
CHAPTER 2 – LITERATURE REVIEW 
 

 3

 
CHAPTER 2 – LITERATURE REVIEW 

 
The performance of drilled shafts with anomalies requires an understanding of the design of 
drilled shafts without anomalies and then the impact of anomalies on the structural and 
geotechnical capacities.  This study focuses on the effects of anomalies on the drilled shaft 
capacity under axial load.  This chapter includes a comprehensive review of the effects of 
anomalies on drilled shaft capacity, design methods for drilled shaft axial capacity, and load 
transfer curves for drilled shaft axial capacity computation.  
 
2.1 LITERATURE REVIEW OF CAPACITY OF DRILLED SHAFTS WITH 
ANOMALIES 
 
A literature review on shafts with anomalies revealed that the studies were all recent.  The 
following is a brief discussion from these existing studies.   
 
Petek, et al. (2002), studied the effect of anomalies on drilled shaft axial capacity using the finite 
element program, PLAXIS.  The drilled shafts were modeled as two-dimensional with weak 
layer and neck-in type anomalies in three different cohesive soil profiles.  The soil properties 
used in analyses were modified to fit the test results.  The anomalies were located at different 
depths within the shaft, near the top, at the middle, and near the bottom.  The rectangular-shaped 
neck-in anomalies produced the greatest effect on drilled shaft capacity.  The weak layer 
anomaly was modeled by low quality concrete.  The study also found that the anomalies in the 
drilled shafts in strong soils imposed a greater effect on the drilled shaft capacity than those in 
weaker soils.  The results showed that the effect of anomalies is dependant on their locations 
within the shaft.  The anomalies located near the top have more effect on the drilled shaft 
capacity than those located at the middle and near the bottom.  
 
Iskander, et al. (2003), studied drilled shafts constructed with anomalies located in various areas 
within the shaft as shown in Figures 2, 3, and 4.  The purpose of the study was to assess the 
effect of anomalies on the axial capacity of drilled shafts in varved clay.  Six drilled shafts were 
installed with spacing greater than five times the shaft diameter.  A 1-m diameter shaft was 
augured to a depth of approximately 6 m with a temporary protective steel casing, and a 0.9-m 
diameter shaft was then augured to the final depth of 14.3 m without slurry.  The reinforcing 
steel cage with 10 #9 steel and #4 stirrups were installed before concrete placement.  Four, 52-
mm inside diameter, steel pipes were installed in all shafts except for Shaft #3, which had only 
three pipes for the cross-hole sonic logging to study the effect of tube on test results.  Concrete 
with 28-day strength of 28 kPa was placed using both the free fall and tremie-tube methods. 
 
The shafts were numbered from #1 through #6, and shafts #2 and #6 were constructed with no 
built-in anomalies.  Shafts #1, #3, #4, and #5 were constructed with built-in anomalies 
representing necking, voids, caving soils, and soft bottoms.  The anomalies were made of a 
variety of materials, and some anomalies were filled with in situ soils to replicate inclusions on 
side walls as shown in Figures 3 and 4.  The void size varies from 5 to 11% of the cross-sectional 
area and 0.3 to 1.5 m in length. Soil inclusions vary from 5 to 17% of the cross-sectional area.  
Necking was built into the shaft using 100 mm corrugated flexible plastic tubing; the occupancy 
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of necks was approximately 45% of the cross-sectional area and 10% for external necks.  None 
of the shaft bottoms were cleaned but appeared to be clean prior to concrete placement.  The 
shafts were tested using various NDT testers, with the results show in Figures 3 and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Drilled shaft profile in varved clay and legend for planned and predicted 
anomalies (Iskander, et al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Planned and predicted anomalies in Shaft #2 (Iskander, et al., 2003). 



CHAPTER 2 – LITERATURE REVIEW 
 

 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Planned and predicted anomalies in Shaft #4 (Iskander, et al., 2003) 
 

Load tests on Shaft #2, which was 1.2 m shorter than the other shafts, with no planned structural 
anomalies and soft bottom and Shaft #4 with planned structural anomalies as shown in Figure 4, 
and sound bottom were performed.  Both shafts were loaded to reach failure load in which Shaft 
#4 was loaded twice.  The comparison of the capacity of two shafts is shown in Table 1.  The 
cohesion-bearing capacity factor for the end bearing capacity of both shafts was assumed to be 
equal to 9, and the mobilized undrained shear strength of clay was back calculated. 
 

Table 1.  The comparison capacity of Shafts #2 and #4. 
Shaft # Davisson’s 

Failure Criteria 
(kN) 

Load Test 
Capacity 

(kN) 

Load Test 
End Bearing Capacity 

(kN) 

Undrained Shear  
Strength at Shaft Base 

(kPa) 
2 1000 1200 � 200 34.0
4 

(loading) 
950 1060 300 51.0

4 
(reloading) 

880 1000 250 42.5

 
The capacity of the drilled shaft with no planned structural anomalies but with soft bottom was 
5% to 10% higher than the shaft with a sound bottom and some structural anomalies.  The 
increase of strength was insignificant, so the difference between the two drilled shafts was not 
recorded during construction.  The mobilized undrained shear strength of 34 kPa at Shaft #2 with 
soft bottom was 33% lower than the virgin end bearing one at Shaft #4.  
 
O’Neill, et al. (2003), studied the effect of undetectable structural flaws on the axial and lateral 
capacity of drilled shafts.  Eleven scaled drilled shaft samples were tested in the lab to study the 
structural behavior of reinforced concrete drilled shafts with minor flaws under flexural and axial 
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compression loadings.  Tests were performed to determine the effects of 1) shape and size of 
voids on the shaft’s structural capacity, 2) stress concentration near the void location, 3) buckling 
of longitudinal reinforcement in compression within the void, and 4) strength of variations of 
defective shafts. 
 
All of the shaft specimens were about one-third scale of a real shaft with 305 mm diameter; 
2,260 mm length for the laterally loaded tests; and 1,830 mm length for the axially loaded tests.  
The specimens were tested under three different loadings: pure flexural, pure axial compression, 
and combined flexural and axial compression.  Areas of reinforcement in specimens were 2.12% 
with No. 4, Grade 60, 414yf �  MPa steel bars arranged in equal space around the perimeter.  
The smooth wire spirals with 25.8 mm2 of the cross-sectional area, 448yf �  MPa are spaced at 
25.4 mm.  The concrete cover around the case was 25.4 mm.  Figure 5 shows the two shapes of 
voids (Type 1 and Type 3), which closely simulate voids typically observed in real shafts.  The 
voids were 15% of the gross cross-sectional area of the specimens.  In all tests, voids were 
located in the middle on the compression side of the specimens. 
 
Concrete cylinder tests showed that the 28-day strength of concrete, cf � , varies from 41.3 to 45.9 
MPa.  In flexural tests, behaviors of defective specimens and perfect specimens are similar 
before yielding of reinforcement.  The void significantly affected the reinforcement strength after 
yielding, and the Type 2 void shape imposed a more significant effect than the Type 1 void 
shape.  The effect of void length is insignificant on strength and ductility.  Failure criterion of 
flexural tests was chosen at a mid-span deflection of 40 mm, equivalent to concrete strain of 
0.003 on top of most specimens.  The moment capacity reductions of Type 1 and Type 2 
specimens were about 16.5% and 33%, respectively.  In axial compression tests, Figure 6 shows 
that voids significantly affected the shaft capacity, especially for the Type 2 void, mainly due to 
the lack of concrete confinement and reinforcement buckling.  The axial compressive strengths 
were reduced by 3.5% and 7.2% for a Type 1 void with lengths of 153 mm and 305 mm, 
respectively, and 8.3% for a Type 2 void.  The analytical strengths using ACI 318 and AASHTO 
Bridge Design Specification for spirally reinforced concrete under pure axial compression are 
9% higher than the test results.  For the combined loading test, before the yielding of 
reinforcement, the stiffness of the intact shaft specimen was lightly greater than the defective 
shaft one.  Both capacity and ductility reductions are significant for the Type 2 void as shown in 
Figure 7.  O’Neill, et al., indicated that their analytical results differed from test results by 17% 
due to the limitations of their computational methods attributed to the omission of factors, 
including strain hardening of steel, the buckling of steel rebar in the presence of a void, the 
longitudinal length of the void, the effect of transverse steel and the void on concrete 
confinement, the stress concentration in the void, and the potential steel-concrete debonding.  
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Figure 5.  Parameter of void flaws:  a) three dimension view; b) Section A-A (after O’Neill, 
et al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Moment deflection curves for flexural tests (after O’Neill, et al., 2003). 
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Figure 7.  Moment deflection curves for combined loading tests (after O’Neill, et al., 2003). 
 

Mullins and Ashmawy (2005) reported the findings of an experimental study on factors 
affecting anomaly formation in drilled shafts.  The most interesting finding was that, even at the 
most frequently specified rebar clear spacing to aggregate diameter ratio of 3 to 5, a substantial 
build-up of material inside the cage was observed before enough pressure was developed to push 
concrete mix through the reinforcing cage into the annular region outside the cage.  This allows 
the formation of anomalies in the annular area outside the cage.  The rate of concreting was also 
observed to significantly affect the anomaly formation in the annular region of the drilled shaft 
outside the cage. 
 
Jung G., et al. (2006), evaluated the effect of anomalies in drilled shafts on capacity.  Four full-
scale drilled shafts with artificial anomalies and one sound drilled shaft were constructed and 
tested.  The artificial anomalies included soft bottom, concrete segregation, honeycomb, and 
contractions of cross sections by 10% to 20% as shown in Figure 8, respectively.  During the 
static load test, load-settlement curves and load transfer curves were recorded.  The numerical 
analyses using the finite difference program, FLAC 3D were performed to simulate the axial 
resistance behavior of drilled shafts. 
 
From the analyses, the load-settlement and load transfer curves of drilled Shaft #4 with 10% 
contraction anomalies and Shaft #5 with 20% contraction anomalies were in good agreement 
with the test results.  In comparison to the same curves of drilled shafts with anomalies of 10% to 
20% cross section contraction, there was little difference.  The measured values of normalized 
axial stress in each drilled shaft were both less than those of numerical analyses.  For drilled 
Shaft #4, the difference was 7%; and, for drilled Shaft #5, the difference was 30% as shown in 
Figure 9. 
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Figure 8.  Asymmetric anomaly (Jung, et al., 2006). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Normalized axial stress across defective section (Jung, et al., 2006). 
 
Haramy (2006) presented a timely comprehensive study on the performance monitor of concrete 
mix during its hydration process, CSL detection of anomaly locations, tomographic imaging of 
the anomaly, and the effects of anomalies on drilled shaft capacity.  Subsequently, two articles 
(Haramy, et al., 2007a and b) were published in the proceedings of the DFI 32nd Annual 
Conference on the related topics.  Quality assurance and quality control of drilled shafts has 
become a concern due to difficulties in accurately locating construction anomalies, such as 
shown in Figure 9, and determining load bearing capacity of defected drilled shafts.  Various 
non-destructive evaluation techniques have been developed to estimate the integrity of the 
concrete in drilled shafts.  While these techniques have been widely accepted, variables and 
unknowns can affect the measurement results.  Results are typically difficult to interpret, leading 
to unnecessary construction delays and possible litigation over shaft integrity.  In addition, 
influences of surrounding ground materials, stress states under different load conditions, and 
crack and residual stress development during concrete hydration further complicate 
determination of shaft performance. 
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Figure 10.  Typical cylindrical anomaly in a drilled shaft (Haramy, 2006). 
 

Haramy, et al. (2007a), showed that 1) the curing environment could greatly affect the 
concrete strength and required close monitoring during construction; and 2) the NDE 
technology could effectively monitor curing temperature, density, and moisture, which 
could significantly affect the velocity measured in the cross-hole sonic logging, the rate of 
strength gain, and the final strength of concrete in drilled shafts and, thereby, affect their 
structure capacities.  To understand the mechanism by which a drilled shaft cures under 
field conditions, three newly constructed drilled shafts were monitored for up to 7 days, 
immediately following concrete placement.  The shaft curing rate was found to vary with 
depth, shaft diameter, surrounding geo-material types, and the depth of groundwater. 
 
CSL logging showed that the sonic velocity increased with curing time until 4 to 7 days; 
and, at a specific time, the velocity appeared to be inversely correlated to curing 
temperatures.  The gamma-gamma density log (GDL) showed that the average density 
increased with curing time but decreased slightly in 3 to 5 days.  At a given time the GDL 
density curves seemed to correlate with the neutron moisture logging (NML) curve.  The 
moisture was highest when surrounded by bedrock, then clay, then sand due to different 
hydration rates.  It was found that NDE monitoring was effective in monitoring concrete 
curing temperature, density, velocity, and moisture; the concrete curing strength in drilled 
shafts is a function of time, thermal conductivity, the permeability of the surrounding 
soil/rock, and the depth of groundwater table.  
 
Haramy, et al. (2007b), focused on the evaluation of load bearing capacity of drilled shafts with 
anomalies under various conditions by 3-D numerical analysis and modeling to evaluate the 
serviceability of a defected drilled shaft.  Study results showed that friction angles of 
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surrounding geo-materials, soil density, and percentage of consolidation influence the stress 
concentration around anomalies and that such stress concentration can trigger crack propagation 
and worsen the corrosion process.  When anomalies occur, the NDE methods can assist in 
detecting their locations and sizes.  The anomaly near the top of a drilled shaft will significantly 
affect the structural capacity of drilled shafts.  When lacking concrete confinement for 
reinforcement, the effect of an anomaly on a drilled shaft is more significant because of the 
potential for buckling.  
 
In summary, while much research has been done on the subject of the effect of anomalies on a 
drilled shaft’s behavior, none has comprehensively studied the effect of anomalies on a drilled 
shaft’s capacity in different geomaterial environments, which this study aims to examine.  To 
effectively study the subject matter, an effective computational program is needed.  PSI-VA 
(Pile-Soil interaction program for vertical loaded drilled shafts with anomalies) was used.  Some 
characteristics of PSI-VA are presented in Chapters 3 and 4, and the analysis results are 
presented in the subsequently chapters. 
 
2.2 DESIGN METHOD FOR AXIAL CAPACITY 
 
2.2.1 Design for axial capacity in cohesive soil 
 
2.2.1.1 Side resistance in cohesive soils 
 
The following equation gives the � method for the evaluation of the skin (side or frictional) 
resistance of drilled shafts in cohesive soils at depth z: 
 

s uf c��     (Eq. 1) 
 
where 
 sf  = ultimate skin resistance at depth z 
 uc  = undrained shear strength (cohesion) at depth z 
 �  = empirical adhesion factor dependant upon undrained cohesion. 

 
Kulhawy and Jackson (1989) reported 65 uplift and 41 compression field tests of drilled shafts 
and obtained the values of �  area as shown in Figure 11.  The values of �  varies from 0.3 to 
1.0.  The following best-fit functional relationship (Eq. 2) shows that the �  values decrease with 
the increasing undrained shear strength: 
 

0.21 0.25 a

u

p
c

� � 	    (Eq. 2) 

 
where ap  = atmospheric pressure. In other words, the soft, normally consolidated clay has a 
higher �  value than the hard, overconsolidated clay. 
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O’Neill and Reese (1999) collected data from many case histories to develop a correlation 
between uc  and sf .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Variation of �  with u ac p  (Kulhawy and Jackson, 1989). 
 
The database was based on shafts in clay with 50uc 
  kPa and the following drilled shaft 
dimensions of 0.7 1.83D� �  m, 7L 
  m.  O’Neill and Reese (1999) recommended the 
following equation for the average value of � : 
 

0.55� �   for 1.5u

a

c
p

�    (Eq. 3) 

 and 
 

   0.55 0.1 1.5u

a

c
p

�
� �

� 
 
� �
� �

  for 1.5 2.5u

a

c
p

� �   (Eq. 4) 

 
For the case of 2.5u ac p � , skin resistance should be calculated as the method for cohesive 
intermediate geomaterials (O’Neill and Reese, 1999).  If the shaft length from ground surface to 
a depth of about 1.5 m is excluded in calculating shaft resistance to account for soil shrinkage in 
the zone of seasonal moisture change, then 0��  at depth 5.1�z  m.  The lower part of the 
drilled shaft is also excluded because, in compression loads, the displacement of the soil at the 
shaft tip will generate tensile stresses in the soil that will be relieved by cracking of soil; and pore 
water suction will be relieved by inward movement of groundwater (O’Neill and Reese, 1999).  
If the length of this portion is equal to D above the shaft base, then 0��  at depth DLz 

 .  
 
The total skin resistance, sQ , is equal to the peripheral area of the shaft multiplied by the unit 
side resistance shown as follows: 
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i i i
s uQ D c L� �� �    (Eq. 5) 

 
where D  = shaft diameter; iL  = thickness of layer i; and where the values of �  and uc  are 
constants. 
 
2.2.1.2 End bearing in cohesive soils 
 
The prediction of end bearing capacity of drilled shafts in clays is much less uncertain than is the 
prediction of skin resistance (Reese, et al., 2006).  The equation below is used for calculating the 
net base resistance, pQ : 

*
p p u cQ A c N�     (Eq. 6) 

 
where pA  = the area of the base; uc  =  an average undrained shear strength of clay calculated 

over a depth of two times the diameter below the base (Reese, et al., 2006); and *
cN  = the 

bearing capacity factor (usually taken to be 9) when the ratio bL D  is 4
  (Das, 1999).  
According to O’Neill and Reese (1999), for the straight shaft the full value of * 9cN �  is obtained 
when the base movement is about 20% of D .  If the base movement is unknown, the bearing 
capacity factor *

cN  can be calculated by (Reese, et al., 2006): 
 

� �* 1.33 ln 1c rN I� 	    (Eq. 7) 
 
where rI  is the rigidity index of saturated clay under undrained condition: 
 

3
s

r
u

EI
c

�     (Eq. 8) 

 
where sE  is undrained Young’s modulus. If sE  is not measured, *

cN  and rI  can be estimated 
from Table 2. 
 

Table 2.  Values of rI  and *
cN  (Reese, et al., 2006). 

uc  3s uE c  *
cN  

24 kPa (500 lb/ft2) 50 6.5 
48 kPa (1000 lb/ft2) 150 8.0 

96
  (2000 lb/ft2) 250-300 9.0 
 
2.2.2 Design for axial capacity in cohesionless soil 
 
2.2.2.1 Skin resistance in cohesionless soil 
 
Meyerhoff (1976) gives the unit skin resistance based on an SPT test: 
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100s
Nf �  (tsf)    (Eq. 9) 

 
where N is the average SPT value, not corrected for overburden pressure. 
 
The following equation is used to calculate the ultimate unit skin resistance in sand at depth z : 
 

tansz zf K� ���    (Eq. 10) 
 

where K  = a parameter that includes the effect of the lateral pressure coefficient and a 
correlation factor; z� �  = the vertical effective stress in soil at depth z; and �  = the friction angle 
at the interface of the shaft surface and soil. 
 
The total side resistance calculated from the summation of each layer of the unit side resistance 
multiplied by the perimeter and the layer thickness is shown as follows: 
 

tani i i
s z c iQ D K L� � ��� �    (Eq. 11) 

 
Kulhawy (1991) suggested that the value of the interface friction angle, � , was smaller than the 
soil friction angle, �  , and was affected by construction.  For drilled shafts, � �  is equal to 1.0 
for good construction techniques and 0.8 or smaller with poor slurry construction (Rollin, et al., 
2005).  The coefficient of lateral pressure, K , is a function of the coefficient of lateral pressure 
at rest, 0K , and the stress changes caused by construction, loading, and desiccation.  The analysis 
of field load tests shows that the value of K  ranges from 0.1 to over 5.0 and the 0K K  ratio 
varies from 0.67 to 1.0 (Rollin, et al., 2005). 
 
O’Neill and Reese (1999) suggested the expression for the ultimate unit skin resistance in sand: 
  

200sz zf �� �� �  kPa    (Eq. 12) 
 
and 
 
    i i

s z iQ D L� � � �� �     (Eq. 13)   
 
where  
 in sands use 

0.51.5 0.245z� � 
 ; ( 0.25 1.20�� � ) for SPT 1560 
N  B/0.3 m or 

� �� �0.5
60 15 1.5 0.245N z� � 
  for SPT 60 15N �  B/0.3 m. 

 
in gravelly sands or gravels, use the method for sands if 60 15N �  B/0.3 m (O’Neill and 
Reese, 1999). 
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Rollins, et al. (2005), studied a total of 28 axial tension (uplift) tests performed at eight different 
sites in Northern Utah to determine the values of K  and �  for gravelly sand and gravel.  The 
back-calculated K  values varied with depth as shown in Figure 12, where the values of lateral 
earth pressure at rest � �0 NC

K  and Rankine passive pressure coefficient pK  for a range of friction 
angles are also shown.  The back-calculated K  values reach pK  near the ground surface and 

decrease to � �0 NC
K  at some depth. The high K  values observed could be caused by the increase 

in lateral pressure during shearing due to dilation of granular soils.  Near the ground surface with 
low confining pressure, the soil would dilate during shearing, causing a significant increase in 
lateral pressure.  At greater depth, the increase in lateral pressure is less severe because of 
reduced chance of dilation under a higher confining (or overburden) pressure.  From the above 
observations and other references, Rollins, et al. (2005), concluded that it may be inappropriate 
to determine K  based on the normal stress prior to the test.  The back-calculated �  values from 
the tests both from and outside Utah are plotted in Figure 13.  The data point scatter might be due 
to the differences in gradation, particle angularity, fines content, geologic age, OCR, and 
construction methods.  The mean curve for gravels is significantly greater than the mean curve 
for gravelly sand, and both curves show the k values greater than those values from the design 
curve for sand from O’Neill and Reese (1999).  The equations for evaluation of �  values for 
gravelly sands and gravels are summarized in Table 3. 
 

Table 3.  �  for Gravelly sands and gravels (Rollins, et al., 2005). 
Percentage Gravel �  

Less than 25% 0.51.5 0.135z� � 
 ; 0.25 1.20�� �  
Between 25% and 50% 0.752.0 0.0615z� � 
 ; 0.25 1.80�� �  
Greater than 50% 0.02653.4 ze� 
� ; 0.25 3.0�� �  
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Figure 12.  Back-calculated lateral earth pressure coefficient K  versus depth for load tests 
along with boundaries for � �0 NC

K  and pK  (Rollins, et al., 2005). 
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 (a)      (b) 

Figure 13.  Back-calculated �  versus depth from load tests in (a) gravelly sands and (b) 
gravels along with best fit curves and the curves for the upper and lower bound curves with 

plus and minus one standard deviation � (Rollins, et al., 2005). 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Predicted and actual sf  values for sands, sandy gravels, and gravels 
(Harraz, et al., 2005). 
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Figure 15.  Back-calculated Horizontal stress to Vertical stress ratio, K, vs. % Gravel 
(Harraz, et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.  Back-calculated Horizontal stress to Vertical stress ratio, K, vs. Depth to Mid-

layer (Harraz, et al., 2005). 
 
Harraz, et al. (2005), evaluated 56 drilled shafts to determine the skin resistance intensity, sf .  
The values of sf  derived from field measurements were compared to the values of sf  predicted 
using different methods.  The SPT N-values were provided in almost all of the tests, and these 
values were correlated to the friction angle of the soils.  The soil shaft interface friction angle 
was assumed to be equal to the friction angle of the soils.  The comparisons for sands, sandy 
gravels, and gravels are shown in Figure 14.  The Rollins, et al. (2005), method provides a 
reasonable prediction for sandy gravels; but the prediction for gravels is still too conservative.  
The Tomlinson (2001), Kulhawy (1989), Meyerhoff (1976), and Reese and O’Neill (1999) 
methods under predict the skin resistance for all soil types, especially gravels.  To match the 
predicted values of sf  with the measured values of sf , the measurement results were used in the 
back calculation of K  values shown in Figure 15 and Figure 16.  The trend of variation of K  
with depth is the same as that observed in the study of Rollins, et al., (2005).  The initial 
empirical model to evaluate K  values is shown in Figure 17.  This model, shown in Figure 18, 
gives a better prediction of sf  than any of the other methods mentioned above. 
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Figure 17.  Initial empirical model (Harraz, et al., 2005). 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Predicted and actual sf  values for sands, sand gravels, and gravels using the 
initial empirical model (Harraz, et al., 2005). 

 
2.2.2.2 End bearing in cohesionless soil 
 
According to O’Neill and Reese  (1999), tip resistance for cohesionless soil with blow count 

50SPTN �  B/0.3 m can be found by following equation: 
57.5 SPTq N�  kPa 2.9�  MPa   (Eq. 13) 

 
when 50SPTN �  B/0.3 m, q  should be calculated according to the equations for intermediate 
geomaterials (IMGs) (O’Neill and Reese, 1999). 
 
The above-discussed methods are also adopted by the Federal Highway Administration in its 
drilled design manual (O’Neill and Reese, 1999). 
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2.3 LOAD TRANSFER CURVES 
 
The effect of anomalies on drilled shaft capacity depends on the anomaly location, size, and load 
transfer characteristics along the soil shaft interface.  The effect of a anomaly occurs at a 
particular depth where the axial structural capacity is less than the magnitude of the load on the 
shaft depicted by the load transfer curve at that depth.  This will be discussed in more details in 
Chapter 5.  The Winkler concept-based load transfer assumes that the load transfer at a certain 
depth and at the shaft base is independent of the shaft displacement at other locations (Reese, et 
al., 2005).  The finite element method can more realistically model and analyze the performance 
of a drilled shaft-soil system, where a drilled shaft is modeled by beam-column elements and soil 
is modeled by spring elements as shown in Figure 19.  The load versus displacement relationship 
is nonlinear for side (skin) and base resistances as shown in Figure 19.  The properties of spring 
elements are depicted by its soil properties, such as shear modulus, Poisson’s ratio, and the 
strength of its soils.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Numerical model of an axially loaded shaft and load transfer curve. 
 

2.3.1 Theoretical load transfer curve 
 
2.3.1.1 Elasto-perfect plastic model 
 
The shear stress (� ) increases linearly with shear strain (� ) at a load smaller than the ultimate 
load.  The relationship becomes perfectly plastic when the ultimate load is reached as shown in 
Figure 20.  The model parameters are shear modulus ( maxG ) and ultimate shear stress ( ult� ). 
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Figure 20.  Elasto-perfect plastic model. 
 
2.3.1.2 Hyperbolic model 
 
Duncan and Chang (1970) developed the hyperbolic model to simulate the nonlinear stress-strain 
behavior of soils.  Subsequently, it was also used to model the nonlinear load-settlement 
relationship of drilled shafts by several researchers, such as Kraft, et al. (1981), and Mosher 
(1984).  The following hyperbolic equation depicts the shear stress versus the shear strain 
relationship for skin resistance along the perimeter of drilled shafts: 
 

max

1
ultG

�� �
�

�
	

   (Eq. 14) 

where 
 �  = shear strain 
 maxG  = initial shear modulus 
 ult�  = ultimate shear stress that the hyperbola merges asymptotically 
 �  = shear stress corresponding to shear strain �  
 
 
 
 
 
 
 
 
 
 
 

Figure 21.  Hyperbolic model. 
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The tangent shear modulus can be calculated by differentiating Eq. (14): 
 

2

max 1t
ult

G G� �
� �

� ��
� � 
� �� � �

  (Eq. 15) 

 
The maximum shear stress, max� , approaches asymptotically the ultimate shear stress, ult� , by a 
factor fR : max ult fR� ��  in which fR  is a constant that varies from 0.75 to 1.0 depending on soil 
type (Duncan and Chang, 1970), and the failure is reached at a finite strain.  Fahey and Carter 
(1993) proposed another form of hyperbolic model with two curve fitting parameters, f and g, to 
make it easier to change the shape of the stress strain curve: 

max max

1
g

sG f
G

�
�

� �
� 
 � �

� �
   (Eq. 16) 

where sG  = secant shear modulus 
 f  and g  = curve fitting parameters with values ranging from 0 to 1.0. 
 
The shear stress versus shear strain relationship is expressed as Eq. 17: 
 

�
�
�

�

 
 
!

"
��
�

�
��
�

�

�

g

fG
max

max 1
�
�

�
�   (Eq. 17) 

 
The tangent shear modulus is given as: 
 

� �

2

max

max

max

1

1 1

g

t g

f

G G

f g

�
�

�
�

" �� �
 �
 � �
 �� �! ��

" �� �
 �
 
 � �
 �� �! �

  (Eq. 18) 

 
Figure 22 shows the variation of tangent shear modulus for hyperbolic and modified hyperbolic 
models.  The figure shows that the reduction of tangent shear modulus of a modified hyperbolic 
model is faster than hyperbolic model at a low ratio of �  and max� . 
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Figure 22.  Variation of tangent shear modulus for hyperbolic and modified hyperbolic 
models. 

 
2.3.1.3 Determination of parameters for nonlinear spring 
 
2.3.1.3.1 Initial shear modulus 
 
The initial shear modulus of a soil, maxG , is related to its shear wave velocity, sV , and mass 
density, # , through the following equation: 
 

2
max sVG #�      (Eq. 19) 

 
In the laboratory, resonant column tests (Hardin and Drnevich, 1972) were performed to measure 
the shear wave velocity and formulate the following equation to evaluate the values of maxG  at 
low shear strain: 
 

� � � �0.5
max 0

2.97
321

1
M

a a

e
G p OCR p

e
�



�

	
  (Eq. 20) 

 
where e  is the void ratio ( 2� ); 0�  is the mean principal effective stress; and the M  exponent is 
related to PI as given in Table 4. ap  is atmospheric pressure, 4.101�ap  kPa. 
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Table 4. Exponent M for shear modulus (Hardin and Drnevich, 1972) 

Plasticity index, PI Exponent, M 
0 0 

20 0.18 
40 0.30 
60 0.41 
80 0.48 


 100 0.50 
 
2.3.1.3.2 Spring stiffness 
 
The parameters for nonlinear spring can be determined by soil properties such as shear modulus 
and Poisson’s ratio.  Randolph and Wroth (1978) derived an expression for stiffness, Ks, of 
spring using a concentric cylinder approach as shown in Figure 23 with some assumptions:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.  Shearing of concentric cylinders (Kraft, et al., 1981). 
 

- Soil radial displacements are negligible compared to the vertical displacement. 
Therefore, simple shear conditions prevail. 

- Shear stress decreases linearly with the distance from the shaft center such as 0 0r r� ��  
where �  is the shear stress at distance r ; 0�  is the shear stress at the shaft soil interface; and 0r  
is the shaft radius. 

- Shear stress in the soil becomes negligible at the radial distance mr . 
The load-displacement relation can be written as follows: 
 

0

0 0

mr

s
r

drz r
Gr

�� $      (Eq. 21) 

where sz  is the shaft element displacement. 

Load

Displacement 
due to load

Shaft element

r0

r



CHAPTER 2 – LITERATURE REVIEW 
 

 25

For a constant G  value, Eq. 21 reduces to: 
 

0 0

0

ln m
s

r rz
G r

� � �
� � �

� �
    (Eq. 22) 

 
The spring stiffness is: 
 

0

0
0

ln
s

s m

GK
z rr

r

�
� �

� �
� �
� �

    (Eq. 23) 

 
where 0r  = shaft radius 
 G  = shear modulus 
 mr  = the radial distance at which the shear stress in the soil becomes negligible. This 
value for mr  can be estimated by the following equation (Randolph and Wroth, 1979): 

� �2.5 1mr L# %� 
    (Eq. 24) 
 
where 
 L  = shaft embedment depth 
 #  = factor of vertical homogeneity of soil stiffness: M TG G# �  ( MG  is the shear 
modulus at the shaft mid-depth, and TG  is the shear modulus at the shaft base) 
 %  = Poisson’s ratio of the soil. 
 
Guo and Randolph (1997) proposed a more general form of Eq. (24): 
 

1
1

s
mr A L Br

n
%


� 	
	

   (Eq. 25) 

 
where A  and B  are factors depending on shaft geometry, shaft soil stiffness, and various 
thicknesses of the finite soil layer. 

 
The base stiffness can be approximated using Boussinesq’s solution for a rigid footing resting on 
elastic half-space (Poulos and Davis, 1990): 
 

04
1b

GrK
%

�



    (Eq. 26) 

2.3.1.3.3 Ultimate force 
 
The ultimate force can be calculated by the method shown in the above section.  For side 
resistance of drilled shafts in cohesive soil use: 
 

� �maxs uf D c� ��    (Eq. 27) 
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For end bearing resistance of drilled shafts in cohesive soil use: 
 

*
maxb p u cQ A c N�    (Eq. 28) 

 
For side resistance of drilled shafts in cohesionless soil use: 
 

maxs vzf D� �� ��    (Eq. 29) 
 
For end bearing resistance of drilled shafts in cohesionless soil use: 
 

maxb p vz qQ A N� ��    (Eq. 30) 
 
2.3.2 Load transfer curves from field test studies 
 
Empirically-based load transfer curves were proposed to fit the experimental data.  Table 5 
below summarizes the empirical load transfer function proposed by API (1993) and Vijayvergiya 
(1977).  Figure 24 is the shaft base load versus the shaft base displacement plotted from data 
given in Table 5 recommended by API (1993).  The mobilized bearing capacity, Q, is equal to 
the ultimate bearing capacity, bQ , at the shaft base displacement equal to or greater than 0.1 
multiplied by the of shaft diameter, D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24.  Shaft base load and shaft base displacement curve (API 1993). 
 

O’Neill and Reese (1999) developed the normalized curves for side-shear and end-bearing 
resistances by evaluating the results of several field load tests of instrumented drilled shafts in 
cohesive and cohesionless soils as shown in Figure 25 to Figure 28.  Rollins, et al. (2005), also 
represented the normalized load versus displacement curves and compared it to the similar 
curves developed by O’Neill and Reese (1999) for slightly cemented sands as shown in Figure 
29 for gravelly sands and gravels.  These curves can be used to determine the load displacement 
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behavior by using either the elasto-plastic or the hyperbolic model if the ultimate load and the 
drilled shaft diameter are known. 

 
Table 5.  Empirical load transfer curves. 

Author T-Z curve for side spring bQ Z
  curve for base spring 
API 

(1993) max
s

s
c

z
z

� ��  for s cz z�  

maxs� ��  for s cz z�  

Tabulated curve 
DZb  maxbb QQ  

0.0020 0.25 
0.1300 0.50 
0.0420 0.75 
0.0730 0.90 
0.1000 1.00  

Vijayvergiya 
(1977) max 2 s s

s
c c

z z
z z

� �
� �

� 
� �� �
� �

 for 

( s cz z� ) 

maxs� ��  for s cz z�  

1
3

max
b

b b
c

zQ Q
z

� �
� � �

� �
 for s cz z�  

maxb bQ Q�  for s cz z�  

 
where  
 s�  = shear stress at soil shaft interface 
 max�  = maximum shear stress at soil shaft interface 
 sz  = shaft segment displacement 
 cz  = displacement at failure 
 bz  = base displacement 

bQ  = base resistance 

maxbQ  = ultimate base resistance 
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Figure 25.  Normalized side load transfer for drilled shafts in cohesive soil  
(after O’Neill and Reese, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.  Normalized base load transfer for drilled shafts in cohesive soil (after O’Neill 
and Reese, 1999). 
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Figure 27.  Normalized side load transfer for drilled shafts in cohesionless soil (after 
O’Neill and Reese, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28.  Normalized base load transfer for drilled shafts in cohesionless soil (after 
O’Neill and Reese, 1999). 
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Figure 29.  Normalized base load transfer for drilled shafts in cohesionless soil (after 
Rollins, et al., 2005). 

 

1.0

0.8

0.6

0.4

0.2

0.0
2.42.01.61.20.0 0.80.4

Range for Sands 
(Reese and O'Neill, 1988)
Range for Gravelly Sands 
(Rollins et al., 2005)

Trend line in each case

1.20.40.0
0.0

0.8 1.6 2.0 2.4

0.2

0.4

0.6

0.8

1.0

Trend line in each case

Range for Gravels
(Rollins et al., 2005)

Range for Sands 
(Reese and O'Neill, 1988)

(a)

(b)

Diameter of Shaft
Settlement

, %

S
id

e 
Lo

ad
 T

ra
ns

fe
r

U
lti

m
a t

e 
S

id
e 

Lo
a d

 T
ra

ns
fe

r
U

lti
m

a t
e 

S
id

e 
Lo

a d
 T

ra
ns

fe
r

S
id

e 
Lo

ad
 T

ra
ns

fe
r

Settlement
Diameter of Shaft

, %

 



 

 

 


