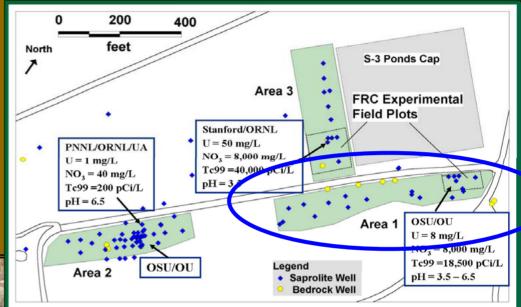


Analysis of Microbial Community Composition and Activity in Sediments from Area 1 and Area 2

Heath J. Mills

Joel E. Kostka and Denise Akob

Oceanography Department Florida State University



<u>Project 1:</u> Microbial Community Analysis of Sediments from Area 1 Based on SSU rRNA Clone Libraries

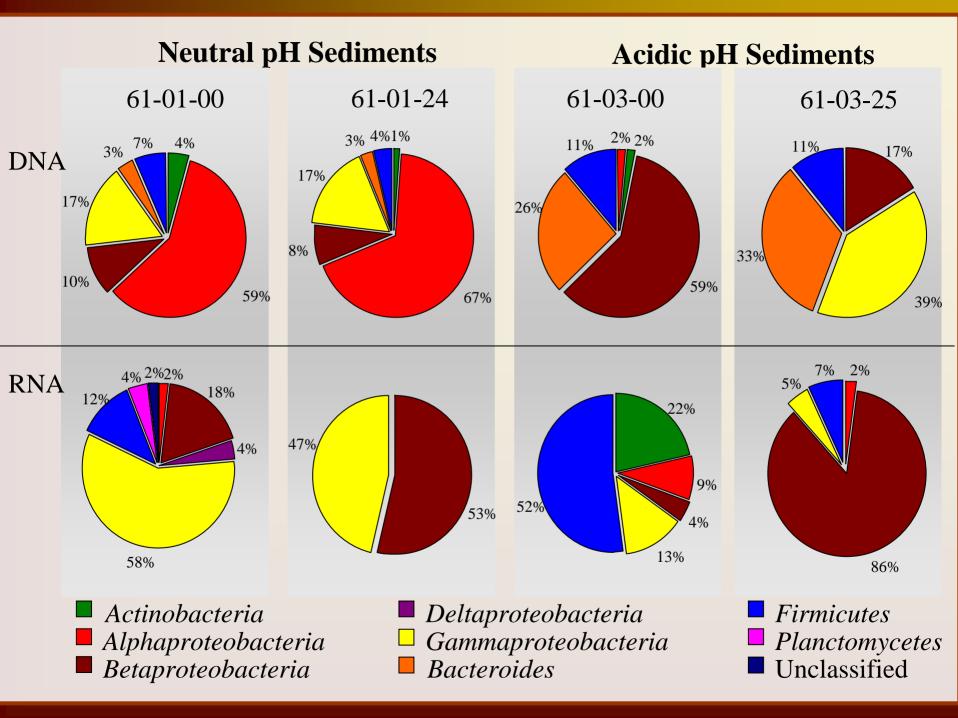
<u>Project 2:</u> Microbial Activity and Community Composition in Microcosms of FRC Area 2 Uranium Contaminated Subsurface Sediment and Groundwater

Project 1: Community Analysis In Unamended Area 1 Sediments

Sediment characteristics of Area 1 borehole FW61

Depth Interval	Depth (m)	рН	Nitrate ¹	Fe-oxalate extract ¹	Nitrate reduction rates ²	Fe(II) production rates ²	
61-01-00	2.4-3.1	6.7	0.6	31.5	0.70 - 2.84	0.00-1.44	
61-01-24	3.1-3.7	6.1	0.1	17.0	0.70 - 1.30	0.01-0.25	
61-03-00	4.9-5.5	3.9	17.8	17.3	0.70 - 1.30	ND^3	
61-03-25	5.5-6.1	3.7	40.1	18.6	0.01-2.84	0.00-0.82	

¹Units in μ mol g⁻¹. ²Units in μ mol g⁻¹ d⁻¹, data reported in Petrie et al. in review. ³Not determined.


From these samples, SSU rRNA (RNA-derived) and SSU rRNA gene (DNA-derived) clone libraries were constructed.

Statistical Indices

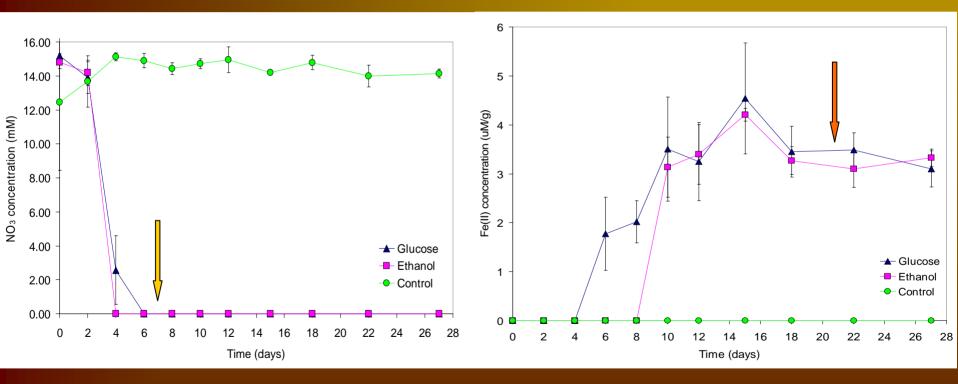
Target	Primer Set	Samples	No. of	OTUs	Species	Shannon	$1/D^{3}$	Percent	$\theta(\pi)^5$	Nucleotide	Gene
		Sumples	Clones	UTUS	Richness	Weine ²	1/D	Coverage ⁴	$\Theta(\pi)$	Diversit ⁶	Diversit ⁷
DNA	27F/1392R	61-01-00	90	20	29 (22, 56 [°])	2.09	4.22	90.0	172.8 ± 82.7	0.15 ± 0.07	0.76 ± 0.04
		61-01-24	77	20	27 (22, 49)	2.19	4.72	88.3	167.4 ± 80.3	0.14 ± 0.07	0.79 ± 0.05
		61-03-00	62	11	21 (13, 63)	1.86	5.25	91.9	172.3 ± 82.9	0.15 ± 0.07	0.81 ± 0.03
		61-03-25	109	13	14 (13, 21)	1.98	5.78	97.3	204.3 ± 97.6	0.18 ± 0.08	0.83 ± 0.02
RNA	1055F/1392F	RRR61-01-00	36	7	7 (7, 7)	1.39	2.93	97.2	22.78 ± 11.32	0.06 ± 0.03	0.73 ± 0.04
		RR61-01-24	43	8	11 (8, 33)	1.72	5.13	93.0	21.69 ± 10.83	0.06 ± 0.03	0.81 ± 0.03
	27F/518R	R61-01-00	14	6	8 (6, 21)	1.57	5.35	78.6	68.32 ± 35.22	0.16 ± 0.08	0.81 ± 0.07
		R61-03-00	23	16	30 (20, 63)	2.67	28.11	52.2	88.36 ± 43.99	0.19 ± 0.09	0.96 ± 0.02
		R61-03-25	43	6	7 (6, 16)	0.7	1.43	93.0	32.12 ± 15.87	32.1 ± 14.3	0.30 ± 0.09


- Rarefaction, species richness, and percent coverage estimators suggest an adequately sampled clone library for each sample
- DNA-derived clone libraries were more diverse in terms of species detected however, both RNA- and DNA-derived nucleotide and gene diversity estimators were similar

Observed Trends

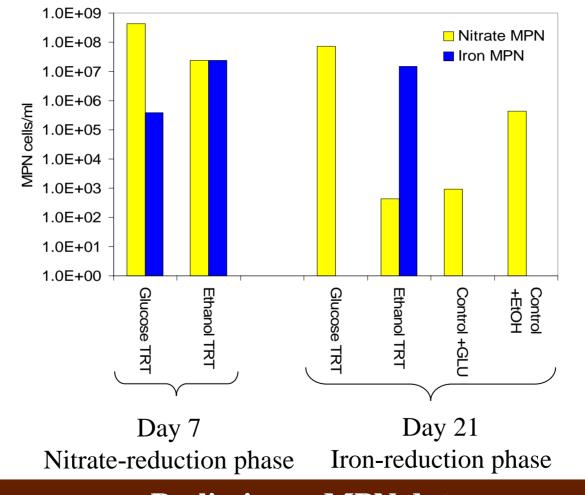
- Numerous phylotypes had high sequence similarity to cultured organisms capable of nitrate reduction and clones from other FRC studies of groundwater and sediments microbial communities
 - Should these be the taxa that are tracked during biostimulation experiments?
- Library similarity at the phyla level not always detected at the species level
 - At what taxonomic level does diversity become important?
 - How can differences in physiology be assessed with no closely related cultured isolate?
- RNA-derived libraries were predominantly subsets of the DNA-derived library from the same sample
 - In low cell mass environments, is DNA-based analyses sufficient?

Project 2: Community analysis of microcosm sediments from Area 2



Microcosm Design

- Area 2 sediment was pH neutralized and then flushed with N_2 to create anoxic conditions.
- Treatments (3 replicates each):
 - 20 mM Ethanol
 - 10 mM Glucose
 - No carbon control
- Incubated at 30° C and sampled for geochemical analysis every 1-5 days.
 - High performance liquid chromatography (HPLC) for electron donor usage (*in progress*)
 - Fe-mineral analysis (*in progress*)


Microcosm Analysis

Preliminary electron acceptor utilization data

Microcosm Analysis

Preliminary MPN data

Preliminary Results and Future Direction

- The shift between nitrate- and iron-reduction phases in the microcosms occurred at different times in the two electron donor treatments.
- Further analysis using both cultivation dependent and independent techniques will be used to determine the differences in community composition during nitrate- and iron-reducing conditions.
- Future Direction:
 - Analyze MPN data for nitrate- and iron-reducing bacteria.
 - Perform molecular-based analysis on homogenized sediment, microcosm material, and MPN dilution tubes.