Polyphasic characterization of microbial communities under the stressful conditions of nitrate, heavy metals, radionuclides, and acidic pH in contaminated groundwater

M.W. Fields, T. Yan, X. Liu, C.E. Bagwell, S.L. Carroll, P.M. Jaridne, C.S.Criddle, T.C. Hazen, and J. Zhou

S-3 Source Ponds at the NABIR-FRC

Background at the NABIR-FRC

NABIR-Field Research Center

http://www.esd.ornl.gov/nabirfrc/)

FRC Groundwater Geochemistry

Well	pН	nitrate ^a	uranium ^b	nickel ^c	aluminum ^c	sulfatec
		(mM)	(µM)	(µM)	(mM)	(mM)
FW-300	6.1	0.02	ND	0.85	0.01	0.06
FW-005	3.9	6.27	27.0	84.3	1.74	0.15
FW-010	3.5	713	0.71	322	41.5	2.24
FW-015	3.4	173	32.4	147	22.9	1.02
TPB-16	6.3	0.48	4.62	ND	0.01	8.03
FW-003	6.0	17.1	0.04	0.26	0.02	0.17

^a nitrate was determined via ion chromatography

^b uranium was determined via ICP-mass spectroscopy

^C nickel and aluminum were determined via ICP

Diversity based on SSU 16S rDNA clonal library and partial sequences

	FW- 300	FW- 003	FW- 005	FW- 010	FW- 015	TPB- 16
Clones screened	320	320	210	115	230	435
Unique OTUs	95	35	30	30	50	205
Н'	5.3	3.0	3.1	3.1	3.8	6.7
1/Simpson's	21	3.9	4.5	4.3	7.1	48
Evenness	0.8	0.6	0.6	0.7	0.6	0.8
ΔC_{xy}^{*}	-	4.81	8.61	3.52	5.18	13.6

(* p = 0.001)

PCA of SSU rDNA Gene OTU Distribution

Sequence libraries from FRC groundwater along contaminant plume

	Screened Clones	Unique OTUs
SSU rRNA gene ^a	1630	353
<i>nir</i> K ^b	958	48
nirS ^b	1162	144
<i>amo</i> A ^c	539	63
pmoA ^c	26	14
<i>dsr</i> AB ^d	1812	163

^a Fields et al. (in review); ^b Yan et al., 2003;

^c Yan et al., (in preparation); ^d Bagwell et al., (in review)

Principal Components Analysis for Functional Gene Distribution

SSU rRNA gene 76% of variance

SSU rDNA, *nir*S, *nir*K, *amo*A, *pmo*A, *dsr* 94% of variance

Conclusions

• A subset of geochemical parameters could differentiate the tested sites; however, a larger set of measures was able to differentiate the more heavily contaminated sites

• The distribution patterns for the SSU rRNA gene suggested different groupings compared to geochemistry alone

• Correlations between groundwater chemistry and the recovery and diversity of different functional gene sequences gave different results. However, a theme seemed to be the association of the background site with the heavily contaminated sites

• The distribution of different functional genes and a few SSU rDNA sequences suggested that the background was more similar to the acidic, contaminated sites

Conclusions

• ⁹⁹Tc, NO₃, Al, Nb, Zn, Sb, V, Th, 1,1,2-trichloro-1,2,2-trifluoroethane were dominant factors for the acidic sites

• TOC, Ca, and NO_3 appeared to drive the association of FW-003 with the acidic sites

• Similar functional genes and occurrence of two *Pseudomonas* populations appeared to drive the association of the background with the acidic sites (e.g., similar *nir*S and *nir*K sequences)

• The distribution of different *Acidovorax* and *Diaphorobacter* populations seemed to differentiate FW-003 from the other high nitrate sites as well as some unique *dsr*, *amo*A, and *nir*S gene sequences

• Overall increased diversity, the occurrence of *Methylobacter* sp., several uncultivated organisms, and unique amoA and pmoA sequences differentiated TPB-16 from the other sites

Acknowledgements

Liyou Wu

Tingfen Yan

Sue Carroll

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Kitt Bagwell

Phil Jardine

Jizhong Zhou

Craig S. Criddle

Terry C. Hazen

Funding Department of Energy NABIR Program Genomes to Life Program

