

Idaho National Engineering and Environmental Laboratory

Microbially Facilitated Calcite Precipitation for Remediation of Sr-90 (EMSP Project 87016)

Yoshiko Fujita NABIR FRC Meeting October 2004

People, Funding

INEEL

Yoshiko Fujita Rick Colwell Tina Tyler Mark Delwiche Lynn Petzke David Reed Travis McLing Marnie Cortez Jani Ingram (now NAU)

U. Idaho-Idaho Falls

Bob Smith (PI) Donna Cosgrove Joanna Taylor Michele Bernal Cecile Zachary Daphne Stoner

U. Toronto Grant Ferris Andy Mitchell Vernon Phoenix

Portland State U.

Anna-Louise Reysenbach Amy Banta

Funding provided by the U. S. Department of Energy, Environmental Science Management Program, under DOE Idaho Operations Office Contract DE-AC07-99ID13727.

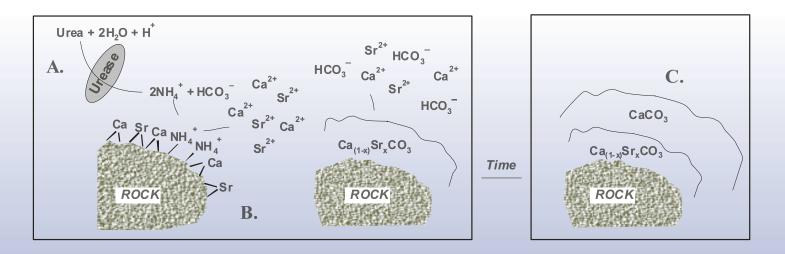
Project Description

- Investigation of potential for urea hydrolyzing bacteria to facilitate calcite precipitation and coprecipitation (immobilization) of trace metals and radionuclides.
- Urea hydrolysis yields ammonium, bicarbonate, and increases pH, promoting calcite precipitation:

 $H_2NCONH_2 + 2H_2O \rightarrow 2NH_4^+ + CO_3^{2-}$ $Ca^{2+} + CO_3^- \rightarrow CaCO_3(s)$

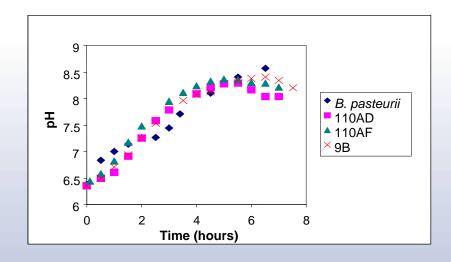
Focus of our research thus far has been immobilization of Strontium-90:

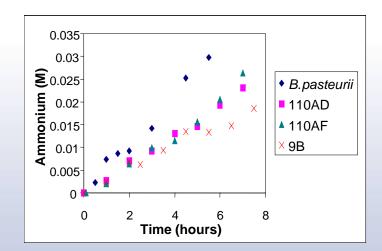
 $(1-\chi)Ca^{2+} + \chi Sr^{2+} + CO_3^{2-} \Leftrightarrow Ca_{(1-\chi)}Sr_{\chi}CO_3(s)$

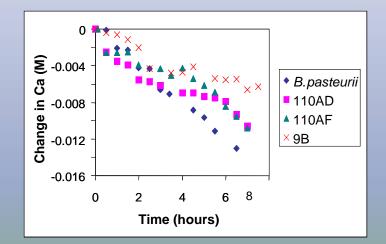


Why use urea hydrolyzing bacteria?

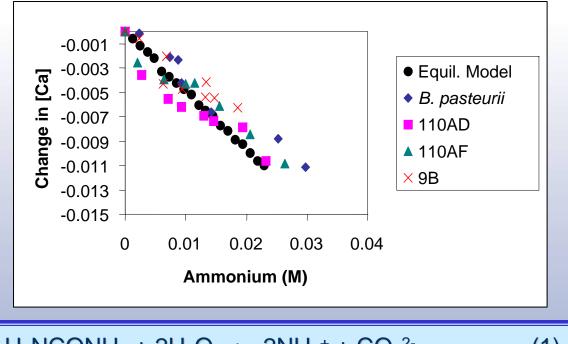
- Urea is a common nitrogen source, and hydrolyzing capability is widespread in the microbial world.
- All water samples from the Snake River Plain Aquifer (> 10 different locations) that have been tested for urease activity have been positive, and urea hydrolyzing bacteria are readily isolated.
- We can take advantage of these ubiquitous "reactors" to generate the reactants we need (carbonate, ammonium) in situ:
 - Prevents instantaneous precipitation in the well;
 - Allows distribution of reactants farther away from the point of injection.


Conceptual approach for remediation

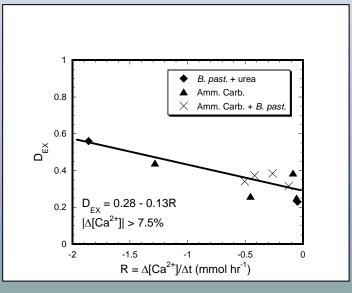

A. Hydrolysis of urea produces NH₄⁺, HCO₃⁻ and raises pH.
B. NH₄⁺ promotes desorption of Sr, Ca from mineral surfaces. HCO₃⁻ promotes precipitation of calcite, co-precipitation of Sr.
C. Continued precipitation of calcite isolates Sr from contact with groundwater.



Initial experiments: proof of principle

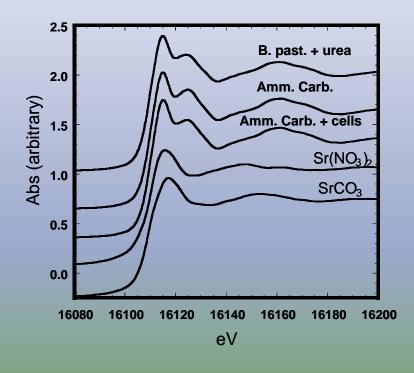

- Batch experiments in artificial medium supplied with calcium and urea; initial log of saturation index -1.7.
- Used Bacillus pasteurii and SRPA bacterial isolates
- pH, calcium, ammonium monitored for 8 hours.

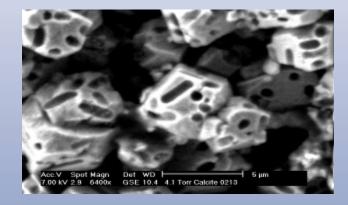
System follows equilibrium model


 $\begin{array}{l} H_{2}NCONH_{2} + 2H_{2}O \longrightarrow 2NH_{4}^{+} + CO_{3}^{2-} & (1) \\ \\ \hline Ca^{2+} + CO_{3}^{2-} \xrightarrow{} CaCO_{3} & (2) \\ \hline H_{2}NCONH_{2} + 2H_{2}O + Ca^{2+} \xrightarrow{} 2NH_{4}^{+} + CaCO_{3} & (3) \end{array}$

Strontium uptake is enhanced

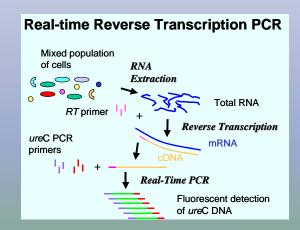
- When Sr is included, it is removed concurrently with Ca, and biogenically generated calcite takes up more Sr than abiotically generated calcite.
 - Higher D_{EX} correlated with higher precipitation rates.

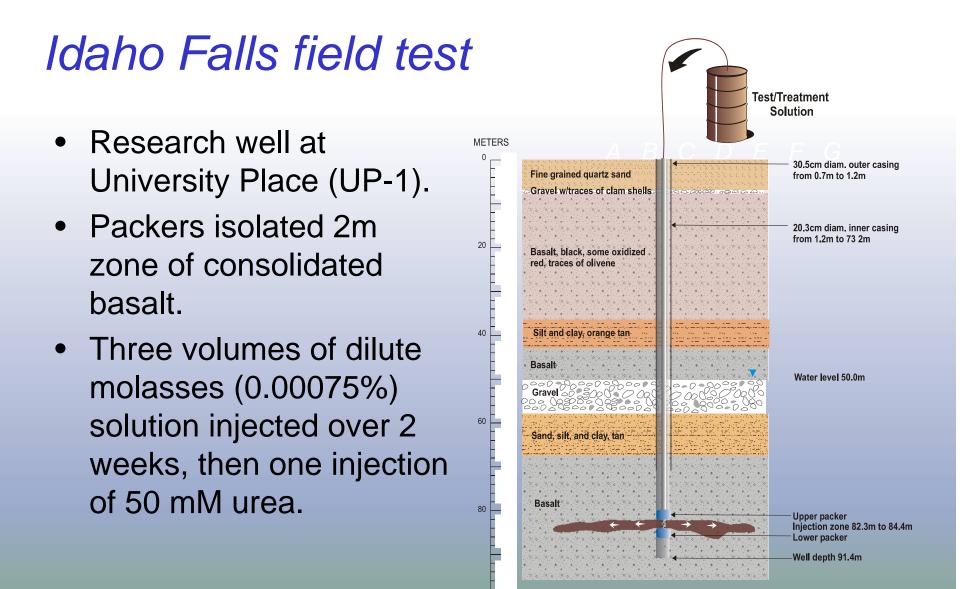

Sample generated by	Sr:Ca
<i>B. Pasteurii</i> + urea	0.044
Amm. Carb.	0.032
Amm. Carb. + <i>B. pasteurii</i>	0.027



Strontium is held tightly within calcite

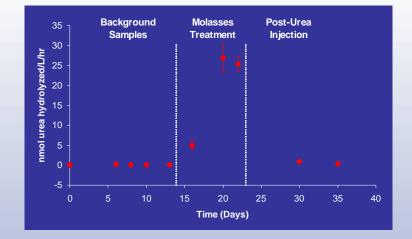
- X-ray Absorption Near Edge Structure (XANES) spectroscopy shows Sr substitutes for Ca in calcite lattice.
 - Solid solution formation is beneficial for long-term immobilization.



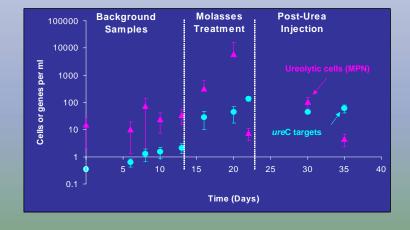


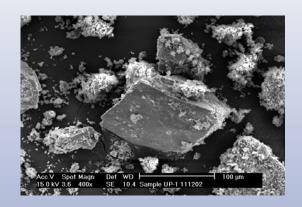
In the field, to verify the process we rely on urease activity

- Because we can't see the calcite precipitating in the subsurface, we instead focus on urease activity.
 - Can recover groundwater, and check if urease activity is stimulated.
- We estimate in situ rates of ureolysis using a ¹⁴C tracer technique in the laboratory.
- We have also developed methods to detect and quantify urease genes (ureC subunit) and ureC mRNA transcripts, using real-time PCR.



100 L



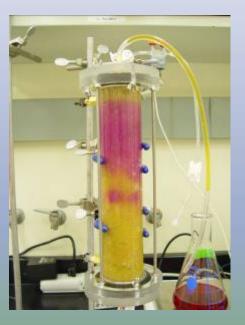

Field test results – urease activity was stimulated and calcite precipitated.

Ureolysis rates increased ~ 250X.

Ureolytic cell numbers increased ~ 100 -200X.

Scanning electron micrograph of precipitate collected from well following urea injection. XRD confirmed presence of calcite.

Other Activities


- Evaluation of ureolytic activity and potential for remediation at Hanford 100-N Area.
- Static incubation field experiment to recover solid precipitates, biomass; planning push pull tests at the INEEL Vadose Zone Research Park.
- Continued development of real time RT-PCR for ureC mRNA transcripts.
- Development of methods for assaying nitrifying activity in groundwater.
- Investigation of the effects of precipitation on flow in porous media.
 - Could lead to strategies for manipulating distribution of precipitates in subsurface.

Coupling between precipitation and fluid transport

- Currently using ureolytically driven calcite precipitation as a model system for *in situ* generation of reactants.
- Extracellular urease immobilized on Eupergit[®] C beads, mixed in quartz sand.

Initially flow faster than urea hydrolysis kinetics (low Damkohler number); then let column sit overnight with no flow.

Urea hydrolysis rate > flow rate

Coupling Project – cont.

 Also using experiments to test geophysical characterization tools (induced polarization) and X-ray tomography for imaging precipitate distribution.

- Project aims ultimately to develop numerical models to describe coupling between precipitation and flow (work with L. Lake, U. Texas).
- For more information on coupling project, contact George Redden, reddgd@inel.gov