Phylogenetic Analysis of the Metabolically Active Fraction of FRC Sediment Microbial Communities

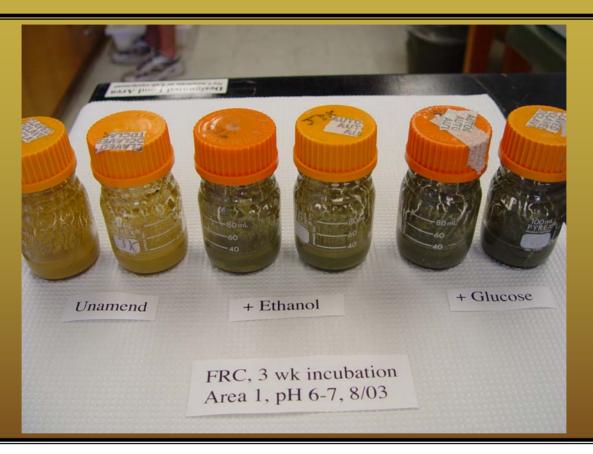
> Heath J. Mills Denise Akob and Joel Kostka

Oceanography Department Florida State University

Overall project objectives

- Quantify microbial activity using geochemical analysis of groundwater/ sediments (push-pull activity tests)
 Jack Istok's lab
- To determine structure/ function relationships of metalreducing bacteria and competing heterotrophs during *in situ* bioremediation in acidic subsurface environments
 - Lainie Petrie's research (Joel Kostka's lab)
- In parallel, quantify the change in the abundance/ diversity of sedimentary microbial communities using cultivation-independent methods
 - Focus on site/sample specific differences between the metabolically active fractions of the microbial communities

Sediment sample characteristics



Sample	рН	Nitrate	Fe- oxalate extract	Fe -HC extract
61-01-00	6.7	0.6	31.5	27.6
61-01-24	6.1	0.1	17	1.8
61-02-00	3.9	25.4	30.4	1.6
61-02-24	3.9	15.9	21.6	3.6
61-03-00	3.9	17.8	17.3	3
61-03-24	3.7	40.1	18.6	5.5
61-04-00	3.7	29.8	9.6	12.3
61-04-22	3.5	73.1	196	4.2
61-05-00	3.7	36	25.3	5.2
61-05-22	4.1	35.2	12.1	22.8

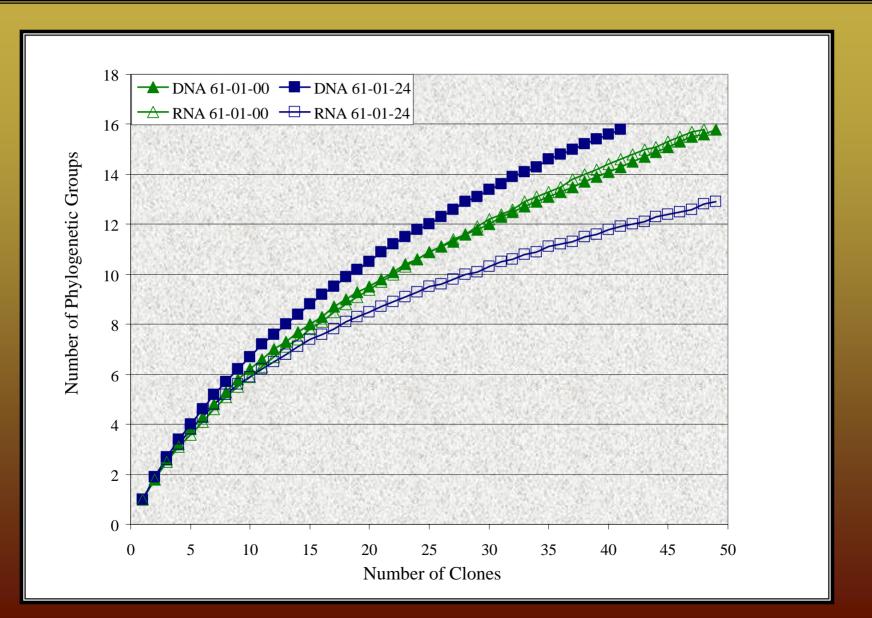
All measurements besides pH are µmoles/gram

Lainie Petrie's Area 1 slurries

- Biostimulation clearly demonstrated
- Activity and geochemistry varies even within core
- Microbial groups display similar heterogeneity?

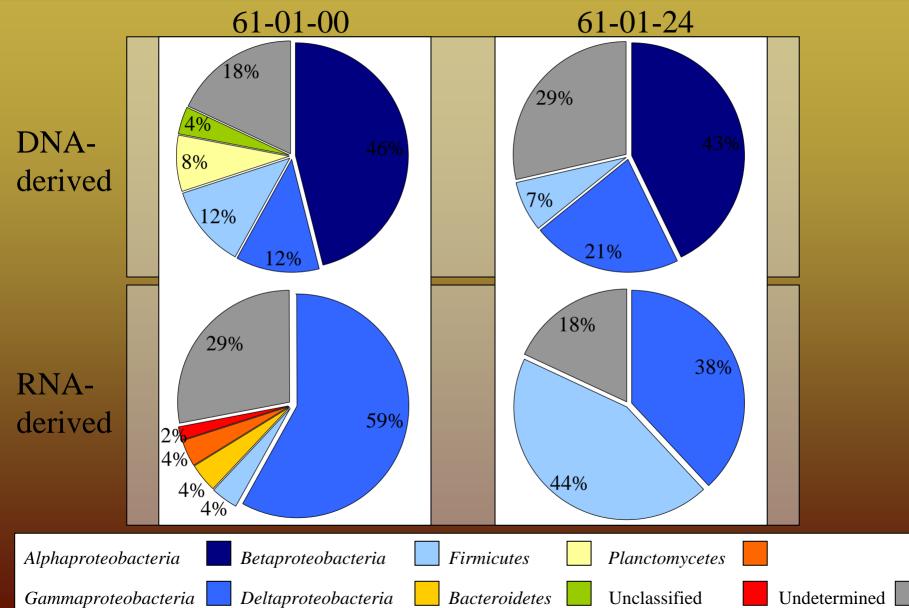
Conclusions from slurry experiments

- Metabolism inhibited under acidic conditions (pH 4)
- Electron donor/ acceptor appear to be secondary controls to pH
- Electron donors vary in their biostimulation potential: Glucose > Ethanol > Lactate > Hydrogen
- Nitrate and Fe(III) reduction are dominant TEAPs
- Acidic conditions shift nitrate-reducers toward incomplete reduction pathways, away from complete denitrification


Sample collection and processing

- Sediment samples were collected using the geoprobe at a depth of:
 - 61-01-00 8-10 ft
 - 61-01-24 10-12 ft
- Total DNA and RNA was extracted using the method described in Hurt et al. 2001. AEM 67:4495-4503.
- DNA and RNA was separated and purified using Qiagen RNA/DNA system tip 500

	Sample	No. of clones analyzed	No. of phylotypes	Percent coverage
DNA- derived	61-01-00	50	16	82.0%
	61-01-24	42	16	81.0%
RNA- derived	61-01-00	49	16	83.7%
	61-01-24	50	12	88.0%



Rarefaction analysis

Clone library analysis

Lineages linked to nitrogen cycling

- Denitrification (24% RNA; 25% DNA)
 - Alphaproteobacteria
 - Sphingomonadaceae (5% DNA)
 - Betaproteobacteria
 - Alcaligenaceae (24% -RNA)
 - Comamonadaceae (7% DNA)
 - Gammaproteobacteria
 - Moraxellaceae (13% DNA)
- Nitrogen fixation (42% DNA)
 - Alphaproteobacteria
 - *Methylobacteriaceae* (35% DNA)
 - Betaproteobacteria
 - Oxalobacteraceae (7% DNA)

- Additional nucleic acid extractions from sediments with varying pH and nitrate concentrations
- Characterize the active fraction of the microbial communities present at the end of the slurry incubations
- Target specific functional genes for nitrification (amoA) and denitrification (nosZ)
- Propose a model for bioremediation potential of FRC sediments based on *in situ* and phylogenetic data