) of 30 cm (12 in) length). Right: Upper Curve (Red) is Shaft Midpoint (Equivalent to Left
Vertical Axis on Left-Hand Plot). Lower (Blue) Curve is Average Temperature in the Sample.
Curves are Close because Boundary Layer to Convecting Air Effectively Retains Heat. Average
Temperature Increase is < 5°C46
Figure 25. Chart. As Figure 24, but with Constant-Temperature Outer Boundary Condition, Appropriate
to Maximally Efficient Convective Cooling to Surrounding Air. Note Strong Radial Temperature
Gradients and Large Difference in Central Vs. Mean Temperatures because of Fixed-Temperature
Boundary Condition. Maximum Temperature Increase is < 1°C

Figure 26. Chart. Thermal Evolution of Nominal Drilled Shaft. Maximum Temperature Increase ~35°C, Man Temperature Increase ~18°C. Temperatures in Excess of Maxima (Peak) in Sample Persist for
> 2 Wooks
Figure 27 Chart Thermal Evolution of Nominal Shaft with Curing Potended by a Factor of 2 (End of
First Phase of Curing at 4 Days, with Commonsurate Decreases in Heating Related by a Factor of 2 (End of
are Reduced only Slightly because Thermal Response Time of Shaft is still Comparable to Curing
Time
11me
Figure 28. Chart. Thermal Evolution of Nominal Shalt with Curing Relarded by a Factor of 4. Peak
Femperatures now begin to Snow Significant Reduction because Snart Thermal Response Time (a
Few Days) is Noticeably Smaller than Primary Curing Period (8 Days). Temperatures in excess of
Sample Maxima are Relatively Unaffected, still Remaining High for >3 weeks
Figure 29. Piol. Temperature Monitoring of Abutment I Shalt I. Hagerman National Wildlife Refuge,
1X. Temperature Curves at 6 Hours (Black), 12 Hours (Blue) and 24 Hours (Red) After the
Concrete Placement. Vertical Guideline: 41.5 °C
Figure 30. Plot. Temperature Monitoring of Abutment I Shaft I. Hagerman National Wildlife Refuge,
1X. Temperature Curves at 6 Hours (Black), 12 Hours (Blue), 24 Hours (1 Day, Red), 2 Days
(Green), 3 Days (Purple), 4 Days (Orange), 5 Days (Teal), and 6 Days (Yellow) After the Concrete
Placement. Vertical Guideline: $41.5 ^{\circ}$ C
Figure 31. Graph. Temperature Monitoring of Abutment I Shaft I. Hagerman National Wildlife Refuge,
1X. Temperature Values are Averaged from the Four Access Tubes at 3m (Black), 6 m (Blue), 9 m
(Red), 12 m (Green), and 15 m (Magenta) Depth Points
Figure 52. Piol. Temperature Monitoring of Pier 2 Shall 2. Hagerman National Wildlife Refuge, TX.
Temperature Curves at 1 Hour (Black), 24 Hours (1 Day, Red), 2 Days (Green), 3 Days (Purple), 4
Days (Orange), and 5 Days (Teal) After the Concrete Placement. Vertical Guideline: 55 °C
Figure 55. Graph. Temperature Monitoring of Pier 2 Shall 2. Hagerman National Wildlife Refuge, TX.
Clay) 10 m (Bad Clay) and 12.5 m (Crean Shala Badroaly) Donth Bainta
Clay), 10 In (Red, Clay), and 12.5 In (Creen, Shale Bedrock) Depth Points
The Ded Curry Displays the Temperature Desdings at the Center of the Sheft at 2 4 m (8 ft). Disp
Curve Displays the Temperature Reading Magnithe Bahan Cage at the Same Donth and the Crean Curve
Displays the Temperature Differential Detween the Two Stations. Hagerman National Wildlife
Displays the remperature Differential between the Two Stations. Hagerman National Withine
Figure 25. Dist. Temperature Monitoring of Shoft D 2 Using Embedded Thermosounles Near the Deber
Case. The Red Currie Displays the Temperature Readings at 2.66 m (12 ft) (Above the Croundwater
Table) Dive Curve Displays the Temperature Readings at 5.00 III (12 II) (Above the Oroundwater Table) Dive Curve at 12.8 m (42 ft) (Deleve the Creve diverter Table) and the Creve Curve Displays
the Temperature Differential Patween the Two Stations, Googeherry, Sevennile Project, UT 57
Eigung 26 Diet Valagity Manitoring of Abutmant 1 Shaft 1 Hagarman National Wildlife Defuga TX
Figure 56. Piol. Velocity Monitoring of Adulment I Shall I. Hagerman National Wildlife Reluge, TX.
(Teel) and (Deve (Vellew)) After the Concerts Placement, Vertical Cuidelines 2 (50 m/s
(Teal), and 6 Days (Yellow) After the Concrete Placement. Vertical Guideline: 5,050 m/s
Figure 57. Piot. Velocity Monitoring of Adutinent 1 Shalt 1. Hagerman National Wildine Refuge, 1A.
(Velley), 2 Days (Green), 3 Days (Purple), 4 Days (Oreen), 5 Days (Teol), and 6 Days (Velley) ofter Congrets Pleasment, Vertical Cycloling,
4 Days (Orange), 5 Days (Teal), and 6 Days (Yellow) after Concrete Placement. Vertical Guideline:
5,050 m/s
Figure 38. Graph. Velocity Monitoring of Abutment I Shaft I. Hagerman National Wildlife Refuge,
IA. Static Corrected velocity values are Averaged from the Four Access Tubes (and Six USL Test Date) at 2m (Plaat) 6 m (Plua) 0 m (Pad) 12 m (Crean) and 15 m (Maganta) Darth Drives
Fauss) at 5111 (Black), o 111 (Blue), 9 111 (Reu), 12 m (Oreen), and 15 m (Magenia) Depth Points 62 Figure 20. Plot. Valoaity Monitoring of Pion 2 Shoft 2. Haggement National Wildlife Define TV. COL
Velocity Currence at 2 Days (Durnle) and 4 Days (Orenes). After the Constants Placement, Vertical
Guideline: 3 650 m/s
Ouldeline. 5,050 m/s

Figure 40. Plot. Density Monitoring of Abutment 1 Shaft 1. Hagerman National Wildlife Refuge, TX.
GDL Density Curves with 1 Day (Red), 2 Days (Green), 3 Days (Purple), 4 Days (Orange), 5 Days
(Teal), and 6 Days (Yellow) After the Concrete Placement. Vertical Guideline: 155 lb/ft ² 65
Figure 41. Graph. Density Monitoring of Abutment I Shaft I. Hagerman National Wildlife Refuge, TX.
Density Values are Averaged from the Four Access Tubes at 3m (Black), 6 m (Blue), 9 m (Red), 12
m (Green), and 15 m (Magenta) Depth Points
Figure 42. Plot. Density Monitoring of Pier 2 Shaft 2. Hagerman National Wildlife Refuge, TX. GDL
Density Curves at 1 Day (Red), 2 Days (Green), 3 Days (Purple), and 4 Days (Orange) After the
Concrete Placement. Vertical Guideline: 155 lb/ft ²
Figure 43. Plot. Moisture Monitoring of Abutment 1 Shaft 1. Hagerman National Wildlife Refuge, TX.
NML Moisture Curves at 1 Day (Red), 2 Days (Green), 3 Days (Purple), 4 Days (Orange), 5 Days
(Teal), and 6 Days (Yellow) After the Concrete Placement. Vertical Guideline: 130 cps
Figure 44. Graph. Moisture Monitoring of Abutment I Shaft I. Hagerman National Wildlife Refuge,
TX. Temperature Values are Averaged from the Four Access Tubes at 3m (Black), 6 m (Blue), 9 m
(Red), 12 m (Green), and 15 m (Magenta) Depth Points
Figure 45. Plot. Moisture Monitoring of Pier 2 Shaft 2. Hagerman National Wildlife Refuge, TX. NML
Moisture Curves at 2 Days (Green), 3 Days (Purple), and 4 Days (Orange) After the Concrete
Placement. Vertical Guideline: 130 cps
Figure 46. Schmeatic. Defect Characterization and Imaging Results from Shaft I, NGES – Amherst
Figure 47. Schematic. Detect Characterization and Imaging Results from Shaft 4, NGES – Amherst77
Figure 48. Schematic. Plan View of the Drilled Shafts at the Jim Camp Bridge, AZ.
Figure 49. Graph. UPV velocities Versus Age
Figure 50. Schematic. Defect Characterization and Imaging Results from Shaft AIA, Jim Camp Bridge.
Eiguna 51 Schematia, Defect Characterization and Imaging Decults from Shoft A1D. Jim Comp. Dridge
Figure 51. Schematic. Detect Characterization and Imaging Results from Shall ATB, Jim Camp Bridge.
Figure 52 Schematic Defect Characterization and Imaging Results from Shaft A2A Jim Camp Bridge
Prigure 52. Schematic. Detect characterization and magning results from Shart AZA, shirt earlip bridge.
Figure 53 Schematic Defect Characterization and Imaging Results from Shaft A2B Jim Camp Bridge
85 85. Senemate: Detect characterization and imaging results from Shart (22), vini camp Dirage.
Figure 54. Schematic. Defect Characterization and Imaging Results from Shaft P1A. Jim Camp Bridge.
Figure 55. Schmeatic. Defect Characterization and Imaging Results from Shaft P1B, Jim Camp Bridge.
Figure 56. Schematic. Defect Characterization and Imaging Results from Shaft P2A, Jim Camp Bridge.
Figure 57. Schematic. Defect Characterization and Imaging Results from Shaft P2B, Jim Camp Bridge.
Figure 58. Schematic. Defect Characterization and Imaging Results from Shaft P3A, Jim Camp Bridge.
Figure 59. Schematic. Defect Characterization and Imaging Results from Shaft P3B, Jim Camp Bridge.
Figure 60. Schematic. Defect Characterization and Imaging Results from Shaft P4A, Jim Camp Bridge.
Figure 61. Schematic. Defect Characterization and Imaging Results from Shaft P4B, Jim Camp Bridge.
Figure 62. Schematic. Defect Characterization and Imaging Results from Shaft 7, Sevenmile-Gooseberry
Bridge
Figure 63. Schematic. Defect Characterization and Imaging Results from Shaft 8, Sevenmile-Gooseberry
Bridge

Figure 64.	Schematic.	Defect Characterization and Imaging Results from Shaft 9, Sevenmile-Gooseb	erry
Bridge			100
Figure 65.	Schematic.	Defect Characterization and Imaging Results from Shaft 10, Sevenmile-	
Goose	berry Bridge	s ,	101
Figure 66.	Schematic.	Characterization and Imaging Results from Shaft 11, Sevenmile-Gooseberry	
Bridge			102
Figure 67.	Schematic.	Characterization and Imaging Results from Shaft 12, Sevenmile-Gooseberry	
Bridge			104

LIST OF TABLES

Table 1.	Normal-Distribution Fitting to Amherst CSL Tomography (CSLT)	31
Table 2.	Material Properties	43
Table 3.	UPV Testing Results on Concrete Cylinders	78