FRC Model Development

NABIR Fall Meeting October 2004

Jack Parker, Eungyu Park (ORNL) Fan Zhang and George Yeh (UCF)

Site-Wide Modeling Effort Objectives

- Provide a means to interpret FRC site characterization data in an integrated manner to develop a more comprehensive understanding of the site
- Identify knowledge gaps to guide ongoing characterization efforts and to identify research priorities
- Quantitatively evaluate the validity of working hypotheses within the site conceptual model
- Provide a tool for NABIR PIs to define boundary conditions for plot areas and provide a modeling template for more detailed plot-scale modeling efforts

Modeling Approach

- Using HYDROGEOCHEM Version 5, which is an enhancement of HBGC123D
- Models 3D transient sat/unsat flow, heat transport, dissolved transport, and complex biogeochemical reactions
- Allows user-definable kinetic functions, which provides flexibility to adopt new formulations as our understanding improves
- Models fully anisotropic porous media suitable for representing densely fractured, dipping bedrock and saprolite

Overview of FRC Area

Model Domain and Bedrock Geology

Discretized Model Domain

Flow Model Calibration

Recharge zones: Hill slopes - 7.8 cm/yr Valley (uncovered) - 2.5 cm/yr Paved areas - 0 cm/yr
Conductivity - anisotropy oriented w/ rock dip Fill material (isotropic K = 2 m/d) Saprolite Transition zone Rock units with K(z) = K(0) exp(-f z/z_T) where z_T = total thickness of all layers

Calibration procedure

Invert using nonlinear optimization code (PEST)

Time-averaged water levels for 122 wells

Average streamflow at Bear Creek NT-2 gauging station

Flow Model Calibration

Unit	K _{strike} m/d	K _{cross-bed} m/d	Depth factor
Saprolite	0.22	0.05	-
Transition	1.20	0.24	-
Knox Group	0.15	0.003	4.20
Maynardville Limestone	1.20	0.180	4.50
Nolichucky Shale	0.10	7.0E-04	3.50
Conasauga & Rome	7.5E-03	6.4E-09	4.50

Steady State Groundwater Flow Model Calibration

Predicted Groundwater Flow During S-3 Pond Operation (1951-1983)

Transport Model Calibration

- ✤ S3 source data computed directly (no calibration) from
 - Total nitrate content of S3 pond in 1962, 1975, 1978, 1981, 1983
 - Average hydraulic discharge rate to ponds
 - Measured nitrate concentration in 1978
- Fit longitudinal and transverse dispersivity and unit porosities to measured nitrate concentrations in monitoring wells (536 measurements)

Transport Model Calibration

```
Parameters calibrated
Dispersitivites
     A_1 = 0.15 \text{ m}
     A_{T} = 0.003 \text{ m}
      note: A<sub>1</sub> values from field tracer tests
         0.08-0.27 m Gwo et al. (1995, 1999)
        0.1 m Jardine et al. (1999)
Porosity
     Saprolite: 0.45
     Transition zone: 0.30
     Rock units:
       average porosity for top rock layer = 0.10
       average depth reduction factor = 3
                \theta = \theta(0) \exp(-f z/z_{T})
```

Nitrate Transport Model

Nitrate Transport Model Results, ca. 1995

Preliminary Geochemical Modeling Studies

Objective: Determine if HGC v5 can predict uranium geochemistry using simple published reaction networks

- Evaluate predictions of pH-dependent U(VI) adsorption determined in batch experiments
- Simulate effluent elution curves from packed soil column experiments
- Simulate effluent breakthrough from undisturbed soil columns

(See poster by Fan Zhang for details)

Uranium Batch Adsorption Study

Simulate uranium adsorption with HGC v5 using equilibrium reaction network of Waite et al. (1994)

Adsorption on homogeneous synthetic soil material

(data from Scott Brooks' group)

Uranium BTC in Packed Soil Column

Simulate uranium breakthrough from packed soil column using Waite equilibrium rx network. Dispersion coefficient only fitted to data.

Pore volumes

Same soil material as batch study

(data from Scott Brooks' group)

Uranium BTC for Undisturbed Soil Column

Same reaction network assuming local equilibrium didn't work as well for the undisturbed soil column

Undisturbed soil from FRC data courtesy Phill-Dirt group (Jardine)

Uranium BTC for Undisturbed Soil Column

Fitting forward and backward rate constants to adorption reactions yielded good agreement with data

Pore volumes

 $> Fe_{s}(OH)_{2} + UO_{2}^{2+} = (>Fe_{s}O_{2})UO_{2} + 2H^{+} \quad \log K_{f} = 3.04, \ \log K_{b} = -10.1$ $> Fe_{w}(OH)_{2} + UO_{2}^{2+} = (>Fe_{w}O_{2})UO_{2} + 2H^{+} \quad \log K_{f} = -0.494, \ \log K_{b} = 4.5$

Work Plan and Issues

- Implement geochemistry into field-scale FRC model
- Refine calibration using new data as available
- Compare "bug-free" model to field data to assess impact
- Effects of uncertainty in biogeochemical rate functions and parameters (and effects of scaling up to field)?
- Effects of physical mass transfer limitations at field scale?