DRILLED SHAFT AXIAL CAPACITY Effects Due to Anomalies

Publication No. FHWA-CFL/TD-08-008

September 2008

U.S. Department of Transportation

Federal Highway Administration

Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228

FOREWORD

The Federal Lands Highway (FLH) of the Federal Highway Administration (FHWA) promotes development and deployment of applied research and technology applicable to solving transportation related issues on Federal Lands. The FLH provides technology delivery, innovative solutions, recommended best practices, and related information and knowledge sharing to Federal agencies, Tribal governments, and other offices within the FHWA.

The objective of this study was to produce guidelines for assessing the importance of defects on the drilled shaft capacity in different soils and also priority for remediation effort. The study included a literature search on earlier research, enhancement of a finite element code, PSI for use in this study, results of a comprehensive finite element analysis program with varying factors including defect location and sizes, soil types, and concrete strength. The following are the recommendations for the remediation guidelines:

- A proper construction quality monitoring program including sonic wave survey, tomographic imaging, and temperature, moisture, and density measurements are recommended for all critical drilled shafts,
- Once defects are located remediation measures must be implemented to fill the defect voids with concrete,
- If prioritization is necessary in fixing the defects, the shallow, non-concentric defects must receive first attention because of its experience of a higher pile loads than a deeper defects,
- The effects of soil types and strengths must be properly assessed from the pile load transfer and structural capacity curves to assess the critical nature of a defect(s).

F. David Zanetell, P.E., Director of Project Delivery Federal Highway Administration Central Federal Lands Highway Division

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The FHWA provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No. FHWA-CFL/TD-08-008	2. Government Accession N	No. 3.	Recipient's Catalog No.	
4. Title and Subtitle		5.	Report Date September 2008	
Drilled Shaft Axial Capacities				
Effects Due to Anomalies		6.	Performing Organization Code	
7. Author(s) Nien-Yin Chang, Ph.D., P.E., Prin Hien Nghiem, Research Assistant	cipal Investigator (P.I.) (R.A.)) 8.	Performing Organization Report No. CGES 001-08	
9. Performing Organization Name and Add	ress	10). Work Unit No. (TRAIS)	
Denver 1200 Larimer Street Denv	ng Science, University	of Colorado,	Contract on Crent No.	
Denver, 1200 Euriner Street, Den	vei, ee oozi <i>i</i> , 5501	11	DTFH68-06-X-00033	
12. Sponsoring Agency Name and Address		13	. Type of Report and Period Covered	
Federal Highway Administration			Final Report	
Central Federal Lands Highway D	1V1S10n		August 2006 – April 2008	
Lakewood, CO 80228	210	14	 Sponsoring Agency Code HFTS-16.4 	
15. Supplementary Notes				
COTR: Khamis Y. Haramy, FHW	A-CFLHD. Advisory	Panel Members: Ro	oger Surdahl, FHWA-CFLHD; Scot	tt
Anderson and Barry Siel, FHWA-	RC; and Matt Greer, F	HWA-CO Division	1. This project was funded under the	e
16. Abstract	cennology Deploymen	t mitiatives and i a	(IDIII).	
Drilled shafts are increasingly beir supporting capacities, relatively lo anomalies created during construct mandatory to detect the size and lo	ng used in supporting c w construction noise, a tion. The critical impo- portion of anomalies ar	ritical structures, m and technological a rtance of drilled sh ad assess their poten	nainly because of their high-load dvancement in detecting drilled sha afts as foundations makes it ntial effect on drilled shaft capacity.	ıft
Numerical analysis was conducted the effect of different anomalies or extremely stiff clay and loose to ve sizes and lengths on both structura shaft capacity is affected by the siz nonconcentric anomalies significan resulting drilled shaft capacity the	using Pile-Soil Interact the axial load capacit ery dense sand. The in and geotechnical cap and location of the a ntly decrease the struct n equals the smaller on	ction (PSI), a finite ies of drilled shafts vestigation include acities. The analys nomaly and the struural capacity of a c e of the two capaci	element analysis program to assess in soils ranging from soft to d the affect of anomalies of various is results indicate that the drilled ength of the surrounding soil. Also willed shaft under axial load. The ties: structural or geotechnical.	-
17. Kay Words		19 Distribution States	cont	
17. ISOY WOLUS		15. Distribution Staten	lent	
DRILLED SHAFTS, GEO STRUCTURAL, DRILLEI CAPACITIES, ANOMALI ELEMENT ANALYSIS, P	TECHNICAL, D SHAFT IES, FINITE SI	No restriction. public from the <u>http://www.cfl</u>	This document is available to the sponsoring agency at their website hd.gov.	9
19. Security Classif. (of this report) Unclassified	20. Security Classif. (Unc	of this page) lassified	21. No. of Pages 22. Price 148	
Form DOT F 1700.7 (8-72)	1		Reproduction of completed page autho	orized

SI [^] (MODERN METRIC) CONVERSION FACTORS				
Symbol	When You Know		To Find	Symbol
		I ENGTH		-,
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
vd	vards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE: \	olumes greater than 1000 L	shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
	1	EMPERATURE (exac	ct degrees)	
°F	Fahrenheit	5 (F-32)/9	Celsius	°C
		or (F-32)/1.8		
		ILLUMINATIO	N	
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²
	FO	RCE and PRESSURI	E or STRESS	
lbf	poundforce	4.45	newtons	N
lbf lbf/in ²	poundforce poundforce per square inch	4.45 6.89	newtons kilopascals	N kPa
lbf lbf/in ²	poundforce poundforce per square inch APPROXII	4.45 6.89 MATE CONVERSIO	newtons kilopascals NS FROM SI UNITS	N kPa
lbf Ibf/in ²	poundforce poundforce per square inch APPROXII	4.45 6.89 MATE CONVERSIO Multiply By	newtons kilopascals NS FROM SI UNITS To Find	N kPa Symbol
lbf Ibf/in ² Symbol	poundforce poundforce per square inch APPROXII When You Know	4.45 6.89 MATE CONVERSIO Multiply By	newtons kilopascals NS FROM SI UNITS To Find	N kPa Symbol
Ibf Ibf/in ² Symbol	poundforce poundforce per square inch APPROXII When You Know	4.45 6.89 MATE CONVERSIO Multiply By LENGTH	newtons kilopascals NS FROM SI UNITS To Find	N kPa Symbol
Ibf Ibf/in ² Symbol	poundforce poundforce per square inch APPROXII When You Know millimeters meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28	newtons kilopascals NS FROM SI UNITS To Find	N kPa Symbol
Ibf Ibf/in ² Symbol mm m	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09	newtons kilopascals NS FROM SI UNITS To Find	N kPa Symbol
Ibf Ibf/in ² Symbol mm m m km	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles	N kPa Symbol in ft yd mi
Ibf Ibf/in ² Symbol mm m m km	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles	N kPa Symbol in ft yd mi
Ibf Ibf/in ² Symbol mm m km km	poundforce poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches	N kPa Symbol in ft yd mi in ²
Ibf Ibf/in ² Symbol mm m km km mm ² m ²	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet	N kPa Symbol in ft yd mi in ² ft ²
Ibf Ibf/in ² Symbol mm m km km mm ² m ² m ²	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square vards	N kPa Symbol in ft yd mi in ² ft ² yd ²
Ibf Ibf/in ² Symbol mm m km km mm ² m ² m ² ha	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres	N kPa Symbol in ft yd mi in ² ft ² yd ² ac
Ibf Ibf/in ² Symbol mm m km m ² m ² ha km ²	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters hectares square kilometers	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ²	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² m	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz
Ibf Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² ha km ²	poundforce poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz qal
Ibf Ibf/in ² Symbol mm m m km km ² m ² ha km ² ha km ² ha km ²	poundforce poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters iters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³
Ibf Ibf/in ² Symbol mm m m km km ² m ² ha km ² ha km ² L L m ³ m ³	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
Ibf Ibf/in ² Symbol mm m km km m ² m ² ha km ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
Ibf Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² mL L m ³ m ³ g kq	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² kg Mg (or "t")	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ cz lb T
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² m ha km ² g kg Mg (or "t")	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 EMPERATURE (exact	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	N kPa Symbol in ft yd mi in ² ft ² yd ² ac m ² fl oz gal ft ³ yd ³ cz lb T
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C	poundforce per square inch APPROXII When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 EMPERATURE (exact 1.8C+32	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 EMPERATURE (exact 1.8C+32 II 1 IMINATIO	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters megagrams (or "metric ton"	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.099	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles	N kPa Symbol in ft yd mi in ² ft ² yd ² ac ac ac ² mi ² fl oz gal ft ³ yd ³ oz lb T °F
Ibf Ibf/in ² Symbol mm m km m ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters megagrams (or "metric ton" Celsius	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit N foot-candles foot-Lamberts	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
Ibf Ibf/in ² Symbol mm m km km ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters free cubic meters cubic meters cubic meters free class megagrams (or "metric ton" Celsius	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919 BCE and PRESSURE	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles foot-Lamberts E or STRESS	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T •F fc fl
Ibf Ibf/in ² Symbol mm m km km ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	poundforce per square inch APPROXII When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters for metric ton" Celsius	4.45 6.89 MATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919 PRCE and PRESSURI 0.225	newtons kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles foot-Lamberts E or STRESS poundforce	N kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION	1
CHAPTER 2 - LITERATURE REVIEW	3
2.1 LITERATURE REVIEW OF CAPACITY OF DRILLED SHAFTS WITH ANON	IALIES3
2.2. DESIGN METHOD FOR AXIAL CAPACITY	11
2.2.1 Design for axial capacity in cohesive soil	11
2.2.1.1 Side resistance in cohesive soils	11
2.2.1.2 End bearing in cohesive soils	13
2.2.2 Design for axial capacity in cohesionless soil	13
2.2.2.1 Side resistance in cohesionless soil	13
2.2.2.2 End bearing in cohesionless soil	18
2.3. LOAD TRANSFER CURVES	19
2.3.1 Theoretical load transfer curve	19
2.3.1.1 Elasto-perfect plastic model	19
2.3.1.2 Hyperbolic mode	20
2.3.1.3 Determination of parameters for nonlinear spring	22
2.3.1.3.1 Initial shear modulus	22
2.3.1.3.2 Spring stiffness	23
2.3.1.3.3 Ultimate force	24
2.3.2 Load transfer curves from field test studies	25
CHAPTER 3 - STRUCTURAL CAPACITY OF DRILLED SHAFTS	
3.1 AXIAL LOAD	
3.2 AXIAL LOAD AND BENDING MOMENT	
CHAPTER 4 - PILE-SOIL INTERACTION (PSI) FINITE ELEMENT CODE	35
4 1 INTRODUCTION	35
4 2 FINITE ELEMENTS	35
4 3 ELASTO-PLASTIC RATE INTEGRATION OF DIFFERENTIAL	
PLASTIC MODELS	
4.4 CONSTITUTIVE MODELS OF SOILS	
4.4.1 Mohr-Coulomb Model	
4.4.2 Cap Model	
4.5 ELASTO-PERFECT PLASTIC MODEL FOR BAR ELEMENT	40
4.6 CONVERGENCE CRITERIA	40
4.7 PSI CALIBRATION AND VALIDATION	41
4.7.1 Case histories for calibration	41
4.7.2 Comparative study between PSI and LS-DYNA codes	49
CHAPTER 5 - CAPACITIES OF DRILLED SHAFTS WITH ANOMALIES	57
5.1. STRUCTURAL CAPACITY OF DRILLED SHAFTS	57
5.1.1 Concrete	57
5.1.2 Structural capacity of drilled shafts without anomalies via ACI Code	

5.2. STRUCTURAL CAPACITY OF DRILLED SHAFTS WITH ANOMALIES	59
5.2.1 Size, location, and properties of anomalies	59
5.2.2 Structure capacity of drilled shafts with anomalies	63
5.3. SOIL PROPERTIES	64
5.4. SHAFT MODEL	67
5.5. DEFINE THE EFFECT OF ANOMALIES	68
5.6. CAPACITIES OF DRILLED SHAFTS IN COHESIVE SOILS	69
5.7. CAPACITIES OF DRILLED SHAFTS IN COHESIONLESS SOILS	81
5.8. CAPACITIES OF DRILLED SHAFTS IN COHESIVE SOIL WITH	
BEDROCK AT SHAFT TIP	90
CHADTED 6 SUMMARY CONCLUSIONS AND DECOMMENDATIONS	02
6.1 SUMMARY	
6.2 CONCLUSIONS	
6.3 RECOMMENDATIONS FOR REMEDIATION	93 Q/
6.4. FUTURE STUDY	
APPENDIX A - FIGURES	07
$\mathbf{A} \mathbf{I} \mathbf{E} \mathbf{N} \mathbf{D} \mathbf{I} \mathbf{A} \mathbf{A} = \mathbf{F} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{K} \mathbf{E} \mathbf{S} \dots$	
REFERENCES	131

LIST OF FIGURES

Figure 1. Defective drilled shaft with multiple types of anomalies (DiMaggio, 2008)	1
Figure 2. Drilled shaft profile in varved clay and legend for planned and	
predicted anomalies (Iskander, et al., 2003)	4
Figure 3. Planned and predicted anomalies in Shaft #2 (Iskander, et al., 2003)	4
Figure 4. Planned and predicted anomalies in Shaft #4 (Iskander, et al., 2003)	5
Figure 5. Parameter of void flaws (after O'Neill, et al., 2003)	7
Figure 6. Moment deflection curves for flexural tests (after O'Neill, et al., 2003)	7
Figure 7. Moment deflection curves for combined loading tests (after O'Neill, et al., 2003)8
Figure 8. Asymmetric anomaly (Jung, et al., 2006)	9
Figure 9. Normalized axial stress across defective section (Jung, et al., 2006)	9
Figure 10. Typical cylindrical anomaly in a drilled shaft (Haramy, 2006)	10
Figure 11. Variation of α with c_u/p_a (Kulhawy and Jackson, 1989)	12
Figure 12. Back-calculated lateral earth pressure coefficient K versus depth for	
load tests along with boundaries for $(K_0)_{NC}$ and K_p (Rollins, et al., 2005)	15
Figure 13. Back-calculated β versus depth from load tests in (Rollins, et al., 2005)	16
Figure 14. Predicted and actual f_s values for sands, sand gravels, and	
gravels (Harraz, et al., 2005)	
Figure 15. Back-calculated Horizontal stress to Vertical stress ratio,	
K, vs. % Gravel (Harraz, et al., 2005)	17
Figure 16. Back-calculated Horizontal stress to Vertical stress ratio, K, vs. Depth	
to Mid-layer (Harraz, et al., 2005)	17
Figure 17. Initial empirical model (Harraz, et al., 2005)	
Figure 18. Predicted and actual f_s values for sands, sand gravels, and gravels	
using the initial empirical model (Harraz, et al., 2005)	
Figure 19. Numerical model of an axially loaded shaft and load transfer curve	19
Figure 20. Elasto-perfect plastic model	20
Figure 21. Hyperbolic model	20
Figure 22. Variation of tangent shear modulus for hyperbolic and modified	
hyperbolic models	22
Figure 23. Shearing of concentric cylinders (Kraft, et al., 1981)	23
Figure 24. Shaft base load and shaft base displacement curve (API 1993)	25
Figure 25. Normalized side load transfer for drilled shafts in cohesive soil	
(after O'Neill and Reese, 1999)	27
Figure 26. Normalized base load transfer for drilled shafts in cohesive soil	
(after O'Neill and Reese, 1999)	27
Figure 27. Shaft Normalized side load transfer for drilled shafts in cohesionless soil	20
(after O'Neill and Reese, 1999)	
Figure 28. Normalized base load transfer for drilled shafts in conesionless soil	20
(atter U Nelli and Keese, 1999)	
rigure 29. Normalized base load transfer for drifted shafts in conesionless soll (after Polling et al. 2005)	20
(alter Rollins, et al., 2003)	
(McGregor and Wight 2005)	27
(1910010g01 and 191gni, 2002)	

Figure 31.	Nonconcentric anomaly	32
Figure 32.	Stress strain curve for concrete (O'Neill and Reese, 1999)	33
Figure 33.	Stress strain curve for steel (O'Neill and Reese, 1999)	34
Figure 34.	Finite strips of cross section	34
Figure 35.	Finite element types	35
Figure 36.	Mohr-Coulomb failure criteria	38
Figure 37.	Yield surface for cap model (Desai and Siriwardane, 1984)	39
Figure 38.	Nonlinear model of bar element	40
Figure 39.	Side view and 3D view of finite element mesh	42
Figure 40.	Comparison the result between PSI, PLAXIS, BEM, and test results	42
Figure 41.	Effect of finite element mesh	43
Figure 42.	Side view and 3D view of finite element mesh	44
Figure 43.	Comparison of the result between PSI, ABAQUS, and test data	45
Figure 44.	Socketed shaft (Brown, et al., 2001)	46
Figure 45.	Comparison of shaft head displacement for single socketed shaft	46
Figure 46.	C _u and K ₀ profiles (Wang and Sita, 2004)	47
Figure 47.	Comparison of the result between PSI, OPENSEES, and test data	48
Figure 48.	Schematics of numerical shaft-load test	50
Figure 49.	Finite element mesh for the numerical shaft-load test (axisymmetric condition)	50
Figure 50.	Numerical unconfined compression test for concrete	52
Figure 51.	Numerical triaxial compression tests of sand used in the comparative study	53
Figure 52.	Numerical static shaft-load test comparison between LS-DYNA and PSI	
wit	th perfect shaft and without contact interface	53
Figure 53.	Location of anomaly near the shaft top	54
Figure 54.	Numerical static shaft-load test comparison between LS-DYNA and PSI	
wit	th anomaly at top of shaft and without contact interface	54
Figure 55.	Numerical static shaft-load test comparison between LS-DYNA and PSI	
wit	th contact interface between shaft and soil	55
Figure 56.	Stress strain curves for concrete cylinders	57
Figure 57.	Load-displacement curves of four concrete drilled shafts	59
Figure 58.	Anomaly locations	61
Figure 59.	Anomaly sizes and shapes (shaded areas are anomaly zones)	62
Figure 60.	Structural capacity and interaction diagram of nonconcentric anomaly section	64
Figure 61.	Dilatancy angles for sands (Bolton, 1986)	66
Figure 62.	Plane and 3-D views of a drilled shaft with symmetric anomaly	67
Figure 63.	Plane and 3-D views of a drilled shaft with nonconcentric anomaly	67
Figure 64.	Effect definition of anomaly	68
Figure 65.	Load-settlement curves for 1-m diameter drilled shaft in clay, various stiffness	70
Figure 66.	Load-settlement curves for 2-m diameter drilled shaft in clay, various stiffness	70
Figure 67.	Shaft-load transfer and structural capacity curves for 1-m drilled shafts	= 1
Wit	th 3,000 psi concrete constructed in clay	/1
Figure 68.	Shaft-load transfer and structural capacity curves for 1-m drilled shafts	- 1
W1	th 4,500 psi concrete constructed in clay	/1
Figure 69.	Shaft-load transfer and structural capacity curves for 2-m drilled shafts	70
W1	th 3,000 psi concrete constructed in clay	72

Figure 70. Shaft-load transfer and structural capacity curves for 2-m drilled shafts	
with 4,5000 psi concrete constructed in clay	72
Figure 71. Neck-in anomaly Type 1 and cylindrical anomaly at 1-m depth, $D = 2$ m	74
Figure 72. Neck-in anomaly Type 1 and cylindrical anomaly at 11-m depth, $D = 2 m$	74
Figure 73. Comparison of short and long anomalies	75
Figure 74. Load-settlement curves for drilled shafts of 1-m diameter in sand	82
Figure 75. Load-settlement curves for drilled shafts of 2-m diameter in sand	82
Figure 76. Shaft-load transfer curves for drilled shafts of 1-m diameter in sand	83
Figure 77. Shaft-load transfer curves for drilled shafts of 1-m diameter in sand	83
Figure 78. Shaft-load transfer curves for drilled shafts of 2-m diameter in sand	84
Figure 79. Shaft-load transfer curves for drilled shafts of 2-m diameter in sand	84
Figure 80. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length cylindrical anomaly at 1-m depth)	97
Figure 81. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length cylindrical anomaly at 1-m depth)	97
Figure 82. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length cylindrical anomaly at 11-m depth)	98
Figure 83. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length cylindrical anomaly at 11-m depth)	98
Figure 84. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1.2-m length cylindrical anomaly at 19-m depth)	99
Figure 85. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1.2-m length cylindrical anomaly at 19-m depth)	99
Figure 86. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 1-m depth)	100
Figure 87. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 1-m depth)	100
Figure 88. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 11-m depth)	101
Figure 89. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 11-m depth)	101
Figure 90. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 3 at 1-m depth)	102
Figure 91. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 3 at 1-m depth)	102
Figure 92. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 3 at 11-m depth)	103
Figure 93. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 3 at 11-m depth)	103
Figure 94. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 3 at 19-m depth)	104
Figure 95. Load-settlement curves for drilled shafts of 1-m diameter in clay	
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 3 at 19-m depth)	104
Figure 96. Load-settlement curves for drilled shafts of 2-m diameter in clay	10-
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 1-m depth)	.105
Figure 97. Load-settlement curves for drilled shafts of 2-m diameter in clay	

(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 1-m depth)105
Figure 98. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 11-m depth)106
Figure 99. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 11-m depth)106
Figure 100. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 3000 psi, 1.2-m length neck-in anomaly type 2 at 19-m depth)107
Figure 101. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 4500 psi, 1.2-m length neck-in anomaly type 2 at 19-m depth)107
Figure 102. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 3 at 1-m depth)
Figure 103. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 3 at 1-m depth)
Figure 104. Load-settlement curves for drilled shafts of 2-m diameter in clav
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 3 at 11-m depth)
Figure 105. Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 4500 psi 1-m length neck-in anomaly type 3 at 11-m depth) 109
Figure 106 Load-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 3000 psi 1.2-m length neck-in anomaly type 3 at 19-m depth) 110
Figure 107 L oad-settlement curves for drilled shafts of 2-m diameter in clay
(Concrete strength 4500 psi 1.2-m length neck-in anomaly type 3 at 19-m denth) 110
Figure 108 I gad-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 3000 psi, 1-m length cylindrical anomaly at 1-m denth) 111
Figure 100 L and settlement surves for drilled shafts of 1 m diameter in send
(Concrete strength 4500 nsi, 1 m length cylindrical anomaly at 1 m denth)
(Concrete strength 4500 psi, 1-in length cynnuncal anonaly at 1-in depth)
(Concrete strength 2000 psi 1 m length cylindrical anomaly at 11 m denth) 112
(Concrete strength 5000 psi, 1-in length cynharical anomaly at 11-in depth)
Figure 111. Load-settlement curves for drifted shafts of 1-m diameter in sand
(Concrete strength 4500 psi, 1-m length cylindrical anomaly at 11-m depth)
Figure 112. Load-settlement curves for drifted shafts of 1-m diameter in sand
(Concrete strength 3000 psi, 1-m length cylindrical anomaly at 11-m depth)113
Figure 113. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 4500 psi, 1-m length cylindrical anomaly at 11-m depth)113
Figure 114. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 3000 psi, 1.2-m length cylindrical anomaly at 191-m depth)114
Figure 115. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 4500 psi, 1.2-m length cylindrical anomaly at 19-m depth)114
Figure 116. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 1-m depth)115
Figure 117. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 1-m depth)115
Figure 118. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 3000 psi, 1-m length neck-in anomaly type 2 at 11-m depth)116
Figure 119. Load-settlement curves for drilled shafts of 1-m diameter in sand
(Concrete strength 4500 psi, 1-m length neck-in anomaly type 2 at 11-m depth)116
Figure 120. Load-settlement curves for drilled shafts of 1-m diameter in sand

- Figure 143. Load-settlement curves for drilled shafts of 2-m diameter in sand (Concrete strength 4500 psi, 1-m length neck-in anomaly type 3 at 11-m depth)128

LIST OF TABLES

Table 1. The comparison capacity of Shafts #2 and #4	5
Table 2. Values of I_r and N_c^* (Reese, et al., 2006)	13
Table 3. β for Gravelly sands and gravels (Rollins, et al., 2005)	15
Table 4. Exponent M for shear modulus (Hardin and Drnevich, 1972)	23
Table 5. Empirical load transfer curves	26
Table 6. Material parameter for soil data (Brinkgreve, 2004)	41
Table 7. Soil parameters from triaxial test results	42
Table 8. Adjusted soil parameter for match case	43
Table 9. Material parameter for soil data (Brown, et al., 2001)	46
Table 10. Material parameters used in the comparative study	51
Table 11. Concrete material	57
Table 12. Structural capacity of concrete without reduction	58
Table 13. Structural capacity of drilled shafts with 2% reinforcement	58
Table 14. Anomaly sizes	60
Table 15. Anomaly locations	60
Table 16. Structural capacities of drilled shafts with anomalies	63
Table 17. Strength properties of soil	65
Table 18. Geotechnical capacity of drilled shafts in cohesive soil Table 10. Drilled shafts in cohesive soil	69
Table 19. Drilled shaft capacity reduction for the case of concrete strength 3000 psi,	70
shaft in clay, shaft diameter $D = 1$ m, anomaly length 1-1.2 m	/6
Table 20. Drifted shall capacity reduction for the case of concrete strength 4500 psi, shaft in alay, shaft diameter $D = 1$ m anomaly length 1, 1, 2 m	77
Shall in clay, shall diameter $D = 1$ in, anomaly length 1-1.2 in	//
Table 21. Diffied shaft capacity reduction for the case of concrete strength 5000 psi, shaft in alow, shaft diameter $D = 2m$, anomaly length 1, 1, 2 m.	79
Shart in clay, shart diameter $D = 2$ in, anomaly length 1-1.2 in	/0
shaft in clay, shaft diameter $D = 2$ m, anomaly length 1-1.2 m	79
Table 23 Drilled shaft canacity reduction for nonconcentric anomaly	
concrete strength 3000 nsi diameter $D = 2$ m shaft in clay anomaly length 1-1.2 m	80
Table 24 Drilled shaft capacity reduction for nonconcentric anomaly	
concrete strength 4500 psi, diameter $D = 2$ m, shaft in clay, anomaly length 1-1.2 m	80
Table 25. Capacity of drilled shafts in sandy soil	81
Table 26. Drilled shaft capacity reduction for the case of concrete strength 3000 psi,	
shaft in sand, shaft diameter $D = 1$ m, anomaly length 1-1.2 m	85
Table 27. Drilled shaft capacity reduction for the case of concrete strength 4500 psi,	
shaft in sand, shaft diameter $D = 1$ m, anomaly length 1-1.2 m	86
Table 28. Drilled shaft capacity reduction for the case of concrete strength 3000 psi,	
shaft in sand, shaft diameter $D = 2$ m, anomaly length 1-1.2 m	87
Table 29. Drilled shaft capacity reduction for the case of concrete strength 4500 psi,	
shaft in sand, shaft diameter $D = 2$ m, anomaly length 1-1.2 m	88
Table 30. Drilled shaft capacity reduction for nonconcentric anomaly,	
concrete strength 3000 psi, diameter $D = 2$ m, soil in sand, anomaly length 1-1.2 m	89
Table 31. Drilled shaft capacity reduction for nonconcentric anomaly,	
concrete strength 4500 psi, diameter $D = 2$ m, soil in sand, anomaly length 1-1.2 m	89

Table 32. Drilled shaft capacity reduction for the case of concrete strength 3000 psi,

shaft in clay with bedrock at shaft tip, shaft diameter D = 1 m, anomaly length 1-1.2 m.90 Table 33. Drilled shaft capacity reduction for the case of concrete strength 4500 psi,

- shaft in clay with bedrock at shaft tip, shaft diameter D = 1 m, anomaly length 1-1.2 m.91 Table 34. Drilled shaft capacity reduction for the case of concrete strength 3000 psi,
- shaft in clay with bedrock at shaft tip, shaft diameter D = 2 m, anomaly length 1-1.2 m.91 Table 35. Drilled shaft capacity reduction for the case of concrete strength 4500 psi,

shaft in clay with bedrock at shaft tip, shaft diameter D = 2 m, anomaly length 1-1.2 m.92