3D Field-Scale Reactive Transport Modeling of In Situ Immobilization of Uranium in Structured Porous Media

Pacific Northwest National Laboratory Yilin Fang, Tim Scheibe, Wiwat Kamolpornwijit University of Wisconsin Eric Roden Oak Ridge National Laboratory Scott Brooks

Rattelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Introduction

- Three geologic materials
- Gravel layer at the bottom of the historically excavated and replaced fill zone
- High Uranium concentration at the interface b/w gravel zone and saprolite zone

Introduction

Hypothesis - The injection of electron donor into the gravel layer will result in:

- Dispersive mass transfer into the adjacent fill/saprolite zones
- Formation of a microbarrier at the interface
- Immobilization of uranium

Conceptual Model

- Water table 4 meters below ground surface
- Model Domain:

Lx = 20 m, Ly = 10 m, Lz = 4 m

- ► Hydraulic Gradient 0.03, specified head in the x direction
- ▶ Well screen depth: 4.5m-6m

	Thickness (m)	Porosity	K (cm/s)
Disturbed Saprolite Fill	1.5	0.3	1.3e-2
Gravelly Fill	0.5	0.3	3.8e-2
Intact Saprolite	2	0.1	4.1e-5

Tracer Test Analysis

Experimental Plot Layout

Confirm the general direction of groundwater flow

Quantify groundwater flow rate

Investigate mass transfer between gravel and saprolite layers

Tracer Test Analysis

Dispersivity:

 α_L = 1.0 m α_T = 0.1 m

Pacific Northwest National Laboratory U.S. Department of Energy 6

Multicomponent Reactive Transport

- Conceptual model and hydrologic parameters from tracer test analysis
- 3 Injection Wells FW213, FW212, FW21
- ▶ 94 Species

- 135 Reactions(58 fast, 77 slow)
- 37 Terminal Electron Accepting Processes (TEAPs)
- 8 Biomass Populations

TEAP Reactions

Reaction

Battelle

Catalyzed By

 $CH3CH2OH + 3O2 \rightarrow 2HCO3 + H2O + 2H +$ AM, DM CH3CH2OH + 2.4NO3- + 0.4H+ \rightarrow 2HCO3- + 1.2N2 + 2.2H2O DM CH3CH2OH + 0.5NO3- \rightarrow CH3COO- + 0.5NH4+ + 0.5H2O DRM1. DRM2. DRM3 CH3CH2OH + 2MnO2 + 3H+ \rightarrow CH3COO- + 2Mn2+ + 3H2O DRM2, DRM3 DRM2, DRM3 CH3CH2OH + 4FeOOH + 7H+ \rightarrow CH3COO- + 4Fe2+ + 7H2O CH3CH2OH + $0.5SO42 \rightarrow CH3COO + 0.5HS + 0.5H + H2O$ DRM3, SO4RM $CH3CH2OH + 2S0 + H2O \rightarrow CH3COO + 2HS + 3H +$ DMR3. SORM CH3CH2OH + 0.5HCO3- \rightarrow CH3COO- + 0.5CH4 + 0.5H+ + 0.5H2O MGM CH3CH2OH + 2UO2(CO3)22- + H2O \rightarrow CH3COO- + 4HCO3- + 2UO2(s) + H+ DRM2, DRM3, SO4RM, S0RM $CH3COO + 2O2 \rightarrow 2HCO3 + H+$ AM. DM $CH3COO + 1.6NO3 + 0.6H \rightarrow 2HCO3 + 0.8N2 + 0.8H2O$ DM CH3COO- + NO3- + H2O + H+ \rightarrow 2HCO3- + NH4+ DRM2, DRM3 CH3COO- + 4MnO2 + 7H+ \rightarrow 2HCO3- + 4Mn2+ + 4H2O DRM2, DRM3 CH3COO- + 8FeOOH + 15H+ \rightarrow 2HCO3- + 8Fe2+ + 12H2O DRM2, DRM3 CH3COO- + SO42- \rightarrow 2HCO3- + HS-DRM3, SO4RM CH3COO- + 4S0 + 4H2O \rightarrow 2HCO3- + 4HS- + 5H+ DRM3. SORM $CH3COO- + H2O \rightarrow HCO3- + CH4$ MGM CH3COO- + 4UO2(CO3)22- + 4H2O \rightarrow 10HCO3- + 4UO2(s) + H+ DRM2, DRM3, SO4RM, S0RM

Complete oxidation

Incomplete oxidation

Pacific Northwest National Laboratory U.S. Department of Energy 8

TEAP Reactions

 Overall balanced reaction for biological growth derived from bioenergetics-based approach in which the partitioning of electron flow between energy generation and biomass production is dependent on the free energy of the corresponding TEAP

0.2500CH3CH2OH + 0.8256FeOOH(s) + 1.4391H+ + 0.0378HCO3- + 0.0038N2 = 0.2500CH3COO- + 0.0076DRM2_cell + 0.8256Fe++ + 1.4998H2O

Rate laws consider thermodynamic constraints

$$R_{Fe(III)} = V \max_{Surf} \frac{[Cells]}{Km_{Cells} + [Cells]} [Fe(III)Surf_{Free}]f(\Delta G_{rxn})$$

 $f(\Delta G_{rxn}) = 1 - exp((\Delta G_{rxn} - \Delta G_{min}) / RT)$

Battelle

 ΔG_{min} = minimum free energy change required to drive cellular energy metabolism (-20 kJ/mol) (Schink, 1997)

Electron Donor Energy Biomass

Only adjustable parameter values: 1. Fe(III) oxide reduction rate law 2. Initial biomass values

Simulation Conditions

- Initial concentration of extractable Fe(III) = 0.225 M in disturbed and 0.15 M in intact saprolite, zero in the gravel zone
- Initial and upstream boundary concentration of nitrate = 0.5 mM
- Initial and upstream boundary concentration of dissolved sulfate = 8.85 mM
- Initial and upstream boundary concentration of U(VI) = 1 uM

Simulation Conditions

- Tracer and Ethanol Injection Scenarios
 Injection of one hour every 24 hours at rate 3.0L/min.
 Injected tracer concentration = 500 mg/L
 Injected ethanol concentration = 10 mM
- Simulation Period: 10 days
- lnitial $\Delta t = 0.01$ hr, $\Delta t_{max} = 0.5$ hr

Ethanol, **Bromide**

49 hours

Pacific Northwest National Laboratory U.S. Department of Energy 13

Nitrate and Sulfate Reduction

- Almost no flushing effect on Cl-
- Sulfate reduction starts after the 4th injection pulse
- 80 to 90 percent of nitrate reduction

Iron and Uranium Reduction

49 hours

240 hours

Pacific Northwest National Laboratory U.S. Department of Energy 15

Influence Area of Injection

 $\begin{array}{rcl} \mbox{FeS + 1.6NO3- + 1.6H+ } \rightarrow \mbox{Fe2+ + SO42- + 0.8N2 + 0.8H2O} \\ \mbox{Fe2+ + HS- } \leftrightarrow \mbox{FeS + H+} \\ \ensuremath{\equiv} \mbox{Fe+ + HS- } \leftrightarrow \ensuremath{\equiv} \mbox{FeS} \end{array}$

Field Scale Biostimulation

28 days.

