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Stratigraphic and Lithologic Characterization 
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Hydrologic Characterization



•Point dilution technique for estimating groundwater flux as a function of depth.
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Figure A-1: Profile of Flow Rates in Well FW 024
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Borehole flowmeter for estimating hydraulic conductivity as a 
function of depth
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A dual dipole tracer injection-
withdraw test was conducted 
using CaBr2 and CaCl2 in an 
effort to create an inner and 
outer hydraulic cage.

Results confirmed location and 
transport features of preferential 
flow regimes and slow flowing 
matrix regimes.

Experimental data was 
numerically simulated and the 
model used to design the pending 
in situ U bioreduction system.
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Natural gradient site recovery solute breakthrough

Natural gradient contaminant transport 
monitored during site recovery.  
Quantification of solute residence times, 
direction of groundwater flow, and strike vs. 
dip interactions.
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Distribution of Extractable U and Relative Hydraulic Conductivity in the Cores
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Undisturbed column from treatment zone (42 ft. depth) 

Laboratory experiments help to quantify
solute mass transfer kinetics, uranium reactivity,
and propensity for bioreduction under dynamic
flow conditions.
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• Data support the field scale modeling endeavor.
• Supply parameters for direct model input or scale-up (e.g. 

hydraulic conductivity, mass transfer rates, flow and 
transport anisotropy ratios, preferential flow vs. matrix 
diffusion).

• Improved conceptual understanding for enhanced 
numerical coding and simulation.

• Probable link to microbial community structure and 
dynamics.

• Provides essential information for the interpretation of 
geophysical measurements and monitoring.

How is the hydrologic and transport data used?



Aqueous Geochemical Characterization



 
Inorganic 
Constituents 

 
Concentrations 

Organic Constituents  
Concentrations 

PH  3.5-3.6  BOD5  100 mg/L* 
TIC  202-401 mg/L  COD 200 mg/L* 
Chloride  249-298 mg/L TOC 65-81 mg/L 
Sulfate 843-1116 mg/L 2-Butanone  69-84 µg/L 
Nitrate 7500-8963 mg/L Acetone  340-700 µg/L 
Nitrite   low Chloroform 34-36 µg/L 
N2O  ??? Ethanol 200 µg/L 
Uranium 42-51 mg/L Tetrachloroethene  2100-3300 µg/L 
Tc-99  35-40 nCi/L  

(80-89 dpm/ml) 
Trichloroethene  94-130 µg/L 

Ni  11.5-14 mg/L  cis-1,2 Dichloroethene  700-740 µg/L 
Cd  0.45 mg/L Vinyl chloride  2 ug/L 
Sb  <0.003 mg/L 1,1,2-trichloro-1,2,2-

trifluoroethane  
1200-1500 µg/L 

Ar  <0.005 methylene chloride  39-42 µg/L 
Cr  0.17 mg/L   
Pb  0.03 mg/L   
Se.  0.02 mg/L   
* estimated value: a measurement is needed. 

FW024 FW026

Al 541±47 492±62

Ba 0±0 0±0

Be 0±0 0±0

Ca 931±74 1008±175

Cd 0±0 0±0

Co 1±0 1±0

Cu 1 1±0

Fe 2±0 10±4

K 94±6 93±8

Li 3±0 3±0

Mg 174±11 165±22

Mn 130±9 123±15

Na 859±86 765±91

Ni 12±1 11±1

S 325±30 309±31

Si 28±2 23±3

Sr 2±0 2±0

Zn 2±0 2±1

Toxicity? Eliminated
as pH is raised.

Precipitate as
pH is raised.

Precipitate as
pH raised.

Precipitate as
pH raised.

Intensive site wide monitoring of groundwater chemistry

Multiple investigators
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Coupled groundwater chemistry with solid phase constituents and hydrology
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Molecular speciation using X-ray Absorption Spectroscopy



Field-portable Immunosensor

Field-portable Immunosensor 
for real-time analysis of 
U(VI) in groundwater.



• Data support the lab and field scale modeling endeavors.
• Supply parameters for direct model input (e.g. solute 

speciation, mass balance, spatial and temporal 
concentration distributions).

• Improved conceptual understanding for enhanced 
numerical coding and simulation.

• Important link to microbial community structure and 
dynamics.

• Provides essential information for the interpretation of 
solid phase geochemistry and mineralogy.

How is the aqueous geochemical data used?



Solid Phase Geochemical and 
Mineralogical Characterization



FW024 and FW026
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Overlying Gleyed leached flow zone 
with high U, low pH groundwater
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precipitates
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accumulation 
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Black precipitate Zone with higher 
pH and lower U in groundwater

U=155 mg/kg

A high U zone was detected in FW100 
(Area 3 field site) at a depth of 46’. 

XRD results:
Gleyed Zone - Quartz, Vermiculite, Mica, HIV, Ca-feldspar
Black Zone - Quartz, Ca-feldspar, Vermiculite, Mica, Goethite

Area 3 Core Mineralogical Evaluations

U=730 mg/kg

Roh and Watson, 2003



Area 1 Core Analysis
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SEM-BSE-Element Mapping of 
FWB100-06-09 sample Black Rad Zone 

SEM Si Al S

Fe Mn U P

10 µm

EDX

U distribution matches  P and S distribution

Roh and Watson, 2003
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Core Analysis (Fe, Mn, Al, P, S)
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Interpolated Uranium Distribution between the Cores
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Mossbauer spectroscopy at PNNL

Stucki et al., and Zachara et al.,  2003

Mossbauer used to quanfity the 
types and amount of various Fe-
bearing oxides in heterogeneous 
FRC background and 
contaminanted samples (Area 
1).

Also use quantify changes in Fe 
mineralogy following in situ 
biostimulation using various 
electron donors (Background 
and Area 1).



APS

Extended X-ray Absorption Fine 
Structure (EXAFS) used to quantify 
the Fe-oxide mineralogy in 
heterogeneous samples from the FRC 
(Area 3).

Fendorf, 2003
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Figure 1. XANES analysis of FRC soil sample 
shows uranium is in hexavalent form. 

Francis, 2003

XANES used to quantify 
valance state of sorbed U (e.g. 
U(IV) vs. U(VI)).
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solid phase U at the FRC.
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Uranium Adsorption
pH~4
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• Mineralogy confirm whether hypothesized reaction 
pathways and associated stability/equilibrium constants are 
correct. 

• Solid phase contaminant speciation used to understanding 
in situ geochemical and microbial processes. 

• Supply parameters for direct model input (e.g. solute 
speciation, mass balance, spatial and temporal 
concentration distributions).

• Improved conceptual understanding for enhanced 
numerical coding and simulation.

• Important link to microbial community structure and 
dynamics.

• Provides essential information for the interpretation of 
geophysical measurements and monitoring.

How is the solid phase geochemical and mineralogical 
data used?



Geophysical Characterization



Electrical Conductivity Probing 
with FRC Geoprobe 
- Useful for mapping stratigraphy and 
high U zones

Electrical Conductivity Probe Near FW019, Area 1
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Seismic Velocity Contours

Seismic and Resistivity Surveys
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Electromagnetic Induction Logging

Doll/Beard/Gamey et al., 2003

Spatial and temporal 
plume mapping during 
manipulation.

Compliments direct 
groundwater geochemical 
tracer measurements.



Hubbard et al., 2003

Seismic and Radar Tomography

Mapping subsurface 
material heterogeneities 
using cross-borehole 
techniques.



Compliments direct groundwater
geochemical tracer measurements.

Provides complementary 
information on in situ fate and 
transport processes.

Hubbard et al., 2003

Mehlhorn et al., 2003



• Provides essential information on media structure and 
large-scale plume identification.

• Provides complementary information on in situ fate and 
transport processes.

• Provides large-scale view of subsurface features for 
guiding groundwater well placement.

• Proven and potential applications for monitoring 
hydrological, geochemical, and microbial manipulations.

• Supply integrated, large-scale subsurface data sets that can 
be compared to transport model simulations/visualizations.

• Used to estimate hydrogeochemical parameters for use in 
transport models.

• Improved conceptual understanding for enhanced 
numerical coding and simulation.

How is the geophysical data used?



Who is coordinating with who and why?

Criddle/Jardine project

Watson: assistance with groundwater and solid phase geochemical analyses and 
infrastruture support.

Roh: mineralogy and solid phase elemental mapping.
Kemner: solid phase U speciation using XAFS
Fendorf: solid phase Fe speciation using XAFS
Doll: geophysical plume mapping using surface and subsurface monitoring 

techniques.
Hubbard/Fienin: geophysical plume mapping and model parameter estimations 
using cross-hole.
Blake: groundwater U monitoring in real-time.



Istok/Krumholtz etc. project
Watson:
Stucki/Zachara
Roh
Blake


